51
|
Song J, Oh Y, Kim JY, Cho KJ, Lee JE. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation. Yonsei Med J 2016; 57:1461-7. [PMID: 27593875 PMCID: PMC5011279 DOI: 10.3349/ymj.2016.57.6.1461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. MATERIALS AND METHODS This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. RESULTS Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. CONCLUSION Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Yumi Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Joo Cho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
52
|
Oh HJ, Shin Y, Chung S, Hwang DW, Lee DS. Convective exosome-tracing microfluidics for analysis of cell-non-autonomous neurogenesis. Biomaterials 2016; 112:82-94. [PMID: 27750100 DOI: 10.1016/j.biomaterials.2016.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
Abstract
The effective role of exosome delivering neurogenic microRNA (miRNA) enables to induce efficient differentiation process during neurogenesis. The microfludic system capable of visualizing the exosomal behavior such as secretion, migration, and uptake of individual exosomes can be used as a robust technique to understand the exosome-mediated change of cellular behavior. Here, we developed the exosome-tracing microfluidic system to visualize exosomal transport carrying the neurogenic miRNA from leading to neighboring cells, and found a new mode of exosome-mediated cell-non-autonomous neurogenesis. The miR-193a facilitated neurogenesis in F11 cells by blocking proliferation-related target genes. In addition to time-lapse live-cell imaging using microfluidics visualized the convective transport of exosomes from differentiated to undifferentiated cells. Individual exosomes containing miR-193a from differentiated donor cells were taken up by undifferentiated cells to lead them to neurogenesis. Induction of anti-miR-193a was sufficient to block neurogenesis in F11 cells. Inhibition of the exosomal production by manumycin-A and treatment of anti-miR-193a in the differentiated donor cells failed to induce neurogenesis in undifferentiated recipient cells. These findings indicate that exosomes of neural progenitors and neurogenic miRNA within these exosomes propagate cell-non-autonomous differentiation to neighboring progenitors, to delineate the roles of exosome mediating neurogenesis of population of homologous neural progenitor cells.
Collapse
Affiliation(s)
- Hyun Jeong Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Republic of Korea; School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Yoojin Shin
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Republic of Korea.
| |
Collapse
|
53
|
Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10:101-120. [PMID: 27721656 PMCID: PMC5053108 DOI: 10.4137/jen.s32843] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.
Collapse
Affiliation(s)
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
54
|
Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl Psychiatry 2016; 6:e869. [PMID: 27529677 PMCID: PMC5022082 DOI: 10.1038/tp.2016.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022] Open
Abstract
Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms.
Collapse
|
55
|
Kinjo ER, Higa GSV, Santos BA, de Sousa E, Damico MV, Walter LT, Morya E, Valle AC, Britto LRG, Kihara AH. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep 2016; 6:20969. [PMID: 26869208 PMCID: PMC4751485 DOI: 10.1038/srep20969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application promptly (<30 min) induces status epilepticus (SE) as revealed by changes in rat electrocorticogram particularly in fast-beta range (21–30 Hz). SE simultaneously upregulated XRN2 and downregulated PAPD4 gene expression in the hippocampus, two genes related to miRNA degradation and stability, respectively. Moreover, SE decreased the number of XRN2-positive cells in the hilus, while reduced the number of PAPD4-positive cells in CA1. XRN2 and PAPD4 levels did not change in calretinin- and CamKII-positive cells, although it was possible to determine that PAPD4, but not XRN2, was upregulated in parvalbumin-positive cells, revealing that SE induction unbalances the accumulation of these functional-opposed proteins in inhibitory interneurons that directly innervate distinct domains of pyramidal cells. Therefore, we were able to disclose a possible mechanism underlying the differential regulation of miRNAs in specific neurons during epileptogenesis.
Collapse
Affiliation(s)
- Erika R Kinjo
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Guilherme S V Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.,Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bianca A Santos
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Erica de Sousa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Marcio V Damico
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lais T Walter
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Edgard Morya
- Programa de Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, ISD, Macaíba, RN, Brazil
| | - Angela C Valle
- Laboratório de Neurociências, LIM 01, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luiz R G Britto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre H Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.,Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
56
|
let-7 microRNA regulates neurogliogenesis in the mammalian retina through Hmga2. Dev Biol 2016; 410:70-85. [DOI: 10.1016/j.ydbio.2015.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
57
|
TLX-Its Emerging Role for Neurogenesis in Health and Disease. Mol Neurobiol 2016; 54:272-280. [PMID: 26738856 PMCID: PMC5219886 DOI: 10.1007/s12035-015-9608-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.
Collapse
|
58
|
Qi X. The role of miR-9 during neuron differentiation of mouse retinal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1883-1890. [PMID: 26701739 DOI: 10.3109/21691401.2015.1111231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retinal stem cells (RSCs) have been defined as neural cells with the potential to self-renew and to generate all the different cell types of the nervous system following differentiation, which are an ideal engraft in retinal regeneration. In this research, mouse RSCs were isolated from retina, induced differentiation into neuron cells in vitro after over-expression of miR-9. The results showed that the RSCs could induce differentiation into neuron cells under the special medium, but when the miR-9 was over-expressed, the differentiated efficiency of neuron cells from RSCs could be promoted. This reason was demonstrated that polypyrimidine tract-binding protein 1 (PTBP1) was a repressor for polypyrimidine tract-binding protein 2 (PTBP2), during neuronal differentiation, miR-9 reduced PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. And then miR-9 promoted neuron cells from RSCs were successful colonized into injured spinal cord for participation in tissue-repair. In conclusion, our research showed that the miR-9 promoted the differentiation of neuronal cells from RSCs, and this mechanism was miR-9 reduced the expression of PTBP1, increased the expression of PTBP2.
Collapse
Affiliation(s)
- Xin Qi
- a Department of Ophthalmology, Beijing Chaoyang Hospital , Capital Medical University , Beijing , P.R. China
| |
Collapse
|
59
|
Effects of addictive drugs on adult neural stem/progenitor cells. Cell Mol Life Sci 2015; 73:327-48. [PMID: 26468052 DOI: 10.1007/s00018-015-2067-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.
Collapse
|
60
|
Cernilogar FM, Di Giaimo R, Rehfeld F, Cappello S, Lie DC. RNA interference machinery-mediated gene regulation in mouse adult neural stem cells. BMC Neurosci 2015; 16:60. [PMID: 26386671 PMCID: PMC4575781 DOI: 10.1186/s12868-015-0198-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 09/08/2015] [Indexed: 12/20/2022] Open
Abstract
Background Neurogenesis in the brain of adult mammals occurs throughout life in two locations: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. RNA interference mechanisms have emerged as critical regulators of neuronal differentiation. However, to date, little is known about its function in adult neurogenesis. Results Here we show that the RNA interference machinery regulates Doublecortin levels and is associated with chromatin in differentiating adult neural progenitors. Deletion of Dicer causes abnormal higher levels of Doublecortin. The microRNA pathway plays an important role in Doublecortin regulation. In particular miRNA-128 overexpression can reduce Doublecortin levels in differentiating adult neural progenitors. Conclusions We conclude that the RNA interference components play an important role, even through chromatin association, in regulating neuron-specific gene expression programs. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0198-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filippo M Cernilogar
- Research Group Adult Neurogenesis and Neural Stem Cells, Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Biomedical Center, Ludwig Maximilian University, Großhaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
| | - Rossella Di Giaimo
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Frederick Rehfeld
- Research Group Adult Neurogenesis and Neural Stem Cells, Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Institute of Cell Biology and Neurobiology, Charité University, Berlin, Germany.
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| | - D Chichung Lie
- Research Group Adult Neurogenesis and Neural Stem Cells, Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
61
|
Huang Y, Liu X, Wang Y. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression. Biochem Biophys Res Commun 2015; 466:214-20. [PMID: 26361139 DOI: 10.1016/j.bbrc.2015.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Department of Rehabilitation, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xiaoguai Liu
- The 3rd Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yaping Wang
- Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
62
|
Sun LH, Yan ML, Hu XL, Peng LW, Che H, Bao YN, Guo F, Liu T, Chen X, Zhang R, Ban T, Wang N, Liu HL, Hou X, Ai J. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener 2015; 10:36. [PMID: 26259688 PMCID: PMC4530481 DOI: 10.1186/s13024-015-0032-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Previous studies have demonstrated that the trafficking defects of Nav1.1/Nav1.2 are involved in the dementia pathophysiology. However, the detailed mechanisms are not fully understood. Moreover, whether the impaired miRNAs regulation linked to dementia is a key player in sodium channel trafficking disturbance remains unclear. The cognitive impairment induced by chronic cerebral ischemia through chronic brain hypoperfusion (CBH) is likely reason to precede dementia. Therefore, our goal in the present study was to examine the role of microRNA-9 (miR-9) in regulating Nav1.1/Nav1.2 trafficking under CBH generated by bilateral common carotid artery occlusion (2VO). Results The impairment of Nav1.1/Nav1.2 trafficking and decreased expression of Navβ2 were found in the hippocampi and cortices of rats following CBH generated by bilateral 2VO. MiR-9 was increased in both the hippocampi and cortices of rats following CBH by qRT-PCR. Intriguingly, miR-9 suppressed, while AMO-miR-9 enhanced, the trafficking of Nav1.1/Nav1.2 from cytoplasm to cell membrane. Further study showed that overexpression of miR-9 inhibited the Navβ2 expression by targeting on its coding sequence (CDS) domain by dual luciferase assay. However, binding-site mutation or miR-masks failed to influence Navβ2 expression as well as Nav1.1/Nav1.2 trafficking process, indicating that Navβ2 is a potential target for miR-9. Lentivirus-mediated miR-9 overexpression also inhibited Navβ2 expression and elicited translocation deficits to cell membrane of Nav1.1/Nav1.2 in rats, whereas injection of lentivirus-mediated miR-9 knockdown could reverse the impaired trafficking of Nav1.1/Nav1.2 triggered by 2VO. Conclusions We conclude that miR-9 may play a key role in regulating the process of Nav1.1/Nav1.2 trafficking via targeting on Navβ2 protein in 2VO rats at post-transcriptional level, and inhibition of miR-9 may be a potentially valuable approach to prevent Nav1.1/Nav1.2 trafficking disturbance induced by CBH.
Collapse
Affiliation(s)
- Li-Hua Sun
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China.
| | - Mei-Ling Yan
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Xue-Ling Hu
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Li-Wei Peng
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Hui Che
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Ya-Nan Bao
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Fei Guo
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Tong Liu
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Xin Chen
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Rong Zhang
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Tao Ban
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Ning Wang
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China
| | - Huai-Lei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Xu Hou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Jing Ai
- Department of Pharmacology, Harbin Medical University, No.157 Baojian Road, Nangang District,Harbin, Heilongjiang Province, 15008, China.
| |
Collapse
|
63
|
Cathcart P, Lucchesi W, Ottaviani S, De Giorgio A, Krell J, Stebbing J, Castellano L. Noncoding RNAs and the control of signalling via nuclear receptor regulation in health and disease. Best Pract Res Clin Endocrinol Metab 2015; 29:529-43. [PMID: 26303081 DOI: 10.1016/j.beem.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear receptors belong to a superfamily of proteins that play central roles in human biology, orchestrating a large variety of biological functions in both health and disease. Understanding the interactions and regulatory pathways of NRs will allow development of potential therapeutic interventions for a multitude of disease processes. Non-coding RNAs have recently been discovered to have significant interactions with NR signalling pathways via a variety of biological connections. This review summarises the known interactions between ncRNAs and the NR superfamily in health, embryogenesis and a plethora of human diseases.
Collapse
Affiliation(s)
- Paul Cathcart
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Walter Lucchesi
- School of Pharmacy, University of Reading, Whiteknights Reading Berks RG6 6AP, UK
| | - Silvia Ottaviani
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Alex De Giorgio
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London W12 0NN, UK.
| |
Collapse
|
64
|
Schmouth JF, Arenillas D, Corso-Díaz X, Xie YY, Bohacec S, Banks KG, Bonaguro RJ, Wong SH, Jones SJM, Marra MA, Simpson EM, Wasserman WW. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development. BMC Genomics 2015. [PMID: 26204903 PMCID: PMC4512088 DOI: 10.1186/s12864-015-1770-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. Results In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. Conclusions In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1770-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Current address: Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, H3A 2B4, Canada.
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Yuan-Yun Xie
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Slavita Bohacec
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Siaw H Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Steven J M Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
65
|
Gori M, Trombetta M, Santini D, Rainer A. Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opin Biol Ther 2015. [DOI: 10.1517/14712598.2015.1071349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Golden EJ, Benito-Gonzalez A, Doetzlhofer A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc Natl Acad Sci U S A 2015; 112:E3864-73. [PMID: 26139524 PMCID: PMC4517247 DOI: 10.1073/pnas.1501077112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper tissue development requires strict coordination of proliferation, growth, and differentiation. Strict coordination is particularly important for the auditory sensory epithelium, where deviations from the normal spatial and temporal pattern of auditory progenitor cell (prosensory cell) proliferation and differentiation result in abnormal cellular organization and, thus, auditory dysfunction. The molecular mechanisms involved in the timing and coordination of auditory prosensory proliferation and differentiation are poorly understood. Here we identify the RNA-binding protein LIN28B as a critical regulator of developmental timing in the murine cochlea. We show that Lin28b and its opposing let-7 miRNAs are differentially expressed in the auditory sensory lineage, with Lin28b being highly expressed in undifferentiated prosensory cells and let-7 miRNAs being highly expressed in their progeny-hair cells (HCs) and supporting cells (SCs). Using recently developed transgenic mouse models for LIN28B and let-7g, we demonstrate that prolonged LIN28B expression delays prosensory cell cycle withdrawal and differentiation, resulting in HC and SC patterning and maturation defects. Surprisingly, let-7g overexpression, although capable of inducing premature prosensory cell cycle exit, failed to induce premature HC differentiation, suggesting that LIN28B's functional role in the timing of differentiation uses let-7 independent mechanisms. Finally, we demonstrate that overexpression of LIN28B or let-7g can significantly alter the postnatal production of HCs in response to Notch inhibition; LIN28B has a positive effect on HC production, whereas let-7 antagonizes this process. Together, these results implicate a key role for the LIN28B/let-7 axis in regulating postnatal SC plasticity.
Collapse
Affiliation(s)
- Erin J Golden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ana Benito-Gonzalez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
67
|
Nguyen LH, Diao HJ, Chew SY. MicroRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 2015; 88:53-66. [PMID: 25980934 DOI: 10.1016/j.addr.2015.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/01/2023]
Abstract
The inherent poor regeneration capacity of nerve tissues, especially in the central nervous system, poses a grand challenge for neural tissue engineering. After injuries, the local microenvironment often contains potent inhibitory molecules and glial scars, which do not actively support axonal regrowth. MicroRNAs can direct fate of neural cells and are tightly controlled during nerve development. Thus, RNA interference using microRNAs is a promising method to enhance nerve regeneration. Although the physiological roles of microRNA expression levels in various cellular activities or disease conditions have been extensively investigated, the translational use of these understanding for neural tissue engineering remains limited. This review aims to highlight essential microRNAs that participate in cellular behaviors within the adult nervous system and their potential therapeutic applications. In addition, possible delivery methods are also suggested for effective gene silencing in neural tissue engineering.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hua Jia Diao
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
68
|
Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, Zhuang W, Tang B, Xia K, Jiang H. Investigation of Gene Regulatory Networks Associated with Autism Spectrum Disorder Based on MiRNA Expression in China. PLoS One 2015; 10:e0129052. [PMID: 26061495 PMCID: PMC4462583 DOI: 10.1371/journal.pone.0129052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/03/2015] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) comprise a group of neurodevelopmental disorders characterized by deficits in social and communication capacities and repetitive behaviors. Increasing neuroscientific evidence indicates that the neuropathology of ASD is widespread and involves epigenetic regulation in the brain. Differentially expressed miRNAs in the peripheral blood from autism patients were identified by high-throughput miRNA microarray analyses. Five of these miRNAs were confirmed through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. A search for candidate target genes of the five confirmed miRNAs was performed through a Kyoto encyclopedia of genes and genomes (KEGG) biological pathways and Gene Ontology enrichment analysis of gene function to identify gene regulatory networks. To the best of our knowledge, this study provides the first global miRNA expression profile of ASD in China. The differentially expressed miR-34b may potentially explain the higher percentage of male ASD patients, and the aberrantly expressed miR-103a-3p may contribute to the abnormal ubiquitin-mediated proteolysis observed in ASD.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Department of Neurology at University of South China, The First People’s Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R. China
- Institute of Translational Medicine at University of South China, The First People’s Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R. China
| | - Zhe Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jiada Li
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Hunan, 410083, P. R. China
- Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Hunan, 410083, P. R. China
| | - Wei Zhuang
- Department of Thoracic surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kun Xia
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China
- * E-mail:
| |
Collapse
|
69
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
70
|
Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015; 359:47-64. [PMID: 25172833 PMCID: PMC4284387 DOI: 10.1007/s00441-014-1981-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
The impressive neuronal diversity found within the nervous system emerges from a limited pool of neural progenitor cells that proceed through different gene expression programs to acquire distinct cell fates. Here, we review recent evidence indicating that microRNAs (miRNAs) are critically involved in conferring neural cell identities during neural induction, neuronal differentiation and subtype specification. Several studies have shown that miRNAs act in concert with other gene regulatory factors and genetic switches to regulate the spatial and temporal expression profiles of important cell fate determinants. So far, most studies addressing the role of miRNAs during neurogenesis were conducted using animal models. With the advent of human pluripotent stem cells and the possibility to differentiate these into neural stem cells, we now have the opportunity to study miRNAs in a human context. More insight into the impact of miRNA-based regulation during neural fate choice could in the end be exploited to develop new strategies for the generation of distinct human neuronal cell types.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Beate Roese-Koerner
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| |
Collapse
|
71
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
72
|
The mystery of let-7d - a small RNA with great power. Contemp Oncol (Pozn) 2014; 18:293-301. [PMID: 25477749 PMCID: PMC4248056 DOI: 10.5114/wo.2014.44467] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
miRNAs belong to a class of small non-coding RNAs which can modulate gene expression. Disturbances in their expression and function may cause cancer formation, progression and cell response to various types of stress. The let-7 family is one of the most studied groups of miRNAs. The family contains 13 members with similar sequences and a wide spectrum of target genes. In this paper, we mostly focus on one member of the family – let-7d. This miRNA is dysregulated in many types of cancers. It can be over- or down-expressed, and it acts as a tumor suppressor or oncogene. It regulates various genes such as LIN28, C-MYC, K-RAS, HMGA2 and IMP-1. Moreover, let-7d has a significant impact on epithelial-to-mesenchymal transition (EMT) and formation of cancer initiating cells which are resistant to irradiation and chemical exposure and responsible for cancer metastasis. Let-7d can serve as a prognostic and predictive marker for personalization of the treatment. Let-7d is a small RNA with great power, but in different cell genetic backgrounds it acts in different ways, which makes this molecule still mysterious.
Collapse
|
73
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
74
|
Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2014; 268:46-53. [PMID: 25128264 DOI: 10.1016/j.expneurol.2014.08.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that play important roles in the development and functions of the brain. Extensive studies have revealed critical roles for miRNAs in brain development and function. Dysregulation or altered expression of miRNAs is associated with abnormal brain development and pathogenesis of neurodevelopmental diseases. This review serves to highlight the versatile roles of these small RNA molecules in normal brain development and their association with neurodevelopmental disorders, in particular, two closely related neuropsychiatric disorders of neurodevelopmental origin, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Emily Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
75
|
Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 2014; 82:1255-1262. [PMID: 24945770 DOI: 10.1016/j.neuron.2014.04.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Acute gene inactivation using short hairpin RNA (shRNA, knockdown) in developing brain is a powerful technique to study genetic function; however, discrepancies between knockdown and knockout murine phenotypes have left unanswered questions. For example, doublecortin (Dcx) knockdown but not knockout shows a neocortical neuronal migration phenotype. Here we report that in utero electroporation of shRNA, but not siRNA or miRNA, to Dcx demonstrates a migration phenotype in Dcx knockouts akin to the effect in wild-type mice, suggesting shRNA-mediated off-target toxicity. This effect was not limited to Dcx, as it was observed in Dclk1 knockouts, as well as with a fraction of scrambled shRNAs, suggesting a sequence-dependent but not sequence-specific effect. Profiling RNAs from electroporated cells showed a defect in endogenous let7 miRNA levels, and disruption of let7 or Dicer recapitulated the migration defect. The results suggest that shRNA-mediated knockdown can produce untoward migration effects by altering endogenous miRNA pathways.
Collapse
|
76
|
Abstract
Epigenetic modulations orchestrate with extracellular environmental cues to determine the spatial and temporal expression of key regulators in neural stem/progenitor cells to control their proliferation, fate specification, and differentiation. Here, Yao and Jin review the latest in our knowledge of epigenetic regulation in neurogenesis and offer a perspective for future studies. During embryonic and adult neurogenesis, neuronal stem cells follow a highly conserved path of differentiation to give rise to functional neurons at various developmental stages. Epigenetic regulation—including DNA modifications, histone modifications, and noncoding regulatory RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA)—plays a pivotal role in embryonic and adult neurogenesis. Here we review the latest in our understanding of the epigenetic regulation in neurogenesis, with a particular focus on newly identified cytosine modifications and their dynamics, along with our perspective for future studies.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
77
|
Lenkala D, LaCroix B, Gamazon ER, Geeleher P, Im HK, Huang RS. The impact of microRNA expression on cellular proliferation. Hum Genet 2014; 133:931-8. [PMID: 24609542 PMCID: PMC4677487 DOI: 10.1007/s00439-014-1434-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
As an important class of non-coding regulatory RNAs, microRNAs (miRNAs) play a key role in a range of biological processes. These molecules serve as post-transcriptional regulators of gene expression and their regulatory activity has been implicated in disease pathophysiology and pharmacological traits. We sought to investigate the impact of miRNAs on cellular proliferation to gain insight into the molecular basis of complex traits that depend on cellular growth, including, most prominently, cancer. We examined the relationship between miRNA expression and intrinsic cellular growth (iGrowth) in the HapMap lymphoblastoid cell lines derived from individuals of different ethnic backgrounds. We found a substantial enrichment for miRNAs (53 miRNAs, FDR < 0.05) correlated with cellular proliferation in pooled CEU (Caucasian of northern and western European descent) and YRI (individuals from Ibadan, Nigeria) samples. Specifically, 119 miRNAs (59 %) were significantly correlated with iGrowth in YRI; of these miRNAs, 18 were correlated with iGrowth in CEU. To gain further insight into the effect of miRNAs on cellular proliferation in cancer, we showed that over-expression of miR-22, one of the top iGrowth-associated miRNAs, leads to growth inhibition in an ovarian cancer cell line (SKOV3). Furthermore, over-expression of miR-22 down-regulates the expression of its target genes (MXI1 and SLC25A37) in this ovarian cancer cell line, highlighting an miRNA-mediated regulatory network potentially important for cellular proliferation. Importantly, our study identified miRNAs that can be used as molecular targets in cancer therapy.
Collapse
Affiliation(s)
- Divya Lenkala
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD, Chicago, IL 60637, USA
| | - Bonnie LaCroix
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD, Chicago, IL 60637, USA
| | - Eric R. Gamazon
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Paul Geeleher
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD, Chicago, IL 60637, USA
| | - Hae Kyung Im
- Department of Health Studies, The University of Chicago, Chicago, IL 60637, USA
| | - R. Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD, Chicago, IL 60637, USA
| |
Collapse
|
78
|
Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L. microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 2014; 8:175. [PMID: 25009466 PMCID: PMC4070303 DOI: 10.3389/fncel.2014.00175] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/06/2014] [Indexed: 01/31/2023] Open
Abstract
Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3′ untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed.
Collapse
Affiliation(s)
- Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| |
Collapse
|
79
|
Islam MM, Zhang CL. TLX: A master regulator for neural stem cell maintenance and neurogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:210-6. [PMID: 24930777 DOI: 10.1016/j.bbagrm.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/22/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests that the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
80
|
Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model. Proc Natl Acad Sci U S A 2014; 111:9115-20. [PMID: 24927526 DOI: 10.1073/pnas.1406779111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.
Collapse
|
81
|
Rehfeld F, Rohde AM, Nguyen DTT, Wulczyn FG. Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res 2014; 359:145-60. [PMID: 24825413 DOI: 10.1007/s00441-014-1872-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 11/25/2022]
Abstract
Beginning with their discovery in the context of stem cell fate choice in Caenorhabditis elegans, the microRNA (miRNA) let-7 and the RNA-binding protein Lin28 have been recognized as a regulatory pair with far-reaching impact on stem cell behavior in a wide range of organisms and tissues, including the mammalian brain. In this review, we describe molecular interactions between Lin28 and let-7 and the biological role that each plays in implementing stem cell programs that either maintain stem cell self-renewal and plasticity or drive lineage commitment and differentiation. For Lin28, considerable progress has been made in defining let-7-dependent and let-7-independent functions in the maintenance of pluripotency, somatic cell reprogramming, tissue regeneration, and neural stem cell plasticity. For the pro-differentiation activity of let-7, we focus on emerging roles in mammalian neurogenesis and neuronal function. Specific targets and pathways for let-7 have been identified in embryonic and adult neurogenesis, including corticogenesis, retinal specification, and adult neurogenic niches. Special emphasis is given to examples of feedback and feedforward regulation, in particular within the miRNA biogenesis pathway.
Collapse
Affiliation(s)
- Frederick Rehfeld
- Institute for Cell and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
82
|
Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, Toro-Ramos AJ, Li J, Hart RP. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One 2014; 9:e94348. [PMID: 24714615 PMCID: PMC3979806 DOI: 10.1371/journal.pone.0094348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/13/2014] [Indexed: 12/21/2022] Open
Abstract
MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.
Collapse
Affiliation(s)
- Jonathan L Davila
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Loyal A Goff
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Christopher L Ricupero
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Cynthia Camarillo
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Eileen N Oni
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mavis R Swerdel
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Alana J Toro-Ramos
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jiali Li
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ronald P Hart
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
83
|
Shi S, Leites C, He D, Schwartz D, Moy W, Shi J, Duan J. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J Biol Chem 2014; 289:13434-44. [PMID: 24675081 DOI: 10.1074/jbc.m113.535203] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human dopamine receptor D2 (DRD2) has been implicated in the pathophysiology of schizophrenia and other neuropsychiatric disorders. Most antipsychotic drugs influence dopaminergic transmission through blocking dopamine receptors, primarily DRD2. We report here the post-transcriptional regulation of DRD2 expression by two brain-expressed microRNAs (miRs), miR-326 and miR-9, in an ex vivo mode, and show the relevance of miR-mediated DRD2 expression regulation in human dopaminergic neurons and in developing human brains. Both miRs targeted the 3'-UTR (untranslated region) of DRD2 in NT2 (neuron-committed teratocarcinoma, which endogenously expresses DRD2) and CHO (Chinese hamster ovary) cell lines, decreasing luciferase activity measured by a luciferase reporter gene assay. miR-326 overexpression reduced DRD2 mRNA and DRD2 receptor synthesis. Both antisense miR-326 and antisense miR-9 increased DRD2 protein abundance, suggesting an endogenous repression of DRD2 expression by both miRs. Furthermore, a genetic variant (rs1130354) within the DRD2 3'-UTR miR-targeting site interferes with miR-326-mediated repression of DRD2 expression. Finally, co-expression analysis identified an inverse correlation of DRD2 expression with both miR-326 and miR-9 in differentiating dopaminergic neurons derived from human induced pluripotent stem cells (iPSCs) and in developing human brain regions implicated in schizophrenia. Our study provides empirical evidence suggesting that miR-326 and miR-9 may regulate dopaminergic signaling, and miR-326 and miR-9 may be considered as potential drug targets for the treatment of disorders involving abnormal DRD2 function, such as schizophrenia.
Collapse
Affiliation(s)
- Sandra Shi
- From the Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60201
| | | | | | | | | | | | | |
Collapse
|
84
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|
85
|
Follert P, Cremer H, Béclin C. MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci 2014; 7:5. [PMID: 24570654 PMCID: PMC3916726 DOI: 10.3389/fnmol.2014.00005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 01/27/2023] Open
Abstract
Fine-tuning of gene expression is a fundamental requirement for development and function of cells and organs. This requirement is particularly obvious in the nervous system where originally common stem cell populations generate thousands of different neuronal and glial cell types in a temporally and quantitatively perfectly orchestrated manner. Moreover, after their generation, young neurons have to connect with pre-determined target neurons through the establishment of functional synapses, either in their immediate environment or at distance. Lastly, brain function depends not only on static circuitries, but on plastic changes at the synaptic level allowing both, learning and memory. It appears evident that these processes necessitate flexibility and stability at the same time. These two contrasting features can only be achieved by complex molecular networks, superposed levels of control and tight interactions between regulatory mechanisms. Interactions between microRNAs and their target mRNAs fulfill these requirements. Here we review recent literature dealing with the involvement of microRNAs in multiple aspects of brain development and connectivity.
Collapse
Affiliation(s)
- Philipp Follert
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Harold Cremer
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Christophe Béclin
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
86
|
Choi E, Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells 2013; 5:172-187. [PMID: 24179605 PMCID: PMC3812521 DOI: 10.4252/wjsc.v5.i4.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/13/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted.
Collapse
|
87
|
Abstract
Cerebral ischemia induces neurogenesis, including proliferation and differentiation of neural progenitor cells and migration of newly generated neuroblasts. MicroRNAs (miRNAs) are small noncoding RNAs that decrease gene expression through mRNA destabilization and/or translational repression. Emerging data indicate that miRNAs have a role in mediating processes of proliferation and differentiation of adult neural progenitor cells. This article reviews recent findings on miRNA profile changes in neural progenitor cells after cerebral infarction and the contributions of miRNAs to their ischemia-induced proliferation and differentiation. We highlight interactions between the miR-124 and the miR17-92 cluster and the Notch and Sonic hedgehog signaling pathways in mediating stroke-induced neurogenesis.
Collapse
|