51
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
52
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors. J Pharmacol Exp Ther 2019; 370:490-503. [PMID: 31308194 DOI: 10.1124/jpet.119.258129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023] Open
Abstract
Valproic acid (VPA) has been shown to regulate the levels of brain-derived neurotrophic factor (BDNF), but it is not known whether this drug can affect the neuronal responses to BDNF. In the present study, we show that in retinoic acid-differentiated SH-SY5Y human neuroblastoma cells, prolonged exposure to VPA reduces the expression of the BDNF receptor TrkB at the protein and mRNA levels and inhibits the intracellular signaling, neurotrophic activity, and prosurvival function of BDNF. VPA downregulates TrkB and curtails BDNF-induced signaling also in differentiated Kelly and LAN-1 neuroblastoma cells and primary mouse cortical neurons. The VPA effect is mimicked by several histone deacetylase (HDAC) inhibitors, including the class I HDAC inhibitors entinostat and romidepsin. Conversely, the class II HDAC inhibitor MC1568, the HDAC6 inhibitor tubacin, the HDAC8 inhibitor PCI-34051, and the VPA derivative valpromide have no effect. In neuroblastoma cells and primary neurons both VPA and entinostat increase the cellular levels of the transcription factor RUNX3, which negatively regulates TrkB gene expression. Treatment with RUNX3 siRNA attenuates VPA-induced RUNX3 elevation and TrkB downregulation. VPA, entinostat, HDAC1 depletion by siRNA, and 3-deazaneplanocin A (DZNep), an inhibitor of the polycomb repressor complex 2 (PRC2), decrease the PRC2 core component EZH2, a RUNX3 suppressor. Like VPA, HDAC1 depletion and DZNep increase RUNX3 and decrease TrkB expression. These results indicate that VPA downregulates TrkB through epigenetic mechanisms involving the EZH2/RUNX3 axis and provide evidence that this effect implicates relevant consequences with regard to BDNF efficacy in stimulating intracellular signaling and functional responses. SIGNIFICANCE STATEMENT: The tropomyosin-related kinase receptor B (TrkB) mediates the stimulatory effects of brain-derived neurotrophic factor (BDNF) on neuronal growth, differentiation, and survival and is highly expressed in aggressive neuroblastoma and other tumors. Here we show that exposure to valproic acid (VPA) downregulates TrkB expression and functional activity in retinoic acid-differentiated human neuroblastoma cell lines and primary mouse cortical neurons. The effects of VPA are mimicked by other histone deacetylase (HDAC) inhibitors and HDAC1 knockdown and appear to be mediated by an epigenetic mechanism involving the upregulation of RUNX3, a suppressor of TrkB gene expression. TrkB downregulation may have relevance for the use of VPA as a potential therapeutic agent in neuroblastoma and other pathologies characterized by an excessive BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Luisa Marras
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Angela Ingianni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| |
Collapse
|
53
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
54
|
Abdanipour A, Moradi F, Fakheri F, Ghorbanlou M, Nejatbakhsh R. The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models. Neurol Res 2019; 41:577-583. [DOI: 10.1080/01616412.2019.1588507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Farzaneh Fakheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| |
Collapse
|
55
|
A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision. Future Med Chem 2019; 11:463-487. [DOI: 10.4155/fmc-2018-0315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last decade, innovative therapeutic strategies against inherited retinal degenerations (IRDs) have emerged. In particular, chemical- and opto-genetics approaches or a combination of them have been identified for modulating neuronal/optical activity in order to restore vision in blinding diseases. The ‘chemical-genetics approach’ (optopharmacology) uses small molecules (exogenous photoswitches) for restoring light sensitivity by activating ion channels. The ‘opto-genetics approach’ employs light-activated photosensitive proteins (exogenous opsins), introduced by viral vectors in injured tissues, to restore light response. These approaches offer control of neuronal activities with spatial precision and limited invasiveness, although with some drawbacks. Currently, a combined therapeutic strategy (optogenetic pharmacology) is emerging. This review describes the state of the art and provides an overview of the future perspectives in vision restoration.
Collapse
|
56
|
Chen WJ, Ma L, Li MS, Ma X. Valproic acid's effects on visual acuity in retinitis pigmentosa: a systemic review and Meta-analysis. Int J Ophthalmol 2019; 12:129-134. [PMID: 30662852 DOI: 10.18240/ijo.2019.01.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To gain a better understanding of the overall efficacy of valproic acid (VPA) treatment for retinitis pigmentosa (RP). METHODS Publications in PubMed, EMBASE, Cochrane Library, Web of Science and Clinicaltrials.gov were searched for clinical trials of patients with RP assigned to treatment with VPA. Patients' pre- and post-treatment visual field (VF) and best-corrected visual acuity (BCVA) scores were extracted and compared to assess changes. RESULTS A total of 78 reports were retrieved and 6 studies involving 116 patients were included in the Meta-analysis. The combined results showed a significant decrease in logarithm of minimal angle of resolution (logMAR) scores, calculated using baseline and post-treatment BCVA (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=36%) scores, which means there was considerable improvement in visual acuity. Meanwhile, more BCVA changes were observed in short-term (≤6mo) treatment studies (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=38%), studies conducted in Asia (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=4%), studies with a sample size of 30 or fewer patients (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=38%) and prospective studies (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=0%). However, VPA's effect on VF was inconsistent across studies (P=0.75, mean difference=-22.76, 95%CI: -160.56, 115.05, I 2=68%). CONCLUSION This Meta-analysis reveals that most RP patients who were treated with VPA showed improvement in BCVA. However, its effect on VF remains inconsistent. VPA may be a promising treatment for RP.
Collapse
Affiliation(s)
- Wen-Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Li Ma
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Ming-Shu Li
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Xiang Ma
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
57
|
Lithium interacts with cardiac remodeling: the fundamental value in the pharmacotherapy of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:208-214. [PMID: 30053574 DOI: 10.1016/j.pnpbp.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Patients with bipolar disorder (BD) have an increased risk of cardiovascular morbidity and mortality during the course of their illness. For over half a century, lithium has been the gold-standard medication used to treat the mood burdens of BD. In addition, lithium possesses several biological effects that may modulate cardiovascular risk in patients with BD. In this review, we update the current knowledge of cellular and molecular mechanisms underlying the possible cardiac actions of lithium. The mechanistic insights suggest that lithium at therapeutic levels potentially exerts cardioprotective effects on ischemic hearts by modulating structural and electrical remodeling. The possible cardioprotective actions of lithium may involve an extensive range of signaling pathways, including the Wnt/glycogen synthase kinase-3β, phosphatidylinositol-3-kinase/protein kinase B, phosphoinositide/protein kinase C, and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades. Accordingly, understanding the cardioprotective effects of lithium may lead to the development of a potential strategy for reducing cardiovascular morbidity in patients with BD.
Collapse
|
58
|
Wang AL, Knight DK, Vu TTT, Mehta MC. Retinitis Pigmentosa: Review of Current Treatment. Int Ophthalmol Clin 2019; 59:263-280. [PMID: 30585930 DOI: 10.1097/iio.0000000000000256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
59
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
60
|
Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiol Genomics 2018; 51:43-50. [PMID: 30576260 DOI: 10.1152/physiolgenomics.00069.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Valproic acid (VPA) and lithium are widely used in the treatment of bipolar disorder. However, the underlying mechanism of action of these drugs is not clearly understood. We used RNA-Seq analysis to examine the global profile of gene expression in a rat serotonergic cell line (RN46A) after exposure to these two mood stabilizer drugs. Numerous genes were differentially regulated in response to VPA (log2 fold change ≥ 1.0; i.e., odds ratio of ≥2, at false discovery rate <5%), but only two genes ( Dynlrb2 and Cdyl2) showed significant differential regulation after exposure of the cells to lithium, with the same analysis criteria. Both of these genes were also regulated by VPA. Many of the differentially expressed genes had functions of potential relevance to mood disorders or their treatment, such as several serpin family genes (including neuroserpin), Nts (neurotensin), Maob (monoamine oxidase B), and Ap2b1, which is important for synaptic vesicle function. Pathway analysis revealed significant enrichment of Gene Ontology terms such as extracellular matrix remodeling, cell adhesion, and chemotaxis. This study in a cell line derived from the raphe nucleus has identified a range of genes and pathways that provide novel insights into potential therapeutic actions of the commonly used mood stabilizer drugs.
Collapse
Affiliation(s)
- Diana Balasubramanian
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| | - John F Pearson
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand.,Biostatistics and Computational Biology Unit, University of Otago , Christchurch , New Zealand
| | - Martin A Kennedy
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| |
Collapse
|
61
|
van der Vaart A, Meng X, Bowers MS, Batman AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D, Wolstenholme JT, Miles MF. Glycogen synthase kinase 3 beta regulates ethanol consumption and is a risk factor for alcohol dependence. Neuropsychopharmacology 2018; 43:2521-2531. [PMID: 30188517 PMCID: PMC6224501 DOI: 10.1038/s41386-018-0202-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023]
Abstract
Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.
Collapse
Affiliation(s)
- Andrew van der Vaart
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xianfang Meng
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - M Scott Bowers
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychiatry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela M Batman
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Fazil Aliev
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean P Farris
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jennifer S Hill
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Thomas A Green
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Jennifer T Wolstenholme
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael F Miles
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
62
|
González-Pinto A, López-Peña P, Bermúdez-Ampudia C, Vieta E, Martinez-Cengotitabengoa M. Can lithium salts prevent depressive episodes in the real world? Eur Neuropsychopharmacol 2018; 28:1351-1359. [PMID: 30243681 DOI: 10.1016/j.euroneuro.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
To critically examine the effectiveness of lithium in preventing depressive symptoms (mixed and depressive episodes) in real life settings, taking into account adherence to drug treatment and its implications for the clinical costs of the disease. Overall, 72 patients with bipolar disorder initially treated with lithium carbonate were included and followed-up for 10 years. Patients were assessed every 8 weeks for morbidity and alcohol/drug consumption. Patients with good adherence to lithium had fewer episodes with depressive features than poor adherers (B = 2.405, p = 0.046) and also fewer manic and hypomanic episodes (B = 2.572; p < 0.001), after controlling for confounders. Time to relapse into a depressive or mixed episode and into a manic or hypomanic episode was shorter in patients with poor adherence. The costs of the 1.95 ± 2.38 (mean ± standard deviation) admissions of adherent patients through the 10 years of follow-up were €10,349, while the costs of the 6.25 ± 4.92 admissions of non-adherent patients were €44,547. In clinical practice settings, long-term lithium salts seem to have a preventive effect on depressive symptoms.
Collapse
Affiliation(s)
- Ana González-Pinto
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain
| | - Purificación López-Peña
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain
| | | | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Mónica Martinez-Cengotitabengoa
- CIBERSAM-BioAraba Research Institute, Vitoria, Spain; University of the Basque Country (EHU/UPV), Vitoria, Spain; National Distance Education University Spain (UNED), Vitoria, Spain.
| |
Collapse
|
63
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
64
|
Thomas M, Knoblich N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, Brückmann C, Nieratschker V. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin Epigenetics 2018; 10:109. [PMID: 30134995 PMCID: PMC6106893 DOI: 10.1186/s13148-018-0544-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background The importance of epigenetic alterations in psychiatric disorders is increasingly acknowledged and the use of DNA methylation patterns as markers of disease is a topic of ongoing investigation. Recent studies suggest that patients suffering from Borderline Personality Disorder (BPD) display differential DNA methylation of various genes relevant for neuropsychiatric conditions. For example, several studies report differential methylation in the promoter region of the brain-derived neurotrophic factor gene (BDNF) in blood. However, little is known about BDNF methylation in other tissues. Results In the present study, we analyzed DNA methylation of the BDNF IV promoter in saliva and blood of 41 BPD patients and 41 matched healthy controls and found significant hypermethylation in the BPD patient’s saliva, but not blood. Further, we report that BDNF methylation in saliva of BPD patients significantly decreased after a 12-week psychotherapeutic intervention. Conclusions Providing a direct comparison of BDNF methylation in blood and saliva of the same individuals, our results demonstrate the importance of choice of tissue for the study of DNA methylation. In addition, they indicate a better suitability of saliva for the study of differential BDNF methylation in BPD patients. Further, our data appear to indicate a reversal of disease-specific alterations in BDNF methylation in response to psychotherapy, though further experiments are necessary to validate these results and determine the specificity of the effect. Electronic supplementary material The online version of this article (10.1186/s13148-018-0544-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Thomas
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nora Knoblich
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Annalena Wallisch
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Katarzyna Glowacz
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Julia Becker-Sadzio
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Friederike Gundel
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Christof Brückmann
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.
| |
Collapse
|
65
|
Lai CL, Lu CC, Lin HC, Sung YF, Wu YP, Hong JS, Peng GS. Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. J Formos Med Assoc 2018; 118:420-428. [PMID: 30031602 DOI: 10.1016/j.jfma.2018.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/PURPOSE The main purpose of this study was to extend previously reported showing potent neuroprotective effect of valproic acid (VPA) in primary midbrain neuro-glial cultures to investigate whether VPA could protect dopamine (DA) neurons in vivo against 6-hydroxydopamine (6-OHDA)-induced neurodegeneration and to determine the underlying mechanism. METHODS Male adult rats received a daily intraperitoneal injection of VPA or saline for two weeks before and after injection of 5, 10, or 15 μg of 6-OHDA into the brain. All rats were evaluated for motor function by rotarod performance. Brain samples were prepared for immunohistochemical staining and for determination of levels of dopamine, dopamine metabolites, and neurotrophic factors. RESULTS 6-OHDA injection showed significant and dose-dependent damage of dopaminergic neurons and decrease of striatal dopamine content. Rats in the VPA-treated group were markedly protected from the loss of dopaminergic neurons and showed improvements in motor performance, compared to the control group at the moderate 6-OHDA dose (10 μg). VPA-treated rats also showed significantly increased brain-derived neurotrophic factor (BDNF) levels in the striatum and substantia nigra compared to the levels in control animals. CONCLUSION Our studies demonstrate that VPA exerts neuroprotective effects in a rat model of 6-OHDA-induced Parkinson's disease (PD), likely in part by up-regulation BDNF.
Collapse
Affiliation(s)
- Ching-Long Lai
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Chun-Chung Lu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ching Lin
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Pin Wu
- Department of Neurology, National Defense Medical Center, Taipei, Taiwan
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Giia-Sheun Peng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Neurology, National Defense Medical Center, Taipei, Taiwan; Division of Neurology, Taipei Veterans General Hospital, Hsinchu Branch, Taiwan.
| |
Collapse
|
66
|
Akarsu S, Bolu A, Aydemir E, Zincir SB, Kurt YG, Zincir S, Erdem M, Uzun Ö. The Relationship between the Number of Manic Episodes and Oxidative Stress Indicators in Bipolar Disorder. Psychiatry Investig 2018; 15:514-519. [PMID: 29674601 PMCID: PMC5975995 DOI: 10.30773/pi.2016.12.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/31/2016] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a chronic mood disorder characterized by recurrent episodes that has a lifetime prevalence of 0.4- 5.5%. The neurochemical mechanism of BD is not fully understood. Oxidative stress in neurons causes lipid peroxidation in proteins associated with neuronal membranes and intracellular enzymes and it may lead to dysfunction in neurotransmitter reuptake and enzyme activities. These pathological processes are thought to occur in brain regions associated with affective functions and emotions in BD. The relationship between the number of manic episodes and total oxidant-antioxidant capacity was investigated in this study. METHODS Eighty-two BD patients hospitalized due to manic symptoms and with no episodes of depression were enrolled in the study. Thirty of the 82 patients had had their first episode of mania, and the other 52 patients had had two or more manic episodes. The control group included 45 socio-demographically matched healthy individuals. Serum total antioxidant capacity (TAC) and total oxidant capacity (TOC) measurements of the participants were performed. The oxidative stress index (OSI) was calculated by TOC/TAC. RESULTS There were no significant differences in OSI scores between BD patients with first-episode mania and BD patients with more than one manic episode. However, OSI scores in both groups were significantly higher than in the control group. TOC levels of BD patients with first-episode mania were found to be significantly higher than TOC levels of BD patients with more than one manic episode and healthy controls. There were no significant differences in TAC levels between BD patients with first-episode mania and BD patients with more than one manic episode. TAC levels in both groups were significantly higher than in the control group. CONCLUSION Significant changes in oxidative stress indicators were observed in this study, confirming previous studies. Increased levels of oxidants were shown with increased disease severity rather than with the number of manic episodes. Systematic studies, including of each period of the disorder, are needed for using the findings indicating deterioration of oxidative parameters.
Collapse
Affiliation(s)
- Süleyman Akarsu
- Department of Psychiatry, Freelance Physician, Hatay, Turkey
| | - Abdullah Bolu
- Department of Psychiatry, Gülhane Education and Research Hospital, Ankara, Turkey
| | - Emre Aydemir
- Department of Psychiatry, Beytepe State Hospital, Ankara, Turkey
| | - Selma Bozkurt Zincir
- Department of Psychiatry, Medical Park Göztepe Hospital Complex, Istanbul, Turkey
| | | | - Serkan Zincir
- Department of Psychiatry, Eskişehir State Hospital, Eskişehir, Turkey
| | - Murat Erdem
- Department of Psychiatry, Bilted Psychiatry Treatment Center, Ankara, Turkey
| | - Özcan Uzun
- Department of Psychiatry, Gülhane Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
67
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
68
|
Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials 2018; 167:69-79. [PMID: 29554482 DOI: 10.1016/j.biomaterials.2018.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023]
Abstract
The interest in alternative material systems and delivery methods for treatment of androgenetic alopecia has been increasing in the recent decades. Topical application of valproic acid (VPA), an FDA-approved anticonvulsant drug, has been shown to effectively stimulate hair follicle (HF) regrowth by upregulating Wnt/β-catenin, a key pathway involved in initiation of HF development. Moreover, a majority of studies have suggested that cutaneous wound re-epithelialization is capable of inducing HF through Wnt/β-catenin pathway. Here, we report fabrication and evaluation of a novel VPA-encapsulating dissolving microneedle (DMN-VPA) that creates minimally invasive dermal micro-wounds upon application, significantly improving the VPA delivery efficiency. DMN-VPA not only delivers encapsulated VPA with higher accuracy than topical application, it also stimulates wound re-epithelialization signals involved in HF regrowth. Through a series of in vivo studies, we show that micro-wounding-mediated implantation of DMN-VPA upregulates expression of Wnt/β-catenin pathway, alkaline phosphatase, proliferating cell nuclear antigen, loricrin and HF stem cell markers, including keratin 15, and CD34 more effectively than topical application.
Collapse
|
69
|
Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:143-167. [PMID: 29243873 DOI: 10.1002/ajmg.b.32616] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a mood disorder that affects behavior and impairs cognition. A gene potentially important to this disorder is the brain derived neurotrophic factor (BDNF) as it is involved in processes controlling neuroplasticity. Various mechanisms exist to regulate BDNF's expression level, subcellular localization, and sorting to appropriate secretory pathways. Alterations to these processes by genetic factors and negative stressors can dysregulate its expression, with possible implications for MDD. Here, we review the mechanisms governing the regulation of BDNF expression, and discuss how disease-associated single nucleotide polymorphisms (SNPs) can alter these mechanisms, and influence MDD. As negative stressors increase the likelihood of MDD, we will also discuss the impact of these stressors on BDNF expression, the cellular effect of such a change, and its impact on behavior in animal models of stress. We will also describe epigenetic processes that mediate this change in BDNF expression. Similarities in BDNF expression between animal models of stress and those in MDD will be highlighted. We will also contrast epigenetic patterns at the BDNF locus between animal models of stress, and MDD patients, and address limitations to current clinical studies. Future work should focus on validating current genetic and epigenetic findings in tightly controlled clinical studies. Regions outside of BDNF promoters should also be explored, as should other epigenetic marks, to improve identification of biomarkers for MDD.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leela Sathyaputri
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
70
|
Basso M, Chen HH, Tripathy D, Conte M, Apperley KYP, De Simone A, Keillor JW, Ratan R, Nebbioso A, Sarno F, Altucci L, Milelli A. Designing Dual Transglutaminase 2/Histone Deacetylase Inhibitors Effective at Halting Neuronal Death. ChemMedChem 2018; 13:227-230. [PMID: 29286587 DOI: 10.1002/cmdc.201700601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/16/2017] [Indexed: 01/06/2023]
Abstract
In recent years there has been a clear consensus that neurodegenerative conditions can be better treated through concurrent modulation of different targets. Herein we report that combined inhibition of transglutaminase 2 (TG2) and histone deacetylases (HDACs) synergistically protects against toxic stimuli mediated by glutamate. Based on these findings, we designed and synthesized a series of novel dual TG2-HDAC binding agents. Compound 3 [(E)-N-hydroxy-5-(3-(4-(3-oxo-3-(pyridin-3-yl)prop-1-en-1-yl)phenyl)thioureido)pentanamide] emerged as the most interesting of the series, being able to inhibit TG2 and HDACs both in vitro (TG2 IC50 =13.3±1.5 μm, HDAC1 IC50 =3.38±0.14 μm, HDAC6 IC50 =4.10±0.13 μm) and in cell-based assays. Furthermore, compound 3 does not exert any toxic effects in cortical neurons up to 50 μm and protects neurons against toxic insults induced by glutamate (5 mm) with an EC50 value of 3.7±0.5 μm.
Collapse
Affiliation(s)
- Manuela Basso
- Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive n. 9, 38123, Trento, Italy
| | - Huan Huan Chen
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Debasmita Tripathy
- Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive n. 9, 38123, Trento, Italy
| | | | - Kim Y P Apperley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Rajiv Ratan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY, 10605, USA
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Federica Sarno
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| |
Collapse
|
71
|
Daly C, Ward R, Reynolds AL, Galvin O, Collery RF, Kennedy BN. Brain-Derived Neurotrophic Factor as a Treatment Option for Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:465-471. [PMID: 29721977 DOI: 10.1007/978-3-319-75402-4_57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review discusses the therapeutic potential of brain-derived neurotrophic factor (BDNF) for retinal degeneration. BDNF, nerve growth factor (NGF), neurotrophin 3 (NT-3) and NT-4/NT-5 belong to the neurotrophin family. These neuronal modulators activate a common receptor and a specific tropomyosin-related kinase (Trk) receptor. BDNF was identified as a photoreceptor protectant in models of retinal degeneration as early as 1992. However, development of effective therapeutics that exploit this pathway has been difficult due to challenges in sustaining therapeutic levels in the retina.
Collapse
Affiliation(s)
- Conor Daly
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Rebecca Ward
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Alison L Reynolds
- School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Orla Galvin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland.,RenaSci Limited, BioCity, Nottingham, UK
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Breandán N Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland.
| |
Collapse
|
72
|
Zhang D, Wang F, Zhai X, Li XH, He XJ. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen Res 2018; 13:2191-2199. [PMID: 30323152 PMCID: PMC6199946 DOI: 10.4103/1673-5374.241473] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lithium promotes autophagy and has a neuroprotective effect on spinal cord injury (SCI); however, the underlying mechanisms remain unclear. Therefore, in this study, we investigated the effects of lithium and the autophagy inhibitor 3-methyladenine (3-MA) in a rat model of SCI. The rats were randomly assigned to the SCI, lithium, 3-MA and sham groups. In the 3-MA group, rats were intraperitoneally injected with 3-MA (3 mg/kg) 2 hours before SCI. In the lithium and 3-MA groups, rats were intraperitoneally injected with lithium (LiCl; 30 mg/kg) 6 hours after SCI and thereafter once daily until sacrifice. At 2, 3 and 4 weeks after SCI, neurological function and diffusion tensor imaging indicators were remarkably improved in the lithium group compared with the SCI and 3-MA groups. The Basso, Beattie and Bresnahan locomotor rating scale score and fractional anisotropy values were increased, and the apparent diffusion coefficient value was decreased. Immunohistochemical staining showed that immunoreactivities for Beclin-1 and light-chain 3B peaked 1 day after SCI in the lithium and SCI groups. Immunoreactivities for Beclin-1 and light-chain 3B were weaker in the 3-MA group than in the SCI group, indicating that 3-MA inhibits lithium-induced autophagy. Furthermore, NeuN+ neurons were more numerous in the lithium group than in the SCI and 3-MA groups, with the fewest in the latter. Our findings show that lithium reduces neuronal damage after acute SCI and promotes neurological recovery by inducing autophagy. The neuroprotective mechanism of action may not be entirely dependent on the enhancement of autophagy, and furthermore, 3-MA might not completely inhibit all autophagy pathways.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu Zhai
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Hui Li
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
73
|
Totan Y, Güler E, Yüce A, Dervişogulları MS. The adverse effects of valproic acid on visual functions in the treatment of retinitis pigmentosa. Indian J Ophthalmol 2017; 65:984-988. [PMID: 29044065 PMCID: PMC5678336 DOI: 10.4103/ijo.ijo_978_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: To evaluate the efficacy and safety of valproic acid (VPA) treatment in patients with retinitis pigmentosa (RP). Methods: A total of 48 eyes of 24 patients (13 males, 11 females) with RP prescribed VPA were included. The length of VPA treatment was 6–12 months (mean 9.4 months). Parameters evaluated were best-corrected visual acuity (BCVA) (logarithm of the minimum angle of resolution [logMAR]), visual field analyses (VFAs) with Humprey automated perimetry, multifocal electroretinography (ERG) with Roland-RETI scan, and VPA side effects. Results: Mean age was 34.3 ± 10.3 years (range 18–56 years). Fifteen of the patients (30 eyes) had two ERG and VFA tracings, allowing comparison between baseline and follow-up (range 6–12 months). Mean BCVA before and after VPA therapy was 0.36 ± 0.38 and 0.36 ± 0.37 logMAR, respectively (P = 0.32). Quantitative perimetric indices including mean deviation and pattern standard deviation were not significantly changed after VPA therapy (P > 0.05). P1 amplitudes (in terms of nV/deg2 and mV) of ERG waves were significantly decreased in the rings 1, 3, and 4 after VPA therapy (P < 0.05). Regarding the N1 amplitudes, the only significant decrease was observed in area 1 (P = 0.03). In addition, N1 latency was significantly increased in area 3 after VPA therapy (P = 0.04). Conclusions: VPA therapy did not have any significant benefit on BCVA and VFA. In addition, it may be associated with decline in some ERG parameters. Therefore, physicians should avoid prescribing VPA for RP until its safety and efficacy are appropriately evaluated.
Collapse
Affiliation(s)
| | - Emre Güler
- Department of Ophthalmology, Medipol University Medical School, İstanbul, Turkey
| | - Aslıhan Yüce
- Department of Ophthalmology, Başkent University Medical School, Ankara, Turkey
| | | |
Collapse
|
74
|
Mathias LK, Monette PJ, Harper DG, Forester BP. Application of magnetic resonance spectroscopy in geriatric mood disorders. Int Rev Psychiatry 2017; 29:597-617. [PMID: 29199890 DOI: 10.1080/09540261.2017.1397608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The prevalence of mood disorders in the rapidly-growing older adult population merits attention due to the likelihood of increased medical comorbidities, risk of hospitalization or institutionalization, and strains placed on caregivers and healthcare providers. Magnetic resonance spectroscopy (MRS) quantifies biochemical compounds in vivo, and has been used specifically for analyses of neural metabolism and bioenergetics in older adults with mood disorders, usually via proton or phosphorous spectroscopy. While yet to be clinically implemented, data gathered from research subjects may help indicate potential biomarkers of disease state or trait or putative drug targets. Three prevailing hypotheses for these mood disorders are used as a framework for the present review, and the current biochemical findings within each are discussed with respect to particular metabolites and brain regions. This review covers studies of MRS in geriatric mood disorders and reveals persisting gaps in research knowledge, especially with regard to older age bipolar disorder. Further MRS work, using higher field strengths and larger sample sizes, is warranted in order to better understand the neurobiology of these prevalent late-life disorders.
Collapse
Affiliation(s)
- Liana K Mathias
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - Patrick J Monette
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - David G Harper
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Brent P Forester
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
75
|
Histone acetylation of oligodendrocytes protects against white matter injury induced by inflammation and hypoxia-ischemia through activation of BDNF-TrkB signaling pathway in neonatal rats. Brain Res 2017; 1688:33-46. [PMID: 29155093 DOI: 10.1016/j.brainres.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
The major pathological damage in encephalopathy of prematurity is white matter injury (WMI). Perinatal hypoxic-ischemia (HI) and inflammation are two major risk factors in the development of WMI. To study the cellular and molecular mechanisms of WMI, we set up a WMI model using lipopolysaccharide-sensitized HI injury in 2-day postnatal rats. Immunofluorescence staining was used to measure the expression of acetylated histone H3 (AH3) in oligodendrocytes, the target cells of WMI; the oligodendrocyte protein markers, NG2, O4, MBP, PLP, and MAG, were detected at different developmental stages. 5-bromo-2'-deoxyuridine (BrdU) was used to detect the proliferation of oligodendrocytes. We found that the expression of AH3 was markedly decreased in oligodendrocytes at 7 days after WMI. The differentiation and maturation of oligodendrocytes were inhibited in the WMI group. After inducing histone acetylation in oligodendrocytes by treatment with sodium butyrate, the inhibition of differentiation and maturation of oligodendrocytes was reversed. Furthermore, we found that these protective effects of histone acetylation were associated with the upregulation of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase B (TrkB). In conclusion, histone acetylation protects oligodendrocytes from WMI through activation of the BDNF-TrkB signaling pathway in immature brains.
Collapse
|
76
|
Verma T, Mallik SB, Ramalingayya GV, Nayak PG, Kishore A, Pai KSR, Nandakumar K. Sodium valproate enhances doxorubicin-induced cognitive dysfunction in Wistar rats. Biomed Pharmacother 2017; 96:736-741. [PMID: 29049976 DOI: 10.1016/j.biopha.2017.09.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Increasing number of scientific reports have highlighted the role of histone acetylation/deacetylation in neurodegenerative conditions, including chemotherapy-induced cognitive dysfunction (also known as chemobrain). Multiple sources state that increased activity of histone deacetylases (HDACs) play a detrimental role in chemobrain. In the present study, sodium valproate, a well-known HDAC inhibitor, was explored for its neuroprotective potential against chemobrain development. METHODS Doxorubicin (DOX), a chemotherapeutic agent, was used to induce chemobrain in experimental animals while treating with sodium valproate simultaneously. The animals were subjected to novel object recognition test (NORT) in order to assess their cognitive status and further, brain antioxidant levels were estimated. The animal body weights and survival were noted throughout the period of the study. Blood parameters such as red blood cell count, white blood cell count and haemoglobin levels were also measured. RESULTS Our findings are in contradiction to the known neuroprotective properties of valproic acid. We observed that sodium valproate failed to prevent chemobrain development in DOX treated animals. In fact, treatment with sodium valproate dose dependently worsened cognitive status in DOX treated animals including their brain antioxidant status, possibly leading to neuronal damage through free radical induced toxicity. CONCLUSION The present study highlights the caution that needs to be exercised in projecting HDAC inhibitors as in vivo neuroprotective agents, due to the complexity of existing neurological pathways and the diverse roles of histone deacetylases.
Collapse
Affiliation(s)
- Thaneshwar Verma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - G V Ramalingayya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India; Discovery Biology, Suven Life Sciences Limited, Hyderabad, Telangana, 502307, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - K Sreedhara R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
77
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
78
|
Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model. Mediators Inflamm 2017; 2017:6490652. [PMID: 29200666 PMCID: PMC5671739 DOI: 10.1155/2017/6490652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or Streptococcus pneumoniae suspension at a concentration of 5 × 109 CFU/mL. Eighteen hours after induction, all animals received ceftriaxone. The animals received saline or lithium (47.5 mg/kg) or tamoxifen (1 mg/kg) as adjuvant treatment, and they were separated into six groups: control/saline, control/lithium, control/tamoxifen, meningitis/saline, meningitis/lithium, and meningitis/tamoxifen. Ten days after meningitis induction, animals were subjected to open-field habituation and the step-down inhibitory avoidance tasks. Immediately after these tasks, the animals were killed and their hippocampus was removed to evaluate the expression of BDNF, NGF, and GDNF. In the meningitis group, treatment with lithium and tamoxifen resulted in improvement in memory. Meningitis group showed decreased expression of BDNF and GDNF in the hippocampus while lithium reestablished the neurotrophin expression. Lithium was able to prevent memory impairment and reestablishes hippocampal neurotrophin expression in experimental pneumococcal meningitis.
Collapse
|
79
|
Valvassori SS, Borges CP, Varela RB, Bavaresco DV, Bianchini G, Mariot E, Arent CO, Resende WR, Budni J, Quevedo J. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats. Brain Res Bull 2017; 134:228-235. [DOI: 10.1016/j.brainresbull.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
80
|
Gideons ES, Lin PY, Mahgoub M, Kavalali ET, Monteggia LM. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife 2017; 6:e25480. [PMID: 28621662 PMCID: PMC5499943 DOI: 10.7554/elife.25480] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lithium is widely used as a treatment for Bipolar Disorder although the molecular mechanisms that underlie its therapeutic effects are under debate. In this study, we show brain-derived neurotrophic factor (BDNF) is required for the antimanic-like effects of lithium but not the antidepressant-like effects in mice. We performed whole cell patch clamp recordings of hippocampal neurons to determine the impact of lithium on synaptic transmission that may underlie the behavioral effects. Lithium produced a significant decrease in α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes due to postsynaptic homeostatic plasticity that was dependent on BDNF and its receptor tropomyosin receptor kinase B (TrkB). The decrease in AMPAR function was due to reduced surface expression of GluA1 subunits through dynamin-dependent endocytosis. Collectively, these findings demonstrate a requirement for BDNF in the antimanic action of lithium and identify enhanced dynamin-dependent endocytosis of AMPARs as a potential mechanism underlying the therapeutic effects of lithium.
Collapse
Affiliation(s)
- Erinn S Gideons
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Pei-Yi Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Melissa Mahgoub
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
81
|
Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats. Biochem Biophys Res Commun 2017; 489:420-425. [PMID: 28577999 DOI: 10.1016/j.bbrc.2017.05.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 11/20/2022]
Abstract
Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine.
Collapse
|
82
|
Martínez-Levy GA, Rocha L, Rodríguez-Pineda F, Alonso-Vanegas MA, Nani A, Buentello-García RM, Briones-Velasco M, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy. Mol Neurobiol 2017; 55:3698-3708. [PMID: 28527108 DOI: 10.1007/s12035-017-0597-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, CINVESTAV, Mexico City, Mexico
| | - F Rodríguez-Pineda
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico.
| |
Collapse
|
83
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
84
|
Fessel WJ. Concordance of Several Subcellular Interactions Initiates Alzheimer's Dementia: Their Reversal Requires Combination Treatment. Am J Alzheimers Dis Other Demen 2017; 32:166-181. [PMID: 28423937 PMCID: PMC10852791 DOI: 10.1177/1533317517698790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Alzheimer's disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.
Collapse
Affiliation(s)
- W. J. Fessel
- University of California, San Francisco, CA, USA
- Kaiser Permanente Medical Care Program, San Francisco, CA, USA
| |
Collapse
|
85
|
Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast 2017; 2017:7014146. [PMID: 28529805 PMCID: PMC5424494 DOI: 10.1155/2017/7014146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive effects of PA in MDs; and (4) highlight implications for clinicians and researchers.
Collapse
|
86
|
Segura-Ulate I, Yang B, Vargas-Medrano J, Perez RG. FTY720 (Fingolimod) reverses α-synuclein-induced downregulation of brain-derived neurotrophic factor mRNA in OLN-93 oligodendroglial cells. Neuropharmacology 2017; 117:149-157. [PMID: 28153532 DOI: 10.1016/j.neuropharm.2017.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
Multiple system atrophy (MSA) is a demyelinating neurodegenerative disorder characterized by accumulation of aggregated α-synuclein (aSyn) inside oligodendrocyte precursors, mature oligodendroglia, and neurons. MSA dysfunction is associated with loss of trophic factor production by glial and neuronal cells. Here, we report that recombinant wild type human aSyn uptake by OLN-93, an oligodendroglia cell-line, reduced brain-derived neurotrophic factor (BDNF) expression. Furthermore, OLN-93 cells stably transfected with human wild type or an MSA-associated mutant aSyn, A53E that produces neuronal and glial inclusions, reduced BDNF mRNA to nearly unmeasurable qPCR levels. Curiously, another MSA-associated aSyn mutant, G51D that also produces neuronal and glial inclusions, caused only a trend toward BDNF mRNA reduction in transfected OLN-93 cells. This suggests that oligodendrocyte-associated BDNF loss occurs in response to specific aSyn types. Treating OLN-93 cells with 160 nM FTY720 (Fingolimod, Gilenya®), a Food and Drug Administration (FDA) approved therapeutic for multiple sclerosis, counteracted BDNF downregulation in all aSyn OLN-93 cells. FTY720 also restored BDNF mRNA in OLN-93 cells treated with recombinant aSyn, as measured by qPCR or semiquantitatively on agarose gels. Immunoblots confirmed that FTY720 increased histone 3 acetylation in OLN-93, and chromatin immunoprecipitation assays showed increased acetylated histone 3 at BDNF promoter 1 after FTY720. Moreover, OLN-93 cells treated with valproic acid, a classic histone deacetylase inhibitor, confirmed that increasing acetylated histone 3 levels increases BDNF expression. Cumulatively, the data suggest that FTY720-associated histone deacetylase inhibition stimulates BDNF expression in oligodendroglial cells, raising the possibility that MSA patients may also benefit by treatment with FTY720.
Collapse
Affiliation(s)
- Ismael Segura-Ulate
- Texas Tech University Health Sciences Center El Paso, Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, USA
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Texas Tech University Health Sciences Center El Paso, Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, USA
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Department of Biomedical Sciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, USA.
| |
Collapse
|
87
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
88
|
Arafa RK, Elghazawy NH. Personalized Medicine and Resurrected Hopes for the Management of Alzheimer's Disease: A Modular Approach Based on GSK-3β Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:199-224. [PMID: 28840559 DOI: 10.1007/978-3-319-60733-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurological disorders with vast reaching worldwide prevalence. Research attempts to decipher what's happening to the human mind have shown that pathogenesis of AD is associated with misfolded protein intermediates displaying tertiary structure conformational changes eventually leading to forming large polymers of unwanted aggregates. The two hallmarks of AD pathological protein aggregates are extraneuronal β-amyloid (Aβ) based senile plaques and intraneuronal neurofibrillary tangles (NFTs). As such, AD is categorized as a protein misfolding neurodegenerative disease (PMND) . Therapeutic interventions interfering with the formation of these protein aggregates have been widely explored as potential pathways for thwarting AD progression. One such tactic is modulating the function of enzymes involved in the metabolic pathways leading to formation of these misfolded protein aggregates. Much evidence has shown that glycogen synthase kinase-3β (GSK-3β) plays a key role in hyperphosphorylation of tau protein leading eventually to its aggregation to form NFTs. Data presented hereby will display a plethora of information as to how to interfere with progression of AD through the route of GSK-3β activity control.
Collapse
Affiliation(s)
- Reem K Arafa
- Zewail City of Science and Technology, Cairo, 12588, Egypt.
| | | |
Collapse
|
89
|
Flores-Ramos M, Leff P, Fernández-Guasti A, Becerra Palars C. Is it important to consider the sex of the patient when using lithium or valproate to treat the bipolar disorder? Pharmacol Biochem Behav 2017; 152:105-111. [DOI: 10.1016/j.pbb.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/12/2023]
|
90
|
Jiang HZ, Wang SY, Yin X, Jiang HQ, Wang XD, Wang J, Wang TH, Qi Y, Yang YQ, Wang Y, Zhang CT, Feng HL. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid. Int J Mol Sci 2016; 17:ijms17122129. [PMID: 27999308 PMCID: PMC5187929 DOI: 10.3390/ijms17122129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.
Collapse
Affiliation(s)
- Hai-Zhi Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Shu-Yu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiang Yin
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Quan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xu-Dong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jing Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Tian-Hang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yan Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yue-Qing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Chun-Ting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Lin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
91
|
Prosser JM, Fieve RR. Patients receiving lithium therapy have a reduced prevalence of neurological and cardiovascular disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:39-44. [PMID: 27328427 DOI: 10.1016/j.pnpbp.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022]
Abstract
A variety of evidence from laboratory and animal studies suggests that lithium has neurotrophic and cytoprotective properties, and may ameliorate or prevent some disease states. We investigated whether such a protective effect can be observed in human psychiatric patients receiving lithium therapy. We carried out a retrospective chart review of 1028 adult psychiatric male and female outpatients attending four lithium clinics in metropolitan New York City. Patients were divided into two groups based on lithium usage, and the prevalence of neurological and cardiovascular disorders was compared. The main outcome measures were the occurrence in the two patient groups of a variety of neurological disorders and myocardial infarction. Odds ratios were calculated to assess the risk of having a disorder for patients receiving lithium compared to patients not receiving lithium: for seizures, the odds ratio was 0.097; for amyotrophic lateral sclerosis, the odds ratio was 0.112; for dementia not otherwise specified, the odds ratio was 0.112; and for myocardial infarction, the odds ratio was 0.30. Logistical regression analysis showed that lithium treatment is a significant negative predictive factor in the prevalence of each of these disease states, when age, duration of clinic attendance, and use of anti-psychotic medications are taken into account. Our results show that patients receiving regular lithium treatment have a reduced prevalence of some neurological disorders and myocardial infarctions. One possible explanation of these results is that a protective effect of lithium observed in laboratory and animal studies may also be present in human patients receiving regular lithium therapy.
Collapse
Affiliation(s)
- James M Prosser
- The Foundation for Mood Disorders, 952 Fifth Avenue, Suite 1A, New York City, New York 10075, USA.
| | - Ronald R Fieve
- The Foundation for Mood Disorders, 952 Fifth Avenue, Suite 1A, New York City, New York 10075, USA
| |
Collapse
|
92
|
Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry 2016; 21:1490-1498. [PMID: 27480490 PMCID: PMC5071130 DOI: 10.1038/mp.2016.123] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 01/16/2023]
Abstract
In recent years, numerous studies of gene regulation mechanisms have emerged in neuroscience. Epigenetic modifications, described as heritable but reversible changes, include DNA methylation, DNA hydroxymethylation, histone modifications and noncoding RNAs. The pathogenesis of psychiatric disorders, such as bipolar disorder, may be ascribed to a complex gene-environment interaction (G × E) model, linking the genome, environmental factors and epigenetic marks. Both the high complexity and the high heritability of bipolar disorder make it a compelling candidate for neurobiological analyses beyond DNA sequencing. Questions that are being raised in this review are the precise phenotype of the disorder in question, and also the trait versus state debate and how these concepts are being implemented in a variety of study designs.
Collapse
|
93
|
Karsli-Ceppioglu S. Epigenetic Mechanisms in Psychiatric Diseases and Epigenetic Therapy. Drug Dev Res 2016; 77:407-413. [PMID: 27594444 DOI: 10.1002/ddr.21340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical Research Epigenetic mechanisms refer covalent modification of DNA and histone proteins that control transcriptional regulation of gene expression. Epigenetic regulation is involved in the development of the nervous system and plays an important role in the pathophysiology of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Epigenetic drugs, including histone deacetylation and DNA methylation inhibitors have received increased attention for the management of psychiatric diseases. The purpose of this review is to discuss the potential of epigenetic drugs to treat these disorders and to clarify the mechanisms by which they regulate the dysfunctional genes in the brain. Drug Dev Res 77 : 407-413, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
94
|
Sodium Butyrate, a Histone Deacetylase Inhibitor, Exhibits Neuroprotective/Neurogenic Effects in a Rat Model of Neonatal Hypoxia-Ischemia. Mol Neurobiol 2016; 54:5300-5318. [PMID: 27578020 PMCID: PMC5533826 DOI: 10.1007/s12035-016-0049-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic-ischemic (HI) injury still remains an important issue as it is a major cause of neonatal death and neurological dysfunctions. Currently, there are no well-established treatments to reduce brain damage and its long-term sequel in infants. Recently, reported data show that histone deacetylase inhibitors provide neuroprotection in adult stroke models. However, the proof of their relevance in vivo after neonatal HI brain injury remains particularly limited. In the present study, we show neuroprotective/neurogenic effect of sodium butyrate (SB), one of histone deacetylase inhibitors (HDACis), in the dentate gyrus of HI-injured immature rats. Postnatal day 7 (P7) rats underwent left carotid artery ligation followed by 7.6 % O2 exposure for 1 h. SB (300 mg/kg) was administered in a 5-day regime with the first injection given immediately after the onset of HI. The damage of the ipsilateral hemisphere was evaluated by weight deficit. Newly produced cells were labeled with BrdU, at 50 mg/kg, injected twice daily for 3 consecutive days. Subsequent differentiation of the newborn cells was investigated 2 and 4 weeks after the insult by immunohistochemistry using neuronal and glial cell-lineage markers and BrdU incorporation. Finally, we performed several behavioral tests to evaluate functional outcome. In summary, SB led to a remarkable reduction of the brain damage caused by HI. Moreover, the application of this HDACi protected against HI-induced loss of neuroblasts and oligodendrocyte precursor cells, as well as against neuroinflammation. The observed neuroprotective action suggests that SB may serve as a potential candidate for future treatment of HI-evoked injury in neonates.
Collapse
|
95
|
Iraha S, Hirami Y, Ota S, Sunagawa GA, Mandai M, Tanihara H, Takahashi M, Kurimoto Y. Efficacy of valproic acid for retinitis pigmentosa patients: a pilot study. Clin Ophthalmol 2016; 10:1375-84. [PMID: 27536054 PMCID: PMC4975153 DOI: 10.2147/opth.s109995] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose The purpose of this study was to examine the efficacy and safety of valproic acid (VPA) use in patients with retinitis pigmentosa (RP). Patients and methods This was a prospective, interventional, noncomparative case study. In total, 29 eyes from 29 patients with RP whose best-corrected visual acuities (BCVAs) in logarithm of the minimum angle of resolution (logMAR) ranged from 1.0 to 0.16 with visual fields (VFs) of ≤10° (measured using Goldmann perimeter with I4) were recruited. The patients received oral supplementation with 400 mg of VPA daily for 6 months and were followed for an additional 6 months. BCVAs, VFs (measured with the Humphrey field analyzer central 10-2 program), and subjective questionnaires were examined before, during, and after the cessation of VPA supplementation. Results The changes in BCVA and VF showed statistically significant differences during the internal use of VPA, compared with after cessation (P=0.001). With VPA intake, BCVA in logMAR significantly improved from baseline to 6 months (P=0.006). The mean deviation value of the VF significantly improved from baseline to 1 month (P=0.001), 3 months (P=0.004), and 6 months (P=0.004). These efficacies, however, were reversed to the baseline levels after the cessation of VPA intake. There were no significant relations between the mean blood VPA concentrations of each patient and the changes in BCVA and VF. During the internal use of VPA, 15 of 29 patients answered “easier to see”, whereas blurred vision was registered in 21 of 29 patients on cessation. No systemic drug-related adverse events were observed. Conclusion While in use, oral intake of VPA indicated a short-term benefit to patients with RP. It is necessary to examine the effect of a longer VPA supplementation in a controlled study design.
Collapse
Affiliation(s)
- Satoshi Iraha
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital; Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital
| | - Sachiko Ota
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe
| | - Michiko Mandai
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital; Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital; Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto
| | - Yasuo Kurimoto
- Department of Ophthalmology, Institute of Biomedical Research and Innovation Hospital; Department of Ophthalmology, Kobe City Medical Center General Hospital
| |
Collapse
|
96
|
Qin C, Li S, Yan Q, Wang X, Chen Y, Zhou P, Lu M, Zhu F. Elevation of Ser9 phosphorylation of GSK3β is required for HERV-W env-mediated BDNF signaling in human U251 cells. Neurosci Lett 2016; 627:84-91. [PMID: 27235578 DOI: 10.1016/j.neulet.2016.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023]
Abstract
Human endogenous retrovirus W family (HERV-W) envelope (env) is known to be associated with neurological and psychiatric disorders, such as multiple sclerosis and schizophrenia. Previous studies showed that overexpression of HERV-W env could induce brain-derived neurotrophic factor (BDNF) gene expression. In human and rat cells, BDNF-mediated signal transduction might be modulated by glycogen synthase kinase 3β (GSK3β). Both BDNF and GSK3β are schizophrenia-related genes. In this paper, we investigated whether GSK3β was involved in the HERV-W env-induced expression of BDNF. We found that HERV-W env increased phosphorylation of GSK3β at Ser9 (p-GSK3β (Ser9)) and the ratio of p-GSK3β (Ser9) to total GSK3β (p<0.05) in U251 cells. Overexpression of HERV-W env led to a 36.2% reduction in GSK3β activity compared to control (p<0.05). The levels of β-catenin, cyclin D1 and TSC2 mRNAs were upregulated (p<0.05). These data suggested that overexpression of HERV-W env might activate the GSK3β signaling pathway in U251 cells. Further, knockdown of GSK3β reduced the expression of total GSK3β, p-GSK3β (Ser9), and the ratio of p-GSK3β (Ser9) to total GSK3β by 28.6%, 50.4%, and 30.2%, respectively (p<0.05). Levels of β-catenin, cyclin D1 and TSC2 mRNAs were also reduced (p<0.05). Interestingly, GSK3β activity increased (p<0.05). Knockdown of GSK3β also decreased mRNA and protein expression of BDNF by 49.9% and 48.5% respectively (p<0.05). These results indicated that phosphorylation of GSK3β at Ser9 might be involved in HERV-W env-induced BDNF expression, and will hopefully improve our understanding of the role of HERV-W env in neurological and psychiatric diseases (schizophrenia, etc).
Collapse
Affiliation(s)
- Chengchen Qin
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Shan Li
- Department of Biochemistry, College of Basic Medicine, Hubei University of Medicine, Hubei 442000, PR China
| | - Qiujin Yan
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Xiuling Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Yatang Chen
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Mengxin Lu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China; Hubei Province Key Laboratory of Allergy and Immunology, PR China.
| |
Collapse
|
97
|
Leng Y, Wang J, Wang Z, Liao HM, Wei M, Leeds P, Chuang DM. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3. Int J Neuropsychopharmacol 2016; 19:pyw035. [PMID: 27207921 PMCID: PMC5006201 DOI: 10.1093/ijnp/pyw035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. METHODS C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. RESULTS Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. CONCLUSIONS In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.
Collapse
Affiliation(s)
- Yan Leng
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| | | | | | | | | | | | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
98
|
Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation. Mol Neurobiol 2016; 54:2889-2900. [DOI: 10.1007/s12035-016-9868-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
|
99
|
Kushwah N, Jain V, Deep S, Prasad D, Singh SB, Khan N. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats. PLoS One 2016; 11:e0149309. [PMID: 26901349 PMCID: PMC4763568 DOI: 10.1371/journal.pone.0149309] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/30/2016] [Indexed: 11/19/2022] Open
Abstract
Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state.
Collapse
Affiliation(s)
- Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Vishal Jain
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Satayanarayan Deep
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Nilofar Khan
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| |
Collapse
|
100
|
Zheng Y, Fan W, Zhang X, Dong E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 2016; 11:150-62. [PMID: 26890656 DOI: 10.1080/15592294.2016.1146850] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression.
Collapse
Affiliation(s)
- Yu Zheng
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Weidong Fan
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Xianquan Zhang
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Erbo Dong
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China.,b The Psychiatric Institute , Department of Psychiatry , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|