51
|
Cantelli A, Piro F, Pecchini P, Di Giosia M, Danielli A, Calvaresi M. Concanavalin A-Rose Bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111852. [PMID: 32199235 DOI: 10.1016/j.jphotobiol.2020.111852] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is considered a very promising therapeutic modality for antimicrobial therapy. Although several studies have demonstrated that Gram-positive bacteria are very sensitive to PDT, Gram-negative bacteria are more resistant to photodynamic action. This difference is due to a different cell wall structure. Gram-negative bacteria have an outer cell membrane containing lipopolysaccharides (LPS) that hinder the binding of photosensitizer molecules, protecting the bacterial cells from chemical attacks. Combination of the lipopolysaccharides-binding activity of Concanavalin A (ConA) with the photodynamic properties of Rose Bengal (RB) holds the potential of an innovative protein platform for targeted photodynamic therapy against Gram-negative bacteria. A ConA-RB bioconjugate was synthesized and characterized. Approximately 2.4 RB molecules were conjugated per ConA monomer. The conjugation of RB to ConA determines a decrease of the singlet oxygen generation and an increase of superoxide and peroxide production. The photokilling efficacy of the ConA-RB bioconjugate was demonstrated in a planktonic culture of E. coli. Irradiation with white light from a LED lamp produced a dose-dependent photokilling of bacteria. ConA-RB conjugates exhibited a consistent improvement over RB (up to 117-fold). The improved uptake of the photosensitizer explains the enhanced PDT effect accompanying increased membrane damages induced by the ConA-RB conjugate. The approach can be readily generalized (i) using different photo/sonosensitizers, (ii) to target other pathogens characterized by cell membranes containing lipopolysaccharides (LPS).
Collapse
Affiliation(s)
- Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesca Piro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Pietro Pecchini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
52
|
Williams DA, Pradhan K, Paul A, Olin IR, Tuck OT, Moulton KD, Kulkarni SS, Dube DH. Metabolic inhibitors of bacterial glycan biosynthesis. Chem Sci 2020; 11:1761-1774. [PMID: 34123271 PMCID: PMC8148367 DOI: 10.1039/c9sc05955e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bacterial cell wall is a quintessential drug target due to its critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell wall glycocalyx contains distinctive monosaccharides that are absent from human cells, and proper assembly of monosaccharides into higher-order glycans is critical for bacterial fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare deoxy amino sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the creation of glycosylation inhibitors. To ease the study of bacterial glycan function in the absence of detailed structural or enzyme information, we crafted metabolic inhibitors based on rare bacterial monosaccharide scaffolds. Metabolic inhibitors were assessed for their ability to interfere with glycan biosynthesis and fitness in pathogenic and symbiotic bacterial species. Three metabolic inhibitors led to dramatic structural and functional defects in Helicobacter pylori. Strikingly, these inhibitors acted in a bacteria-selective manner. These metabolic inhibitors will provide a platform for systematic study of bacterial glycosylation enzymes not currently possible with existing tools. Moreover, their selectivity will provide a pathway for the development of novel, narrow-spectrum antibiotics to treat infectious disease. Our inhibition approach is general and will expedite the identification of bacterial glycan biosynthesis inhibitors in a range of systems, expanding the glycochemistry toolkit.
Collapse
Affiliation(s)
- Daniel A Williams
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Kabita Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ilana R Olin
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Owen T Tuck
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Karen D Moulton
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| |
Collapse
|
53
|
Sharma S, Shekhar S, Sharma B, Jain P. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Adv 2020; 10:34099-34113. [PMID: 35519023 PMCID: PMC9056758 DOI: 10.1039/d0ra04471g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neoteric techniques, skills, and methodological advances in glycobiology and glycochemistry have been instrumental in pertinent discoveries to pave way for a new era in biomedical sciences. Glycans are sugar-based polymers that coat cells and decorate majority of proteins, forming glycoproteins. They are also found deposited in extracellular spaces between cells, attached to soluble signaling molecules, and are key players in several biological processes including regulation of immune responses and cell–cell interactions. Laboratory manipulations of protein, DNA and other macromolecules celebrate the accelerated research in respective fields, but the same seems unlikely for the complex sugar polymers. The structural complex polymers are neither synthesized using a known template nor are dynamically stable with respect to a cell's metabolic rate. What is more, sugar isomers—structurally distinct molecules with the same chemical formula—can be employed to construct varied glycans, but are almost impossible to tell apart based on molecular weight alone. The apparent lack of a glycan alphabet further reflects on an enduring question: how little do we know about the sugars? Evidently, glycan-based therapeutic potentials and glycomimetics are propitious advances for the future that have not been well exploited, and with a few conspicuous anomalies. Here, we contour the most notable contributions to enhance our ability to utilize the complex glycans as therapeutics. Diagnostic strategies concerning recurrent diseases and headways to address the challenges are also discussed. A glycan toolbox for pathogenic and cancerous interventions. The review article sheds light on the sweet secrets of this complex structure.![]()
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Shashank Shekhar
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Bhasha Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Purnima Jain
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| |
Collapse
|
54
|
Zhang ZJ, Wang YC, Yang X, Hang HC. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. Chembiochem 2019; 21:19-32. [PMID: 31730246 DOI: 10.1002/cbic.201900535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Xinglin Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
55
|
Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐Varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). Chembiochem 2019; 20:1400-1409. [DOI: 10.1002/cbic.201800720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Bernardo Díaz
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - Ángeles Canales
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - F. Javier Cañada
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
| | - Jorge Guerra‐Varela
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
56
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
57
|
Tejchman W, Orwat B, Korona-Głowniak I, Barbasz A, Kownacki I, Latacz G, Handzlik J, Żesławska E, Malm A. Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Adv 2019; 9:39367-39380. [PMID: 35540630 PMCID: PMC9076067 DOI: 10.1039/c9ra08690k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Here we report studies on the synthesis of 12 new heterocyclic derivatives that differ in three structural motifs and the simultaneous evaluation of the impact of these three variables on the biological properties. The examined compounds are based on rhodanine and 2-thiohydantoin cores equipped with hydrogen or carboxymethyl substituents at the N-3 position and linked to a triphenylamine moiety through 1,4-phenylene, 1,4-naphthalenylene and 1,9-anthracenylene spacers at the C-5 position of the heterocycles. All the compounds were synthesized very quickly, selectively and in high yields according to the developed microwave-assisted Knoevenagel condensation protocol, and they were characterized thoroughly with NMR, FT-IR and ESI-HRMS techniques. The derivatives were tested for their activity against selected strains of Gram-positive and Gram-negative bacteria and yeast. Two compounds showed good activity against Gram-positive bacteria, and all of them showed low cytotoxicity against three cell lines of the human immune system. Based on membrane permeability assays it was demonstrated that the active compounds do not penetrate the cell membrane, and thus they must act on the bacterial cell surface. Finally, we proved that the evaluated structure modifications had a synergistic effect and the simultaneous presence of a 1,4-phenylene spacer and carboxymethyl group at N-3 caused the highest boost in antimicrobial activity. An efficient microwave-assisted synthesis of rhodanine and 2-thiohydantoin derivatives, and the correlation between their chemical structure and biological properties is reported.![]()
Collapse
Affiliation(s)
- Waldemar Tejchman
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Bartosz Orwat
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technology
| | | | - Anna Barbasz
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technology
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- 30-688 Kraków
- Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- 30-688 Kraków
- Poland
| | - Ewa Żesławska
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology
- Medical University of Lublin
- 20-093 Lublin
- Poland
| |
Collapse
|
58
|
Emmadi M, Kulkarni SS. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J Org Chem 2018; 83:14323-14337. [DOI: 10.1021/acs.joc.8b02037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
59
|
Paprocki D, Madej A, Koszelewski D, Brodzka A, Ostaszewski R. Multicomponent Reactions Accelerated by Aqueous Micelles. Front Chem 2018; 6:502. [PMID: 30406083 PMCID: PMC6204348 DOI: 10.3389/fchem.2018.00502] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022] Open
Abstract
Multicomponent reactions are powerful synthetic tools for the efficient creation of complex organic molecules in an one-pot one-step fashion. Moreover, the amount of solvents and energy needed for separation and purification of intermediates is significantly reduced what is beneficial from the green chemistry issues point of view. This review highlights the development of multicomponent reactions conducted using aqueous micelles systems during the last two decades.
Collapse
Affiliation(s)
- Daniel Paprocki
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Arleta Madej
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
60
|
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT. Lectins as antimicrobial agents. J Appl Microbiol 2018; 125:1238-1252. [PMID: 30053345 DOI: 10.1111/jam.14055] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The resistance of micro-organisms to antimicrobial agents has been a challenge to treat animal and human infections, and for environmental control. Lectins are natural proteins and some are potent antimicrobials through binding to carbohydrates on microbial surfaces. Oligomerization state of lectins can influence their biological activity and maximum binding capacity; the association among lectin polypeptide chains can alter the carbohydrate-lectin binding dissociation rate constants. Antimicrobial mechanisms of lectins include the pore formation ability, followed by changes in the cell permeability and latter, indicates interactions with the bacterial cell wall components. In addition, the antifungal activity of lectins is associated with the chitin-binding property, resulting in the disintegration of the cell wall or the arrest of de novo synthesis from the cell wall during fungal development or division. Quorum sensing is a cell-to-cell communication process that allows interspecies and interkingdom signalling which coordinate virulence genes; antiquorum-sensing therapies are described for animal and plant lectins. This review article, among other approaches, evaluates lectins as antimicrobials.
Collapse
Affiliation(s)
| | | | - W Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M C de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - F Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | - P M Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
61
|
Heise T, Langereis JD, Rossing E, de Jonge MI, Adema GJ, Büll C, Boltje TJ. Selective Inhibition of Sialic Acid-Based Molecular Mimicry in Haemophilus influenzae Abrogates Serum Resistance. Cell Chem Biol 2018; 25:1279-1285.e8. [PMID: 29983272 DOI: 10.1016/j.chembiol.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Abstract
Pathogens such as non-typeable Haemophilus influenzae (NTHi) evade the immune system by presenting host-derived sialic acids. NTHi cannot synthesize sialic acids and therefore needs to utilize sialic acids originating from host tissue. Here we report sialic acid-based probes to visualize and inhibit the transfer of host sialic acids to NTHi. Inhibition of sialic acid utilization by NTHi enhanced serum-mediated killing. Furthermore, in an in vitro model of the human respiratory tract, we demonstrate efficient inhibition of sialic acid transfer from primary human bronchial epithelial cells to NTHi using bioorthogonal chemistry.
Collapse
Affiliation(s)
- Torben Heise
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Jeroen D Langereis
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, the Netherlands; Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Emiel Rossing
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, the Netherlands; Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Thomas J Boltje
- Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands.
| |
Collapse
|
62
|
Di Guilmi AM, Bonnet J, Peiβert S, Durmort C, Gallet B, Vernet T, Gisch N, Wong YS. Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry. Chem Commun (Camb) 2018; 53:10572-10575. [PMID: 28894874 DOI: 10.1039/c7cc05646j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Propargyl-choline was efficiently incorporated into teichoic acid (TA) polymers on the surface of Streptococcus pneumoniae. The introduction of a fluorophore by click chemistry enabled sufficient labeling of the pneumococcus, as well as its specific detection when mixed with other bacterial species. The labeling is localized at the septal site, suggesting a similar location of the TA and peptidoglycan (PG) synthetic machineries. This method is a unique opportunity to improve our understanding of the spatial location of pneumococcal TA biosynthesis.
Collapse
Affiliation(s)
- A M Di Guilmi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Salah Ud-Din AIM, Roujeinikova A. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell Mol Life Sci 2018; 75:1163-1178. [PMID: 29080090 PMCID: PMC11105201 DOI: 10.1007/s00018-017-2696-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
64
|
Jacalin-copper sulfide nanoparticles complex enhance the antibacterial activity against drug resistant bacteria via cell surface glycan recognition. Colloids Surf B Biointerfaces 2018; 163:209-217. [DOI: 10.1016/j.colsurfb.2017.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 11/23/2022]
|
65
|
Ayaz Ahmed KB, Raman T, Veerappan A. Jacalin capped platinum nanoparticles confer persistent immunity against multiple Aeromonas infection in zebrafish. Sci Rep 2018; 8:2200. [PMID: 29396408 PMCID: PMC5797147 DOI: 10.1038/s41598-018-20627-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance is a major clinical problem, which is compounded by both a lack of new antibiotics and emergence of multi- and extremely-drug resistant microbes. In this context, non-toxic nanoparticles could play an important role in conferring protection against bacterial infections and in this study we have made an attempt to show the usefulness of jacalin capped platinum nanoparticles in protecting zebrafish against multiple infections with Aeromonas hydrophila. Our results also indicate that use of nanoparticles promotes adaptive immune response against the pathogen, so much so that zebrafish is able to survive repetitive infection even after twenty one days of being treated with jacalin-capped platinum nanoparticles. This is significant given that platinum salt is not antibacterial and jacalin is non-immunogenic. Our study for the first time reveals a novel mechanism of action of nanoparticles, which could form an alternate antibacterial strategy with minimal bacterial resistance.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Thiagarajan Raman
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India.
| | - Anbazhagan Veerappan
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
66
|
Van Dyke AR, Gatazka DH, Hanania MM. Innovations in Undergraduate Chemical Biology Education. ACS Chem Biol 2018; 13:26-35. [PMID: 29192757 DOI: 10.1021/acschembio.7b00986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.
Collapse
Affiliation(s)
- Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Daniel H. Gatazka
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Mariah M. Hanania
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| |
Collapse
|
67
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|
68
|
Galstyan A, Schiller R, Dobrindt U. Boronic Acid Functionalized Photosensitizers: A Strategy To Target the Surface of Bacteria and Implement Active Agents in Polymer Coatings. Angew Chem Int Ed Engl 2017; 56:10362-10366. [PMID: 28675648 DOI: 10.1002/anie.201703398] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Indexed: 02/04/2023]
Abstract
Advanced methods for preventing and controlling hospital-acquired infections via eradication of free-floating bacteria and bacterial biofilms are of great interest. In this regard, the attractiveness of unconventional treatment modalities such as antimicrobial photodynamic therapy (aPDT) continues to grow. This study investigated a new and innovative strategy for targeting polysaccharides found on the bacterial cell envelope and the biofilm matrix using the boronic acid functionalized and highly effective photosensitizer (PS) silicon(IV) phthalocyanine. This strategy has been found to be successful in treating planktonic cultures and biofilms of Gram-negative E. coli. An additional advantage of boronic acid functionality is a possibility to anchor the tailor made PS to poly(vinyl alcohol) and to fabricate a self-disinfecting coating.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology, Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Roswitha Schiller
- Institut für Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstrasse 7, 48149, Münster, Germany
| | - Ulrich Dobrindt
- Institut für Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstrasse 7, 48149, Münster, Germany
| |
Collapse
|
69
|
Galstyan A, Schiller R, Dobrindt U. Boronic Acid Functionalized Photosensitizers: A Strategy To Target the Surface of Bacteria and Implement Active Agents in Polymer Coatings. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology, Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Roswitha Schiller
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstrasse 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstrasse 7 48149 Münster Germany
| |
Collapse
|
70
|
Kolbe K, Möckl L, Sohst V, Brandenburg J, Engel R, Malm S, Bräuchle C, Holst O, Lindhorst TK, Reiling N. Azido Pentoses: A New Tool To Efficiently Label Mycobacterium tuberculosis Clinical Isolates. Chembiochem 2017; 18:1172-1176. [PMID: 28249101 DOI: 10.1002/cbic.201600706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 01/27/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (Tb), has a complex cell envelope which forms an efficient barrier to antibiotics, thus contributing to the challenges of anti-tuberculosis therapy. However, the unique Mtb cell wall can be considered an advantage and be utilized to selectively label Mtb bacteria. Here we introduce three azido pentoses as new compounds for metabolic labeling of Mtb: 3-azido arabinose (3AraAz), 3-azido ribose (3RiboAz), and 5-azido arabinofuranose (5AraAz). 5AraAz demonstrated the highest level of Mtb labeling and was efficiently incorporated into the Mtb cell wall. All three azido pentoses can be easily used to label a variety of Mtb clinical isolates without influencing Mtb-dependent phagosomal maturation arrest in infection studies with human macrophages. Thus, this metabolic labeling method offers the opportunity to attach desired molecules to the surface of Mtb bacteria in order to facilitate investigation of the varying virulence characteristics of different Mtb clinical isolates, which influence the outcome of a Tb infection.
Collapse
Affiliation(s)
- Katharina Kolbe
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
- Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845, Borstel, Germany
- Present address: Tuberculosis Research Section, NIAID, NIH, 33 North Drive, Bethesda, MD, 20814, USA
| | - Leonhard Möckl
- Department of Physical Chemistry, Ludwig Maximilian University of Munich, Butenandstrasse 11, 81377, Munich, Germany
| | - Victoria Sohst
- Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845, Borstel, Germany
| | - Julius Brandenburg
- Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845, Borstel, Germany
| | - Regina Engel
- Structural Biochemistry, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 4, 23845, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845, Borstel, Germany
| | - Christoph Bräuchle
- Department of Physical Chemistry, Ludwig Maximilian University of Munich, Butenandstrasse 11, 81377, Munich, Germany
| | - Otto Holst
- Structural Biochemistry, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 4, 23845, Borstel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Parkallee 1-40, 23845, Borstel, Germany
| |
Collapse
|
71
|
Progress and prospects for small-molecule probes of bacterial imaging. Nat Chem Biol 2017; 12:472-8. [PMID: 27315537 DOI: 10.1038/nchembio.2109] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/13/2016] [Indexed: 11/09/2022]
Abstract
Fluorescence microscopy is an essential tool for the exploration of cell growth, division, transcription and translation in eukaryotes and prokaryotes alike. Despite the rapid development of techniques to study bacteria, the size of these organisms (1-10 μm) and their robust and largely impenetrable cell envelope present major challenges in imaging experiments. Fusion-based strategies, such as attachment of the protein of interest to a fluorescent protein or epitope tag, are by far the most common means for examining protein localization and expression in prokaryotes. While valuable, the use of genetically encoded tags can result in mislocalization or altered activity of the desired protein, does not provide a readout of the catalytic state of enzymes and cannot enable visualization of many other important cellular components, such as peptidoglycan, lipids, nucleic acids or glycans. Here, we highlight the use of biomolecule-specific small-molecule probes for imaging in bacteria.
Collapse
|
72
|
Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H. A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J Mater Chem B 2017; 5:444-453. [DOI: 10.1039/c6tb02821g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A re-usable supramolecular platform with the capability of high-efficiency capture and on-demand release of specific proteins and bacteria was developed.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
73
|
Clark EL, Emmadi M, Krupp KL, Podilapu AR, Helble JD, Kulkarni SS, Dube DH. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria. ACS Chem Biol 2016; 11:3365-3373. [PMID: 27766829 DOI: 10.1021/acschembio.6b00790] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.
Collapse
Affiliation(s)
- Emily L. Clark
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Madhu Emmadi
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Katharine L. Krupp
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Ananda R. Podilapu
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Jennifer D. Helble
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
74
|
Zhang X, Liu P, Zhu L. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Molecules 2016; 21:molecules21121697. [PMID: 27941684 PMCID: PMC6274337 DOI: 10.3390/molecules21121697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022] Open
Abstract
This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II)- (via an induction period) and copper(I)-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethyl)propargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II)- and copper(I)-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Peiye Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
75
|
Patel P, Kearney JF. Immunological Outcomes of Antibody Binding to Glycans Shared between Microorganisms and Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4201-4209. [PMID: 27864551 PMCID: PMC5119654 DOI: 10.4049/jimmunol.1600872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Glycans constitute basic cellular components of living organisms across biological kingdoms, and glycan-binding Abs participate in many cellular interactions during immune defense against pathogenic organisms. Glycan epitopes are expressed as carbohydrate-only entities or as oligomers or polymers on proteins and lipids. Such epitopes on glycoproteins may be formed by posttranslational modifications or neoepitopes resulting from metabolic-catabolic processes and can be altered during inflammation. Pathogenic organisms can display host-like glycans to evade the host immune response. However, Abs to glycans, shared between microorganisms and the host, exist naturally. These Abs are able to not only protect against infectious disease, but also are involved in host housekeeping functions and can suppress allergic disease. Despite the reactivity of these Abs to glycans shared between microorganisms and host, diverse tolerance-inducing mechanisms permit the B cell precursors of these Ab-secreting cells to exist within the normal B cell repertoire.
Collapse
Affiliation(s)
- Preeyam Patel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
76
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
77
|
Chen J, Gao J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci Rep 2016; 6:30247. [PMID: 27453176 PMCID: PMC4958959 DOI: 10.1038/srep30247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| |
Collapse
|
78
|
Sanapala SR, Kulkarni SS. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates. J Am Chem Soc 2016; 138:4938-47. [DOI: 10.1021/jacs.6b01823] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Someswara Rao Sanapala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
79
|
Lukose V, Whitworth G, Guan Z, Imperiali B. Chemoenzymatic Assembly of Bacterial Glycoconjugates for Site-Specific Orthogonal Labeling. J Am Chem Soc 2015; 137:12446-9. [PMID: 26352466 PMCID: PMC4599313 DOI: 10.1021/jacs.5b07146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
cell surfaces of bacteria are replete with diverse glycoconjugates
that play pivotal roles in determining how bacteria interact with
the environment and the hosts that they colonize. Studies to advance
our understanding of these interactions rely on the availability of
chemically defined glycoconjugates that can be selectively modified
under orthogonal reaction conditions to serve as discrete ligands
to probe biological interactions, in displayed arrays and as imaging
agents. Herein, enzymes in the N-linked protein glycosylation
(Pgl) pathway of Campylobacter jejuni are evaluated
for their tolerance for azide-modified UDP-sugar substrates, including
derivatives of 2,4-diacetamidobacillosamine and N-acetylgalactosamine. In vitro analyses reveal that
chemoenzymatic approaches are useful for the preparation of undecaprenol
diphosphate-linked glycans and glycopeptides with site-specific introduction
of azide functionality for orthogonal labeling at three specific sites
in the heptasaccharide glycan. The uniquely modified glycoconjugates
represent valuable tools for investigating the roles of C.
jejuni cell surface glycoconjugates in host pathogen interactions.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Garrett Whitworth
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
80
|
Garapaty A, Champion JA. Biomimetic and synthetic interfaces to tune immune responses. Biointerphases 2015; 10:030801. [PMID: 26178262 PMCID: PMC4506308 DOI: 10.1116/1.4922798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell-cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell-particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| |
Collapse
|
81
|
Chaube MA, Kulkarni SS. First Total Synthesis of Trehalose-Containing Branched Oligosaccharide OSE-1 ofMycobacterium gordonae(Strain 990). Chemistry 2015; 21:13544-8. [DOI: 10.1002/chem.201502521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/31/2023]
|
82
|
Raval YS, Stone R, Fellows B, Qi B, Huang G, Mefford OT, Tzeng TRJ. Synthesis and application of glycoconjugate-functionalized magnetic nanoparticles as potent anti-adhesion agents for reducing enterotoxigenic Escherichia coli infections. NANOSCALE 2015; 7:8326-8331. [PMID: 25896754 DOI: 10.1039/c5nr00511f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyethylene oxide stabilized magnetic nanoparticles (PEO-MNPs) bio-functionalized with glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-MNPs) are synthesized using click chemistry. Interaction of GM3-MNPs with Enterotoxigenic Escherichia coli (ETEC) strain K99 (EC K99) is investigated using different microscopic techniques. Our results suggest that GM3-MNPs can effectively act as non-antibiotic anti-adhesion agents for treating ETEC infections.
Collapse
Affiliation(s)
- Yash S Raval
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Chigrinova M, MacKenzie DA, Sherratt AR, Cheung LLW, Pezacki JP. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling. Molecules 2015; 20:6959-69. [PMID: 25913933 PMCID: PMC6272444 DOI: 10.3390/molecules20046959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.
Collapse
Affiliation(s)
- Mariya Chigrinova
- Life Sciences Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Douglas A. MacKenzie
- Life Sciences Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allison R. Sherratt
- Life Sciences Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Lawrence L. W. Cheung
- Life Sciences Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +1-613-993-7253; Fax: +1-613-941-8447
| |
Collapse
|
84
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
85
|
Ma F, Rehman A, Liu H, Zhang J, Zhu S, Zeng X. Glycosylation of Quinone-Fused Polythiophene for Reagentless and Label-Free Detection of E. coli. Anal Chem 2015; 87:1560-8. [DOI: 10.1021/ac502712q] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fen Ma
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Abdul Rehman
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Haiying Liu
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jingtuo Zhang
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shilei Zhu
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiangqun Zeng
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
86
|
Li K, Zhang YY, Jiang GY, Hou YJ, Zhang BW, Zhou QX, Wang XS. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria. Chem Commun (Camb) 2015; 51:7923-6. [DOI: 10.1039/c5cc00174a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective photoinactivation against Gram-negative bacteria over Gram-positive bacteria was successfully realized by a bivalent triarylmethane dye.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yang-Yang Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Guo-Yu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuan-Jun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Bao-Wen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xue-Song Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
87
|
Emmadi M, Kulkarni SS. Total synthesis of the bacillosamine containing α-l-serine linked trisaccharide of Neisseria meningitidis. Carbohydr Res 2014; 399:57-63. [DOI: 10.1016/j.carres.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
|
88
|
Podilapu AR, Kulkarni SS. First Synthesis of Bacillus cereus Ch HF-PS Cell Wall Trisaccharide Repeating Unit. Org Lett 2014; 16:4336-9. [DOI: 10.1021/ol5021527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
89
|
Shih HW, Kamber DN, Prescher JA. Building better bioorthogonal reactions. Curr Opin Chem Biol 2014; 21:103-11. [DOI: 10.1016/j.cbpa.2014.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
|