51
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|
52
|
Hofemeier AD, Limon T, Muenker TM, Wallmeyer B, Jurado A, Afshar ME, Ebrahimi M, Tsukanov R, Oleksiievets N, Enderlein J, Gilbert PM, Betz T. Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis. eLife 2021; 10:60145. [PMID: 33459593 PMCID: PMC7906603 DOI: 10.7554/elife.60145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
Tension and mechanical properties of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue formation a key requirement to advance our understanding of muscle function and development. Recently developed elastic in vitro culture chambers allow for raising 3D muscle tissue under controlled conditions and to measure global tissue force generation. However, these chambers are inherently incompatible with high-resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here, we present a new chamber design pairing global force measurements, quantified from post-deflection, with local tension measurements obtained from elastic hydrogel beads embedded in muscle tissue. High-resolution 3D video microscopy of engineered muscle formation, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.
Collapse
Affiliation(s)
- Arne D Hofemeier
- Institute for Cell Biology, University of Münster, Münster, Germany
| | - Tamara Limon
- Institute for Cell Biology, University of Münster, Münster, Germany
| | | | | | - Alejandro Jurado
- Institute for Cell Biology, University of Münster, Münster, Germany
| | - Mohammad Ebrahim Afshar
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Majid Ebrahimi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Roman Tsukanov
- 3rd Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Nazar Oleksiievets
- 3rd Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Jörg Enderlein
- 3rd Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Timo Betz
- Institute for Cell Biology, University of Münster, Münster, Germany.,3rd Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
53
|
Asano T, Teh DBL, Yawo H. Application of Optogenetics for Muscle Cells and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:359-375. [PMID: 33398826 DOI: 10.1007/978-981-15-8763-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
Collapse
Affiliation(s)
- Toshifumi Asano
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
54
|
Dwenger M, Kowalski WJ, Masumoto H, Nakane T, Keller BB. Chronic Optogenetic Pacing of Human-Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. Methods Mol Biol 2021; 2191:151-169. [PMID: 32865744 DOI: 10.1007/978-1-0716-0830-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The delivery of cells into damaged myocardium induces limited cardiac regeneration due to extensive cell death. In an effort to limit cell death, our lab formulates three-dimensional matrices as a delivery system for cell therapy. Our primary work has been focused on the formation of engineered cardiac tissues (ECTs) from human-induced pluripotent stem cell-derived engineered cardiac cells. However, ECT immaturity hinders ability to fully recover damaged myocardium. Various conditioning regimens such as mechanical stretch and/or electric pacing have been used to activate maturation pathways. To improve ECT maturity, we use non-contacting chronic light stimulation using heterologously expressed light-sensitive channelrhodopsin ion channels. We transduce ECTs with an AAV packaged channelrhodopsin and chronically optically pace (C-OP) ECTs for 1 week above the intrinsic beat rate, resulting in increased ECT electrophysiological properties.
Collapse
Affiliation(s)
- Marc Dwenger
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - William J Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Hidetoshi Masumoto
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of CV Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takeichiro Nakane
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of CV Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA. .,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA. .,Cincinnati Children's Heart Institute, Cincinnati Children's Hospital Medical Center, Louisville, KY, USA.
| |
Collapse
|
55
|
Wei TY, Ruder WC. Engineering control circuits for molecular robots using synthetic biology. APL MATERIALS 2020; 8:101104. [PMID: 33101786 PMCID: PMC7560983 DOI: 10.1063/5.0020429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The integration of molecular robots and synthetic biology allows for the creation of sophisticated behaviors at the molecular level. Similar to the synergy between bioelectronics and soft robotics, synthetic biology provides control circuitry for molecular robots. By encoding perception-action modules within synthetic circuits, molecular machines can advance beyond repeating tasks to the incorporation of complex behaviors. In particular, cell-free synthetic biology provides biomolecular circuitry independent of living cells. This research update reviews the current progress in using synthetic biology as perception-action control modules in robots from molecular robots to macroscale robots. Additionally, it highlights recent developments in molecular robotics and cell-free synthetic biology and suggests their combined use as a necessity for future molecular robot development.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Department of Bioengineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
56
|
Shahin-Shamsabadi A, Selvaganapathy PR. Tissue-in-a-Tube: three-dimensional in vitro tissue constructs with integrated multimodal environmental stimulation. Mater Today Bio 2020; 7:100070. [PMID: 32875285 PMCID: PMC7452320 DOI: 10.1016/j.mtbio.2020.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) in vitro tissue models are superior to two-dimensional (2D) cell cultures in replicating natural physiological/pathological conditions by recreating the cellular and cell-matrix interactions more faithfully. Nevertheless, current 3D models lack either the rich multicellular environment or fail to provide appropriate biophysical stimuli both of which are required to properly recapitulate the dynamic in vivo microenvironment of tissues and organs. Here, we describe the rapid construction of multicellular, tubular tissue constructs termed Tissue-in-a-Tube using self-assembly process in tubular molds with the ability to incorporate a variety of biophysical stimuli such as electrical field, mechanical deformation, and shear force of the fluid flow. Unlike other approaches, this method is simple, requires only oxygen permeable silicone tubing that molds the tissue construct and thin stainless-steel pins inserted in it to anchor the construct and could be used to provide electrical and mechanical stimuli, simultaneously. The annular region between the tissue construct and the tubing is used for perfusion. Highly stable, macroscale, and robust constructs anchored to the pins form as a result of self-assembly of the extracellular matrix (ECM) and cells in the bioink that is filled into the tubing. We demonstrate patterning of grafts containing cell types in the constructs in axial and radial modes with clear interface and continuity between the layers. Different environmental factors affecting cell behavior such as compactness of the structure and size of the constructs can be controlled through parameters such as initial cell density, ECM content, tubing size, as well as the distance between anchor pins. Using connectors, network of tubing can be assembled to create complex macrostructured tissues (centimeters length) such as fibers that are bifurcated or columns with different axial thicknesses which can then be used as building blocks for biomimetic constructs or tissue regeneration. The method is versatile and compatible with various cell types including endothelial, epithelial, skeletal muscle cells, osteoblast cells, and neuronal cells. As an example, long mature skeletal muscle and neuronal fibers as well as bone constructs were fabricated with cellular alignment dictated by the applied electrical field. The versatility, speed, and low cost of this method is suited for widespread application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | - P R Selvaganapathy
- School of Biomedical Engineering, McMaster University, Canada.,Department of Mechanical Engineering, McMaster University, Canada
| |
Collapse
|
57
|
Jensen JH, Cakal SD, Li J, Pless CJ, Radeke C, Jepsen ML, Jensen TE, Dufva M, Lind JU. Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates. Sci Rep 2020; 10:13305. [PMID: 32764726 PMCID: PMC7411013 DOI: 10.1038/s41598-020-69936-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
Cellular self-organization is the fundamental driving force behind the complex architectures of native tissue. Yet, attempts at replicating native tissue architectures in vitro often involve complex micro-fabrication methods and materials. While impressive progress has been made within engineered models of striated muscle, the wide adaptation of these models is held back by the need for specific tools and knowhow. In this report, we show that C2C12 myoblasts spontaneously organize into highly aligned myotube tissues on the mm to cm scale, when cultured on sufficiently soft yet fully isotropic gelatin hydrogel substrates. Interestingly, we only observed this phenomenon for hydrogels with Young’s modulus of 6 kPa and below. For slightly more rigid compositions, only local micrometer-scale myotube organization was observed, similar to that seen in conventional polystyrene dishes. The hydrogel-supported myotubes could be cultured for multiple weeks and matured into highly contractile phenotypes with notable upregulation of myosin heavy chain, as compared to myotubes developed in conventional petri dishes. The procedure for casting the ultra-soft gelatin hydrogels is straight forward and compatible with standardized laboratory tools. It may thus serve as a simple, yet versatile, approach to generating skeletal muscle tissue of improved physiological relevance for applied and basic research.
Collapse
Affiliation(s)
- Joen H Jensen
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Selgin D Cakal
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, København Ø, Denmark
| | - Christian J Pless
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Carmen Radeke
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Morten Leth Jepsen
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, København Ø, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark. .,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.
| | - Johan U Lind
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
58
|
Rajabian N, Shahini A, Asmani M, Vydiam K, Choudhury D, Nguyen T, Ikhapoh I, Zhao R, Lei P, Andreadis ST. Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Eng Part A 2020; 27:74-86. [PMID: 32364045 DOI: 10.1089/ten.tea.2020.0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With age, adult skeletal muscle (SkM) is known to decrease in muscle mass, strength, and functional capacity, a state known as sarcopenia. Here we developed an in vitro three-dimensional (3D) bioengineered senescent SkM tissue using primary human myoblasts. These tissues exhibited the characteristics of atrophied muscle, including expression of senescent genes, decreased number of satellite cells, reduced number and size of myofibers, and compromised metabolism and calcium flux. As a result, senescent SkM tissues showed impaired ability to generate force in response to electrical stimulation compared with young tissues. Furthermore, in contrast to young SkM tissues, senescent tissues failed to regenerate in response to injury, possibly as a result of persistent apoptosis and failure to initiate a proliferation program. Our findings suggest that 3D senescent SkM may provide a powerful model for studying aging and a platform for drug testing and discovery of therapeutic compounds to improve the function of sarcopenic muscle. Impact statement Skeletal muscle (SkM) plays important physiological roles and has significant regenerative capacity. However, aged SkM lose their functionality and regeneration ability. In this article, we present a senescent human bioengineering SkM tissue model that can be used to investigate senescence, metabolic or genetic diseases that inflict SkM, and to test various strategies including novel small molecules that restore muscle function and promote regeneration. One key limitation of two-dimensional cell culture system is the detachment of contractile myotubes from the surface over time, thereby limiting the evaluation of myogenic function. Here we use primary human myoblasts, which exhibit all major hallmarks of aging to mimic the organization and function of native muscle. Using this system, we were able to measure the contractile function, calcium transients, and regeneration capacity of SkM tissues. We also evaluated the response of senescent SkM tissues to injury and their ability to regenerate and recover, compared with "young" tissues. Our results suggest that three-dimensional constructs enable organization of contractile units including myosin and actin filaments, thereby providing a powerful platform for the quantitative assessment of muscle myotubes in response to injury, genetic or metabolic disorders, or pharmacological testing.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| |
Collapse
|
59
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
60
|
Afshar ME, Abraha HY, Bakooshli MA, Davoudi S, Thavandiran N, Tung K, Ahn H, Ginsberg HJ, Zandstra PW, Gilbert PM. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Sci Rep 2020; 10:6918. [PMID: 32332853 PMCID: PMC7181829 DOI: 10.1038/s41598-020-62837-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D) in vitro models of human skeletal muscle mimic aspects of native tissue structure and function, thereby providing a promising system for disease modeling, drug discovery or pre-clinical validation, and toxicity testing. Widespread adoption of this research approach is hindered by the lack of easy-to-use platforms that are simple to fabricate and that yield arrays of human skeletal muscle micro-tissues (hMMTs) in culture with reproducible physiological responses that can be assayed non-invasively. Here, we describe a design and methods to generate a reusable mold to fabricate a 96-well platform, referred to as MyoTACTIC, that enables bulk production of 3D hMMTs. All 96-wells and all well features are cast in a single step from the reusable mold. Non-invasive calcium transient and contractile force measurements are performed on hMMTs directly in MyoTACTIC, and unbiased force analysis occurs by a custom automated algorithm, allowing for longitudinal studies of function. Characterizations of MyoTACTIC and resulting hMMTs confirms the capability of the device to support formation of hMMTs that recapitulate biological responses. We show that hMMT contractile force mirrors expected responses to compounds shown by others to decrease (dexamethasone, cerivastatin) or increase (IGF-1) skeletal muscle strength. Since MyoTACTIC supports hMMT long-term culture, we evaluated direct influences of pancreatic cancer chemotherapeutics agents on contraction competent human skeletal muscle myotubes. A single application of a clinically relevant dose of Irinotecan decreased hMMT contractile force generation, while clear effects on myotube atrophy were observed histologically only at a higher dose. This suggests an off-target effect that may contribute to cancer associated muscle wasting, and highlights the value of the MyoTACTIC platform to non-invasively predict modulators of human skeletal muscle function.
Collapse
Affiliation(s)
- Mohammad E Afshar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Haben Y Abraha
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Mohsen A Bakooshli
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Nimalan Thavandiran
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Kayee Tung
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Henry Ahn
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Howard J Ginsberg
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada.,Michael Smith Laboratories and the School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
61
|
Bodiou V, Moutsatsou P, Post MJ. Microcarriers for Upscaling Cultured Meat Production. Front Nutr 2020; 7:10. [PMID: 32154261 PMCID: PMC7045063 DOI: 10.3389/fnut.2020.00010] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Due to the considerable environmental impact and the controversial animal welfare associated with industrial meat production, combined with the ever-increasing global population and demand for meat products, sustainable production alternatives are indispensable. In 2013, the world's first laboratory grown hamburger made from cultured muscle cells was developed. However, coming at a price of $300.000, and being produced manually, substantial effort is still required to reach sustainable large-scale production. One of the main challenges is scalability. Microcarriers (MCs), offering a large surface/volume ratio, are the most promising candidates for upscaling muscle cell culture. However, although many MCs have been developed for cell lines and stem cells typically used in the medical field, none have been specifically developed for muscle stem cells and meat production. This paper aims to discuss the MCs' design criteria for skeletal muscle cell proliferation and subsequently for meat production based on three scenarios: (1) MCs are serving only as a temporary substrate for cell attachment and proliferation and therefore they need to be separated from the cells at some stage of the bioprocess, (2) MCs serve as a temporary substrate for cell proliferation but are degraded or dissolved during the bioprocess, and (3) MCs are embedded in the final product and therefore need to be edible. The particularities of each of these three bioprocesses will be discussed from the perspective of MCs as well as the feasibility of a one-step bioprocess. Each scenario presents advantages and drawbacks, which are discussed in detail, nevertheless the third scenario appears to be the most promising one for a production process. Indeed, using an edible material can limit or completely eliminate dissociation/degradation/separation steps and even promote organoleptic qualities when embedded in the final product. Edible microcarriers could also be used as a temporary substrate similarly to scenarios 1 and 2, which would limit the risk of non-edible residues.
Collapse
Affiliation(s)
- Vincent Bodiou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Panagiota Moutsatsou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
| | - Mark J. Post
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
62
|
Kim Y, Pagan-Diaz G, Gapinske L, Kim Y, Suh J, Solomon E, Harris JF, Nam S, Bashir R. Integration of Graphene Electrodes with 3D Skeletal Muscle Tissue Models. Adv Healthc Mater 2020; 9:e1901137. [PMID: 31944612 PMCID: PMC8029654 DOI: 10.1002/adhm.201901137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.
Collapse
Affiliation(s)
- Yongdeok Kim
- Department of Materials Science and Engineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gelson Pagan-Diaz
- Department of Bioengineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lauren Gapinske
- Department of Bioengineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yerim Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Judy Suh
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - SungWoo Nam
- Department of Mechanical Science and Engineering and Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, Nick J. Holonyak Micro and Nanotechnology Laboratory and Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
63
|
Osaki T, Uzel SGM, Kamm RD. On-chip 3D neuromuscular model for drug screening and precision medicine in neuromuscular disease. Nat Protoc 2020; 15:421-449. [PMID: 31932771 DOI: 10.1038/s41596-019-0248-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
This protocol describes the design, fabrication and use of a 3D physiological and pathophysiological motor unit model consisting of motor neurons coupled to skeletal muscles interacting via the neuromuscular junction (NMJ) within a microfluidic device. This model facilitates imaging and quantitative functional assessment. The 'NMJ chip' enables real-time, live imaging of axonal outgrowth, NMJ formation and muscle maturation, as well as synchronization of motor neuron activity and muscle contraction under optogenetic control for the study of normal physiological events. The proposed protocol takes ~2-3 months to be implemented. Pathological behaviors associated with various neuromuscular diseases, such as regression of motor neuron axons, motor neuron death, and muscle degradation and atrophy can also be recapitulated in this system. Disease models can be created by the use of patient-derived induced pluripotent stem cells to generate both the motor neurons and skeletal muscle cells used. This is demonstrated by the use of cells from a patient with sporadic amyotrophic lateral sclerosis but can be applied more generally to models of neuromuscular disease, such as spinal muscular atrophy, NMJ disorder and muscular dystrophy. Models such as this hold considerable potential for applications in precision medicine, drug screening and disease risk assessment.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastien G M Uzel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
64
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
65
|
Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handb Exp Pharmacol 2020; 265:235-268. [PMID: 33471201 DOI: 10.1007/164_2020_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
66
|
Christensen RK, von Halling Laier C, Kiziltay A, Wilson S, Larsen NB. 3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues. Biomacromolecules 2019; 21:356-365. [PMID: 31860278 DOI: 10.1021/acs.biomac.9b01274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a method for reproducible manufacture of multiassay platforms with tunable mechanical properties for muscle tissue strip analysis. The platforms result from stereolithographic 3D printing of low protein-binding poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Contractile microtissues have previously been engineered by immobilizing suspended cells in a confined hydrogel matrix with embedded anchoring cantilevers to facilitate muscle tissue strip formation. The 3D shape and mechanical properties of the confinement and the embedded cantilevers are critical for the tissue robustness. High-resolution 3D printing of PEGDA hydrogels offers full design freedom to engineer cantilever stiffness, while minimizing unwanted cell attachment. We demonstrate the applicability by generating suspended muscle tissue strips from C2C12 mouse myoblasts in a compliant fibrin-based hydrogel matrix. The full design freedom allows for new platform geometries that reduce local stress in the matrix and tissue, thus, reducing the risk of tissue fracture.
Collapse
Affiliation(s)
- Rie Kjær Christensen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark.,Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Christoffer von Halling Laier
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Aysel Kiziltay
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Sandra Wilson
- Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Niels Bent Larsen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
67
|
Najjar SA, Smith AST, Long CJ, McAleer CW, Cai Y, Srinivasan B, Martin C, Vandenburgh HH, Hickman JJ. A multiplexed in vitro assay system for evaluating human skeletal muscle functionality in response to drug treatment. Biotechnol Bioeng 2019; 117:736-747. [PMID: 31758543 DOI: 10.1002/bit.27231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 11/07/2022]
Abstract
In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.
Collapse
Affiliation(s)
- Sarah A Najjar
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Alexander S T Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | | | - Yunqing Cai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Candace Martin
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Herman H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| |
Collapse
|
68
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
69
|
Aydin O, Zhang X, Nuethong S, Pagan-Diaz GJ, Bashir R, Gazzola M, Saif MTA. Neuromuscular actuation of biohybrid motile bots. Proc Natl Acad Sci U S A 2019; 116:19841-19847. [PMID: 31527266 PMCID: PMC6778261 DOI: 10.1073/pnas.1907051116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The integration of muscle cells with soft robotics in recent years has led to the development of biohybrid machines capable of untethered locomotion. A major frontier that currently remains unexplored is neuronal actuation and control of such muscle-powered biohybrid machines. As a step toward this goal, we present here a biohybrid swimmer driven by on-board neuromuscular units. The body of the swimmer consists of a free-standing soft scaffold, skeletal muscle tissue, and optogenetic stem cell-derived neural cluster containing motor neurons. Myoblasts embedded in extracellular matrix self-organize into a muscle tissue guided by the geometry of the scaffold, and the resulting muscle tissue is cocultured in situ with a neural cluster. Motor neurons then extend neurites selectively toward the muscle and innervate it, developing functional neuromuscular units. Based on this initial construct, we computationally designed, optimized, and implemented light-sensitive flagellar swimmers actuated by these neuromuscular units. Cyclic muscle contractions, induced by neural stimulation, drive time-irreversible flagellar dynamics, thereby providing thrust for untethered forward locomotion of the swimmer. Overall, this work demonstrates an example of a biohybrid robot implementing neuromuscular actuation and illustrates a path toward the forward design and control of neuron-enabled biohybrid machines.
Collapse
Affiliation(s)
- Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xiaotian Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sittinon Nuethong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
70
|
Appiah C, Arndt C, Siemsen K, Heitmann A, Staubitz A, Selhuber-Unkel C. Living Materials Herald a New Era in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807747. [PMID: 31267628 DOI: 10.1002/adma.201807747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self-heal, enable a soft touch, or to show situational versatility. Therefore, "living materials" are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.
Collapse
Affiliation(s)
- Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Christine Arndt
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Katharina Siemsen
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
- Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, D-24118, Kiel, Germany
| | | |
Collapse
|
71
|
Wei F, Yin C, Zheng J, Zhan Z, Yao L. Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnol 2019; 13:651-664. [PMID: 31573533 PMCID: PMC8676360 DOI: 10.1049/iet-nbt.2018.5374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 04/05/2024] Open
Abstract
By integrating organic parts achieved through evolution and inorganic parts developed by human civilisation, the cyborg microrobot is rising by taking advantage of the high flexibility, outstanding energy efficiency, extremely exquisite structure in the natural components and the fine upgradability, nice controllability in the artefact parts. Compared to the purely synthetic microrobots, the cyborg microrobots, due to the exceptional biocompatibility and biodegradability, have already been utilised in in situ diagnosis, precise therapy and other biomedical applications. In this review, through a thorough summary of recent advances of cyborg microrobots, the authors categorise the cyborg microrobots into four major classes according to the configuration between biomaterials and artefact materials, i.e. microrobots integrated inside living cell, microrobots modified with biological debris, microrobots integrated with single cell and microrobots incorporated with multiple cells. Cyborg microrobots with the four types of configurations are introduced and summarised with the combination approaches, actuation mechanisms, applications and challenges one by one. Moreover, they conduct a comparison among the four different cyborg microrobots to guide the actuation force promotion, locomotion control refinement and future applications. Finally, conclusions and future outlook of the development and potential applications of the cyborg microrobots are discussed.
Collapse
Affiliation(s)
- Fanan Wei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Jianghong Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ziheng Zhan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
72
|
Fleming JW, Capel AJ, Rimington RP, Player DJ, Stolzing A, Lewis MP. Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins. Cytoskeleton (Hoboken) 2019; 76:371-382. [PMID: 31376315 PMCID: PMC6790946 DOI: 10.1002/cm.21553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Skeletal muscle has a high regenerative capacity, injuries trigger a regenerative program which restores tissue function to a level indistinguishable to the pre-injury state. However, in some cases where significant trauma occurs, such as injuries seen in military populations, the regenerative process is overwhelmed and cannot restore full function. Limited clinical interventions exist which can be used to promote regeneration and prevent the formation of non-regenerative defects following severe skeletal muscle trauma. Robust and reproducible techniques for modelling complex tissue responses are essential to promote the discovery of effective clinical interventions. Tissue engineering has been highlighted as an alternative method, allowing the generation of three-dimensional in vivo like tissues without laboratory animals. Reducing the requirement for animal models promotes rapid screening of potential clinical interventions, as these models are more easily manipulated, genetically and pharmacologically, and reduce the associated cost and complexity, whilst increasing access to models for laboratories without animal facilities. In this study, an in vitro chemical injury using barium chloride is validated using the C2C12 myoblast cell line, and is shown to selectively remove multinucleated myotubes, whilst retaining a regenerative mononuclear cell population. Monolayer cultures showed limited regenerative capacity, with basement membrane supplementation or extended regenerative time incapable of improving the regenerative response. Conversely tissue engineered skeletal muscles, supplemented with basement membrane proteins, showed full functional regeneration, and a broader in vivo like inflammatory response. This work outlines a freely available and open access methodology to produce a cell line-based tissue engineered model of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jacob W Fleming
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Alexandra Stolzing
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
73
|
Tanaka Y, Funano SI, Noguchi Y, Yalikun Y, Kamamichi N. A valve powered by earthworm muscle with both electrical and 100% chemical control. Sci Rep 2019; 9:8042. [PMID: 31285453 PMCID: PMC6614428 DOI: 10.1038/s41598-019-44116-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Development of bio-microactuators combining microdevices and cellular mechanical functions has been an active research field owing to their desirable properties including high mechanical integrity and biocompatibility. Although various types of devices were reported, the use of as-is natural muscle tissue should be more effective. An earthworm muscle-driven valve has been created. Long-time (more than 2 min) and repeatable displacement was observed by chemical (acetylcholine) stimulation. The generated force of the muscle (1 cm × 3 cm) was 1.57 mN on average for 2 min by the acetylcholine solution (100 mM) stimulation. We demonstrated an on-chip valve that stopped the constant pressure flow by the muscle contraction. For electrical control, short pulse stimulation was used for the continuous and repeatable muscle contraction. The response time was 3 s, and the pressure resistance was 3.0 kPa. Chemical stimulation was then used for continuous muscle contraction. The response time was 42 s, and the pressure resistance was 1.5 kPa. The ON (closed) state was kept for at least 2 min. An on-chip valve was demonstrated that stopped the constant pressure flow by the muscle contraction. This is the first demonstration of the muscle-based valve that is 100% chemically actuated and controlled.
Collapse
Affiliation(s)
- Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shun-Ichi Funano
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Noguchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Robotics and Mechatronics, Tokyo Denki University, 5 Senju-asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihiro Kamamichi
- Department of Robotics and Mechatronics, Tokyo Denki University, 5 Senju-asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan
| |
Collapse
|
74
|
Machado CB, Pluchon P, Harley P, Rigby M, Gonzalez Sabater V, Stevenson DC, Hynes S, Lowe A, Burrone J, Viasnoff V, Lieberam I. In Vitro Modelling of Nerve-Muscle Connectivity in a Compartmentalised Tissue Culture Device. ADVANCED BIOSYSTEMS 2019; 3:1800307. [PMID: 31428672 PMCID: PMC6699992 DOI: 10.1002/adbi.201800307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Indexed: 01/02/2023]
Abstract
Motor neurons project axons from the hindbrain and spinal cord to muscle, where they induce myofibre contractions through neurotransmitter release at neuromuscular junctions. Studies of neuromuscular junction formation and homeostasis have been largely confined to in vivo models. In this study we have merged three powerful tools - pluripotent stem cells, optogenetics and microfabrication - and designed an open microdevice in which motor axons grow from a neural compartment containing embryonic stem cell-derived motor neurons and astrocytes through microchannels to form functional neuromuscular junctions with contractile myofibers in a separate compartment. Optogenetic entrainment of motor neurons in this reductionist neuromuscular circuit enhanced neuromuscular junction formation more than two-fold, mirroring the activity-dependence of synapse development in vivo. We incorporated an established motor neuron disease model into our system and found that coculture of motor neurons with SOD1G93A astrocytes resulted in denervation of the central compartment and diminished myofiber contractions, a phenotype which was rescued by the Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) inhibitor Necrostatin. This coculture system replicates key aspects of nerve-muscle connectivity in vivo and represents a rapid and scalable alternative to animal models of neuromuscular function and disease.
Collapse
Affiliation(s)
- Carolina Barcellos Machado
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| | - Perrine Pluchon
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK; Mechanobiology Institute, National
University of Singapore, Singapore 117411
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Victoria Gonzalez Sabater
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Stephanie Hynes
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Andrew Lowe
- Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore,
Singapore 117411
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| |
Collapse
|
75
|
Grant L, Raman R, Cvetkovic C, Ferrall-Fairbanks MC, Pagan-Diaz GJ, Hadley P, Ko E, Platt MO, Bashir R. Long-Term Cryopreservation and Revival of Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2019; 25:1023-1036. [PMID: 30412045 PMCID: PMC6916121 DOI: 10.1089/ten.tea.2018.0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
IMPACT STATEMENT The ability to freeze, revive, and prolong the lifetime of tissue-engineered skeletal muscle without incurring any loss of function represents a significant advancement in the field of tissue engineering. Cryopreservation enables the efficient fabrication, storage, and shipment of these tissues. This in turn facilitates multidisciplinary collaboration between research groups, enabling advances in skeletal muscle regenerative medicine, organ-on-a-chip models of disease, drug testing, and soft robotics. Furthermore, the observation that freezing undifferentiated skeletal muscle enhances functional performance may motivate future studies developing stronger and more clinically relevant engineered muscle.
Collapse
Affiliation(s)
- Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Meghan C. Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Gelson J. Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Pierce Hadley
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
76
|
Abstract
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Collapse
Affiliation(s)
- Melanie Maurer
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| |
Collapse
|
77
|
Davis BN, Yen R, Prasad V, Truskey GA. Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions. APL Bioeng 2019; 3:026103. [PMID: 31149650 DOI: 10.1063/1.5093417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
During three-dimensional culture of skeletal muscle in vitro, electrical stimulation provides an important cue to enhance skeletal muscle mimicry of the in vivo structure and function. However, increased respiration can cause oxygen transport limitations in these avascular three-dimensional constructs, leading to a hypoxic, necrotic core, or nonuniform cell distributions in larger constructs. To enhance oxygen transport with convection, oxygen concentrations were measured using an optical sensor at the inlet and outlet of an 80 μl fluid volume microphysiological system (MPS) flow chamber containing three-dimensional human skeletal muscle myobundles. Finite element model simulations of convection around myobundles and oxygen metabolism by the myobundles in the 80 μl MPS flow chamber agreed well with the oxygen consumption rate (OCR) at different flow rates, suggesting that under basal conditions, mass transfer limitations were negligible for flow rates above 1.5 μl s-1. To accommodate electrodes for electrical stimulation, a modified 450 μl chamber was constructed. Electrical stimulation for 30 min increased the measured rate of oxygen consumption by the myobundles to slightly over 2 times the basal OCR. Model simulations indicate that mass transfer limitations were significant during electrical stimulation and, in the absence of mass transfer limitations, electrical stimulation induced about a 20-fold increase in the maximum rate of oxygen consumption. The results indicate that simulated exercise conditions increase respiration of skeletal muscle and mass transfer limitations reduce the measured levels of oxygen uptake, which may affect previous studies that model exercise with engineered muscle.
Collapse
Affiliation(s)
- Brittany N Davis
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Ringo Yen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| |
Collapse
|
78
|
Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat Commun 2019; 10:2051. [PMID: 31053712 PMCID: PMC6499828 DOI: 10.1038/s41467-019-10067-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
Blood clotting at the vascular injury site is a complex process that involves platelet adhesion and clot stiffening/contraction in the milieu of fluid flow. An integrated understanding of the hemodynamics and tissue mechanics regulating this process is currently lacking due to the absence of an experimental system that can simultaneously model clot formation and measure clot mechanics under shear flow. Here we develop a microfluidic-integrated microclot-array-elastometry system (clotMAT) that recapitulates dynamic changes in clot mechanics under physiological shear. Treatments with procoagulants and platelet antagonists and studies with diseased patient plasma demonstrate the ability of the system to assay clot biomechanics associated with common antiplatelet treatments and bleeding disorders. The changes of clot mechanics under biochemical treatments and shear flow demonstrate independent yet equally strong effects of these two stimulants on clot stiffening. This microtissue force sensing system may have future research and diagnostic potential for various bleeding disorders.
Collapse
|
79
|
Dwenger M, Kowalski WJ, Ye F, Yuan F, Tinney JP, Setozaki S, Nakane T, Masumoto H, Campbell P, Guido W, Keller BB. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J Tissue Eng 2019; 10:2041731419841748. [PMID: 31024681 PMCID: PMC6472158 DOI: 10.1177/2041731419841748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
The immaturity of human induced pluripotent stem cell derived engineered cardiac
tissues limits their ability to regenerate damaged myocardium and to serve as
robust in vitro models for human disease and drug toxicity
studies. Several chronic biomimetic conditioning protocols, including mechanical
stretch, perfusion, and/or electrical stimulation promote engineered cardiac
tissue maturation but have significant technical limitations. Non-contacting
chronic optical stimulation using heterologously expressed channelrhodopsin
light-gated ion channels, termed optogenetics, may be an advantageous
alternative to chronic invasive electrical stimulation for engineered cardiac
tissue conditioning. We designed proof-of-principle experiments to successfully
transfect human induced pluripotent stem cell derived engineered cardiac tissues
with a desensitization resistant, chimeric channelrhodopsin protein, and then
optically paced engineered cardiac tissues to accelerate maturation. We
transfected human induced pluripotent stem cell engineered cardiac tissues using
an adeno-associated virus packaged chimeric channelrhodopsin and then verified
optically paced by whole cell patch clamp. Engineered cardiac tissues were then
chronically optically paced above their intrinsic beat rates in
vitro from day 7 to 14. Chronically optically paced resulted in
improved engineered cardiac tissue electrophysiological properties and subtle
changes in the expression of some cardiac relevant genes, though active force
generation and histology were unchanged. These results validate the feasibility
of a novel chronically optically paced paradigm to explore non-invasive and
scalable optically paced–induced engineered cardiac tissue maturation
strategies.
Collapse
Affiliation(s)
- Marc Dwenger
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - William J Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA.,Laboratory of Stem Cell and Neurovascular Biology, Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Fangping Yuan
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Joseph P Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shuji Setozaki
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Cardiovascular Surgery, Okamura Memorial Hospital, Shimizu, Japan
| | - Takeichiro Nakane
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), Wako, Japan
| | - Peter Campbell
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
80
|
Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019; 198:3-26. [PMID: 30343824 PMCID: PMC6397087 DOI: 10.1016/j.biomaterials.2018.09.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Although investment in drug discovery and development has been sky-rocketing, the number of approved drugs has been declining. Cardiovascular toxicity due to therapeutic drug use claims the highest incidence and severity of adverse drug reactions in late-stage clinical development. Therefore, to address this issue, new, additional, replacement and combinatorial approaches are needed to fill the gap in effective drug discovery and screening. The motivation for developing accurate, predictive models is twofold: first, to study and discover new treatments for cardiac pathologies which are leading in worldwide morbidity and mortality rates; and second, to screen for adverse drug reactions on the heart, a primary risk in drug development. In addition to in vivo animal models, in vitro and in silico models have been recently proposed to mimic the physiological conditions of heart and vasculature. Here, we describe current in vitro, in vivo, and in silico platforms for modelling healthy and pathological cardiac tissues and their advantages and disadvantages for drug screening and discovery applications. We review the pathophysiology and the underlying pathways of different cardiac diseases, as well as the new tools being developed to facilitate their study. We finally suggest a roadmap for employing these non-animal platforms in assessing drug cardiotoxicity and safety.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Naimeh Rafatian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Masood Khaksar Toroghi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Samad Ahadian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada.
| |
Collapse
|
81
|
Elhebeary M, Emon MAB, Aydin O, Saif MTA. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. LAB ON A CHIP 2019; 19:1153-1161. [PMID: 30776038 PMCID: PMC6437030 DOI: 10.1039/c8lc01273c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We introduce a novel method to form 3D biomimetic tissues from a droplet of a cell-extracellular matrix (ECM) mixture on a sensor stage and to quantify tissue force and stiffness as a function of time under optical microscopes. This method exploits advances in micro-nano fabrication and capillarity for self-assembly and self-alignment of tissues on the stage. It allows simultaneous investigation of the microstructure of the tissue in situ while its mechanical response is quantified, thus linking tissue biophysics with physiology and revealing structural-functional properties of 3D tissues. We demonstrate the functionality of the stage by studying the mechanical behavior of different cell-collagen mixtures under mechanical, chemical and electrical stimulation. This includes force evolution in cell-free collagen during curing, myotubes differentiated from muscle cell-collagen/Matrigel ECM subjected to electrical stimulation, and fibroblast-collagen tissue subjected to cancer cell conditioned media (CM) and a Rho-kinase inhibitor, Y27632. Muscle contraction decreases with increasing frequency of electrical stimulation, and fibroblasts respond to CM by increasing contractility for a short time and completely relax in the presence of Y27632 but restore force with Y27632 washout.
Collapse
Affiliation(s)
- Mohamed Elhebeary
- University of Illinois at Urbana-Champaign, 1206 W. Green St, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
82
|
Chen Z, Zhao R. Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomater Sci Eng 2019; 5:3688-3702. [DOI: 10.1021/acsbiomaterials.8b01195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
83
|
Özkale B, Parreira R, Bekdemir A, Pancaldi L, Özelçi E, Amadio C, Kaynak M, Stellacci F, Mooney DJ, Sakar MS. Modular soft robotic microdevices for dexterous biomanipulation. LAB ON A CHIP 2019; 19:778-788. [PMID: 30714604 PMCID: PMC6394202 DOI: 10.1039/c8lc01200h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 05/20/2023]
Abstract
We present a methodology for building biologically inspired, soft microelectromechanical systems (MEMS) devices. Our strategy combines several advanced techniques including programmable colloidal self-assembly, light-harvesting with plasmonic nanotransducers, and in situ polymerization of compliant hydrogel mechanisms. We synthesize optomechanical microactuators using a template-assisted microfluidic approach in which gold nanorods coated with thermoresponsive poly(N-isopropylmethacrylamide) (pNIPMAM) polymer function as nanoscale building blocks. The resulting microactuators exhibit mechanical properties (4.8 ± 2.1 kPa stiffness) and performance metrics (relative stroke up to 0.3 and stress up to 10 kPa) that are comparable to that of bioengineered muscular constructs. Near-infrared (NIR) laser illumination provides effective spatiotemporal control over actuation (sub-micron spatial resolution at millisecond temporal resolution). Spatially modulated hydrogel photolithography guided by an experimentally validated finite element-based design methodology allows construction of compliant poly(ethylene glycol) diacrylate (PEGDA) mechanisms around the microactuators. We demonstrate the versatility of our approach by manufacturing a diverse array of microdevices including lever arms, continuum microrobots, and dexterous microgrippers. We present a microscale compression device that is developed for mechanical testing of three-dimensional biological samples such as spheroids under physiological conditions.
Collapse
Affiliation(s)
- Berna Özkale
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
- Wyss Institute of Biologically Inspired Engineering
, School of Engineering and Applied Sciences
, Harvard University
,
Massachusetts 02138
, USA
| | - Raquel Parreira
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Ahmet Bekdemir
- Institute of Materials Science and Engineering
, EPFL
,
CH-1015 Lausanne
, Switzerland
| | - Lucio Pancaldi
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Ece Özelçi
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Claire Amadio
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Murat Kaynak
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Francesco Stellacci
- Institute of Materials Science and Engineering
, EPFL
,
CH-1015 Lausanne
, Switzerland
| | - David J. Mooney
- Wyss Institute of Biologically Inspired Engineering
, School of Engineering and Applied Sciences
, Harvard University
,
Massachusetts 02138
, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| |
Collapse
|
84
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. In Vitro Insect Muscle for Tissue Engineering Applications. ACS Biomater Sci Eng 2019; 5:1071-1082. [PMID: 33405797 DOI: 10.1021/acsbiomaterials.8b01261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering is primarily associated with medical disciplines, and research has thus focused on mammalian cells. For applications where clinical relevance is not a constraint, it is useful to evaluate the potential of alternative cell sources to form tissues in vitro. Specifically, skeletal muscle tissue engineering for bioactuation and cultured foods could benefit from the incorporation of invertebrate cells because of their less stringent growth requirements and other versatile features. Here, we used a Drosophila muscle cell line to demonstrate the benefits of insect cells relative to those derived from vertebrates. The cells were adapted to serum-free media, transitioned between adherent and suspension cultures, and manipulated with hormones. Furthermore, we analyzed edible scaffolds to support cell adhesion and assayed cellular protein and minerals to evaluate nutrition potential. The insect muscle cells exhibited advantageous growth patterns and hold unique functionality for tissue engineering applications beyond the medical realm.
Collapse
Affiliation(s)
- Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kyle D Fish
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, 200 Boston Avenue #4700, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
85
|
Engle SJ, Blaha L, Kleiman RJ. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron 2018; 100:783-797. [DOI: 10.1016/j.neuron.2018.10.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 01/26/2023]
|
86
|
Truskey GA. Development and application of human skeletal muscle microphysiological systems. LAB ON A CHIP 2018; 18:3061-3073. [PMID: 30183050 PMCID: PMC6177290 DOI: 10.1039/c8lc00553b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of major disease states involve skeletal muscle, including type 2 diabetes, muscular dystrophy, sarcopenia and cachexia arising from cancer or heart disease. Animals do not accurately represent many of these disease states. Human skeletal muscle microphysiological systems derived from primary or induced pluripotent stem cells (hPSCs) can provide an in vitro model of genetic and chronic diseases and assess individual variations. Three-dimensional culture systems more accurately represent skeletal muscle function than do two-dimensional cultures. While muscle biopsies enable culture of primary muscle cells, hPSCs provide the opportunity to sample a wider population of donors. Recent advances to promote maturation of PSC-derived skeletal muscle provide an alternative to primary cells. While contractile function is often measured in three-dimensional cultures and several systems exist to characterize contraction of small numbers of muscle fibers, there is a need for functional measures of metabolism suited for microphysiological systems. Future research should address generation of well-differentiated hPSC-derived muscle cells, enabling muscle repair in vitro, and improved disease models.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, 1427 CIEMAS, 101 Science Drive, Durham, NC 27708-0281, USA.
| |
Collapse
|
87
|
Lewandowska MK, Bogatikov E, Hierlemann AR, Punga AR. Long-Term High-Density Extracellular Recordings Enable Studies of Muscle Cell Physiology. Front Physiol 2018; 9:1424. [PMID: 30356837 PMCID: PMC6190753 DOI: 10.3389/fphys.2018.01424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022] Open
Abstract
Skeletal (voluntary) muscle is the most abundant tissue in the body, thus making it an important biomedical research subject. Studies of neuromuscular transmission, including disorders of ion channels or receptors in autoimmune or genetic neuromuscular disorders, require high-spatial-resolution measurement techniques and an ability to acquire repeated recordings over time in order to track pharmacological interventions. Preclinical techniques for studying diseases of neuromuscular transmission can be enhanced by physiologic ex vivo models of tissue-tissue and cell-cell interactions. Here, we present a method, which allows tracking the development of primary skeletal muscle cells from myoblasts into mature contracting myotubes over more than 2 months. In contrast to most previous studies, the myotubes did not detach from the surface but instead formed functional networks between the myotubes, whose electrical signals were observed over the entire culturing period. Primary cultures of mouse myoblasts differentiated into contracting myotubes on a chip that contained an array of 26,400 platinum electrodes at a density of 3,265 electrodes per mm2. Our ability to track extracellular action potentials at subcellular resolution enabled study of skeletal muscle development and kinetics, modes of spiking and spatio-temporal relationships between muscles. The developed system in turn enables creation of a novel electrophysiological platform for establishing ex vivo disease models.
Collapse
Affiliation(s)
- Marta K Lewandowska
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Evgenii Bogatikov
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Andreas R Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
88
|
Zhang X, Hong S, Yen R, Kondash M, Fernandez CE, Truskey GA. A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. LAB ON A CHIP 2018; 18:2787-2796. [PMID: 30112530 PMCID: PMC6145090 DOI: 10.1039/c8lc00654g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microphysiological tissue engineering models of human skeletal muscle (myobundles) provide a platform to investigate the mechanism of muscle diseases and to study the response to drugs and toxins in vitro. To examine the dynamic response to drugs, which often take several days to induce responses, we developed a system to monitor the contractile force of the same human skeletal muscle myobundles over time before and after treatment with drugs. Myobundles were formed in series with Ecoflex films (platinum-catalyzed silicones) with embedded microbeads. The displacement of the microbeads in Ecoflex exhibited a linear relation between muscle force production and Ecoflex film stretch. Forces measured with the microbeads embedded in Ecoflex agreed well with simultaneous measurements with a force transducer. Application of the Hill model for the myobundles showed that the Ecoflex affected the magnitude of the response, but not the kinetics. After continuous exposure to 100 nM cerivastatin, both active and passive forces were reduced relative to controls after 2-4 days. The decline in force was associated with a decline in the muscle myofiber organization. The inhibitory effect of cerivastatin was reduced when 0.1-1 mM mevalonate was added with cerivastatin. Although addition of co-enzyme Q10 with cerivastatin inhibited degradation of sarcomeric α-actinin (SAA) in myoblasts, the contractile force still declined, suggesting that statin-induced myopathy was related to mevalonate pathway but the addition of co-enzyme Q10 was insufficient to overcome the effect of statins on the mevalonate pathway. Thus, cerivastatin rapidly induces myopathy which can be reversds with mevalonate but not co-enzyme Q10.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
89
|
García-Lizarribar A, Fernández-Garibay X, Velasco-Mallorquí F, Castaño AG, Samitier J, Ramon-Azcon J. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. Macromol Biosci 2018; 18:e1800167. [PMID: 30156756 DOI: 10.1002/mabi.201800167] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Indexed: 12/11/2022]
Abstract
New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.
Collapse
Affiliation(s)
- Andrea García-Lizarribar
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red, 28029, Madrid, Spain
| | - Xiomara Fernández-Garibay
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain
| | - Ferran Velasco-Mallorquí
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain
| | - Albert G Castaño
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red, 28029, Madrid, Spain.,Department of Electronic and Biomedical Engineering, University of Barcelona,, 08028, Barcelona, Spain
| | - Javier Ramon-Azcon
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Baldiri Reixac 10-12,, 08028, Barcelona, Spain
| |
Collapse
|
90
|
Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol 2018; 78:155-166. [PMID: 30100674 PMCID: PMC6078906 DOI: 10.1016/j.tifs.2018.04.010] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cultured meat forms part of the emerging field of cellular agriculture. Still an early stage field it seeks to deliver products traditionally made through livestock rearing in novel forms that require no, or significantly reduced, animal involvement. Key examples include cultured meat, milk, egg white and leather. Here, we focus upon cultured meat and its technical, socio-political and regulatory challenges and opportunities. SCOPE AND APPROACH The paper reports the thinking of an interdisciplinary team, all of whom have been active in the field for a number of years. It draws heavily upon the published literature, as well as our own professional experience. This includes ongoing laboratory work to produce cultured meat and over seventy interviews with experts in the area conducted in the social science work. KEY FINDINGS AND CONCLUSIONS Cultured meat is a promising, but early stage, technology with key technical challenges including cell source, culture media, mimicking the in-vivo myogenesis environment, animal-derived and synthetic materials, and bioprocessing for commercial-scale production. Analysis of the social context has too readily been reduced to ethics and consumer acceptance, and whilst these are key issues, the importance of the political and institutional forms a cultured meat industry might take must also be recognised, and how ambiguities shape any emergent regulatory system.
Collapse
Affiliation(s)
- Neil Stephens
- Social and Political Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Lucy Di Silvio
- Kings College London, Floor 17, Tower Wing Guy's London, United Kingdom
| | - Illtud Dunsford
- Charcutier Ltd, Felin y Glyn Farm, Pontnewydd, Llanelli, SA15 5TL, United Kingdom
| | - Marianne Ellis
- Dept of Chemical Engineering, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Alexandra Sexton
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford, OX1 3BD, United Kingdom
| |
Collapse
|
91
|
Rorsman NJG, Ta CM, Garnett H, Swietach P, Tammaro P. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2. Br J Pharmacol 2018; 175:2028-2045. [PMID: 29486056 PMCID: PMC5979753 DOI: 10.1111/bph.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/16/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Optogenetic control of electromechanical coupling in vascular smooth muscle cells (VSMCs) is emerging as a powerful research tool with potential applications in drug discovery and therapeutics. However, the precise ionic mechanisms involved in this control remain unclear. EXPERIMENTAL APPROACH Cell imaging, patch-clamp electrophysiology and muscle tension recordings were used to define these mechanisms over a wide range of light stimulations. KEY RESULTS Transgenic mice expressing a channelrhodopsin-2 variant [ChR2(H134R)] selectively in VSMCs were generated. Isolated VSMCs obtained from these mice demonstrated blue light-induced depolarizing whole-cell currents. Fine control of artery tone was attained by varying the intensity of the light stimulus. This arterial response was sufficient to overcome the endogenous, melanopsin-mediated, light-evoked, arterial relaxation observed in the presence of contractile agonists. Ca2+ entry through voltage-gated Ca2+ channels, and opening of plasmalemmal depolarizing channels (TMEM16A and TRPM) and intracellular IP3 receptors were involved in the ChR2(H134R)-dependent arterial response to blue light at intensities lower than ~0.1 mW·mm-2 . Light stimuli of greater intensity evoked a significant Ca2+ influx directly through ChR2(H134R) and produced marked intracellular alkalinization of VSMCs. CONCLUSIONS AND IMPLICATIONS We identified the range of light intensity allowing optical control of arterial tone, primarily by means of endogenous channels and without substantial alteration to intracellular pH. Within this range, mice expressing ChR2(H134R) in VSMCs are a powerful experimental model for achieving accurate and tuneable optical voltage-clamp of VSMCs and finely graded control of arterial tone, offering new approaches to the discovery of vasorelaxant drugs.
Collapse
Affiliation(s)
- Nils J G Rorsman
- Department of PharmacologyUniversity of OxfordOxfordUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordUK
| | - Chau M Ta
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - Pawel Swietach
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Paolo Tammaro
- Department of PharmacologyUniversity of OxfordOxfordUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordUK
| |
Collapse
|
92
|
Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci Robot 2018; 3:3/18/eaat4440. [DOI: 10.1126/scirobotics.aat4440] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
93
|
Jones JM, Player DJ, Martin NRW, Capel AJ, Lewis MP, Mudera V. An Assessment of Myotube Morphology, Matrix Deformation, and Myogenic mRNA Expression in Custom-Built and Commercially Available Engineered Muscle Chamber Configurations. Front Physiol 2018; 9:483. [PMID: 29867538 PMCID: PMC5951956 DOI: 10.3389/fphys.2018.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
There are several three-dimensional (3D) skeletal muscle (SkM) tissue engineered models reported in the literature. 3D SkM tissue engineering (TE) aims to recapitulate the structure and function of native (in vivo) tissue, within an in vitro environment. This requires the differentiation of myoblasts into aligned multinucleated myotubes surrounded by a biologically representative extracellular matrix (ECM). In the present work, a new commercially available 3D SkM TE culture chamber manufactured from polyether ether ketone (PEEK) that facilitates suitable development of these myotubes is presented. To assess the outcomes of the myotubes within these constructs, morphological, gene expression, and ECM remodeling parameters were compared against a previously published custom-built model. No significant differences were observed in the morphological and gene expression measures between the newly introduced and the established construct configuration, suggesting biological reproducibility irrespective of manufacturing process. However, TE SkM fabricated using the commercially available PEEK chambers displayed reduced variability in both construct attachment and matrix deformation, likely due to increased reproducibility within the manufacturing process. The mechanical differences between systems may also have contributed to such differences, however, investigation of these variables was beyond the scope of the investigation. Though more expensive than the custom-built models, these PEEK chambers are also suitable for multiple use after autoclaving. As such this would support its use over the previously published handmade culture chamber system, particularly when seeking to develop higher-throughput systems or when experimental cost is not a factor.
Collapse
Affiliation(s)
- Julia M Jones
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek Mudera
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| |
Collapse
|
94
|
Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, Zanotti S, Moretti M. Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 2018. [PMID: 29518415 DOI: 10.1016/j.addr.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle fibrosis represents the end stage consequence of different diseases, among which muscular dystrophies, leading to severe impairment of muscle functions. Muscle fibrosis involves the production of several growth factors, cytokines and proteolytic enzymes and is strictly associated to inflammatory processes. Moreover, fibrosis causes profound changes in tissue properties, including increased stiffness and density, lower pH and oxygenation. Up to now, there is no therapeutic approach able to counteract the fibrotic process and treatments directed against muscle pathologies are severely impaired by the harsh conditions of the fibrotic environment. The design of new therapeutics thus need innovative tools mimicking the obstacles posed by the fibrotic environment to their delivery. This review will critically discuss the role of in vivo and 3D in vitro models in this context and the characteristics that an ideal model should possess to help the translation from bench to bedside of new candidate anti-fibrotic agents.
Collapse
|
95
|
Li P, Yu H, Liu N, Wang F, Lee GB, Wang Y, Liu L, Li WJ. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomater Sci 2018; 6:1371-1378. [PMID: 29790875 DOI: 10.1039/c7bm01153a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
3D net-like hydrogel scaffolds are fabricated via visible-light induced electropolymerization, which could be used to modulate 3D cell organization.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Haibo Yu
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Na Liu
- School of Mechatronics Engineering and Automation
- Shanghai University
- Shanghai 200072
- China
| | - Feifei Wang
- Department of Chemistry
- Stanford University
- Stanford
- USA
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Yuechao Wang
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Lianqing Liu
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Wen Jung Li
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon Tong
- Hong Kong
| |
Collapse
|
96
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
97
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
98
|
Shahini A, Choudhury D, Asmani M, Zhao R, Lei P, Andreadis ST. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Res 2017; 26:55-66. [PMID: 29245050 DOI: 10.1016/j.scr.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle regeneration relies on the activity of satellite cells residing in the skeletal muscle niche. However, systemic and intrinsic factors decrease the myogenic differentiation potential of satellite cells thereby impairing muscle regeneration. Here we present data showing that late passage C2C12 myoblasts exhibited significantly impaired myogenic differentiation potential that was accompanied by impaired expression of myogenic regulatory factors (Myf5, MyoD, Myogenin, and MRF4) and members of myocyte enhancer factor 2 family. Notably, ectopic expression of NANOG preserved the morphology and restored the myogenic differentiation capacity of late passage myoblasts, possibly by restoring the expression level of these myogenic factors. Muscle regeneration was effective in 2D cultures and in 3D skeletal microtissues mimicking the skeletal muscle niche. The presence of NANOG was required for at least 15days to reverse the impaired differentiation potential of myoblasts. However, it was critical to remove NANOG during the process of maturation, as it inhibited myotube formation. Finally, myoblasts that were primed by NANOG maintained their differentiation capacity for 20days after NANOG withdrawal, suggesting potential epigenetic changes. In conclusion, these results shed light on the potential of NANOG to restore the myogenic differentiation potential of myoblasts, which is impaired after multiple rounds of cellular division, and to reverse the loss of muscle regeneration.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA.
| |
Collapse
|
99
|
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, Sitti M, Martel S, Dario P, Menciassi A. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot 2017; 2:2/12/eaaq0495. [PMID: 33157905 DOI: 10.1126/scirobotics.aaq0495] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02153, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Metin Sitti
- Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Sylvain Martel
- NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
100
|
Webster-Wood VA, Akkus O, Gurkan UA, Chiel HJ, Quinn RD. Organismal Engineering: Towards a Robotic Taxonomic Key for Devices Using Organic Materials. Sci Robot 2017; 2:eaap9281. [PMID: 31360812 PMCID: PMC6663099 DOI: 10.1126/scirobotics.aap9281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.
Collapse
Affiliation(s)
| | - Ozan Akkus
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A. Gurkan
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Hillel J. Chiel
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Roger D. Quinn
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|