51
|
KIM MINJEONG, JUNG JIHYUN, LEE WONSUP, YUN JEONGWON, LU JINGNAN, YI SANGMI, KIM HYEJUNG, CHANG SEONGHWAN, KIM GONSUP, HONG SOONCHAN, HA WOOSONG. Arsenic hexoxide enhances TNF-α-induced anticancer effects by inhibiting NF-κB activity at a safe dose in MCF-7 human breast cancer cells. Oncol Rep 2014; 31:2305-11. [DOI: 10.3892/or.2014.3085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/28/2014] [Indexed: 11/06/2022] Open
|
52
|
Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2014; 34:403-12. [PMID: 24608428 DOI: 10.1038/onc.2014.13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoprotein and transcription factor is dysregulated in a majority of human cancers and is considered a major driver of the malignant phenotype. As such, developing drugs for effective inhibition of MYC in a manner selective to malignancies is a 'holy grail' of transcription factor-based cancer therapy. Recent advances in elucidating MYC biology in both normal cells and pathological settings were anticipated to bring inhibition of tumorigenic MYC function closer to the clinic. However, while the extensive array of cellular pathways that MYC impacts present numerous fulcrum points on which to leverage MYC's therapeutic potential, identifying the critical target(s) for MYC-specific cancer therapy has been difficult to achieve. Somewhat unexpectedly, MYC's fundamental role in regulating the 'housekeeping' process of ribosome biogenesis, one of the most ubiquitously required and conserved cell functions, may provide the Achilles' heel for therapeutically targeting MYC-driven tumors.
Collapse
|
53
|
Dyshlovoy SA, Venz S, Shubina LK, Fedorov SN, Walther R, Jacobsen C, Stonik VA, Bokemeyer C, Balabanov S, Honecker F. Activity of aaptamine and two derivatives, demethyloxyaaptamine and isoaaptamine, in cisplatin-resistant germ cell cancer. J Proteomics 2013; 96:223-39. [PMID: 24269226 DOI: 10.1016/j.jprot.2013.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/02/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022]
Abstract
UNLABELLED We analyzed the effects of all three marine alkaloids aaptamine, demethyloxyaaptamine and isoaaptamine in NT2-R, a cisplatin-resistant subline of the human embryonal carcinoma cell line NT2. All aaptamines were found to be equally effective in both cell lines, excluding cross-resistance between aaptamines and cisplatin in vitro. At the inhibitory concentration (IC50), aaptamine exerted an antiproliferative effect, whereas demethyloxyaaptamine and isoaaptamine were strong inducers of apoptosis. We analyzed the changes in the proteome of NT2-R cells treated with these compounds. 16-22 proteins were found to be significantly altered, of which several were validated by Western blotting and two-dimensional Western blotting analysis. Changes in the proteome pattern frequently resulted from post-transcriptional protein modifications, i.e. phosphorylation or hypusination in the case of eIF5A. Although the lists of altered proteins were heterogeneous and compound-specific, gene ontology analyses identified rather similar profiles regarding the affected molecular functions. Ingenuity pathway analysis by IPA put the following factors in a central position of the hypothetical networks: myc and p53 for aaptamine; tumor necrosis factor (TNF) for demethyloxyaaptamine; and all three, myc, p53, and TNF for isoaaptamine. Our results represent an important step towards a better understanding of the molecular basis underlying the observed bioactivity of these promising marine compounds. BIOLOGICAL SIGNIFICANCE We characterized the mode of action of three aaptamines, marine natural compound with anti-tumor activity, using a functional proteomics approach and the cisplatin-resistant pluripotent human embryonal carcinoma cell line NT2-R. The manuscript is of particular scientific interest, as we could reveal the similarities and differences of the modes of action. Furthermore, we were able to identify several new targets of these promising compounds. We found hypusination of eIF5A to be a prominent feature exclusively of aaptamine treatment, as this was not observed upon treatment with demethyloxyaaptamine or isoaaptamine. Our results are a step towards unraveling the mode of action of these interesting compounds.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany; Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Larisa K Shubina
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Sergey N Fedorov
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Christine Jacobsen
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentin A Stonik
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Balabanov
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Friedemann Honecker
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
54
|
Klempner SJ, Myers AP, Cantley LC. What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov 2013; 3:1345-54. [PMID: 24265156 DOI: 10.1158/2159-8290.cd-13-0063] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED The phosphoinositide 3-kinase (PI3K) pathway is one of the most frequently mutated pathways in cancer, and is actively being pursued as a therapeutic target. Despite the importance of the PI3K pathway in cancer, durable responses to PI3K pathway-targeted therapies are uncommon with monotherapy. Several in vitro and xenograft models have elucidated compensatory signaling and genomic changes which may limit the therapeutic effectiveness of PI3K inhibitors in the clinic. Future clinical trials with prospective evaluation of tumor signaling and genomic changes are likely to identify novel resistance mechanisms as well as subsets of patients who may derive maximal benefit from PI3K pathway inhibitors. SIGNIFICANCE There are multiple ongoing clinical trials targeting the PI3K pathway members in several malignancies. This review summarizes the known mechanisms of resistance to targeting the PI3K pathway. Understanding of resistance mechanisms will help to inform more rational clinical trial design to optimize the clinical impact of targeting the PI3K pathway in cancer.
Collapse
Affiliation(s)
- Samuel J Klempner
- 1Division of Hematology-Oncology, University of California Irvine Medical Center, Orange, California; 2Division of Signal Transduction, Beth Israel Deaconess Medical Center; 3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; and 4Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | |
Collapse
|
55
|
Li Z, Dong L, Dean E, Yang LV. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: a role for the proton-sensing G protein-coupled receptor TDAG8. Int J Mol Sci 2013; 14:20236-55. [PMID: 24152439 PMCID: PMC3821613 DOI: 10.3390/ijms141020236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; E-Mails: (Z.L.); (L.D.); (E.D.)
| | - Lixue Dong
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; E-Mails: (Z.L.); (L.D.); (E.D.)
| | - Eric Dean
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; E-Mails: (Z.L.); (L.D.); (E.D.)
| | - Li V. Yang
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; E-Mails: (Z.L.); (L.D.); (E.D.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, NC 27599, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-252-744-3419; Fax: +1-252-744-3418
| |
Collapse
|
56
|
Jochmanová I, Yang C, Zhuang Z, Pacak K. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst 2013; 105:1270-83. [PMID: 23940289 DOI: 10.1093/jnci/djt201] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many solid tumors, including pheochromocytoma (PHEO) and paraganglioma (PGL), are characterized by a (pseudo)hypoxic signature. (Pseudo)hypoxia has been shown to promote both tumor progression and resistance to therapy. The major mediators of the transcriptional hypoxic response are hypoxia-inducible factors (HIFs). High levels of HIFs lead to transcription of hypoxia-responsive genes, which are involved in tumorigenesis. PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. In recent years, substantial progress has been made in understanding the metabolic disturbances present in PHEO and PGL, especially because of the identification of some disease-susceptibility genes. To date, fifteen PHEO and PGL susceptibility genes have been identified. Based on the main transcription signatures of the mutated genes, PHEOs and PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Although these two clusters seem to show distinct signaling pathways, recent data suggest that both clusters are interconnected by HIF signaling as the important driver in their tumorigenesis, and mutations in most PHEO and PGL susceptibility genes seem to affect HIF-α regulation and its downstream signaling pathways. HIF signaling appears to play an important role in the development and growth of PHEOs and PGLs, which could suggest new therapeutic approaches for the treatment of these tumors.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | | | | | | |
Collapse
|
57
|
Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci U S A 2013; 110:11988-93. [PMID: 23803853 DOI: 10.1073/pnas.1310230110] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myc is one of the most commonly deregulated oncogenes in human cancer, yet therapies directly targeting Myc hyperactivation are not presently available in the clinic. The evolutionarily conserved function of Myc in modulating protein synthesis control is critical to the Myc oncogenic program. Indeed, enhancing the protein synthesis capacity of cancer cells directly contributes to their survival, proliferation, and genome instability. Therefore, inhibiting enhanced protein synthesis may represent a highly relevant strategy for the treatment of Myc-dependent human cancers. However, components of the translation machinery that can be exploited as therapeutic targets for Myc-driven cancers remain poorly defined. Here, we uncover a surprising and important functional link between Myc and mammalian target of rapamycin (mTOR)-dependent phosphorylation of eukaryotic translation initiation factor 4E binding protein-1 (4EBP1), a master regulator of protein synthesis control. Using a pharmacogenetic approach, we find that mTOR-dependent phosphorylation of 4EBP1 is required for cancer cell survival in Myc-dependent tumor initiation and maintenance. We further show that a clinical mTOR active site inhibitor, which is capable of blocking mTOR-dependent 4EBP1 phosphorylation, has remarkable therapeutic efficacy in Myc-driven hematological cancers. Additionally, we demonstrate the clinical implications of these results by delineating a significant link between Myc and mTOR-dependent phosphorylation of 4EBP1 and therapeutic response in human lymphomas. Together, these findings reveal that an important mTOR substrate is found hyperactivated downstream of Myc oncogenic activity to promote tumor survival and confers synthetic lethality, thereby revealing a unique therapeutic approach to render Myc druggable in the clinic.
Collapse
|
58
|
Anthocyanins from Vitis coignetiae Pulliat Inhibit Cancer Invasion and Epithelial-Mesenchymal Transition, but These Effects Can Be Attenuated by Tumor Necrosis Factor in Human Uterine Cervical Cancer HeLa Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:503043. [PMID: 23864892 PMCID: PMC3705752 DOI: 10.1155/2013/503043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/28/2013] [Indexed: 01/09/2023]
Abstract
Recently we have demonstrated that anthocyanins from fruits of Vitis coignetiae Pulliat (AIMs) have anticancer effects. Here, we investigate the effects of AIMs on cell proliferation and invasion as well as epithelial-mesenchymal transition (EMT) which have been linked to cancer metastasis in human uterine cervical cancer HeLa cells. AIMs inhibited the invasion of HeLa cells in a dose-dependent manner. AIMs inhibited MMP-9 expression in a dose-dependent manner. AIMs inhibited the motility of HeLa cells in a wound healing test. AIMs still suppressed NF- κ B activation induced by TNF. AIMs also inhibited EMT in HeLa cells. AIMs suppressed vimentin, N-cadherin, and β-catenin expression and induced E-cadherin. AIMs also suppressed expression of β-catenin and Snail, which was regulated by GSK-3. These effects of AIMs were also limited in the HeLa cells treated with TNF. In conclusion, this study indicates that AIMs have anticancer effects by suppressing NF- κ B-regulated genes and EMT, which relates to suppression of I κ B α phosphorylation and GSK-3 activity, respectively. However, the effects of AIMs were attenuated in the TNF-high condition.
Collapse
|
59
|
Carroll M, Borden KLB. The oncogene eIF4E: using biochemical insights to target cancer. J Interferon Cytokine Res 2013; 33:227-38. [PMID: 23472659 DOI: 10.1089/jir.2012.0142] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is overexpressed in many human malignancies where it is typically a harbinger of poor prognosis. eIF4E is positioned as a nexus in post-transcriptional gene expression. To carry out these functions, eIF4E needs to bind the m(7)G cap moiety on mRNAs. It plays critical roles in mRNA translation, mRNA export, and most likely in mRNA stability as well. Through these activities, eIF4E coordinately modulates the expression of many transcripts involved in proliferation and survival. eIF4E function is controlled by interactions with protein cofactors in concert with many signaling pathways, including Ras, Mnk, Erk, MAPK, PI3K, mTOR, and Akt. This review describes the eIF4E activity and provides several examples of cellular control mechanisms. Further, we describe some therapeutic strategies in preclinical and clinical development.
Collapse
Affiliation(s)
- Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
60
|
Quinn LM, Secombe J, Hime GR. Myc in stem cell behaviour: insights from Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:269-85. [PMID: 23696362 DOI: 10.1007/978-94-007-6621-1_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Myc family proteins are key regulators of animal growth and development, which have critical roles in modulating stem cell behaviour. Since the identification of the oncogenic potential of c-Myc in the early 1980s the mammalian Myc family, which is comprised of c-Myc, N-Myc, and L-Myc, has been studied extensively. dMyc, the only Drosophila member of the Myc gene family, is orthologous to the mammalian c-Myc oncoprotein. Here we discuss key studies addressing the function of the Myc family in stem cell behaviour in both Drosophila Models and mammalian systems.
Collapse
Affiliation(s)
- Leonie M Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, 3010, VIC, Australia.
| | | | | |
Collapse
|
61
|
Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012; 3:199-208. [PMID: 23150753 DOI: 10.1177/1947601912454734] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein. MDM2 and p53 form an autoregulatory feedback loop to tightly control the proper cellular responses to various stress signals in order to prevent mutations and tumor formation. The levels and function of the MDM2 protein, an E3 ubiquitin ligase, are regulated by a wide variety of extracellular and intracellular stress signals through distinct signaling pathways and mechanisms. These signals regulate the E3 ubiquitin ligase activity of MDM2, the ability of MDM2 to interact with p53 and a number of other proteins, and the cellular localization of MDM2, which in turn impact significantly upon p53 function. This review provides an overview of the regulation of MDM2 activities by the signals and factors that regulate the MDM2 protein, including genotoxic stress signals, oncogenic activation, cell cycle transition, ribosomal stress, chronic stress, neurohormones, and microRNAs. Disruption of the proper regulation of the MDM2-p53 negative feedback loop impacts significantly upon the frequency of tumorigenesis in a host. A better understanding of the complex regulation of MDM2 and its impact upon p53 function in cells under different conditions will help to develop novel and more effective strategies for cancer therapy and prevention.
Collapse
Affiliation(s)
- Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
62
|
SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 2012; 32:4052-6. [PMID: 22986535 DOI: 10.1038/onc.2012.407] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 07/23/2012] [Indexed: 01/25/2023]
Abstract
Current genetic evidence in mice indicates that SIRT1 has potent tumor suppressor activity in a variety of cancer models, with no evidence yet for SIRT1 oncogenic activity in vivo. We report here that transgenic Sirt1 expression is oncogenic in murine thyroid and prostate carcinogenesis initiated by Pten-deficiency. Based on mRNA expression analyses of pre-tumoral murine thyroids, we find that SIRT1 increases c-MYC transcriptional programs. Moreover, we show higher c-MYC protein levels in murine thyroid cancers from Sirt1 transgenic mice. Similarly, SIRT1 is overexpressed in human thyroid cancers and it is positively correlated with c-MYC protein levels. Finally, we show in cultured thyroid cancer cells that SIRT1 stabilizes c-MYC protein. These results implicate SIRT1 as a new candidate target for the treatment of thyroid carcinomas.
Collapse
|
63
|
Boddupally PVL, Hahn S, Beman C, De B, Brooks TA, Gokhale V, Hurley LH. Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. J Med Chem 2012; 55:6076-86. [PMID: 22691117 DOI: 10.1021/jm300282c] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This G-rich region of the c-MYC promoter has been shown to form a G-quadruplex structure that acts as a silencer element for c-MYC transcriptional control. In the present work, we have synthesized a series of 11-substituted quindoline analogues as c-MYC G-quadruplex-stabilizing compounds, and the cell-free and in vitro activity of these compounds were evaluated. Two lead compounds (4 and 12) demonstrated good cell-free profiles, and compound 4 (2-(4-(10H-indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)-N,N-dimethylethanamine) significantly down-regulated c-MYC expression. However, despite the good cell-free activity and the effect of these compounds on c-MYC gene expression, we have demonstrated, using a cellular assay in a Burkitt's lymphoma cell line (CA46-specific), that these effects were not mediated through targeting of the c-MYC G-quadruplex. Thus, caution should be used in assigning the effects of G-quadruplex-interactive compounds that lower c-MYC to direct targeting of these promoter elements unless this assay, or similar ones, demonstrates direct targeting of the G-quadruplex in cells.
Collapse
|
64
|
Zheng Z, Jian J, Zhang X, Zara JN, Yin W, Chiang M, Liu Y, Wang J, Pang S, Ting K, Soo C. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials 2012; 33:5821-31. [PMID: 22622142 DOI: 10.1016/j.biomaterials.2012.04.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 01/01/2023]
Abstract
Pluripotent and/or multipotent stem cell-based therapeutics are a vital component of tissue engineering and regenerative medicine. The generation or isolation of safer and readily available stem cell sources will significantly aid clinical applications. We report here a technique using a single molecule, recombinant human fibromodulin protein (FMOD), to reprogram human fibroblasts into multipotent cells. Like virally-induced pluripotent stem (iPS) cells, FMOD reprogrammed (FReP) cells express pluripotency markers, form embryoid bodies (EBs), and differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro. Notably, FReP cells regenerate muscle and bone tissues but do not generate teratomas in vivo. Unlike iPS cells, undifferentiated FReP cells proliferate slowly and express low proto-oncogene c-MYC and unexpectedly high levels of cyclin-dependent kinase inhibitors p15(Ink4B) and p21(WAF1/Cip1). Remarkably, in a fashion reminiscent of quiescent stem cells, the slow replicative phenotype of undifferentiated FReP cells reverses after differentiation induction, with differentiating FReP cells proliferating faster and expressing less p15(Ink4B) and p21(WAF1/Cip1) than differentiating iPS cells. Overall, single protein, FMOD-based, cell reprograming bypasses the risks of mutation, gene instability, and malignancy associated with genetically-modified iPS cells, and provides an alternative strategy for engineering patient-specific multipotent cells for basic research and therapeutic application.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095-1759, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci U S A 2011; 108:E699-708. [PMID: 21876152 DOI: 10.1073/pnas.1108237108] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The PI3K pathway is frequently activated in cancer; therefore, considerable effort is focused on identifying compounds that can inhibit specific pathway components, particularly the hallmark oncogene PIK3CA. Although targeted inhibition of a cancer survival gene holds significant promise, there are concerns that drug resistance may emerge within the cancerous cells, thus limiting clinical efficacy. Using genetically defined human mammary epithelial cells, we evolved resistance to the PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235, and by genome-wide copy number analyses, we identified MYC and eIF4E amplification within the resistant cells. Importantly, either MYC or eukaryotic translation initiation factor 4E (eIF4E) was required to bypass pharmacological PI3K/mTOR inhibition in resistant cells. Furthermore, these cells displayed elevated 5' cap-dependent protein translation. Collectively, these findings suggest that analysis of drivers of protein translation could facilitate the identification of cancer lesions that confer resistance to PI3K pathway-targeted drugs.
Collapse
|
66
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
67
|
Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T, Mulligan G, Chesi M, Bergsagel PL, Fonseca R. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011; 25:1026-35. [PMID: 21468039 PMCID: PMC3432644 DOI: 10.1038/leu.2011.53] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Events mediating transformation from the pre-malignant monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) are unknown. We analyzed gene expression data sets generated on the Affymetrix U133 platform from 22 MGUS and 101 MM patients using gene-set enrichment analysis. Genes overexpressed in MM were enriched for cell cycle, proliferation and MYC activation gene sets. Upon dissecting the relationship between MYC and cell-cycle gene sets, we identified and validated an MYC activation signature dissociated from proliferation. Applying this signature, MYC is activated in 67% of myeloma, but not in MGUS. This was further confirmed by immunohistochemistry (IHC) using membrane CD138 and nuclear MYC double staining. We also showed that almost all tumors with RAS mutations expressed the MYC activation signature, and multiple mechanisms may be involved in activating MYC. MYC activation, whether assessed by gene-expression signature or IHC, is associated with hyperdiploid MM and shorter survival even in tumors that are not proliferative. Bortezomib treatment is able to overcome the survival disadvantage in patients with MYC activation.
Collapse
Affiliation(s)
- W-J Chng
- Department of Haematology/Oncology, Mayo Clinic Comprehensive Cancer Center, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Carew JS, Medina EC, Esquivel JA, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, Giles FJ, Nawrocki ST. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 2011; 14:2448-59. [PMID: 19583815 PMCID: PMC2891399 DOI: 10.1111/j.1582-4934.2009.00832.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionarily conserved cell survival pathway that enables cells to recoup ATP and other critical biosynthetic molecules during nutrient deprivation or exposure to hypoxia, which are hallmarks of the tumour microenvironment. Autophagy has been implicated as a potential mechanism of resistance to anticancer agents as it can promote cell survival in the face of stress induced by chemotherapeutic agents by breaking down cellular components to generate alternative sources of energy. Disruption of autophagy with chloroquine (CQ) induces the accumulation of ubiquitin-conjugated proteins in a manner similar to the proteasome inhibitor bortezomib (BZ). However, CQ-induced protein accumulation occurs at a slower rate and is localized to lysosomes in contrast to BZ, which stimulates rapid buildup of ubiquitinated proteins and aggresome formation in the cytosol. The histone deacetylase (HDAC) inhibitor vorinostat (VOR) blocked BZ-induced aggresome formation, but promoted CQ-mediated ubiquitinated protein accumulation. Disruption of autophagy with CQ strongly enhanced VOR-mediated apoptosis in colon cancer cells. Accordingly, knockdown of the essential autophagy gene Atg7 also sensitized cells to VOR-induced apoptosis. Knockdown of HDAC6 greatly enhanced BZ-induced apoptosis, but only marginally sensitized cells to CQ. Subsequent studies determined that the CQ/VOR combination promoted a large increase in superoxide generation that was required for ubiquitinated protein accumulation and cell death. Finally, treatment with the CQ/VOR combination significantly reduced tumour burden and induced apoptosis in a colon cancer xenograft model. Collectively, our results establish that inhibition of autophagy with CQ induces ubiquitinated protein accumulation and VOR potentiates CQ-mediated aggregate formation, superoxide generation and apoptosis.
Collapse
Affiliation(s)
- Jennifer S Carew
- Institute for Drug Development, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by mTOR and cMyc inhibition in high grade chondrosarcoma. Neurochem Res 2011; 36:812-8. [PMID: 21243426 DOI: 10.1007/s11064-011-0406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 12/18/2022]
Abstract
This study aimed to further elucidate the molecular mechanisms of antiproliferative action of proline rich polypeptide 1 (PRP-1) cytokine, produced by neurosecretory cells of the hypothalamus to be considered as alternative adjuvant therapy for metastatic chondrosarcoma, which does not respond to chemotherapy or radiation and currently without any effective treatment. Rapid cell proliferation assay of human primary cultures from high grade chondrosarcoma patients biopsies and human chondrosarcoma JJ012 cell line indicated 50 and 80% inhibition in PRP-1 treated samples correspondingly. Videomicroscopy detected that despite the treatment there are still dividing cells, meaning that cells are not in the state of dormancy, rather PRP-1 repressed the cell cycle progression, exhibited cytostatic effect. The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine protein kinase that has a crucial role in a nutrient sensitive signaling pathway that regulates cell growth. Experiments with mTOR pathway after PRP-1 (10 μg/ml) treatment indicated statistically significant 30% inhibition of mTOR activity and its 56% inhibition in immunoprecipitates with PRP-1 concentrations effective for cell proliferation inhibition. Treatment with PRP- caused inhibition of mTOR and downstream target cMyc oncogenic transcription factor sufficient to trigger the cytostatic effect in high grade, but not in low grade chondrosarcomas. The fact that lower concentrations than 10 μg/ml peptide with cytostatic effect did not inhibit mTOR, but inhibited cMyc prompted us to assume that PRP-1 binds to two different receptors facilitating the antiproliferative effect.
Collapse
|
70
|
Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD, Menon S, Yu J, Driscoll DL, Lingaraj T, Burkhardt AL, Chen W, Garcia K, Sappal DS, Gray J, Hales P, Leroy PJ, Ringeling J, Rabino C, Spelman JJ, Morgenstern JP, Lightcap ES. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 2010; 70:4318-26. [PMID: 20460535 DOI: 10.1158/0008-5472.can-09-4428] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple pathways have been proposed to explain how proteasome inhibition induces cell death, but mechanisms remain unclear. To approach this issue, we performed a genome-wide siRNA screen to evaluate the genetic determinants that confer sensitivity to bortezomib (Velcade (R); PS-341). This screen identified 100 genes whose knockdown affected lethality to bortezomib and to a structurally diverse set of other proteasome inhibitors. A comparison of three cell lines revealed that 39 of 100 genes were commonly linked to cell death. We causally linked bortezomib-induced cell death to the accumulation of ASF1B, Myc, ODC1, Noxa, BNIP3, Gadd45alpha, p-SMC1A, SREBF1, and p53. Our results suggest that proteasome inhibition promotes cell death primarily by dysregulating Myc and polyamines, interfering with protein translation, and disrupting essential DNA damage repair pathways, leading to programmed cell death.
Collapse
Affiliation(s)
- Siquan Chen
- Discovery Technologies, Discovery Oncology Biology, and Medical Biostatistics, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
72
|
Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res 2010; 38:4011-26. [PMID: 20215434 PMCID: PMC2896514 DOI: 10.1093/nar/gkq112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1.
Collapse
Affiliation(s)
- Li Chen
- Cancer Research Center at Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
73
|
Robert F, Pelletier J. Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 2009; 13:1279-93. [PMID: 19705976 DOI: 10.1517/14728220903241625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a master regulator of translation initiation that controls the recruitment of ribosomes to mRNA templates in response to intracellular and extracellular cues. Evidence suggests that mTOR and its direct downstream targets, S6K and eIF4E/4E-BP, play significant roles in oncogenesis, and that inhibiting this pathway holds promise as an anti-proliferative approach. Recent genome-wide analyses of mutations in human cancers indicate that transformed cells activate a handful of processes and signalling pathways that are major contributors to their phenotype. Here we review the current literature implicating mTOR and translation initiation downstream of many of these various signalling pathways and processes usurped in human cancers. This review highlights the widespread activation of mTOR/eIF4E following acquisition of oncogenic lesions and its implication in promoting the transformation phenotype and indicates that targeting the control of translation initiation makes logical sense as a broad-acting therapeutic approach.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry and Goodman cancer centre, McGill University, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | | |
Collapse
|
74
|
Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer. JOURNAL OF ONCOLOGY 2009; 2009:981679. [PMID: 20049173 PMCID: PMC2798714 DOI: 10.1155/2009/981679] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 09/30/2009] [Indexed: 01/08/2023]
Abstract
The eukaryotic translation initiation factor eIF4E is elevated in about 30% of human malignancies including HNSCC where its levels correlate with poor prognosis. Here, we discuss the biochemical and molecular underpinnings of the oncogenic potential of eIF4E. Studies in human leukemia specimens, and later in a mouse model of prostate cancer, strongly suggest that cells with elevated eIF4E develop an oncogene dependency to it, making them more sensitive to targeting eIF4E than normal cells. We describe several strategies that have been suggested for eIF4E targeting in the clinic: the use of a small molecule antagonist of eIF4E (ribavirin), siRNA or antisense oligonucleotide strategies, suicide gene therapy, and the use of a tissue-targeting 4EBP fusion peptide. The first clinical trial targeting eIF4E indicates that ribavirin effectively targets eIF4E in poor prognosis leukemia patients and more importantly leads to striking clinical responses including complete and partial remissions. Finally, we discuss the relevance of these findings to HNSCC.
Collapse
|
75
|
Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C. Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 2009; 57:1754-64. [PMID: 19455580 PMCID: PMC4300950 DOI: 10.1002/glia.20888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotrophin-3 (NT-3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT-3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT-3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT-3 also causes an increase in the levels of myelin-associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, (35)S-methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15-min treatment with NT-3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT-3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT-3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap-dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT-3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs.
Collapse
Affiliation(s)
- Rochelle P. Coelho
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Larra M. Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
76
|
Bitra K, Tan A, Dowling A, Palli SR. Functional characterization of PAS and HES family bHLH transcription factors during the metamorphosis of the red flour beetle, Tribolium castaneum. Gene 2009; 448:74-87. [PMID: 19683038 PMCID: PMC2760604 DOI: 10.1016/j.gene.2009.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 11/22/2022]
Abstract
The basic helix-loop-helix transcription factors are present in animals, plants and fungi and play important roles in the control of cellular proliferation, tissue differentiation, development and detoxification. Although insect genomes contain more than 50 helix-loop-helix transcription factors, the functions of only a few are known. RNAi has become a widely used tool to knock-down the expression to analyze the function of genes. As RNAi works well in Tribolium castaneum, we utilized this insect and RNAi to determine functions of 19 bHLH transcription factors belonging to PAS and HES families during the larval stages of the red flour beetle, T. castaneum. We searched the genome sequence of T. castaneum and identified 53 bHLH genes. Phylogenetic analyses classified these 53 genes into ten families; PAS, HES, Myc/USF, Hand, Mesp, Shout, p48, NeuroD/Neurogenin, Atonal and AS-C. In RNAi studies, knocking-down the expression of seven members of the PAS and HES families affected the growth and development of T. castaneum. An inability to grow to reach critical weight to undergo metamorphosis, failure to complete larval-pupal or pupal-adult ecdysis and abnormal wing development are among the most common phenotypes observed in RNAi insects. Among the bHLH transcription factors studied, the steroid receptor coactivator (SRC) showed the most severe phenotypes. Knock-down in the expression of the gene coding for SRC caused growth arrest by affecting the regulation of lipid metabolism. These studies demonstrate the power of RNAi for functional characterization of members of the multigene families in this model insect.
Collapse
Affiliation(s)
- Kavita Bitra
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546
| | - Anjiang Tan
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546
| | - Ashley Dowling
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546
| | - Subba R. Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
77
|
Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16:369-77. [PMID: 19878869 PMCID: PMC4369769 DOI: 10.1016/j.ccr.2009.09.024] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/30/2009] [Accepted: 09/22/2009] [Indexed: 02/08/2023]
Abstract
Inherently disparate cell growth and division, which are intimately coupled through a delicate network of intracellular and extracellular signaling, require ribosomal biogenesis. A number of events imparting instability to ribosomal biogenesis can cause nucleolar stress. In response to this stress, several ribosomal proteins bind to MDM2 and block MDM2-mediated p53 ubiquitination and degradation, resulting in p53-dependent cell cycle arrest. By doing so, the ribosomal proteins play a crucial role in connecting deregulated cell growth with inhibition of cell division. The ribosomal protein-MDM2-p53 signaling pathway provides a molecular switch that may constitute a surveillance network monitoring the integrity of ribosomal biogenesis.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Radiation Oncology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
78
|
Xu C, Lu C, Hua L, Jin H, Yin L, Chen S, Qian R. Rhythm changes of clock genes, apoptosis-related genes and atherosclerosis-related genes in apolipoprotein E knockout mice. Can J Cardiol 2009; 25:473-9. [PMID: 19668782 DOI: 10.1016/s0828-282x(09)70122-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute myocardial infarction and stroke occur more frequently in the morning, suggesting a role of the circadian clock in these main causes of death, secondary to atherosclerosis. OBJECTIVES To investigate the expression of clock genes, apoptosis-related genes and atherosclerosis-related genes in the process of atherosclerosis. METHODS Apolipoprotein E knockout (ApoE-/-) mice were used to establish animal models of early and advanced atherosclerosis. Real-time polymerase chain reaction, Western blotting and microarray assays were used to detect the expression of clock genes, apoptosis-related genes and atherosclerosis-related genes. RESULTS Clock genes in ApoE-/- and C57BL/6J mouse hearts exhibited daily oscillations at the messenger RNA level. However, the expression level and rhythm between ApoE-/- and C57BL/6J mice were significantly different. Moreover, the changes became more significant as atherosclerosis developed. c-Myc and p53 genes exhibited circadian expression in C57BL/6J mice at messenger RNA and protein levels. However, the rhythm in ApoE-/- mice disappeared completely. Bcl-2 and Bax did not show daily rhythm in either strain of mouse. Aside from apoptosis-related genes, several atherosclerosis-related genes expressed time-dependent behaviour in C57BL/6J mice but not in ApoE-/- mice. CONCLUSIONS Rhythm changes of clock genes, apoptosis-related genes and atherosclerosis-related genes may play important roles in atherosclerosis and its complications.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
79
|
S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation. Mol Cell Biol 2009; 29:6182-91. [PMID: 19805518 DOI: 10.1128/mcb.00973-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The c-Myc proto-oncogene promotes mRNA cap methylation, which is essential for almost all mRNA translation. The mRNA cap methylation reaction produces an inhibitory byproduct, S-adenosyl homocysteine. Here we report that Myc promotes upregulation of S-adenosyl homocysteine hydrolase (SAHH), an enzyme which hydrolyzes S-adenosyl homocysteine, thus neutralizing its inhibitory effects, and this is required for c-Myc-induced mRNA cap methylation. c-Myc-induced mRNA cap methylation was repressed by inhibiting the expression or activity of SAHH, whereas the same treatments did not have a significant effect on c-Myc-induced transcription or other c-Myc-dependent methylation events. The selective inhibition of mRNA cap methylation afforded by SAHH repression revealed that c-Myc-induced cap methylation could be correlated with the core c-Myc functions of protein synthesis, cell proliferation, and cell transformation.
Collapse
|
80
|
Prognostic relevance of c-MYC gene amplification and polysomy for chromosome 8 in suboptimally-resected, advanced stage epithelial ovarian cancers: a Gynecologic Oncology Group study. Gynecol Oncol 2009; 114:472-9. [PMID: 19524285 DOI: 10.1016/j.ygyno.2009.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/29/2009] [Accepted: 05/03/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Gynecologic Oncology Group (GOG) examined the prognostic relevance of c-MYC amplification and polysomy 8 in epithelial ovarian cancer (EOC). METHODS Women with suboptimally-resected, advanced stage EOC who participated in GOG-111, a multicenter randomized phase III trial of cyclophosphamide+cisplatin vs. paclitaxel+cisplatin, and who provided a tumor block through GOG-9404 were eligible. Fluorescence in situ hybridization (FISH) with probes for c-MYC and the centromere of chromosome 8 (CEP8) was used to examine c-MYC amplification (> or =2 copies c-MYC/CEP8) and polysomy 8 (> or =4 CEP8 copies). RESULTS c-MYC amplification, defined as > or =2 copies c-MYC/CEP8, was observed in 29% (28/97) of EOCs and levels were ranged from 2.0-3.3 copies of c-MYC/CEP8. c-MYC amplification was not associated with patient age, race, GOG performance status, stage, cell type, grade, measurable disease status following surgery, tumor response or disease status following platinum-based combination chemotherapy. Women with vs. without c-MYC amplification did not have an increased risk of disease progression (hazard ratio [HR]=1.03; 95% confidence interval [CI]=0.65-1.64; p=0.884) or death (HR=1.08; 95% CI=0.68-1.72; p=0.745). c-MYC amplification was not an independent prognostic factor for progression-free survival (HR=1.03, 95% CI=0.57-1.85; p=0.922) or overall survival (HR=1.01, 95% CI=0.56-1.80; p=0.982). Similar insignificant results were obtained for c-MYC amplification categorized as > or =1.5 copies c-MYC/CEP8. Polysomy 8 was observed in 22 patients without c-MYC amplification and 3 with c-MYC amplification, and was associated with age and measurable disease status, but not other clinical covariates or outcomes. CONCLUSIONS c-MYC amplification and polysomy 8 have limited predictive or prognostic value in suboptimally-resected, advanced stage EOC treated with platinum-based combination chemotherapy.
Collapse
|
81
|
Kenneth NS, White RJ. Regulation by c-Myc of ncRNA expression. Curr Opin Genet Dev 2009; 19:38-43. [PMID: 19179065 DOI: 10.1016/j.gde.2008.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/26/2008] [Indexed: 12/30/2022]
Abstract
Deregulated activity of the proto-oncogene product c-Myc is instrumental in promoting many human cancers. As it is a transcription factor, priority has been given to identifying the genes that it regulates. Until recently, all the attention was focused on protein-encoding genes. It is now clear, however, that c-Myc also controls the production of many non-coding (nc) RNAs, including tRNA, rRNA and miRNAs. This involves it regulating the transcriptional activity of three different RNA polymerases. These ncRNAs are likely to contribute substantially to the complex biology and pathology that is associated with c-Myc.
Collapse
Affiliation(s)
- Niall S Kenneth
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
82
|
Schmidt EV, Ravitz MJ, Chen L, Lynch M. Growth controls connect: interactions between c-myc and the tuberous sclerosis complex-mTOR pathway. Cell Cycle 2009; 8:1344-51. [PMID: 19342893 DOI: 10.4161/cc.8.9.8215] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among other signals, cell growth is particularly controlled by the target of rapamycin (TOR) pathway that includes the tuberous sclerosis complex genes (TSC1/2), and through transcriptional effects regulated by c-myc. Overexpression of Drosophila Myc and TSC1/2 cause opposing growth and proliferation defects. Despite this relationship, direct regulatory connections between Myc and the TSC have only recently been evaluated. Other than studies of p53 regulation, little consideration has been given to transcriptional regulation of the TSC genes. Here we review evidence that transcriptional controls are potentially important regulators of TSC2 expression, and that Myc is a direct repressor of its expression. Since tuberin loss de-represses Myc protein, the connection between these two growth regulators is positioned to act as a feed-forward loop that would amplify the oncogenic effects of decreased tuberin or increased Myc. Further experiments will be needed to clarify the mechanisms underlying this important connection, and evaluate its overall contribution to cancers caused by TSC loss or Myc gain.
Collapse
Affiliation(s)
- Emmett V Schmidt
- Cancer Research Center at Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
83
|
Abstract
Methylation of the mRNA 5' guanosine cap is essential for efficient gene expression. The 5' methyl cap binds to eIF4E, which is the first step in the recruitment of mRNA to the 40S ribosomal subunit. To investigate whether mRNA cap methylation is regulated in a gene-specific manner, we established a method to detect the relative level of cap methylation on specific mRNAs. We found that two transcription factors, c-Myc and E2F1, induce cap methylation of their transcriptional target genes, and therefore, c-Myc and E2F1 upregulate gene expression by simultaneously inducing transcription and promoting translation. c-Myc-induced cap methylation is greater than transcriptional induction for the majority of its target genes, indicating that this is a major mechanism by which Myc regulates gene expression.
Collapse
|
84
|
Abstract
Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified. Since that time, MYC research has been intense and the advances impressive. On reflection, it is astonishing how each incremental insight into MYC regulation and function has also had an impact on numerous biological disciplines, including our understanding of molecular oncogenesis in general. Here we chronicle the major advances in our understanding of MYC biology, and peer into the future of MYC research.
Collapse
|
85
|
Holm N, Byrnes K, Johnson L, Abreo F, Sehon K, Alley J, Meschonat C, Md QC, Li BDL. A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-negative breast cancer. Ann Surg Oncol 2008; 15:3207-15. [PMID: 18719964 DOI: 10.1245/s10434-008-0086-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E (eIF4E) plays a crucial role in translation control. High eIF4E increase in tumor specimens independently predicted recurrence by multivariate analysis. This prospective trial of node-negative only breast cancer patients was initiated to test the hypothesis that high eIF4E increase predicts cancer recurrence and death, independent of nodal status. METHODS The trial was powered to detect a 2.4-fold increase in relative risk for cancer recurrence in 240 node-negative patients on the basis of high versus low eIF4E increase in tumor specimens (type I error = .05, statistical power = .08). eIF4E level was quantified by using Western blot test. Treatment and surveillance regimens were standardized. Primary endpoints were cancer recurrence and cancer-related death. RESULTS Of the 242 patients accrued, 112 were in the low eIF4E group (<7.5-fold), 82 were in the intermediate eIF4E group (7.5- to 15-fold), and 48 were in the high eIF4E group (>15-fold). Patients in the high eIF4E group had a statistically significant higher rate of cancer recurrence and cancer-related death (P = .0001 and P < or = .0001, log rank test). The relative risk for cancer recurrence was 2.2-fold higher in the high eIF4E group (P = .001, Cox model), and 3.7-fold higher for cancer-related death (P = .0009). CONCLUSIONS In node-negative breast cancer, high eIF4E increase predicted a higher rate of cancer recurrence and death. High eIF4E patients had a >2-fold increase in relative risk for cancer recurrence and nearly a 4-fold increase in relative risk for death. This supports our hypothesis that high eIF4E is an independent predictor for breast cancer outcome independent of nodal status.
Collapse
Affiliation(s)
- Neal Holm
- Louisiana State University Health Sciences Center and Feist-Weiller Cancer Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 2008; 112:2917-26. [PMID: 18641367 DOI: 10.1182/blood-2007-12-130823] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The histone deacetylase inhibitor SAHA enhances cell death stimulated by the proteasome inhibitor bortezomib (BZ) by disrupting BZ-induced aggresome formation. Here we report that Myc regulates the sensitivity of multiple myeloma (MM) cells to BZ + SAHA-induced cell death. In MM cells, Myc expression directly correlated with intracellular ER content, protein synthesis rates, the percentage of aggresome-positive cells, and the sensitivity to BZ + SAHA-induced cell death. Accordingly, Myc knockdown markedly reduced the sensitivity of MM cells to BZ + SAHA-mediated apoptosis. Furthermore, activation of Myc was sufficient to provoke aggresome formation and thus sensitivity to BZ + SAHA, and these responses required de novo protein synthesis. BZ + SAHA-mediated stimulation of apoptosis includes the induction of the proapoptotic BH3-only protein Noxa as well as endoplasmic reticular stress, a disruption of calcium homeostasis, and activation of capase-4. Finally, knockdown studies demonstrated that both caspase-4 and Noxa play significant roles in Myc-driven sensitivity to BZ + SAHA-induced apoptosis. Collectively, our results establish a mechanistic link between Myc activity, regulation of protein synthesis, increases in HDAC6 expression and aggresome formation, induction of Noxa, and sensitivity to BZ + SAHA-induced apoptosis. These data suggest that MM patients with elevated Myc activity may be particularly sensitive to the BZ + SAHA combination.
Collapse
|
87
|
Culjkovic B, Tan K, Orolicki S, Amri A, Meloche S, Borden KLB. The eIF4E RNA regulon promotes the Akt signaling pathway. ACTA ACUST UNITED AC 2008; 181:51-63. [PMID: 18391071 PMCID: PMC2287285 DOI: 10.1083/jcb.200707018] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eukaryotic initiation factor 4E (eIF4E) promotes cellular proliferation and can rescue cells from apoptotic stimuli such as serum starvation. However, the mechanisms underlying apoptotic rescue are not well understood. In this study, we demonstrate that eIF4E overexpression leads to enhanced survival signaling through Akt and that eIF4E requires Akt1 to rescue serum-deprived fibroblasts. Furthermore, a mutant form of eIF4E (W73A), which is messenger RNA (mRNA) export competent but does not promote translation, rescues cells as readily as wild-type eIF4E. We show that eIF4E mediates Akt activation via up-regulation of Nijmegen breakage syndrome 1 (NBS1), a phosphoinositide-3 kinase–Akt pathway upstream activator. Additionally, eIF4E coordinately up-regulates the expression of downstream effectors of the Akt pathway, thereby amplifying Akt signaling effects. A negative regulator of eIF4E, the promyelocytic leukemia protein (PML), suppresses Akt activation and apoptotic rescue. These PML activities likely arise, at least in part, through its inhibition of eIF4E-mediated NBS1 mRNA export. In summary, eIF4E coordinately regulates gene expression to potentiate Akt activation, an activity required for apoptotic rescue.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Ravitz MJ, Chen L, Lynch M, Schmidt EV. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res 2008; 67:11209-17. [PMID: 18056446 DOI: 10.1158/0008-5472.can-06-4351] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-myc oncogene plays a key role in cellular growth control, and translation initiation factors are among the transcriptional targets of Myc. Here, we describe a defect in translation initiation control in myc-null cells due to alterations in the mammalian target of rapamycin (mTOR) pathway. Myc loss increased sensitivity to dominant inhibition of eukaryotic translation initiation factor 4E function. Polysomal profiles of myc(-/-) cells revealed decreased translation initiation rates, which were accompanied by decreased 40S/60S ribosomal subunit ratios. Because the 40S small ribosomal subunit contains the key regulatory ribosomal protein S6 (rpS6), we considered that myc loss might affect expression of components of the mTOR signaling pathway that regulate rpS6 function. Among mTOR signaling components, Myc directly affected transcription of tuberous sclerosis 2 (TSC2), as shown by quantitative mRNA analysis and by Myc binding to its promoter in chromatin immunoprecipitation assays. Importantly, Myc acted as a strong and direct repressor for TSC2 expression because its loss increased TSC2 mRNA in myc-null and in HL60 shRNA experiments, activation of a mycER construct in myc(-/-) cells suppressed TSC2 induction in a myc box II-dependent manner, and mycER activation recruited Myc to the TSC2 promoter. The biological significance of the effect of Myc on TSC2 expression was shown by markedly reduced TSC2 mRNA levels in myc-transformed cells, stimulation of S6 kinase activity in myc-null cells by TSC2 siRNA, and decreased Myc-induced soft agar colony formation following retroviral transduction of TSC2. Together, these findings show that regulation of TSC2 can contribute to the effects of Myc on cell proliferation and neoplastic growth.
Collapse
Affiliation(s)
- Michael J Ravitz
- Cancer Research Center at Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
89
|
|
90
|
Koppen A, Ait-Aissa R, Koster J, Øra I, Bras J, van Sluis PG, Caron H, Versteeg R, Valentijn LJ. Dickkopf-3 expression is a marker for neuroblastic tumor maturation and is down-regulated by MYCN. Int J Cancer 2007; 122:1455-64. [DOI: 10.1002/ijc.23180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
91
|
Eukaryotic initiation factor 4E. Int J Biochem Cell Biol 2007; 40:2675-80. [PMID: 18069043 DOI: 10.1016/j.biocel.2007.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/16/2007] [Accepted: 10/16/2007] [Indexed: 01/06/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is perhaps best known for its function in the initiation of protein synthesis on capped mRNAs in the cytoplasm. However, recent studies have highlighted that eIF4E has many additional functions, which include the nuclear export of specific mRNAs as well as roles in ageing and the translation of some uncapped viral RNAs. This review aims to update the reader on recent developments, including the potential of eIF4E as a therapeutic target.
Collapse
|
92
|
Thumma SC, Kratzke RA. Translational control: a target for cancer therapy. Cancer Lett 2007; 258:1-8. [PMID: 17923280 DOI: 10.1016/j.canlet.2007.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/21/2007] [Accepted: 08/31/2007] [Indexed: 12/22/2022]
Abstract
Cap-mediated translation is the default mechanism for the synthesis of proteins in eukaryotic cells. Increasingly, malignant cells have been found to have deregulation of this process. Return of normal translational control is associated with loss of tumorigenic potential in pre-clinical models. Currently, a variety of novel therapeutics are in development targeting this mechanism as a treatment for cancer.
Collapse
Affiliation(s)
- Saritha C Thumma
- The Division of Hematology-Oncology-Transplant, Department of Medicine, The University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
93
|
Desrivières S, Kuhn K, Müller J, Gläser M, Laria NCP, Korder J, Sonnentag M, Neumann T, Schwarz J, Schäfer J, Hamon C, Groner B, Prinz T. Comparison of the nuclear proteomes of mammary epithelial cells at different stages of functional differentiation. Proteomics 2007; 7:2019-37. [PMID: 17514683 DOI: 10.1002/pmic.200600994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The progression of stem cells to proliferating progenitor cells and finally to a quiescent differentiated state is a hallmark of organ development. This process proceeds through distinct steps and is regulated through cell-cell interactions and by systemically and locally acting factors. We have established a cell culture system which recapitulates features of mammary gland development in vitro and allows the comparison of three characteristic differentiation stages. Cell fate decisions relating to proliferation and differentiation are dependent on the function of proteins in the nucleus. Therefore, we have applied proteomic approaches, including 1- and 2-DE coupled with MS and a gel-free system, called protein sequence tag technology (PST), to assess the changes in the nuclear protein composition during differentiation of mammary epithelial cells. We identified about 250 individual proteins which are present in the nucleus of proliferating and functionally differentiated mammary epithelial cells. We functionally categorised the differentially expressed proteins and identified a multitude of proteins that regulate gene expression at the transcriptional or post-transcriptional level. This analysis greatly enriches our global view of the dynamic changes of nuclear proteins during the development of mammary epithelial cells and suggests models for the control of differentiation-specific protein expression.
Collapse
|
94
|
Koppen A, Ait-Aissa R, Koster J, van Sluis PG, Ora I, Caron HN, Volckmann R, Versteeg R, Valentijn LJ. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur J Cancer 2007; 43:2413-22. [PMID: 17826980 DOI: 10.1016/j.ejca.2007.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 12/23/2022]
Abstract
The c-Myc and MYCN oncogenes strongly induce cell proliferation. Although a limited series of cell cycle genes were found to be induced by the myc transcription factors, it is still unclear how they mediate the proliferative phenotype. We therefore analysed a neuroblastoma cell line with inducible MYCN expression. We found that all members of the minichromosome maintenance complex (MCM2-7) and MCM8 and MCM10 were up-regulated by MYCN. Expression profiling of 110 neuroblastoma tumours revealed that these genes strongly correlated with MYCN expression in vivo. Extensive chromatin immunoprecipitation experiments were performed to investigate whether the MCM genes were primary MYCN targets. MYCN was bound to the proximal promoters of the MCM2 to -8 genes. These data suggest that MYCN stimulates the expression of not only MCM7, which is a well defined MYCN target gene, but also of the complete minichromosome maintenance complex.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Agnelli L, Fabris S, Bicciato S, Basso D, Baldini L, Morabito F, Verdelli D, Todoerti K, Lambertenghi-Deliliers G, Lombardi L, Neri A. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma. Br J Haematol 2007; 136:565-73. [PMID: 17367409 DOI: 10.1111/j.1365-2141.2006.06467.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Karyotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). About 40-50% of patients display hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To molecularly characterise hyperdiploid (H) and nonhyperdiploid (NH) MM, we analysed the gene expression profiles of 66 primary tumours, and used fluorescence in situ hybridisation to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the 29% upregulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. H-MM could be further divided into two distinct molecular and transcriptional entities, characterised by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion respectively. These data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management.
Collapse
Affiliation(s)
- Luca Agnelli
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bilanges B, Stokoe D. Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26:5973-90. [PMID: 17404576 DOI: 10.1038/sj.onc.1210431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Analysis of the recurrent genetic aberrations present in human tumors provides insight into how normal cells escape appropriate proliferation and survival cues. Commonly mutated genes encode proteins that monitor DNA damage (e.g., p53), proteins that regulate the cell cycle (such as Rb), and proteins that regulate signal transduction pathways (such as APC, PTEN and Ras). Analysis of the relevant targets and downstream events of these genes in normal and tumor cells will clearly highlight important pathways for tumorigenesis. However, more infrequent mutations are also informative in defining events critical for the process of tumorigenesis, and often delineate important pathways lying downstream of commonly mutated oncogenes and tumor suppressors. Together, these studies have led to the conclusion that deregulated protein synthesis plays an important role in human cancer. This review will discuss the evidence implicating mRNA translation as an important downstream consequence of signal transduction pathways initiated by mutated oncogenes and tumor suppressors, as well as additional genetic findings implicating the importance of global and specific translational control in human cancer. It will also discuss therapeutic strategies that take advantage of differences in translational regulation between normal and tumor cells.
Collapse
Affiliation(s)
- B Bilanges
- UCSF Cancer Research Institute, San Francisco, CA 94115, USA.
| | | |
Collapse
|
97
|
Waas WF, Dalby KN. The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: a model substrate for exploring ERK2 docking interactions. Protein Expr Purif 2007; 53:80-6. [PMID: 17251036 DOI: 10.1016/j.pep.2006.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
ERK2 is a mitogen-activated protein kinase (MAPK) that plays pivotal roles in cell signal transduction, where it mediates effects on proliferation and differentiation by growth factors and hormones. An important substrate of ERK2 is the transcription factor c-Myc, which mediates cell cycle progression. The phosphorylation of Ser-62 on c-Myc by ERK2 is thought to contribute to the increased stability of c-Myc during the cell cycle and is thus a critical cellular event. However, the mode of c-Myc recognition by ERK2 is not understood. Early studies by Gupta and Davis concluded that ERK2 specificity determinants are located in residues 1-100 of c-Myc, its activation domain. To pursue both structural and kinetic studies a rapid, but efficient purification method, for the production of the activation domain of c-Myc from an Escherichia coli source, was developed. We chose the minimal number of high-resolution steps to maximize both yield and efficiency without sacrificing purity. Thus, GST-(c-MycDelta2-99)-His(6) was expressed in E. coli, and purified using glutathione-agarose affinity chromatography. Cleavage of the GST fusion protein by thrombin and subsequent purification by nickel-agarose affinity chromatography yielded 8 mg of purified (c-MycDelta2-99)-His(6) from one liter of LB culture. Rigorous characterization demonstrated that under standard assay conditions (c-MycDelta2-99)-His(6) is phosphorylated by ERK2 with the following Michaelis parameters: k(cat)=10.4s(-1), K(M)(c-Myc)=57.4 microM. In summary, a rapid procedure is outlined for the preparation of (c-MycDelta2-99)-His(6) that will be useful for mechanistic and biophysical studies of ERK2.
Collapse
Affiliation(s)
- William F Waas
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|
98
|
Cowling VH, Cole MD. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol 2007; 27:2059-73. [PMID: 17242204 PMCID: PMC1820498 DOI: 10.1128/mcb.01828-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc(-/-) fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism.
Collapse
Affiliation(s)
- Victoria H Cowling
- Department of Pharmacology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
99
|
Konstantakopoulos N, Larsen MR, Campbell IG, Quinn MA, Baker MS, Georgiou HM, Rice GE. Genistein-induced proteome changes in the human endometrial carcinoma cell line, ishikawa. Clin Proteomics 2006. [DOI: 10.1007/bf02752498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Abstract
Epidemiological studies have shown that Asian populations display a lower incidence of hormone-dependant cancers, cardiovascular disease, osteoporosis, and menopausal ailments compared to Western societies. Available data support the proposal that lower incidence is associated with the high dietary consumption of isoflavones, such as genistein. This study used two-dimensional electrophoresis to characterize the effect of genistein on the proteome of an endometrial tumor cell model, namely the Ishikawa cell line. Proteome maps displaying approx 1800 proteins were obtained from cells treated with vehicle or genistein at physiologically attainable concentrations of 0.5, 5, or 50 μM or supra-physiological concentration, 500 μM. The effects of genistein on protein expression were characterized using image analysis software. A total 65 protein spots displayed a significant decrease in expression and 32 proteins displayed a significant increase in expression. Of these protein spots, 29 were randomly selected for characterization by matrix assisted laser desorption/ionization tandem mass spectrometry, yielding 18 different proteins. This type of analysis enabled the characterization of a wide range of cellular proteins and allowed for the identification of functional and biochemical pathways that may be regulated or affected by genistein, including cellular transcription, cell proliferation, stress response, or modulation of oncogenic pathways.
Collapse
|
100
|
Abstract
Control of mRNA translation plays a fundamental role in many aspects of cell metabolism. It constitutes a critical step in the control of gene expression, and consequently cell growth, proliferation and differentiation. Translation is regulated in response to nutrient availability, hormones, mitogenic and growth factor stimulation and is coupled with cell cycle progression and cell growth. Signaling by the PI3K/Akt/mTOR pathway profoundly affects mRNA translation through phosphorylation of downstream targets such as 4E-BP and S6K. Inhibitors of this pathway and thus cap-dependent translation are emerging as promising therapeutic options for the treatment of cancer.
Collapse
Affiliation(s)
- Y Mamane
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|