51
|
Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential. Processes (Basel) 2020. [DOI: 10.3390/pr8020128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The volatile constituents of the essential oil of local Pelargonium graveolens growing in Egypt was investigated by gas chromatography–mass spectrometry (GC–MS), and the main constituents were citronellol (27.67%), cis-Menthone (10.23%), linalool (10.05%), eudesmol (9.40%), geraniol formate 6.87%, and rose oxide (5.77%), which represent the major components in the obtained GC total ion chromatogram. The structural determination of the main constitutes based on their electron ionization mass spectra have been investigated. The MS of these compounds are absolutely identical in mass values of peaks of fragment ions, where their relative intensities have minor differences. In the spectra of all studied compounds, the observed characteristic ions were [M-H2O]+ and [M-CH3]+. The latter has a structure with m/z 69, 83. Different quantum parameters were obtained using Modified Neglect of Diatomic Overlap (MNDO) semi-empirical method as total energy, binding energy, heat of formations, ionization energy, the energy of highest occupied molecular orbital (HOMO), the energy of the lowest unoccupied molecular orbital (LUMO), energy gap Δ, and dipole moment. The antibacterial and antifungal activities of P. graveolens essential oil and identified compounds were tested against wide collection of organisms. The individual identified compounds in the essential oil—citronellol, cis-Menthone, and linalool (except eudesmol)—showed comparable activity to antibiotics. The most active isolated compound was the citronellol and the lowest MIC was found against E. coli. The essential oil showed high antifungal effects and this activity was attributed to cis-Menthone, eudesmol, and citronellol (excluding linalool). cis-Menthone was the most active compound against selected fungi followed by the eudesmol The study recommends local P. graveolens and identified active compounds for further applications in the pharmaceutical industries.
Collapse
|
52
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
53
|
Zhang F, Braun DR, Chanana S, Rajski SR, Bugni TS. Phallusialides A-E, Pyrrole-Derived Alkaloids Discovered from a Marine-Derived Micromonospora sp. Bacterium Using MS-Based Metabolomics Approaches. JOURNAL OF NATURAL PRODUCTS 2019; 82:3432-3439. [PMID: 31794218 PMCID: PMC7784719 DOI: 10.1021/acs.jnatprod.9b00808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Integrating MS-based metabolomics approaches, LC-MS-PCA and molecular networking enabled the targeted isolation of five new pyrrole-derived alkaloids, phallusialides A-E (1-5), from a marine-derived Micromonospora sp. bacterium. The structures of 1-5 were elucidated by analysis of their HRMS, MS/MS, and NMR spectroscopic data. The absolute configuration of phallusialide A (1) was determined on the basis of comparisons of experimental and theoretically calculated ECD spectra. Compounds 1 and 2 exhibited antibacterial activity against methicillin resistant S. aureus (MRSA) and E. coli, with MIC values of 32 and 64 μg/mL, respectively, whereas 3-5 showed no antibacterial activity even at 256 μg/mL, yielding important SAR insights for this class of compounds.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
54
|
Kim HW, Choi SY, Jang HS, Ryu B, Sung SH, Yang H. Exploring novel secondary metabolites from natural products using pre-processed mass spectral data. Sci Rep 2019; 9:17430. [PMID: 31758082 PMCID: PMC6874550 DOI: 10.1038/s41598-019-54078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/08/2019] [Indexed: 02/04/2023] Open
Abstract
Many natural product chemists are working to identify a wide variety of novel secondary metabolites from natural materials and are eager to avoid repeatedly discovering known compounds. Here, we developed liquid chromatography/mass spectrometry (LC/MS) data-processing protocols for assessing high-throughput spectral data from natural sources and scoring the novelty of unknown metabolites from natural products. This approach automatically produces representative MS spectra (RMSs) corresponding to single secondary metabolites in natural sources. In this study, we used the RMSs of Agrimonia pilosa roots and aerial parts as models to reveal the structural similarities of their secondary metabolites and identify novel compounds, as well as isolation of three types of nine new compounds including three pilosanidin- and four pilosanol-type molecules and two 3-hydroxy-3-methylglutaryl (HMG)-conjugated chromones. Furthermore, we devised a new scoring system, the Fresh Compound Index (FCI), which grades the novelty of single secondary metabolites from a natural material using an in-house database constructed from 466 representative medicinal plants from East Asian countries. We expect that the FCIs of RMSs in a sample will help natural product chemists to discover other compounds of interest with similar chemical scaffolds or novel compounds and will provide insights relevant to the structural diversity and novelty of secondary metabolites in natural products.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Seong Yeon Choi
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyeon Seok Jang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Korea
| | - Byeol Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
55
|
Cordell GA. Cyberecoethnopharmacolomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112134. [PMID: 31377262 DOI: 10.1016/j.jep.2019.112134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Development of a new term which describes the contemporary, composite, constituent sciences of ethnopharmacology. AIM OF THE STUDY To discuss the polysyllabic term cyberecoethnopharmacolomics in the context of the future of ethnopharmacology in global health care. MATERIALS AND METHODS Literature background and assessment from the prior literature, diverse databases, and personal discussions. RESULTS The profiles and literature background with contemporary and future thoughts regarding the concepts and practices of cyber-, eco-, ethno-, pharmacol-, and -omics, and their impact in ethnopharmacology for the future are presented in the context of integrated health care systems. CONCLUSIONS Ethnopharmacology has a major role to play in global health care if the relevant sciences and cutting-edge technologies can coalesce synergistically as a responsive, evidence-based health care practice.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
56
|
Hu Y, Cai B, Huan T. Enhancing Metabolome Coverage in Data-Dependent LC–MS/MS Analysis through an Integrated Feature Extraction Strategy. Anal Chem 2019; 91:14433-14441. [DOI: 10.1021/acs.analchem.9b02980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yaxi Hu
- Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Betty Cai
- Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
57
|
Moumbock AFA, Ntie-Kang F, Akone SH, Li J, Gao M, Telukunta KK, Günther S. An overview of tools, software, and methods for natural product fragment and mass spectral analysis. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
One major challenge in natural product (NP) discovery is the determination of the chemical structure of unknown metabolites using automated software tools from either GC–mass spectrometry (MS) or liquid chromatography–MS/MS data only. This chapter reviews the existing spectral libraries and predictive computational tools used in MS-based untargeted metabolomics, which is currently a hot topic in NP structure elucidation. We begin by focusing on spectral databases and the general workflow of MS annotation. We then describe software and tools used in MS, particularly those used to predict fragmentation patterns, mass spectral classifiers, and tools for fragmentation trees analysis. We then round up the chapter by looking at more advanced approaches implemented in tools for competitive fragmentation modeling and quantum chemical approaches.
Collapse
|
58
|
Wang Y, Mei X, Liu Z, Li J, Zhang X, Lang S, Dai L, Zhang J. Drug Metabolite Cluster-Based Data-Mining Method for Comprehensive Metabolism Study of 5-hydroxy-6,7,3',4'-tetramethoxyflavone in Rats. Molecules 2019; 24:molecules24183278. [PMID: 31505804 PMCID: PMC6767304 DOI: 10.3390/molecules24183278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
The screening of drug metabolites in biological matrixes and structural characterization based on product ion spectra is among the most important, but also the most challenging due to the significant interferences from endogenous species. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of prototype drug metabolites using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Although classical techniques are well-suited for achieving the partial characterization of prototype drug metabolites, there is a pressing need for a strategy to enable comprehensive drug metabolism depiction. Therefore, we present drug metabolite clusters (DMCs), different from, but complementary to, traditional approaches for mining the information regarding drugs and their metabolites on the basis of raw, processed, or identified tandem mass spectrometry (MS/MS) data. In this paper, we describe a DMC-based data-mining method for the metabolite identification of 5-hydroxy-6,7,3′,4′-tetramethoxyflavone (HTF), a typical hydroxylated-polymethoxyflavonoid (OH-PMF), which addressed the challenge of creating a thorough metabolic profile. Consequently, eight primary metabolism clusters, sixteen secondary metabolism clusters, and five tertiary metabolism clusters were proposed and 106 metabolites (19 potential metabolites included) were detected and identified positively and tentatively. These metabolites were presumed to generate through oxidation (mono-oxidation, di-oxidation), methylation, demethylation, methoxylation, glucuronidation, sulfation, ring cleavage, and their composite reactions. In conclusion, our study expounded drug metabolites in rats and provided a reference for further research on therapeutic material basis and the mechanism of drugs.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaodan Mei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zihan Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jie Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaoxin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuang Lang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Long Dai
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China.
| | - Jiayu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
- School of Pharmacy, BIN ZHOU Medical University, Yantai 260040, China.
| |
Collapse
|
59
|
Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019; 36:1196-1221. [PMID: 30681109 PMCID: PMC6658353 DOI: 10.1039/c8np00065d] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2018 Dietary supplements, which include botanical (plant-based) natural products, constitute a multi-billion-dollar industry in the US. Regulation and quality control for this industry is an ongoing challenge. While there is general agreement that rigorous scientific studies are needed to evaluate the safety and efficacy of botanical natural products used by consumers, researchers conducting such studies face a unique set of challenges. Botanical natural products are inherently complex mixtures, with composition that differs depending on myriad factors including variability in genetics, cultivation conditions, and processing methods. Unfortunately, many studies of botanical natural products are carried out with poorly characterized study material, such that the results are irreproducible and difficult to interpret. This review provides recommended approaches for addressing the critical questions that researchers must address prior to in vitro or in vivo (including clinical) evaluation of botanical natural products. We describe selection and authentication of botanical material and identification of key biologically active compounds, and compare state-of-the-art methodologies such as untargeted metabolomics with more traditional targeted methods of characterization. The topics are chosen to be of maximal relevance to researchers, and are reviewed critically with commentary as to which approaches are most practical and useful and what common pitfalls should be avoided.
Collapse
Affiliation(s)
- Joshua J. Kellogg
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Jeannine S. McCune
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Nadja B. Cech
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
60
|
Cantrell TP, Freeman CJ, Paul VJ, Agarwal V, Garg N. Mass Spectrometry-Based Integration and Expansion of the Chemical Diversity Harbored Within a Marine Sponge. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1373-1384. [PMID: 31093948 PMCID: PMC6675626 DOI: 10.1007/s13361-019-02207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Marine sponges and their associated symbionts produce a structurally diverse and complex set of natural products including alkaloids, terpenoids, peptides, lipids, and steroids. A single sponge with its symbionts can produce all of the above-mentioned classes of molecules and their analogs. Most approaches to evaluating sponge chemical diversity have focused on major metabolites that can be isolated and characterized; therefore, a comprehensive evaluation of intra- (within a molecular family; analogs) and inter-chemical diversity within a single sponge remains incomplete. We use a combination of metabolomics tools, including a supervised approach via manual library search and literature search, and an unsupervised approach via molecular networking and MS2LDA analysis to describe the intra and inter-chemical diversity present in Smenospongia aurea. Furthermore, we use imaging mass spectrometry to link this chemical diversity to either the sponge or the associated cyanobacteria. Using these approaches, we identify seven more molecular features that represent analogs of four previously known peptide/polyketide smenamides and assign the biosynthesis of these molecules to the symbiotic cyanobacteria by imaging mass spectrometry. We extend this analysis to a wide diversity of molecular classes including indole alkaloids and meroterpenes.
Collapse
Affiliation(s)
- Thomas P Cantrell
- Engineered Biosystems Building, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, FL, 34949, USA
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, FL, 34949, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Neha Garg
- Engineered Biosystems Building, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA.
- Center for Microbial Dynamics and Infection, School of Biological Sciences Georgia Institute of Technology, 311 Ferst Drive, ES&T Atlanta, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
61
|
Woo S, Kang KB, Kim J, Sung SH. Molecular Networking Reveals the Chemical Diversity of Selaginellin Derivatives, Natural Phosphodiesterase-4 Inhibitors from Selaginella tamariscina. JOURNAL OF NATURAL PRODUCTS 2019; 82:1820-1830. [PMID: 31244143 DOI: 10.1021/acs.jnatprod.9b00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selaginellins are unique pigments found in the genus Selaginella, the largest genus of Lycopodiophyta. Recent studies reported that some selaginellin analogues have potent phosphodiesterase-4 (PDE4) inhibitory activity. In this study, the chemical diversity of natural selaginellin derivatives was revealed by an MS/MS molecular networking-based dereplication of the Selaginella tamariscina extract. It led to the prioritization of chromatographic peaks predicted as previously unknown selaginellin derivatives. Targeted isolation of these compounds afforded two unusual selaginellin analogues with a 1H,3H-dibenzo[de,h]isochromene skeleton, namely, selariscins A (1) and B (2), along with eight new diarylfluorene derivatives, selaginpulvilins M-T (3-10), and five known analogues, 11-15. The absolute configurations of 1, 2, and 8-10 were elucidated by spectroscopic data analyses including computational electronic circular dichroism data. Compounds 1 and 3-10 showed PDE4 inhibitory activity with IC50 values in the range of 2.8-33.8 μM, and their binding modes are suggested by a molecular docking study.
Collapse
Affiliation(s)
- Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
62
|
Martinez-Farina CF, Driscoll S, Wicks C, Burton I, Wentzell PD, Berrué F. Chemical Barcoding: A Nuclear-Magnetic-Resonance-Based Approach To Ensure the Quality and Safety of Natural Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7765-7774. [PMID: 31240917 DOI: 10.1021/acs.jafc.9b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the greatest challenges facing the functional food and natural health product (NHP) industries is sourcing high-quality, functional, natural ingredients for their finished products. Unfortunately, the lack of ingredient standards, modernized analytical methodologies, and industry oversight creates the potential for low quality and, in some cases, deliberate adulteration of ingredients. By exploring a diverse library of NHPs provided by the independent certification organization ISURA, we demonstrated that nuclear magnetic resonance (NMR) spectroscopy provides an innovative solution to authenticate botanicals and warrant the quality and safety of processed foods and manufactured functional ingredients. Two-dimensional NMR experiments were shown to be a robust and reproducible approach to capture the content of complex chemical mixtures, while a binary normalization step allows for emphasizing the chemical diversity in each sample, and unsupervised statistical methodologies provide key advantages to classify, authenticate, and highlight the potential presence of additives and adulterants.
Collapse
Affiliation(s)
- Camilo F Martinez-Farina
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Stephen Driscoll
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Chelsi Wicks
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Ian Burton
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Peter D Wentzell
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| |
Collapse
|
63
|
Discovery pipelines for marine resources: an ocean of opportunity for biotechnology? World J Microbiol Biotechnol 2019; 35:107. [PMID: 31267318 PMCID: PMC6606657 DOI: 10.1007/s11274-019-2685-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/27/2019] [Indexed: 11/13/2022]
Abstract
Marine microbial diversity offers enormous potential for discovery of compounds of crucial importance in healthcare, food security and bioindustry. However, access to it has been hampered by the difficulty of accessing and growing the organisms for study. The discovery and exploitation of marine bioproducts for research and commercial development requires state-of-the-art technologies and innovative approaches. Technologies and approaches are advancing rapidly and keeping pace is expensive and time consuming. There is a pressing need for clear guidance that will allow researchers to operate in a way that enables the optimal return on their efforts whilst being fully compliant with the current regulatory framework. One major initiative launched to achieve this, has been the advent of European Research Infrastructures. Research Infrastructures (RI) and associated centres of excellence currently build harmonized multidisciplinary workflows that support academic and private sector users. The European Marine Biological Research Infrastructure Cluster (EMBRIC) has brought together six such RIs in a European project to promote the blue bio-economy. The overarching objective is to develop coherent chains of high-quality services for access to biological, analytical and data resources providing improvements in the throughput and efficiency of workflows for discovery of novel marine products. In order to test the efficiency of this prototype pipeline for discovery, 248 rarely-grown organisms were isolated and analysed, some extracts demonstrated interesting biochemical properties and are currently undergoing further analysis. EMBRIC has established an overarching and operational structure to facilitate the integration of the multidisciplinary value chains of services to access such resources whilst enabling critical mass to focus on problem resolution.
Collapse
|
64
|
Souza AA, Vessecchi R, Castro-Gamboa I, Furlan M. Combined use of tandem mass spectrometry and computational chemistry to study 2H-chromenes from Piper aduncum. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:634-642. [PMID: 31144377 DOI: 10.1002/jms.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Natural 2H-chromenes were isolated from the crude extract of Piper aduncum (Piperaceae) and analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) applying collision-induced dissociation. Density functional theory (DFT) calculations were used to explain the preferred protonation sites of the 2H-chromenes based on thermochemical parameters, including atomic charges, proton affinity, and gas-phase basicity. After identifying the nucleophilic sites, the pathways were proposed to justify the formation of the diagnostic ions under ESI-MS/MS conditions. The calculated relative energy for each pathway was in good agreement with the energy-resolved plot obtained from ESI-MS/MS data. Moreover, the 2H-chromene underwent proton attachment on the prenyl moiety via a six-membered transition state. This behavior resulted in the formation of a diagnostic ion due to 2-methylpropene loss. These studies provide novel insights into gas-phase dissociation for natural benzopyran compounds, indicating how reactivity is correlated to the intrinsic acid-base equilibrium and structural aspects, including the substitution pattern on the aromatic moiety. Therefore, these results can be applied in the identification of benzopyran derivatives in a variety of biological samples.
Collapse
Affiliation(s)
- Amauri Alves Souza
- Universidade Estadual Paulista - UNESP, Instituto de Química, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ian Castro-Gamboa
- Universidade Estadual Paulista - UNESP, Instituto de Química, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | | |
Collapse
|
65
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
66
|
Kuo TH, Huang HC, Hsu CC. Mass spectrometry imaging guided molecular networking to expedite discovery and structural analysis of agarwood natural products. Anal Chim Acta 2019; 1080:95-103. [PMID: 31409479 DOI: 10.1016/j.aca.2019.05.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Structural analysis of biomolecules is essential to natural product discovery, especially for precious biomaterials such as agarwood. However, one of the greatest challenges to the characterization of natural products is the profound cost in time and manpower to the structural elucidation of these highly diverse compounds. Here, we demonstrate a multi-modal mass spectrometric strategy, integrating matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) and mass spectral molecular networking, to uncover agarwood natural products of Aquilaria sinensis trees. A simple workflow for preparing wood sections for MALDI-MSI analysis was demonstrated. Notably, tens of natural products in the agarwood region in wood stem section of A. sinensis were spatially revealed by MALDI-MSI. For the first time, such a great number of plant specialized metabolites is obtained by a single wood section MSI. Guided by the spatially resolved features, mass spectral molecular networking was subsequently applied for structural analysis of the agarwood natural products, in which three major classes of 2-(2-phenylethyl)chromones and their analogues were putatively characterized. These results suggest an efficient strategy to the dereplication of plant natural products.
Collapse
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hou-Chun Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
67
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass Spectrometry Uncovers the Role of Surfactin as an Interspecies Recruitment Factor. ACS Chem Biol 2019; 14:459-467. [PMID: 30763059 DOI: 10.1021/acschembio.8b01120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbes use metabolic exchange to sense and respond to their changing environment. Surfactins, produced by Bacillus subtilis, have been extensively studied for their role in biofilm formation, biosurfactant properties, and antimicrobial activity, affecting the surrounding microbial consortia. Using mass spectrometry, we reveal that Paenibacillus dendritiformis, originally isolated with B. subtilis, is not antagonized by the presence of surfactins and is actually attracted to them. We demonstrate here for the first time that P. dendritiformis is also actively degrading surfactins produced by B. subtilis and accumulating the degradation products that serve as territorial markers. This new attribute as an attractant of selected microbes and the conversion into a deterrent highlight the diverse role natural products have in shaping the environment and establishing mixed communities.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
68
|
Profiling Metabolites and Biological Activities of Sugarcane ( Saccharum officinarum Linn.) Juice and its Product Molasses via a Multiplex Metabolomics Approach. Molecules 2019; 24:molecules24050934. [PMID: 30866484 PMCID: PMC6429268 DOI: 10.3390/molecules24050934] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is an important perennial grass in the Poaceae family cultivated worldwide due to its economical and medicinal value. In this study, a combined approach using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy was employed for the large-scale metabolite profiling of sugarcane juice and its by-product molasses. The polyphenols were analysed via UPLC-UV-ESI-MS, whereas the primary metabolites such as sugars and organic and amino acids were profiled using NMR spectroscopy and gas chromatography/mass spectrometry (GC/MS). UPLC/MS was more effective than NMR spectroscopy or GC/MS for determining differences among the metabolite compositions of the products. Under the optimized conditions, UPLC/MS led to the identification of 42 metabolites, including nine flavonoids, nine fatty acids, and two sterols. C/O Flavone glycosides were the main subclass detected, with tricin-7-O-deoxyhexosyl glucuronide being detected in sugarcane and molasses for the first time. Based on GC/MS analysis, disaccharides were the predominant species in the sugarcane juice and molasses, with sucrose accounting for 66% and 59%, respectively, by mass of all identified metabolites. The phenolic profiles of sugarcane and molasses were further investigated in relation to their in vitro antioxidant activities using free radical scavenging assays such as 2,2-Diphenyl-1-picrylhydrazyl free radical-scavenging ability (DPPH), Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). In view of its higher total phenolic content (TPC) (196 ± 2.1 mg GAE/100 g extract) compared to that of sugarcane juice (93 ± 2.9 mg GAE/100 g extract), molasses exhibited a substantially higher antioxidant effect. Interestingly, both extracts were also found to inhibit α-glucosidase and α-amylase enzymes, suggesting a possible antihyperglycaemic effect. These findings suggest molasses may be a new source of natural antioxidants for functional foods.
Collapse
|
69
|
Bushin LB, Clark KA, Pelczer I, Seyedsayamdost MR. Charting an Unexplored Streptococcal Biosynthetic Landscape Reveals a Unique Peptide Cyclization Motif. J Am Chem Soc 2018; 140:17674-17684. [PMID: 30398325 DOI: 10.1021/jacs.8b10266] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide natural products are often used as signals or antibiotics and contain unusual structural modifications, thus providing opportunities for expanding our understanding of Nature's therapeutic and biosynthetic repertoires. Herein, we have investigated the under-explored biosynthetic potential of Streptococci, prevalent bacteria in mammalian microbiomes that include mutualistic, commensal, and pathogenic members. Using a new bioinformatic search strategy, in which we linked the versatile radical S-adenosylmethionine (RaS) enzyme superfamily to an emerging class of natural products in the context of quorum sensing control, we identified numerous, uncharted biosynthetic loci. Focusing on one such locus, we identified an unprecedented post-translational modification, consisting of a tetrahydro[5,6]benzindole cyclization motif in which four unactivated positions are linked by two C-C bonds in a regio- and stereospecific manner by a single RaS enzyme. Our results expand the scope of reactions that microbes have at their disposal in concocting complex ribosomal peptides.
Collapse
Affiliation(s)
- Leah B Bushin
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Kenzie A Clark
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - István Pelczer
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States.,Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
70
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
71
|
Chen X, Wang Z, Wong YLE, Wu R, Zhang F, Chan TWD. Electron-ion reaction-based dissociation: A powerful ion activation method for the elucidation of natural product structures. MASS SPECTROMETRY REVIEWS 2018; 37:793-810. [PMID: 29603345 DOI: 10.1002/mas.21563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/12/2018] [Indexed: 05/16/2023]
Abstract
The structural elucidation of natural products (NPs) remains a challenge due to their structurally diversities and unpredictable functionalities, motifs, and scaffolds. Tandem mass spectrometry (MS/MS) is an effective method that assists the full elucidation of complicated NP structures. Ion activation methods play a key role in determining the fragmentation pathways and the structural information obtained from MS/MS. Electron-ion reaction-based dissociation (ExD) methods, including electron capture dissociation (ECD), electron transfer dissociation (ETD), electron-induced dissociation (EID), and electron detachment dissociation (EDD), can induce the breakage of specific chemical bonds and the generation of distinct fragment ions. This review article provides an overview of the mechanisms, instrumentation, and typical applications related to ExD MS/MS in the structural elucidation of NPs, primarly including lipids, oligosaccharides, glycoconjugates, metabolites, and pharmaceutical drugs. This work aims to reveal the capacity and potential of ExD mass spectrometry in analyzing NPs and consequently helping the NP communities to utilize the modern capabilities of MS/MS in the discovery and evaluation of novel NPs.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Shandong, P.R. China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Ze Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Y-L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
72
|
Crnkovic CM, Krunic A, May DS, Wilson TA, Kao D, Burdette JE, Fuchs JR, Oberlies NH, Orjala J. Calothrixamides A and B from the Cultured Cyanobacterium Calothrix sp. UIC 10520. JOURNAL OF NATURAL PRODUCTS 2018; 81:2083-2090. [PMID: 30192537 PMCID: PMC6359934 DOI: 10.1021/acs.jnatprod.8b00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cyanobacteria are a source of chemically diverse metabolites with potential medicinal and biotechnological applications. Rapid identification of compounds is central to expedite the natural product discovery process. Mass spectrometry has been shown to be an important tool for dereplication of complex natural product samples. In addition, chromatographic separation and complementary spectroscopic analysis (e.g., UV) can enhance the confidence of the dereplication process. Here, we applied a droplet-liquid microjunction-surface sampling probe (droplet probe) coupled with UPLC-PDA-HRMS-MS/MS to identify two new natural products in situ from the freshwater strain Calothrix sp. UIC 10520. This allowed us to prioritize this strain for chemical investigation based on the presence of new metabolites very early in our discovery process, saving both time and resources. Subsequently, calothrixamides A (1) and B (2) were isolated from large-scale cultures, and the structures were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations were determined by a combination of chemical degradation reactions, derivatization methods (Mosher's, Marfey's, and phenylglycine methyl ester), and J-based configurational analysis. Calothrixamides showed no cytotoxic activity against the MDA-MB-435, MDA-MB-231, and OVCAR3 cancer cell lines. They represent the first functionalized long-chain fatty acid amides reported from the Calothrix genus and from a freshwater cyanobacterium.
Collapse
Affiliation(s)
- Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020, Brazil
| | - Aleksej Krunic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Daniel S. May
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tyler A. Wilson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
73
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
74
|
Oiram Filho F, Alcântra DB, Rodrigues THS, Alexandre E Silva LM, de Oliveira Silva E, Zocolo GJ, de Brito ES. Development and Validation of a Reversed Phase HPLC Method for Determination of Anacardic Acids in Cashew (Anacardium occidentale) Nut Shell Liquid. J Chromatogr Sci 2018; 56:300-306. [PMID: 29300927 DOI: 10.1093/chromsci/bmx111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022]
Abstract
Cashew nut shell liquid (CNSL) contains phenolic lipids with aliphatic chains that are of commercial interest. In this work, a chromatographic method was developed to monitor and quantify anacardic acids (AnAc) in CNSL. Samples containing AnAc were analyzed on a high-performance liquid chromatograph coupled to a diode array detector, equipped with a reversed phase C18 (150 × 4.6 mm × 5 μm) column using acetonitrile and water as the mobile phase both acidified with acetic acid to pH 3.0 in an isocratic mode (80:20:1). The chromatographic method showed adequate selectivity, as it could clearly separate the different AnAc. To validate this method, AnAc triene was used as an external standard at seven different concentrations varying from 50 to 1,000 μg mL-1. The Student's t-test and F-test were applied to ensure high confidence for the obtained data from the analytical calibration curve. The results were satisfactory with respect to intra-day (relative standard deviation (RSD) = 0.60%) and inter-day (RSD = 0.67%) precision, linearity (y = 2,670.8x - 26,949, r2 > 0.9998), system suitability for retention time (RSD = 1.02%), area under the curve (RSD = 0.24%), selectivity and limits of detection (19.8 μg mg-1) and quantification (60.2 μg mg-1). The developed chromatographic method was applied for the analysis of different CNSL samples, and it was deemed suitable for the quantification of AnAc.
Collapse
Affiliation(s)
- Francisco Oiram Filho
- Department of Chemical Engineering, UFC, Federal University of Ceará, Campus do Pici, Bloco 709, 60455-760, Fortaleza, CE, Brazil
| | - Daniel Barbosa Alcântra
- Department of Chemistry, UFC, Federal University of Ceará, Campus do Pici, 60455-760, Fortaleza, CE, Brazil
| | | | | | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, R Dra Sara Mesquita, 2270, Pici, 60511-110, Fortaleza, CE, Brazil
| | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, R Dra Sara Mesquita, 2270, Pici, 60511-110, Fortaleza, CE, Brazil
| |
Collapse
|
75
|
Maciá-Vicente JG, Shi YN, Cheikh-Ali Z, Grün P, Glynou K, Kia SH, Piepenbring M, Bode HB. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol 2018; 20:1253-1270. [DOI: 10.1111/1462-2920.14072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/09/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Jose G. Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Yan-Ni Shi
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Zakaria Cheikh-Ali
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Peter Grün
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Meike Piepenbring
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Helge B. Bode
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| |
Collapse
|
76
|
Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, Gerth K, Steinmetz H, Müller R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun 2018; 9:803. [PMID: 29476047 PMCID: PMC5824889 DOI: 10.1038/s41467-018-03184-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023] Open
Abstract
Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales, a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold. It is thought that the chances for discovery of novel natural products increase by screening rare organisms. Here the authors analyse metabolites produced by over 2300 myxobacterial strains and, indeed, find a correlation between taxonomic distance and production of distinct secondary metabolite families.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Nisa Bozkurt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Srikanth Duddela
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Klaus Gerth
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Heinrich Steinmetz
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| |
Collapse
|
77
|
Sikora AE, Tehan R, McPhail K. Utilization of Vibrio cholerae as a Model Organism to Screen Natural Product Libraries for Identification of New Antibiotics. Methods Mol Biol 2018; 1839:135-146. [PMID: 30047060 DOI: 10.1007/978-1-4939-8685-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of antibiotic-resistant bacteria requires increasing research efforts in drug discovery. Vibrio cholerae can be utilized as a model gram-negative enteric pathogen in high- and medium-throughput screening campaigns to identify antimicrobials with different modes of action. In this chapter, we describe methods for the optimal growth of V. cholerae in 384-well plates, preparation of suitable microtiter natural product sample libraries, as well as their screening using measurements of bacterial density and activity of type II secretion-dependent protease as readouts. Concomitant LC-MS/MS profiling and spectral data networking of assay sample libraries facilitate dereplication of putative known and/or nuisance compounds and efficient prioritization of samples containing putative new natural products for further investigation.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| | - Richard Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Kerry McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
78
|
BluePharmTrain: Biology and Biotechnology of Marine Sponges. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
79
|
Sobreira ACM, Pinto FDCL, Florêncio KGD, Wilke DV, Staats CC, Streit RDAS, Freire FDCDO, Pessoa ODL, Trindade-Silva AE, Canuto KM. Endophytic fungus Pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. RSC Adv 2018; 8:35575-35586. [PMID: 35547902 PMCID: PMC9088075 DOI: 10.1039/c8ra06824k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, we integrated liquid chromatography high-resolution mass spectrometry (LC-HRMS) and high-throughput DNA sequencing for prospecting cytotoxic specialized metabolites from Pseudofusicoccum stromaticum, an endophytic fungus associated to the medicinal plant Myracrodruon urundeuva. LC-HRMS profiling allowed identifying putatively eleven compounds in the ethyl acetate extract from P. stromaticum broth. Additionally, a chemical fractionation guided by cytotoxicity combined with spectrometric analysis resulted in the isolation of three compounds: the cyclopeptide cyclo-l-Phe-d-Leu-l-Leu-l-Leu-l-lle along with the known rotenoids rotenolone and tephrosin. MTT assay showed that tephrosin (IC50 0.51 μg mL−1) has strong cytotoxic effect and may be pointed out as the compound responsible for the antiproliferative activity of P. stromaticum. Next Generation Sequencing (NGS) and genome mining of P. stromaticum draft genome revealed 56 contigs codifying specialized metabolites biosynthesis-related enzymes. Nearly half of such genes (44.6%) could be mapped to orphan Biosynthetic Gene Clusters (BGCs) of related plant pathogens belonging to family Botryosphaeriaceae. Also, screening for rotenoids biosynthetic enzymes led to characterization of a putative chalcone isomerase-like (CHI-like) protein. This is the first report of rotenoids biosynthesized by a fungus, unveiling a unique ability of P. stromaticum. Pseudofusicoccum stromaticum produces cyclopeptides and plant-related rotenoids, which are responsible for its antiproliferative effect.![]()
Collapse
Affiliation(s)
- Aline C. M. Sobreira
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | | | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Charley C. Staats
- Centro de Biotecnologia
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | | | | | - Otília D. L. Pessoa
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Amaro E. Trindade-Silva
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | |
Collapse
|
80
|
Gomes NG, Pereira DM, Valentão P, Andrade PB. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J Pharm Biomed Anal 2018; 147:234-249. [DOI: 10.1016/j.jpba.2017.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
81
|
Improving the discovery of secondary metabolite natural products using ion mobility-mass spectrometry. Curr Opin Chem Biol 2017; 42:160-166. [PMID: 29287234 DOI: 10.1016/j.cbpa.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Secondary metabolite discovery requires an unbiased, comprehensive workflow to detect unknown unknowns for which little to no molecular knowledge exists. Untargeted mass spectrometry-based metabolomics is a powerful platform, particularly when coupled with ion mobility for high-throughput gas-phase separations to increase peak capacity and obtain gas-phase structural information. Ion mobility data are described by the amount of time an ion spends in the drift cell, which is directly related to an ion's collision cross section (CCS). The CCS parameter describes the size, shape, and charge of a molecule and can be used to characterize unknown metabolomic species. Here, we describe current and emerging applications of ion mobility-mass spectrometry for prioritization, discovery and structure elucidation, and spatial/temporal characterization.
Collapse
|
82
|
Milanowski DJ, Oku N, Cartner LK, Bokesch HR, Williamson RT, Saurí J, Liu Y, Blinov KA, Ding Y, Li XC, Ferreira D, Walker LA, Khan S, Davies-Coleman MT, Kelley JA, McMahon JB, Martin GE, Gustafson KR. Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem Sci 2017; 9:307-314. [PMID: 29619201 PMCID: PMC5868047 DOI: 10.1039/c7sc01996c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification.
Ambiguities and errors in the structural assignment of organic molecules hinder both drug discovery and total synthesis efforts. Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification. The caulamidines are trihalogenated alkaloids from a marine bryozoan with an unprecedented structural scaffold. Their unique carbon and nitrogen framework was deduced by conventional NMR methods supplemented by new experiments that define 2-bond heteronuclear connectivities, reveal very long-range connectivity data, or visualize the 35,37Cl isotopic effect on chlorinated carbons. Computer-assisted structural elucidation (CASE) analysis of the spectroscopic data for caulamidine A provided only one viable structural alternative. Anisotropic NMR parameters, specifically residual dipolar coupling and residual chemical shift anisotropy data, were measured for caulamidine A and compared to DFT-calculated values for the proposed structure, the CASE-derived alternative structure, and two energetically feasible stereoisomers. Anisotropy-based NMR experiments provide a global, orthogonal means to verify complex structures free from investigator bias. The anisotropic NMR data were fully consistent with the assigned structure and configuration of caulamidine A. Caulamidine B has the same heterocyclic scaffold as A but a different composition and pattern of halogen substitution. Caulamidines A and B inhibited both wild-type and drug-resistant strains of the malaria parasite Plasmodium falciparum at low micromolar concentrations, yet were nontoxic to human cells.
Collapse
Affiliation(s)
- Dennis J Milanowski
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Naoya Oku
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Laura K Cartner
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA . .,Basic Science Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702-1201 , USA
| | - Heidi R Bokesch
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA . .,Basic Science Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702-1201 , USA
| | - R Thomas Williamson
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Yizhou Liu
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | | | - Yuanqing Ding
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Xing-Cong Li
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Daneel Ferreira
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Larry A Walker
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | - Shabana Khan
- National Center for Natural Products Research , Department of BioMolecular Sciences , Division of Pharmacognosy , School of Pharmacy , University of Mississippi , Oxford , Mississippi 38655 , USA
| | | | - James A Kelley
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA
| | - James B McMahon
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| | - Gary E Martin
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co. Inc. , Rahway , New Jersey 07065 , USA .
| | - Kirk R Gustafson
- Molecular Targets Laboratory , Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , USA .
| |
Collapse
|
83
|
Du L, Risinger AL, Mitchell CA, You J, Stamps BW, Pan N, King JB, Bopassa JC, Judge SIV, Yang Z, Stevenson BS, Cichewicz RH. Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc Natl Acad Sci U S A 2017; 114:E8957-E8966. [PMID: 29073092 PMCID: PMC5664515 DOI: 10.1073/pnas.1707565114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mass-spectrometry-based metabolomics and molecular phylogeny data were used to identify a metabolically prolific strain of Tolypocladium that was obtained from a deep-water Great Lakes sediment sample. An investigation of the isolate's secondary metabolome resulted in the purification of a 22-mer peptaibol, gichigamin A (1). This peptidic natural product exhibited an amino acid sequence including several β-alanines that occurred in a repeating ααβ motif, causing the compound to adopt a unique right-handed 311 helical structure. The unusual secondary structure of 1 was confirmed by spectroscopic approaches including solution NMR, electronic circular dichroism (ECD), and single-crystal X-ray diffraction analyses. Artificial and cell-based membrane permeability assays provided evidence that the unusual combination of structural features in gichigamins conferred on them an ability to penetrate the outer membranes of mammalian cells. Compound 1 exhibited potent in vitro cytotoxicity (GI50 0.55 ± 0.04 µM) and in vivo antitumor effects in a MIA PaCa-2 xenograft mouse model. While the primary mechanism of cytotoxicity for 1 was consistent with ion leakage, we found that it was also able to directly depolarize mitochondria. Semisynthetic modification of 1 provided several analogs, including a C-terminus-linked coumarin derivative (22) that exhibited appreciably increased potency (GI50 5.4 ± 0.1 nM), but lacked ion leakage capabilities associated with a majority of naturally occurring peptaibols such as alamethicin. Compound 22 was found to enter intact cells and induced cell death in a process that was preceded by mitochondrial depolarization.
Collapse
Affiliation(s)
- Lin Du
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229
| | - Carter A Mitchell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jianlan You
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Blake W Stamps
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Ning Pan
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Jarrod B King
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jean C Bopassa
- Department of Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Susan I V Judge
- Department of Biochemistry, High Throughput Screening Facility, Center for Innovative Drug Discovery, University of Texas Health Science Center, San Antonio, TX 78229
- CytoBioscience Incorporated, San Antonio, TX 78229
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Bradley S Stevenson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251;
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| |
Collapse
|
84
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
85
|
Gemperline E, Horn HA, DeLaney K, Currie CR, Li L. Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants. ACS Chem Biol 2017; 12:1980-1985. [PMID: 28617577 DOI: 10.1021/acschembio.7b00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.
Collapse
Affiliation(s)
- Erin Gemperline
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Heidi A. Horn
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Cameron R. Currie
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
86
|
Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 2017; 13:895-901. [PMID: 28604695 PMCID: PMC5577364 DOI: 10.1038/nchembio.2408] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/02/2022]
Abstract
The genomes of filamentous fungi contain up to 90 biosynthetic gene clusters (BGCs) encoding diverse secondary metabolites-an enormous reservoir of untapped chemical potential. However, the recalcitrant genetics, cryptic expression, and unculturability of these fungi prevent scientists from systematically exploiting these gene clusters and harvesting their products. As heterologous expression of fungal BGCs is largely limited to the expression of single or partial clusters, we established a scalable process for the expression of large numbers of full-length gene clusters, called FAC-MS. Using fungal artificial chromosomes (FACs) and metabolomic scoring (MS), we screened 56 secondary metabolite BGCs from diverse fungal species for expression in Aspergillus nidulans. We discovered 15 new metabolites and assigned them with confidence to their BGCs. Using the FAC-MS platform, we extensively characterized a new macrolactone, valactamide A, and its hybrid nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS). The ability to regularize access to fungal secondary metabolites at an unprecedented scale stands to revitalize drug discovery platforms with renewable sources of natural products.
Collapse
Affiliation(s)
- Kenneth D Clevenger
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rosa Ye
- Intact Genomics, Inc., St. Louis, Missouri, USA
| | - Galen P Miley
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Maria H Verdan
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Thomas Velk
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - KaHoua Yang
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Peng Gao
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | | | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
87
|
Optimized experimental workflow for tandem mass spectrometry molecular networking in metabolomics. Anal Bioanal Chem 2017; 409:5767-5778. [DOI: 10.1007/s00216-017-0523-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
88
|
Zeng SL, Duan L, Chen BZ, Li P, Liu EH. Chemicalome and metabolome profiling of polymethoxylated flavonoids in Citri Reticulatae Pericarpium based on an integrated strategy combining background subtraction and modified mass defect filter in a Microsoft Excel Platform. J Chromatogr A 2017; 1508:106-120. [DOI: 10.1016/j.chroma.2017.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 02/04/2023]
|
89
|
Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment. mSystems 2017; 2:mSystems00016-17. [PMID: 28744486 PMCID: PMC5513737 DOI: 10.1128/msystems.00016-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process. Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = −3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment. IMPORTANCE Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process.
Collapse
|
90
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
91
|
Luzzatto-Knaan T, Garg N, Wang M, Glukhov E, Peng Y, Ackermann G, Amir A, Duggan BM, Ryazanov S, Gerwick L, Knight R, Alexandrov T, Bandeira N, Gerwick WH, Dorrestein PC. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. eLife 2017; 6. [PMID: 28492366 PMCID: PMC5441867 DOI: 10.7554/elife.24214] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI:http://dx.doi.org/10.7554/eLife.24214.001 Cyanobacteria and algae are found in all oceans around the globe. Like plants, they can use sunlight as a source of energy in a process called photosynthesis. As a result, these organisms are important sources of oxygen and another vital nutrient called nitrogen for other marine organisms. Many of these organisms also produce a variety of other chemicals known as “natural products” to help them to survive in their environments. Some of these natural products have shown potential as medicinal drugs. The search for new chemicals with useful medicinal properties has led researchers to collect samples of algae and cyanobacteria from various locations around the world. An approach called mass spectrometry is often used to identify new chemicals because it can provide information about the structure of a molecule based on how much its fragments weigh. Luzzatto-Knaan et al. used mass spectrometry to search for new chemicals in samples of algae and cyanobacteria that had been collected by diving and snorkeling in a wide variety of tropical marine environments over several decades. The experiments reveal that the organisms in these samples produce a diverse range of chemicals, most of which were previously unknown and have not been found in other similar environmental collections. The data were grouped together into eight major collection areas covering different parts of the tropics. The samples from some areas contained a wider variety of chemicals than others. Within each collection area, some molecules were found to be very common whereas others were only present at specific locations. To highlight the distribution of these natural products, Luzzatto-Knaan et al. display the data on a world map. Further experiments used this approach as a guide to extract a previously unknown chemical called yuvalamide A from a marine cyanobacterium. The next challenge would be to associate the geographical patterns of chemicals to their potential ecological roles. This approach offers a new way to explore large-scale collections of environmental samples to discover and study new natural products. DOI:http://dx.doi.org/10.7554/eLife.24214.002
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | - Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | - Mingxun Wang
- Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Yao Peng
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, United States
| | - Gail Ackermann
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Amnon Amir
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Brendan M Duggan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | | | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nuno Bandeira
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - William H Gerwick
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| |
Collapse
|
92
|
Fox Ramos AE, Alcover C, Evanno L, Maciuk A, Litaudon M, Duplais C, Bernadat G, Gallard JF, Jullian JC, Mouray E, Grellier P, Loiseau PM, Pomel S, Poupon E, Champy P, Beniddir MA. Revisiting Previously Investigated Plants: A Molecular Networking-Based Study of Geissospermum laeve. JOURNAL OF NATURAL PRODUCTS 2017; 80:1007-1014. [PMID: 28282127 DOI: 10.1021/acs.jnatprod.6b01013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new monoterpene indole alkaloids (1-3) have been isolated from the bark of Geissospermum laeve, together with the known alkaloids (-)-leuconolam (4), geissolosimine (5), and geissospermine (6). The structures of 1-3 were elucidated by analysis of their HRMS and NMR spectroscopic data. The absolute configuration of geissolaevine (1) was deduced from the comparison of experimental and theoretically calculated ECD spectra. The isolation workflow was guided by a molecular networking-based dereplication strategy using an in-house database of monoterpene indole alkaloids. In addition, five known compounds previously undescribed in the Geissospermum genus were dereplicated from the G. laeve alkaloid extract network and were assigned with various levels of identification confidence. The antiparasitic activities against Plasmodium falciparum and Leishmania donovani as well as the cytotoxic activity against the MRC-5 cell line were determined for compounds 1-5.
Collapse
Affiliation(s)
- Alexander E Fox Ramos
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Charlotte Alcover
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Laurent Evanno
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Alexandre Maciuk
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay , 21 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Duplais
- CNRS, UMR8172 EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane , 23 Avenue Pasteur, 97300 Cayenne, France
| | - Guillaume Bernadat
- Équipe "Molécules Fluorées et Chimie Médicinale" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay , 21 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Christophe Jullian
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités, CP52 , 57 Rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités, CP52 , 57 Rue Cuvier, 75005 Paris, France
| | - Philippe M Loiseau
- Équipe "Chimiothérapie Antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Sébastien Pomel
- Équipe "Chimiothérapie Antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Erwan Poupon
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay , 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
93
|
Wakimoto T. Toward the Dark Matter of Natural Products. CHEM REC 2017; 17:1124-1134. [DOI: 10.1002/tcr.201700009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita 12, Nishi 6, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
94
|
Metcalf JL, Xu ZZ, Bouslimani A, Dorrestein P, Carter DO, Knight R. Microbiome Tools for Forensic Science. Trends Biotechnol 2017; 35:814-823. [PMID: 28366290 DOI: 10.1016/j.tibtech.2017.03.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Microbes are present at every crime scene and have been used as physical evidence for over a century. Advances in DNA sequencing and computational approaches have led to recent breakthroughs in the use of microbiome approaches for forensic science, particularly in the areas of estimating postmortem intervals (PMIs), locating clandestine graves, and obtaining soil and skin trace evidence. Low-cost, high-throughput technologies allow us to accumulate molecular data quickly and to apply sophisticated machine-learning algorithms, building generalizable predictive models that will be useful in the criminal justice system. In particular, integrating microbiome and metabolomic data has excellent potential to advance microbial forensics.
Collapse
Affiliation(s)
- Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Zhenjiang Z Xu
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Amina Bouslimani
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pieter Dorrestein
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David O Carter
- Laboratory of Forensic Taphonomy, Forensic Sciences Unit, Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
95
|
Singh M, Chaudhary S, Sareen D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product. J Biosci 2017; 42:175-187. [PMID: 28229977 DOI: 10.1007/s12038-017-9663-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.
Collapse
Affiliation(s)
- Mangal Singh
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
96
|
Abstract
The development in the strategies for elucidating the structures of natural products from 1916 to 2016 are reviewed revealing the transition from chemical to spectroscopic methods and using examples drawn from the chemistry of terpenoids and steroids.
Collapse
|
97
|
Secondary Metabolites from Polar Organisms. Mar Drugs 2017; 15:md15030028. [PMID: 28241505 PMCID: PMC5367009 DOI: 10.3390/md15030028] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 01/11/2023] Open
Abstract
Polar organisms have been found to develop unique defences against the extreme environment environment, leading to the biosynthesis of novel molecules with diverse bioactivities. This review covers the 219 novel natural products described since 2001, from the Arctic and the Antarctic microoganisms, lichen, moss and marine faunas. The structures of the new compounds and details of the source organism, along with any relevant biological activities are presented. Where reported, synthetic and biosynthetic studies on the polar metabolites have also been included.
Collapse
|
98
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
99
|
Chai Y, Wang L, Wang L. How does a CC double bond cleave in the gas phase? Fragmentation of protonated ketotifen in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1105-1110. [PMID: 27591732 DOI: 10.1002/jms.3843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
In the literature, it is reported that the protonated ketotifen mainly undergoes CC double bond cleavage in electrospray ionization tandem mass spectrometry (ESI-MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)-orbitrap). The mechanism of the generation of this product ion (m/z 96) through the CC double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two-step 1,2-hydride transfer and ion-neutral complex-mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI-MS/MS, and the fragmentation mechanism is suitable to explain other CC double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, PR China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lu Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lin Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
100
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|