51
|
Carota AG, Bonini A, Urban M, Poma N, Vivaldi FM, Tavanti A, Rossetti M, Rosati G, Merkoçi A, Di Francesco F. Low-cost inkjet-printed nanostructured biosensor based on CRISPR/Cas12a system for pathogen detection. Biosens Bioelectron 2024; 258:116340. [PMID: 38718633 DOI: 10.1016/j.bios.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.
Collapse
Affiliation(s)
- Angela Gilda Carota
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy.
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy
| | - Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
52
|
Hu X, Jiang L, Liu X, Chang H, Dong H, Yan J, Zhou X, Kong M. The diagnostic value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in critically ill patients with respiratory tract infections. Microbiol Spectr 2024; 12:e0045824. [PMID: 38916357 PMCID: PMC11302328 DOI: 10.1128/spectrum.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/18/2024] [Indexed: 06/26/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is an unbiased and rapid method for detecting pathogens. This study enrolled 145 suspected severe pneumonia patients who were admitted to the Affiliated Hospital of Jining Medical University. This study primarily aimed to determine the diagnostic performance of mNGS and conventional microbiological tests (CMTs) using bronchoalveolar lavage fluid samples for detecting pathogens. Our findings indicated that mNGS performed significantly higher sensitivity (97.54% vs 28.68%, P < 0.001), coincidence (90.34% vs 35.17%, P < 0.001), and negative predictive value (80.00% vs 13.21%, P < 0.001) but performed lower specificity than CMTs (52.17% vs 87.5%, P < 0.001). Streptococcus pneumoniae as the most common bacterial pathogen had the largest proportion (22.90%, 30/131) in this study. In addition to bacteria, fungi, and virus, mNGS can detect a variety of atypical pathogens such as Mycobacterium tuberculosis and non-tuberculous. Mixed infections were common in patients with severe pneumonia, and bacterial-fungal-viral-atypical pathogens were the most complicated infection. After adjustments of antibiotics based on mNGS and CMTs, the clinical manifestation improved in 139 (95.86%, 139/145) patients. Our data demonstrated that mNGS had significant advantage in diagnosing respiratory tract infections, especially atypical pathogens and fungal infections. Pathogens were detected timely and comprehensively, contributing to the adjustments of antibiotic treatments timely and accurately, improving patient prognosis and decreasing mortality potentially.IMPORTANCEMetagenomic next-generation sequencing using bronchoalveolar lavage fluid can provide more comprehensive and accurate pathogens for respiratory tract infections, especially when considering the previous usage of empirical antibiotics before admission or complicated clinical presentation. This technology is expected to play an important role in the precise application of antimicrobial drugs in the future.
Collapse
Affiliation(s)
- Xiaohang Hu
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Liqing Jiang
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Xiaowei Liu
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University,Jining Medical University, Shandong Jining, China
| | - Hong Chang
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Haixin Dong
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Jinyan Yan
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Xiaoya Zhou
- Medical Laboratory of Jining Medical University, Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Min Kong
- Medical Laboratory of Jining Medical University, Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Shandong Jining, China
| |
Collapse
|
53
|
Du J, Li Z, Liu K, Guo J, Bai Y. Colorimetric aptasensor for Listeria monocytogenes detection using dual functional Fe 3O 4@MIL-100(Fe) with magnetic separation and oxidase-like activities in food samples. Mikrochim Acta 2024; 191:504. [PMID: 39096325 DOI: 10.1007/s00604-024-06528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/05/2024]
Abstract
A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
| | - Zongshuang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Kai Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiangli Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China.
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
54
|
Liu B, Cao J, Hong B, You H, Li T, Yu Z, Li D, Liang B, Gan N. A microfluidic chip platform based on Pt nanozyme and magnetized phage composite probes for dual-mode detecting and imaging pathogenic bacteria viability. Talanta 2024; 275:126067. [PMID: 38640522 DOI: 10.1016/j.talanta.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.
Collapse
Affiliation(s)
- Bailu Liu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Jingya Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Binxin Hong
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Hang You
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Tianhua Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Dengfeng Li
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, China; Ningbo Fotile Kitchenware Co., Ltd., Ningbo, Zhejiang 315336, China.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| |
Collapse
|
55
|
Chen J, Zhu Y, Yuan Q. Predicting potential microbe-disease associations based on dual branch graph convolutional network. J Cell Mol Med 2024; 28:e18571. [PMID: 39086148 PMCID: PMC11291560 DOI: 10.1111/jcmm.18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Studying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time-consuming and costly nature of laboratory-based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe-disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe-disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine-tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five-fold cross-validation (5-fold-CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5-fold-CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe-disease associations.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Yongjun Zhu
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Qun Yuan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of NanjingUniversity Medical SchoolSuzhouChina
| |
Collapse
|
56
|
Wang C, Yang S, Liu Q, Liu H, Jin S, Zheng J, Xiao X, Hou X, Li J, Ma S, Cui L. Application of Second-Generation Sequencing Technology in Lower Respiratory Tract Infection. J Clin Lab Anal 2024; 38:e25090. [PMID: 39158216 PMCID: PMC11492342 DOI: 10.1002/jcla.25090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) has long been an important threat to people's life and health, so the rapid diagnosis of LRTI is of great significance in clinical treatment. In recent years, the development of the sequencing technology provides a new direction for the rapid diagnosis of LRTI. In this review, the advantages and disadvantages of second-generation sequencing techniques represented by metagenomics next-generation sequencing (mNGS) and droplet digital polymerase chain reaction (ddPCR) in LRTI were reviewed. Furthermore, it offers insights into the future trajectory of this technology, highlighting its potential to revolutionise the field of respiratory infection diagnostics. OBJECTIVE This review summarises developments in mechanistic research of second-generation sequencing technology their relationship with clinical practice, providing insights for future research. METHODS Authors conducted a search on PubMed and Web of Science using the professional terms 'Lower respiratory tract infection' and 'droplet digital polymerase chain reaction' and 'metagenomics next generation sequencing'. The obtained literature was then roughly categorised based on their research content. Similar studies were grouped into the same sections, and further searches were conducted based on the keywords of each section. RESULTS Different studies discussed the application of second-generation sequencing technology in LRTI from different angles, including the detection of pathogens of LRTI by mNGS and ddPCR, the prediction ability of drug-resistant bacteria, and comparison with traditional methods. We try to analyse the advantages and disadvantages of the second-generation sequencing technology by combing the research results of mNGS and ddPCR. In addition, the development direction of the second-generation sequencing technology is prospected.
Collapse
Affiliation(s)
- Chong Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qi Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shangjia Jin
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jiajia Zheng
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Xiumei Xiao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Xin Hou
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jing Li
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Sisi Ma
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Liyan Cui
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
57
|
Sakatoku A, Suzuki T, Hatano K, Seki M, Tanaka D, Nakamura S, Suzuki N, Isshiki T. Inhibitors of LAMP used to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease in Akoya pearl oysters, and additives to reduce the effect of the inhibitors. J Microbiol Methods 2024; 223:106986. [PMID: 38969181 DOI: 10.1016/j.mimet.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Black-spot shell disease is an unresolved disease that decreases pearl quality and threatens pearl oyster survival. In previous studies, the bacterium Tenacibaculum sp. strain Pbs-1 was isolated from diseased Akoya pearl oysters Pinctada fucata, and a rapid, specific, and sensitive loop-mediated isothermal amplification (LAMP) assay for detecting this pathogen was established. This technology has considerable potential for routine diagnosis of strain Pbs-1 in oyster hatcheries and/or pearl farms; therefore, it is vital to identify substances in environmental samples that might inhibit LAMP and to find additives that can reduce the inhibition. In this study, we investigated the effects of six chemicals or proteins, otherwise known as conventional PCR inhibitors, on LAMP, using the DNA of strain Pbs-1 as template: humic acid, urea, iron (III) chloride hexahydrate, melanin, myoglobin, and Ethylenediamine-N,N,N',N'-tetraacetic acid, disodium salt, dihydrate (EDTA; pH 6.5). Next, to reduce the effects of identified inhibitors, we tested the addition of bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to the LAMP assay. When 50 ng of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, and 10 mM of EDTA (pH 6.5) inhibited the LAMP reaction, whereas myoglobin, urea, and FeCl3 had no effect. When 50 pg of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, 4 μg/μL of myoglobin, 10 μg/μL of urea, and 10 mM of EDTA inhibited the LAMP reaction. Thus, it was shown that the gene-amplification inhibitory effect of melanin, humic acid, and urea could be reduced by adding BSA or gp32 to the LAMP reaction mixture. This technique could be applied as part of a protocol to prevent mass mortalities of pearl oysters; moreover, the results enhance our knowledge about substances that inhibit LAMP and methods to reduce the inhibition, which have rarely been reported.
Collapse
Affiliation(s)
- Akihiro Sakatoku
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan.
| | - Takaya Suzuki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Makoto Seki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Daisuke Tanaka
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Shogo Nakamura
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Tadashi Isshiki
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
58
|
Kang H, Lee J, Moon J, Lee T, Kim J, Jeong Y, Lim EK, Jung J, Jung Y, Lee SJ, Lee KG, Ryu S, Kang T. Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308317. [PMID: 38564785 DOI: 10.1002/smll.202308317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.
Collapse
Affiliation(s)
- Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeong Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Taegu Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Department of Energy Resources and Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
59
|
Zhang H, Lan J, Wang H, Lu R, Zhang N, He X, Yang J, Chen L. AlphaFold2 in biomedical research: facilitating the development of diagnostic strategies for disease. Front Mol Biosci 2024; 11:1414916. [PMID: 39139810 PMCID: PMC11319189 DOI: 10.3389/fmolb.2024.1414916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Proteins, as the primary executors of physiological activity, serve as a key factor in disease diagnosis and treatment. Research into their structures, functions, and interactions is essential to better understand disease mechanisms and potential therapies. DeepMind's AlphaFold2, a deep-learning protein structure prediction model, has proven to be remarkably accurate, and it is widely employed in various aspects of diagnostic research, such as the study of disease biomarkers, microorganism pathogenicity, antigen-antibody structures, and missense mutations. Thus, AlphaFold2 serves as an exceptional tool to bridge fundamental protein research with breakthroughs in disease diagnosis, developments in diagnostic strategies, and the design of novel therapeutic approaches and enhancements in precision medicine. This review outlines the architecture, highlights, and limitations of AlphaFold2, placing particular emphasis on its applications within diagnostic research grounded in disciplines such as immunology, biochemistry, molecular biology, and microbiology.
Collapse
Affiliation(s)
- Hong Zhang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jiajing Lan
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huijie Wang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ruijie Lu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Nanqi Zhang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaobai He
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Jun Yang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Linjie Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhejiang Engineering Research Centre for Key Technology of Diagnostic Testing, Hangzhou, China
| |
Collapse
|
60
|
Huang L, Zhang Y, Liu J, Zhang D, Li L. A Label-Free Fluorescent Amplification Strategy for High-Sensitive Detection of Pseudomonas aeruginosa based on Protective-EXPAR (p-EXPAR) and Catalytic Hairpin Assembly. J Microbiol Biotechnol 2024; 34:1544-1549. [PMID: 38956864 PMCID: PMC11294642 DOI: 10.4014/jmb.2405.05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
This study presents a fluorescent mechanism for two-step amplification by combining two widely used techniques, exponential amplification reaction (EXPAR) and catalytic hairpin assembly (CHA). Pseudomonas aeruginosa (P. aeruginosa) engaged in competition with the complementary DNA in order to attach to the aptamer that had been fixed on the magnetic beads. The unbound complementary strand in the liquid above was utilized as a trigger sequence to initiate the protective-EXPAR (p-EXPAR) process, resulting in the generation of a substantial quantity of short single-stranded DNA (ssDNA). The amplified ssDNA can initiate the second CHA amplification process, resulting in the generation of many double-stranded DNA (dsDNA) products. The CHA reaction was initiated by the target/trigger DNA, resulting in the release of G-quadruplex sequences. These sequences have the ability to bond with the fluorescent amyloid dye thioflavin T (ThT), generating fluorescence signals. The method employed in this study demonstrated a detection limit of 16 CFU/ml and exhibited a strong linear correlation within the concentration range of 50 CFU/ml to 105 CFU/ml. This method of signal amplification has been effectively utilized to create a fluorescent sensing platform without the need for labels, enabling the detection of P. aeruginosa with high sensitivity.
Collapse
Affiliation(s)
- Lu Huang
- Interventional Therapy Department, Changsha Fourth Hospital, Changsha, Hunan Province 410006, P.R. China
| | - Ye Zhang
- Cardiovascular Medicine Department, Changsha Fourth Hospital, Changsha, Hunan Province 410006, P.R. China
| | - Jie Liu
- Nursing Department, Changsha Fourth Hospital, Changsha, Hunan province 410006, P.R. China
| | - Dalin Zhang
- Cardiovascular Medicine Department, Changsha Fourth Hospital, Changsha, Hunan Province 410006, P.R. China
| | - Li Li
- Cardiovascular Medicine Department, Changsha Fourth Hospital, Changsha, Hunan Province 410006, P.R. China
| |
Collapse
|
61
|
Asif A, Chen JS, Hussain B, Hsu GJ, Rathod J, Huang SW, Wu CC, Hsu BM. The escalating threat of human-associated infectious bacteria in surface aquatic resources: Insights into prevalence, antibiotic resistance, survival mechanisms, detection, and prevention strategies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104371. [PMID: 38851127 DOI: 10.1016/j.jconhyd.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Anthropogenic activities and climate change profoundly impact water quality, leading to a concerning increase in the prevalence and abundance of bacterial pathogens across diverse aquatic environments. This rise has resulted in a growing challenge concerning the safety of water sources, particularly surface waters and marine environments. This comprehensive review delves into the multifaceted challenges presented by bacterial pathogens, emphasizing threads to human health within ground and surface waters, including marine ecosystems. The exploration encompasses the intricate survival mechanisms employed by bacterial pathogens and the proliferation of antimicrobial resistance, largely driven by human-generated antibiotic contamination in aquatic systems. The review further addresses prevalent pathogenic bacteria, elucidating associated risk factors, exploring their eco-physiology, and discussing the production of potent toxins. The spectrum of detection techniques, ranging from conventional to cutting-edge molecular approaches, is thoroughly examined to underscore their significance in identifying and understanding waterborne bacterial pathogens. A critical aspect highlighted in this review is the imperative for real-time monitoring of biomarkers associated with waterborne bacterial pathogens. This monitoring serves as an early warning system, facilitating the swift implementation of action plans to preserve and protect global water resources. In conclusion, this comprehensive review provides fresh insights and perspectives, emphasizing the paramount importance of preserving the quality of aquatic resources to safeguard human health on a global scale.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease and Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
62
|
Yang B, Wang Y, Yan X, Fen Q, Chi Y. Primer Exchange Reaction (PER)-Based Construction of Scaffold for Low-Speed Centrifugation-Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion. Appl Biochem Biotechnol 2024; 196:4038-4048. [PMID: 37819459 DOI: 10.1007/s12010-023-04742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Efficient isolation and sensitive quantification of Pseudomonas aeruginosa (P. aeruginosa) are crucial for identifying intrauterine infections and preventing the occurrence of intrauterine adhesion (IUA). However, traditional approaches, such as culture-based approach, are time-consuming. Herein, we constructed a detection scaffold by using primer exchange reaction (PER) that integrated the low-speed centrifugation-based isolation and sensitive quantification of target pathogenic bacteria. The established approach possesses several advantages, including (i) the approach is capable of simultaneous isolation and sensitive quantification of target bacteria; (ii) low-speed centrifugation or even manual equipment could be used to isolate target bacteria; and (iii) a low limit of detection was obtained as 54 cfu/mL. Based on this, the approach is a promising approach in analyzing P. aeruginosa from uterine secretions with IUA.
Collapse
Affiliation(s)
- Boping Yang
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Ying Wang
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Xiaohuan Yan
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Qian Fen
- Hospital-Acquired Infection Control Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, No. 120 Longshan Street, Yubei District, Chongqing, 400037, People's Republic of China.
| | - Yugang Chi
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
63
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
64
|
Shenbagavalli K, Suganya K, Sundaram E, Murugan M, Sivasamy Vasantha V. First organic fluorescence immunoassay for the detection of Enterobacter cloacae in food matrixes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3927-3937. [PMID: 38832637 DOI: 10.1039/d4ay00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
For the first time, a novel fluorescent moiety, 2-amino-4-(7-formyl-1,8-dihydropyren-2-yl)-7-hydroxy-4H-chromene-3-carbonitrile (ACC), was synthesized by an ultrasonication method. The synthesis of this moiety was confirmed via structural elucidation using FTIR and NMR spectroscopy techniques. Further, photophysical properties of the fluorescent moiety were tested using UV-visible and emission spectroscopy techniques. In this case, the moiety was tagged with an antibody of Enterobacter cloacae via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS) coupling and applied as a sensing element for the detection of Enterobacter cloacae (E. cloacae) by UV-visible and emission spectroscopy techniques. The developed fluorescent sensor detected E. cloacae via a FRET mechanism. Under optimized conditions, ACC-anti-E. cloacae detected E. cloacae in the linear range from 101 to 1010 CFU mL-1 with a limit of detection (LOD) of 10.55 CFU mL-1. The developed sensor was applied for the detection of E. cloacae in food samples such as orange, pomegranate, milk, rice, tomato, potato and onion.
Collapse
Affiliation(s)
- Kathiravan Shenbagavalli
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| | - Kannan Suganya
- Central Research Laboratory, Vinayaka Mission's,Medical College and Hospital, Vinayaka Mission's Research Foundation, Karaikal- 609609, India
| | - Ellairaja Sundaram
- Depatment of Chemistry, Vivekanada College, Tiruvedakam, West, Madurai- 625234, Tamilnadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Science, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| |
Collapse
|
65
|
Alves G, Ogurtsov AY, Porterfield H, Maity T, Jenkins LM, Sacks DB, Yu YK. Multiplexing the Identification of Microorganisms via Tandem Mass Tag Labeling Augmented by Interference Removal through a Novel Modification of the Expectation Maximization Algorithm. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1138-1155. [PMID: 38740383 PMCID: PMC11157548 DOI: 10.1021/jasms.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Having fast, accurate, and broad spectrum methods for the identification of microorganisms is of paramount importance to public health, research, and safety. Bottom-up mass spectrometer-based proteomics has emerged as an effective tool for the accurate identification of microorganisms from microbial isolates. However, one major hurdle that limits the deployment of this tool for routine clinical diagnosis, and other areas of research such as culturomics, is the instrument time required for the mass spectrometer to analyze a single sample, which can take ∼1 h per sample, when using mass spectrometers that are presently used in most institutes. To address this issue, in this study, we employed, for the first time, tandem mass tags (TMTs) in multiplex identifications of microorganisms from multiple TMT-labeled samples in one MS/MS experiment. A difficulty encountered when using TMT labeling is the presence of interference in the measured intensities of TMT reporter ions. To correct for interference, we employed in the proposed method a modified version of the expectation maximization (EM) algorithm that redistributes the signal from ion interference back to the correct TMT-labeled samples. We have evaluated the sensitivity and specificity of the proposed method using 94 MS/MS experiments (covering a broad range of protein concentration ratios across TMT-labeled channels and experimental parameters), containing a total of 1931 true positive TMT-labeled channels and 317 true negative TMT-labeled channels. The results of the evaluation show that the proposed method has an identification sensitivity of 93-97% and a specificity of 100% at the species level. Furthermore, as a proof of concept, using an in-house-generated data set composed of some of the most common urinary tract pathogens, we demonstrated that by using the proposed method the mass spectrometer time required per sample, using a 1 h LC-MS/MS run, can be reduced to 10 and 6 min when samples are labeled with TMT-6 and TMT-10, respectively. The proposed method can also be used along with Orbitrap mass spectrometers that have faster MS/MS acquisition rates, like the recently released Orbitrap Astral mass spectrometer, to further reduce the mass spectrometer time required per sample.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Y. Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Harry Porterfield
- Department
of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tapan Maity
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David B. Sacks
- Department
of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
66
|
Kosmeri C, Giapros V, Serbis A, Balomenou F, Baltogianni M. Antibiofilm Strategies in Neonatal and Pediatric Infections. Antibiotics (Basel) 2024; 13:509. [PMID: 38927176 PMCID: PMC11200539 DOI: 10.3390/antibiotics13060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm-related infections pose significant challenges in neonatal and pediatric care, contributing to increased morbidity and mortality rates. These complex microbial communities, comprising bacteria and fungi, exhibit resilience against antibiotics and host immune responses. Bacterial species such as Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis commonly form biofilms on medical devices, exacerbating infection risks. Neonates and children, particularly those in intensive care units, are highly susceptible to biofilm-associated infections due to the prolonged use of invasive devices, such as central lines and endotracheal tubes. Enteral feeding tubes, crucial for neonatal nutritional support, also serve as potential sites for biofilm formation, contributing to recurrent microbial contamination. Moreover, Candida species, including Candida pelliculosa, present emerging challenges in neonatal care, with multi-drug resistant strains posing treatment complexities. Current antimicrobial therapies, while important in managing infections, often fall short in eradicating biofilms, necessitating alternative strategies. The aim of this review is to summarize current knowledge regarding antibiofilm strategies in neonates and in children. Novel approaches focusing on biofilm inhibition and dispersal show promise, including surface modifications, matrix-degrading enzymes, and quorum-sensing inhibitors. Prudent use of medical devices and exploration of innovative antibiofilm therapies are imperative in mitigating neonatal and pediatric biofilm infections.
Collapse
Affiliation(s)
- Chrysoula Kosmeri
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece; (C.K.); (A.S.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| | - Anastasios Serbis
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece; (C.K.); (A.S.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| |
Collapse
|
67
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
68
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
69
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. BIOSENSORS 2024; 14:237. [PMID: 38785711 PMCID: PMC11117482 DOI: 10.3390/bios14050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| | - Carlos A. Mendiola-Escobedo
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| |
Collapse
|
70
|
Hussain M, He X, Wang C, Wang Y, Wang J, Chen M, Kang H, Yang N, Ni X, Li J, Zhou X, Liu B. Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. BIOMICROFLUIDICS 2024; 18:031505. [PMID: 38855476 PMCID: PMC11162289 DOI: 10.1063/5.0204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.
Collapse
Affiliation(s)
| | - Xu He
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chao Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichuan Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingyue Chen
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Xinye Ni
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213161, China
| | | | - Xiuping Zhou
- Department of Laboratory Medicine, The Peoples Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Nantong 226500, China
| | - Bin Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
71
|
Alvaro A, Piazza A, Papaleo S, Perini M, Pasala AR, Panelli S, Nardi T, Nodari R, Sterzi L, Pagani C, Merla C, Castelli D, Olivieri E, Bracco S, Ferrando ML, Saluzzo F, Rimoldi SG, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Comandatore F. Cultivation and sequencing-free protocol for Serratia marcescens detection and typing. iScience 2024; 27:109402. [PMID: 38510115 PMCID: PMC10952028 DOI: 10.1016/j.isci.2024.109402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Serratia marcescens is an opportunistic pathogen that survives in inhospitable environments causing large outbreaks, particularly in neonatal intensive care units (NICUs). Genomic studies revealed that most S. marcescens nosocomial infections are caused by a specific clone (here "Infectious clone"). Whole genome sequencing (WGS) is the only portable method able to identify this clone, but it requires days to obtain results. We present a cultivation-free hypervariable-locus melting typing (HLMT) protocol for the fast detection and typing of S. marcescens, with 100% detection capability on mixed samples and a limit of detection that can reach the 10 genome copies. The protocol was able to identify the S. marcescens infectious clone with 97% specificity and 96% sensitivity when compared to WGS, yielding typing results portable among laboratories. The protocol is a cost and time saving method for S. marcescens detection and typing for large environmental/clinical surveillance screenings, also in low-middle income countries.
Collapse
Affiliation(s)
- Alessandro Alvaro
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133 Milan, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
| | - Matteo Perini
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Ajay Ratan Pasala
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
- Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Innovation, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
| | - Tiago Nardi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
| | - Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
| | - Cristina Pagani
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Cristina Merla
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Daniele Castelli
- Microbiology Unit, Fondazione IRCCS San Gerardo, 20900 Monza, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 27100 Pavia, Italy
| | - Silvia Bracco
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100 Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 27100 Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
- Department of Paediatrics, Children’s Hospital "V. Buzzi", 20154 Milano, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
72
|
Mao JY, Li DK, Zhang D, Yang QW, Long Y, Cui N. Utility of paired plasma and drainage fluid mNGS in diagnosing acute intra-abdominal infections with sepsis. BMC Infect Dis 2024; 24:409. [PMID: 38632536 PMCID: PMC11022345 DOI: 10.1186/s12879-024-09320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) has been increasingly applied in sepsis. We aimed to evaluate the diagnostic and therapeutic utility of mNGS of paired plasma and peritoneal drainage (PD) fluid samples in comparison to culture-based microbiological tests (CMTs) among critically ill patients with suspected acute intra-abdominal infections (IAIs). METHODS We conducted a prospective study from October 2021 to December 2022 enrolling septic patients with suspected IAIs (n = 111). Pairwise CMTs and mNGS of plasma and PD fluid were sent for pathogen detection. The mNGS group underwent therapeutic regimen adjustment based on mNGS results for better treatment. The microbial community structure, clinical features, antibiotic use and prognoses of the patients were analyzed. RESULTS Higher positivity rates were observed with mNGS versus CMTs for both PD fluid (90.0% vs. 48.3%, p < 0.005) and plasma (76.7% vs. 1.6%, p < 0.005). 90% of enrolled patients had clues of suspected pathogens combining mNGS and CMT methods. Gram-negative pathogens consist of most intra-abdominal pathogens, including a great variety of anaerobes represented by Bacteroides and Clostridium. Patients with matched plasma- and PD-mNGS results had higher mortality and sepsis severity. Reduced usage of carbapenem (30.0% vs. 49.4%, p < 0.05) and duration of anti-MRSA treatment (5.1 ± 3.3 vs. 7.0 ± 8.4 days, p < 0.05) was shown in the mNGS group in our study. CONCLUSIONS Pairwise plasma and PD fluid mNGS improves microbiological diagnosis compared to CMTs for acute IAI. Combining plasma and PD mNGS could predict poor prognosis. mNGS may enable optimize empirical antibiotic use.
Collapse
Affiliation(s)
- Jia-Yu Mao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Dong-Kai Li
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qi-Wen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China.
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
73
|
Fan C, He N, Yuan J. Cascaded amplifying circuit enables sensitive detection of fungal pathogens. Biosens Bioelectron 2024; 250:116058. [PMID: 38281368 DOI: 10.1016/j.bios.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
The rapid and accurate detection of fungal pathogens is of utmost importance in the fields of healthcare, food safety, and environmental monitoring. In this study, we implemented a cascaded amplifying circuit in Saccharomyces cerevisiae to improve the G protein-coupled receptor (GPCR) mediated fungal detection. The GPCR signaling pathway was coupled with the galactose-regulated (GAL) system and a positive feedback loop was implemented to enhance the performance of yeast biosensor. We systematically compared four generations of biosensors for detecting the mating pheromone of Candida albicans, and the best biosensor exhibited the limit of detection (LOD) as low as 0.25 pM and the limit of quantification (LOQ) of 1 pM after 2 h incubation. Subsequently, we developed a betaxanthin-based colorimetric module for the easy visualization of signal outputs, and the resulting biosensors can give reliable naked-eye readouts. In summary, we demonstrated that cascaded amplifying circuits could substantially improve the engineered yeast biosensors with a better sensitivity and signal output magnitude, which will pave the way for their real-world applications in public health.
Collapse
Affiliation(s)
- Cong Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Nike He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China; Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
74
|
Zhang Z, Du M, Cheng X, Dou X, Zhou J, Wu J, Xie X, Zhu M. A disposable paper-based electrochemical biosensor decorated by electrospun cellulose acetate nanofibers for highly sensitive bio-detection. Analyst 2024; 149:2436-2444. [PMID: 38498083 DOI: 10.1039/d4an00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 μmol mL-1, 100 fg mL-1-10 μg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Manman Du
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiao Cheng
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Xuechen Dou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Junting Zhou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jianguo Wu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xinwu Xie
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Mengfu Zhu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
75
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Manipulating the insulating post arrangement in DC-biased AC-iEK devices to improve microparticle separations. Analyst 2024; 149:2469-2479. [PMID: 38516870 DOI: 10.1039/d3an02160b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
There is a growing interest in the advancement of microscale electrokinetic (EK) systems for biomedical and clinical applications, as these systems offer attractive characteristics such as portability, robustness, low sample requirements and short response time. The present work is focused on manipulating the characteristics of the insulating post arrangement in insulator-based EK (iEK) systems for separating a binary mixture of spherical microparticles with same diameter (5.1 μm), same shape, made from the same substrate material and only differing in their zeta potential by ∼14 mV. This study presents a combination of mathematical modeling and experimental separations performed by applying a low-frequency alternating current (AC) voltage in iEK systems with 12 distinct post arrangements. These iEK devices were used to systematically study the effect of three spatial characteristics of the insulating post array on particle separations: the horizontal separation and the vertical separation between posts, and introducing an offset to the posts arrangement. Through normalization of the spatial separation between the insulating posts with respect to particle diameter, guidelines to improve separation resolution for different particle mixtures possessing similar characteristics were successfully identified. The results indicated that by carefully designing the spatial arrangement of the post array, separation resolution values in the range of 1.4-2.8 can be obtained, illustrating the importance and effect of the arrangement of insulating posts on improving particle separations. This study demonstrates that iEK devices, with effectively designed spatial arrangement of the insulating post arrays, have the capabilities to perform discriminatory separations of microparticles of similar characteristics.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York, 14623, USA.
| | | | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York, 14623, USA.
| |
Collapse
|
76
|
Włodarczyk R, Drzewińska-Chańko J, Kamiński M, Meissner W, Rapczyński J, Janik-Superson K, Krawczyk D, Strapagiel D, Ożarowska A, Stępniewska K, Minias P. Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds. FEMS Microbiol Ecol 2024; 100:fiae040. [PMID: 38515294 PMCID: PMC11008731 DOI: 10.1093/femsec/fiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Joanna Drzewińska-Chańko
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Maciej Kamiński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Jan Rapczyński
- Forestry Student Scientific Association, Ornithological Section, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland
| | - Katarzyna Janik-Superson
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Dawid Krawczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland
| | - Dominik Strapagiel
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Katarzyna Stępniewska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
77
|
Vaghef-Koodehi A, Cyr P, Lapizco-Encinas BH. Improving device design in insulator-based electrokinetic tertiary separations. J Chromatogr A 2024; 1722:464853. [PMID: 38579611 DOI: 10.1016/j.chroma.2024.464853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study presents a methodology for designing effective insulator-based electrokinetic (iEK) systems for separating tertiary microparticle samples, which can be extended to more complex samples. First, 144 distinct iEK microchannel designs were built considering different shapes and arrangements of the insulating posts. Second, a mathematical model was developed with COMSOL software to predict the retention time of each particle type in the microchannel, this allowed identifying the best channel designs for two distinct types of separations: charge-based and sized-based. Third, the experimental charge-based and size-based separations of the tertiary microparticle mixtures were performed employing the improved designs identified with COMSOL modeling. The experimental results demonstrated successful separation in terms of separation resolution and good agreement with COMSOL predictions. The findings from this study show that the proposed method for device design, which combines mathematical modeling with varying post shape and post arrangement is an effective approach for identifying iEK systems capable of separating complex microparticle samples.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Patricia Cyr
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States.
| |
Collapse
|
78
|
Balser S, Röhrl M, Spormann C, Lindhorst TK, Terfort A. Selective Quantification of Bacteria in Mixtures by Using Glycosylated Polypyrrole/Hydrogel Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14243-14251. [PMID: 38442898 PMCID: PMC10959108 DOI: 10.1021/acsami.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Here, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system. The basic concept of the sensor exploits the highly selective binding of carbohydrates by certain harmful bacteria, as bacterial adhesion and infection are a major threat to human health, and thus, a sensitive and selective detection of the respective bacteria by portable devices is highly desirable. To demonstrate the selectivity, two strains of Escherichia coli were selected. The first strain carries type 1 fimbriae, terminated by a lectin called FimH, which recognizes α-d-mannopyranosides, which is a carbohydrate that is commonly found on endothelial cells. The otherE. coli strain was of a strain that lacked this particular lectin. It could be demonstrated that hybrid nanolayer systems containing a very thin carbohydrate top layer (2 nm) show the highest discrimination (factor 80) between the different strains. Using electrochemical impedance spectroscopy, it was possible to quantify in vivo the type 1-fimbriated E. coli down to an optical density of OD600 = 0.0004 with a theoretical limit of 0.00005. Surprisingly, the selectivity and sensitivity of the sensing remained the same even in the presence of a large excess of nonbinding bacteria, making the system useful for the rapid and selective detection of pathogens in complex matrices. As the presented covalent nanolayer system is modularly built, it opens the opportunity to develop a broad band of mobile sensing devices suitable for various field applications such as bedside diagnostics or monitoring for bacterial contamination, e.g., in bioreactors.
Collapse
Affiliation(s)
- Sebastian Balser
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Röhrl
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Carina Spormann
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Andreas Terfort
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
79
|
Pang L, Wang L, Liang Y, Wang Z, Zhang W, Zhao Q, Yang X, Jiang Y. G-triplex/hemin DNAzyme mediated colorimetric aptasensor for Escherichia coli O157:H7 detection based on exonuclease III-assisted amplification and aptamers-functionalized magnetic beads. Talanta 2024; 269:125457. [PMID: 38039678 DOI: 10.1016/j.talanta.2023.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling'e Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yaqi Liang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
80
|
Chiang J, Robertson J, McGoverin CM, Swift S, Vanholsbeeck F. Rapid detection of viable microbes with 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride and 5(6)-carboxyfluorescein diacetate using a fibre fluorescence spectroscopy system. J Appl Microbiol 2024; 135:lxae047. [PMID: 38383865 DOI: 10.1093/jambio/lxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer. METHODS AND RESULTS Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1. There was no correlation with concentration for Gram-positive bacteria; however, the information in the CTC and CFDA spectra shows the potential to distinguish Gram-negative cells from Gram-positive cells, although it may simply reflect the overall bacterial metabolic activity under staining conditions from this study. CONCLUSIONS The limit of detection (LoD) is too high in the dip-probe approach for analysis; however, the development of an approach measuring the fluorescence of single cells may improve this limitation. The development of new bacteria-specific fluorogenic dyes may also address this limitation. The ability to differentiate bacteria using these dyes may add value to measurements made to enumerate bacteria using CTC and CFDA.
Collapse
Affiliation(s)
- Jessica Chiang
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
| | - Cushla M McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
81
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
82
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
83
|
Xiao Y, Luo S, Qiu J, Zhang Y, Liu W, Zhao Y, Zhu Y, Deng Y, Lu M, Liu S, Lin Y, Huang A, Wang W, Hu X, Gu B. Highly sensitive SERS platform for pathogen analysis by cyclic DNA nanostructure@AuNP tags and cascade primer exchange reaction. J Nanobiotechnology 2024; 22:75. [PMID: 38408974 PMCID: PMC10895721 DOI: 10.1186/s12951-024-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.
Collapse
Affiliation(s)
- Yunju Xiao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
| | - Jiuxiang Qiu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510515, People's Republic of China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weijiang Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - YiTong Zhu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yangxi Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Mengdi Lu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Suling Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yong Lin
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Aiwei Huang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Wen Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
84
|
Inomata T, Endo S, Ido H, Miyamoto M, Ichikawa H, Sugita R, Ozawa T, Masuda H. Detection of Microorganisms Using Artificial Siderophore-Fe III Complex-Modified Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2632-2645. [PMID: 38252152 DOI: 10.1021/acs.langmuir.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masakazu Miyamoto
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ichikawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ririka Sugita
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
85
|
Lin Q, Yao Y, Li X, Zhang S, Guo H, Ma X, Chen W, Ru C, Wang L, Wang B, Ma Q, Zhu J, Lin X, Chen Q, Lou H, Chen Q, Chen J, Zeng Z, Zhou J, Chen Y, Yu Y, Zhou H. The application of nanopore targeted sequencing for pathogen diagnosis in bronchoalveolar lavage fluid of patients with pneumonia: a prospective multicenter study. Infect Dis (Lond) 2024; 56:128-137. [PMID: 37934028 DOI: 10.1080/23744235.2023.2276785] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To evaluate the value of nanopore targeted sequencing in diagnosing pneumonia pathogens. METHODS This large-scale multicentre prospective study performed in 8 hospitals across China from April to October 2022. Hospitalised patients with a diagnosis of pneumonia at admission were included. Complete clinical data were collected, and bronchoalveolar lavage fluid were obtained from each patient. These samples underwent simultaneous testing using conventional microbial testing, metagenomic next-generation sequencing, and nanopore targeted sequencing. RESULTS A total of 218 patients were included. Among the 168 cases of pulmonary infection, 246 strains of pathogens were confirmed. Nanopore targeted sequencing outperformed conventional microbial testing, identifying more pathogens with a sensitivity increase of 47.9% (77.2% vs. 29.3%). Metagenomic next-generation sequencing had a sensitivity of 82.9%. Total of 70.1% patients had consistent results in both metagenomic next-generation sequencing and nanopore targeted sequencing. Nanopore targeted sequencing exhibited significantly higher sensitivity in detecting Pneumocystis jiroveci, cytomegalovirus, Mycobacterium tuberculosis, Nontuberculous mycobacteria, Streptococcus pneumoniae, and Mycoplasma pneumoniae compared to conventional microbial testing. However, metagenomic next-generation sequencing demonstrated higher sensitivity than nanopore targeted sequencing for Aspergillus (88.5% vs. 53.8%). Regarding the detection of co-infections, nanopore targeted sequencing displayed significantly higher sensitivity than conventional microbial testing (76.7% vs. 28.7%) and was on par with metagenomic next-generation sequencing (76.7% vs. 82.9%). CONCLUSION Nanopore targeted sequencing performs equally well as metagenomic next-generation sequencing in bronchoalveolar lavage fluid for pathogen diagnosis in pneumonia, both methods showing higher sensitivity than conventional microbial testing. Nanopore targeted sequencing can be considered a reliable method for diagnosing pathogens in pneumonia.
Collapse
Affiliation(s)
- Qinqing Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Yake Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shanshan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Respiratory and Critical Care Medicine, Beilun People's Hospital, Ningbo, China
| | - Huimin Guo
- Zhejiang Digena Diagnosis Technology CO., Ltd., Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Xiaolong Ma
- Department of Respiratory and Critical Care Medicine, The First Hospital of JiaXing, JiaXing, China
| | - Wenyu Chen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Chuhui Ru
- Department of Respiratory and Critical Care Medicine, Red Cross Society Hospital of Hangzhou, Hangzhou, China
| | - Limin Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Huzhou, China
| | - Qiang Ma
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yuhang District, Hangzhou, China
| | - Junfei Zhu
- Department of Respiratory and Critical Care Medicine, Taizhou Central Hospital, Taizhou, China
| | - Xuemei Lin
- Department of Respiratory and Critical Care Medicine, Jiangshan People's Hospital, Quzhou, China
| | - Qi Chen
- Zhejiang Digena Diagnosis Technology CO., Ltd., Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Hui Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhu Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Chen
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
86
|
Dicle Y, Karamese M. Biosensors for the detection of pathogenic bacteria: current status and future perspectives. Future Microbiol 2024; 19:281-291. [PMID: 38305241 DOI: 10.2217/fmb-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pathogenic microorganisms pose significant threats to human health, food safety and environmental integrity. Rapid and accurate detection of these pathogens is essential to mitigate their impact. Fast, sensitive detection methods such as biosensors also play a critical role in preventing outbreaks and controlling their spread. In recent years, biosensors have emerged as a revolutionary technology for pathogen detection. This review aims to present the current developments in biosensor technology, investigate the methods by which these developments are used in the detection of pathogenic bacteria and highlight future perspectives on the subject.
Collapse
Affiliation(s)
- Yalcin Dicle
- Department of Medical Microbiology, Mardin Artuklu University, Faculty of Medicine, Mardin, 47200, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| |
Collapse
|
87
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
88
|
Ji S, Xiao S, Xia Z, Chinese Burn Association Tissue Repair of Burns and Trauma Committee, Cross-Straits Medicine Exchange Association of China. Consensus on the treatment of second-degree burn wounds (2024 edition). BURNS & TRAUMA 2024; 12:tkad061. [PMID: 38343901 PMCID: PMC10858447 DOI: 10.1093/burnst/tkad061] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 02/21/2024]
Abstract
Second-degree burns are the most common type of burn in clinical practice and hard to manage. Their treatment requires not only a consideration of the different outcomes that may arise from the dressing changes or surgical therapies themselves but also an evaluation of factors such as the burn site, patient age and burn area. Meanwhile, special attention should be given to the fact that there is no unified standard or specification for the diagnosis, classification, surgical procedure, and infection diagnosis and grading of second-degree burn wounds. This not only poses great challenges to the formulation of clinical treatment plans but also significantly affects the consistency of clinical studies. Moreover, currently, there are relatively few guidelines or expert consensus for the management of second-degree burn wounds, and no comprehensive and systematic guidelines or specifications for the treatment of second-degree burns have been formed. Therefore, we developed the Consensus on the Treatment of Second-Degree Burn Wounds (2024 edition), based on evidence-based medicine and expert opinion. This consensus provides specific recommendations on prehospital first aid, nonsurgical treatment, surgical treatment and infection treatment for second-degree burns. The current consensus generated a total of 58 recommendations, aiming to form a standardized clinical treatment plan.
Collapse
Affiliation(s)
- Shizhao Ji
- Correspondence: Shizhao Ji, ; Shichu Xiao, ; Zhaofan Xia,
| | - Shichu Xiao
- Correspondence: Shizhao Ji, ; Shichu Xiao, ; Zhaofan Xia,
| | - Zhaofan Xia
- Correspondence: Shizhao Ji, ; Shichu Xiao, ; Zhaofan Xia,
| | | |
Collapse
|
89
|
Zhang L, Liu J, Qin K, Wu C, Ma H, Zhou L. Evaluation of a novel lysis-based sample processing method to optimize Vibrio vulnificus detecting by loop-mediated isothermal amplification assay. BMC Microbiol 2024; 24:37. [PMID: 38279108 PMCID: PMC10821308 DOI: 10.1186/s12866-024-03186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Vibrio vulnificus exists as one of the most serious foodborne pathogens for humans, and rapid and sensitive detection methods are needed to control its infections. As an emerging method, The Loop-Mediated Isothermal Amplification (LAMP) assay has been applied to the early detection of various foodborne pathogens due to its high efficiency, but sample preprocessing still prolongs the complete detection. To optimize the detection process, our study established a novel sample preprocessing method that was more efficient compared to common methods. RESULT Using V. vulnificus as the detecting pathogen, the water-lysis-based detecting LAMP method shortened the preprocessing time to ≤ 1 min with 100% LAMP specificity; the detection limits of the LAMP assay were decreased to 1.20 × 102 CFU/mL and 1.47 × 103 CFU/g in pure culture and in oyster, respectively. Furthermore, the 100% LAMP specificity and high sensitivity of the water-lysis method were also obtained on detecting V. parahaemolyticus, V. alginolyticus, and P. mirabilis, revealing its excellent LAMP adaption with improvement in sensitivity and efficiency. CONCLUSION Our study provided a novel LAMP preprocessing method that was more efficient compared to common methods and possessed the practical potential for LAMP application in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Central Laboratory, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianfei Liu
- Central Laboratory, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Kewei Qin
- Central Laboratory, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chenglin Wu
- Central Laboratory, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Hui Ma
- The Nursing Department of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lijun Zhou
- Central Laboratory, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
90
|
Hastman DA, Hooe S, Chiriboga M, Díaz SA, Susumu K, Stewart MH, Green CM, Hildebrandt N, Medintz IL. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sens 2024; 9:157-170. [PMID: 38160434 DOI: 10.1021/acssensors.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
- American Society for Engineering Education, Washington ,District of Columbia20036, United States
| | - Shelby Hooe
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Matthew Chiriboga
- Northrop Grumman Corporation, Mission Systems, Baltimore, Maryland, 21240, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| |
Collapse
|
91
|
Córdova-Espinoza MG, González-Vázquez R, Barron-Fattel RR, Gónzalez-Vázquez R, Vargas-Hernández MA, Albores-Méndez EM, Esquivel-Campos AL, Mendoza-Pérez F, Mayorga-Reyes L, Gutiérrez-Nava MA, Medina-Quero K, Escamilla-Gutiérrez A. Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification. Int J Mol Sci 2024; 25:1257. [PMID: 38279257 PMCID: PMC10817072 DOI: 10.3390/ijms25021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rosa González-Vázquez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rolando Rafik Barron-Fattel
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
| | - Raquel Gónzalez-Vázquez
- Laboratory of Biotechnology, Department of Biological Systems, Metropolitana Campus Xochimilco, CONAHCYT—Universidad Autonoma, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico;
| | - Marco Antonio Vargas-Hernández
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exsal Manuel Albores-Méndez
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Ana Laura Esquivel-Campos
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Felipe Mendoza-Pérez
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Lino Mayorga-Reyes
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - María Angélica Gutiérrez-Nava
- Laboratory of Microbial Ecology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, Mexico City 04960, Mexico;
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
| | - Alejandro Escamilla-Gutiérrez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Microbiology Laboratory, Hospital General “Dr. Gaudencio González Garza”, National Medical Center La Raza, Mexico City 02990, Mexico
| |
Collapse
|
92
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
93
|
Endo S, Ozawa T, Inomata T, Masuda H. [Microorganism Immobilization Device Using Artificial Siderophores]. YAKUGAKU ZASSHI 2024; 144:643-650. [PMID: 38825473 DOI: 10.1248/yakushi.23-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.
Collapse
Affiliation(s)
- Suguru Endo
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiro Ozawa
- Graduate School of Engineering, Nagoya Institute of Technology
| | | | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology
- Faculty of Engineering, Aichi Institute of Technology
| |
Collapse
|
94
|
Zhao T, Shen Z, Zhong P, Zou H, Han M. Detection and prediction of pathogenic microorganisms in aquaculture (Zhejiang Province, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8210-8222. [PMID: 38175512 DOI: 10.1007/s11356-023-31612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The detection and prediction of pathogenic microorganisms play a crucial role in the sustainable development of the aquaculture industry. Currently, researchers mainly focus on the prediction of water quality parameters such as dissolved oxygen for early warning. To provide early warning directly from the pathogenic source, this study proposes an innovative approach for the detection and prediction of pathogenic microorganisms based on yellow croaker aquaculture. Specifically, a method based on quantitative polymerase chain reaction (qPCR) is designed to detect the Cryptocaryon irritans (Cri) pathogenic microorganisms. Furthermore, we design a predictive combination model for small samples and high noise data to achieve early warning. After performing wavelet analysis to denoise the data, two data augmentation strategies are used to expand the dataset and then combined with the BP neural network (BPNN) to build the fusion prediction model. To ensure the stability of the detection method, we conduct repeatability and sensitivity tests on the designed qPCR detection technique. To verify the validity of the model, we compare the combined BPNN to long short-term memory (LSTM). The experimental results show that the qPCR method provides accurate quantitative measurement of Cri pathogenic microorganisms, and the combined model achieves a good level. The prediction model demonstrates higher accuracy in predicting Cri pathogenic microorganisms compared to the LSTM method, with evaluation indicators including mean absolute error (MAE), recall rate, and accuracy rate. Especially, the accuracy of early warning is increased by 54.02%.
Collapse
Affiliation(s)
- Tong Zhao
- College of Information and Electrical Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, 100083, China
| | - Zhencai Shen
- College of Science, China Agricultural University, Beijing, 100083, China
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, 100083, China
| | - Ping Zhong
- College of Information and Electrical Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
- College of Science, China Agricultural University, Beijing, 100083, China
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, 100083, China
| | - Hui Zou
- College of Science, China Agricultural University, Beijing, 100083, China.
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, 100083, China.
| | - Mingming Han
- Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, China
| |
Collapse
|
95
|
Bruno A, Tripodi F, Armanni A, Barbieri L, Colombo A, Fumagalli S, Moukham H, Tomaino G, Kukushkina E, Lorenzi R, Marchesi L, Monguzzi A, Paleari A, Ronchi A, Secchi V, Sironi L, Colombo M. Advancements in nanosensors for detecting pathogens in healthcare environments. ENVIRONMENTAL SCIENCE: NANO 2024; 11:4449-4474. [DOI: 10.1039/d4en00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ESKAPEE pathogens: where we can find them in hospital environments and how to detect them through nanotechnologies devices.
Collapse
Affiliation(s)
- Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alice Armanni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sara Fumagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Tomaino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Letizia Marchesi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Alberto Paleari
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Ronchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Sironi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
96
|
Su J, Zheng W. Dual-Toehold-Probe-Mediated Exonuclease-III-Assisted Signal Recycles Integrated with CHA for Detection of mecA Gene Using a Personal Glucose Meter in Skin and Soft Tissue Infection. J Microbiol Biotechnol 2023; 33:1692-1697. [PMID: 37734933 PMCID: PMC10772588 DOI: 10.4014/jmb.2306.06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
Staphylococcus aureus integrated with mecA gene, which codes for penicillin-binding protein 2a, is resistant to all penicillins and other beta-lactam antibiotics, resulting in poor treatment expectations in skin and soft tissue infections. The development of a simple, sensitive and portable biosensor for mecA gene analysis in S. aureus is urgently needed. Herein, we propose a dual-toehold-probe (sensing probe)-mediated exonuclease-III (Exo-III)-assisted signal recycling for portable detection of the mecA gene in S. aureus. When the target mecA gene is present, it hybridizes with the sensing probe, initiating Exo III-assisted dual signal recycles, which in turn release numerous "3" sequences. The released "3" sequences initiate catalytic hairpin amplification, resulting in the fixation of a sucrase-labeled H2 probe on the surface of magnetic beads (MBs). After magnet-based enrichment of an MB-H1-H2-sucrase complex and removal of a liquid supernatant containing free sucrase, the complex is then used to catalyze sucrose to glucose, which can be quantitatively detected by a personal glucose meter. With a limit of detection of 4.36 fM for mecA gene, the developed strategy exhibits high sensitivity. In addition, good selectivity and anti-interference capability were also attained with this method, making it promising for antibiotic tolerance analysis at the point-of-care.
Collapse
Affiliation(s)
- Jiaguang Su
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
97
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials. MICROMACHINES 2023; 14:2239. [PMID: 38138408 PMCID: PMC10745336 DOI: 10.3390/mi14122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
There is a rising need for rapid and reliable analytical methods for separating microorganisms in clinical and biomedical applications. Microscale-insulator-based electrokinetic (iEK) systems have proven to be robust platforms for assessing a wide variety of microorganisms. Traditionally, iEK systems are usually stimulated with direct-current (DC) potentials. This work presents a comparison between using DC potentials and using DC-biased alternating-current (AC) potentials in iEK systems for the separation of microorganisms. The present study, which includes mathematical modeling and experimentation, compares the separation of bacterial and yeast cells in two distinct modes by using DC and DC-biased AC potentials. The quality of both separations, assessed in terms of separation resolution (Rs), showed a complete separation (Rs = 1.51) with the application of a DC-biased low-frequency AC signal but an incomplete separation (Rs = 0.55) with the application of an RMS-equivalent DC signal. Good reproducibility between experimental repetitions (<10%) was obtained, and good agreement (~18% deviation) was observed between modeling and experimental retention times. The present study demonstrates the potential of extending the limits of iEK systems by employing DC-biased AC potentials to perform discriminatory separations of microorganisms that are difficult to separate with the application of DC potentials.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| | | | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| |
Collapse
|
98
|
Zhang G, Huang Z, Hu L, Wang Y, Deng S, Liu D, Peng J, Lai W. Molecular Engineering Powered Dual-Readout Point-of-Care Testing for Sensitive Detection of Escherichia coli O157:H7. ACS NANO 2023; 17:23723-23731. [PMID: 38009547 DOI: 10.1021/acsnano.3c07509] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) has become one of the major threats to public health and food safety. However, the culture method as a gold standard for the detection of E. coli O157:H7 requires laborious operations and a long processing time. Herein, we developed a dual-readout aggregation-induced emission nanoparticle-based lateral flow immunoassay (LFIA) for sensitive detection of E. coli O157:H7 to achieve a qualitative and quantitative assay for satisfying the applications under varying scenarios. 2,3-Bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)fumaronitrile (BAPF), an aggregation-induced emission luminogen, was designed to achieve a strong molar extinction coefficient (3.0 × 104 M-1 cm-1) and high quantum yield (33.28%), which was further verified by a large rotation angle and low energy gap. Subsequently, BAPFs were integrated into a nanostructured system to form excellent water-soluble nanoparticles (BAPFNPs) for the detection of E. coli O157:H7 with colorimetric and fluorescent readout. The designed BAPFNPs-based LFIA (BAPFNPs-LFIA) exhibited nearly qualitative ability with gold nanoparticles-LFIA (AuNPs-LFIA) and a 9 times enhancement compared with quantum beads-LFIA (QBs-LFIA) in quantitative aspect. Especially, FL-BAPFNPs-LFIA could detect E. coli O157:H7 earlier than QBs-LFIA and AuNPs-LFIA when samples with low E. coli O157:H7 concentrations were cultured. Overall, the proposed strategy revealed that versatile BAPFNPs have great potential as reporters for dual-readout ability and enhancing detection sensitivity for rapid and accurate pathogenic bacteria assay.
Collapse
Affiliation(s)
- Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Zhen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Liwen Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Yumeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, 330096 Nanchang, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| |
Collapse
|
99
|
Shen C, Wang T, Yang K, Zhong L, Liu B. Ultrasensitive detection of genetic variation based on dual signal amplification assisted by isothermal amplification and cobalt oxyhydroxide nanosheets/quantum dots. Mikrochim Acta 2023; 191:12. [PMID: 38063936 DOI: 10.1007/s00604-023-06097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
PML/RARα fusion gene (P/R) is the characteristic signature genetic variation of acute promyelocytic leukemia (APL). Here, by integrating triple-stranded DNA hybridization-triggered strand displacement amplification (tri-HT SDA) and cobalt oxyhydroxide nanosheets/quantum dots (CoOOH/QD)-based amplification, we constructed a novel biosensor of easy-operating, time-saving and high sensitivity for detecting P/R to meet clinical needs. Owing to the specific recognition and efficient amplification of tri-HT SDA as well as impressive anti-interference and considerable amplification of CoOOH/QD, this biosensor demonstrated a wide dynamic range (10 fM to 10 nM) with a low limit of detection (5.50 fM) in P/R detection. Additionally, this biosensor could detect P/R spiked into human serum with good recoveries and relative standard deviation (RSD), thus potentially exhibiting ultrasensitive and specific nuclear acid sequence detection ability in clinical diagnosis owing to combing isothermal amplification and nanomaterials.
Collapse
Affiliation(s)
- Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Tong Wang
- Clinical Laboratory of the Fourth People's Hospital of Chengdu, Chengdu, 610036, Sichuan, China
| | - Ke Yang
- Department of Laboratory Medicine, Chengdu Shangjin Nanfu Hospital, Chengdu, 611743, Sichuan, China
| | - Liang Zhong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
100
|
Rekadwad BN, Pramod N, Rao MPN, Hashem A, Avila-Quezada GD, Abd_Allah EF. Identification and specificity validation of unique and antimicrobial resistance genes to trace suspected pathogenic AMR bacteria and to monitor the development of AMR in non-AMR strains in the environment and clinical settings. Saudi J Biol Sci 2023; 30:103869. [PMID: 38058762 PMCID: PMC10696110 DOI: 10.1016/j.sjbs.2023.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
The detection of developing antimicrobial resistance (AMR) has become a global issue. The detection of developing antimicrobial resistance has become a global issue. The growing number of AMR bacteria poses a new threat to public health. Therefore, a less laborious and quick confirmatory test becomes important for further investigations into developing AMR in the environment and in clinical settings. This study aims to present a comprehensive analysis and validation of unique and antimicrobial-resistant strains from the WHO priority list of antimicrobial-resistant bacteria and previously reported AMR strains such as Acinetobacter baumannii, Aeromonas spp., Anaeromonas frigoriresistens, Anaeromonas gelatinfytica, Bacillus spp., Campylobacter jejuni subsp. jejuni, Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumonia subsp. pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Typhimurium, Thermanaeromonas toyohensis, and Vibrio proteolyticus. Using in-house designed gene-specific primers, 18 different antibiotic resistance genes (algJ, alpB, AQU-1, CEPH-A3, ciaB, CMY-1-MOX-7, CMY-1-MOX-9, CMY-1/MOX, cphA2, cphA5, cphA7, ebpA, ECP_4655, fliC, OXA-51, RfbU, ThiU2, and tolB) from 46 strains were selected and validated. Hence, this study provides insight into the identification of strain-specific, unique antimicrobial resistance genes. Targeted amplification and verification using selected unique marker genes have been reported. Thus, the present detection and validation use a robust method for the entire experiment. Results also highlight the presence of another set of 18 antibiotic-resistant and unique genes (Aqu1, cphA2, cphA3, cphA5, cphA7, cmy1/mox7, cmy1/mox9, asaI, ascV, asoB, oxa-12, acr-2, pepA, uo65, pliI, dr0274, tapY2, and cpeT). Of these sets of genes, 15 were found to be suitable for the detection of pathogenic strains belonging to the genera Aeromonas, Pseudomonas, Helicobacter, Campylobacter, Enterococcus, Klebsiella, Acinetobacter, Salmonella, Haemophilus, and Bacillus. Thus, we have detected and verified sets of unique and antimicrobial resistance genes in bacteria on the WHO Priority List and from published reports on AMR bacteria. This study offers advantages for confirming antimicrobial resistance in all suspected AMR bacteria and monitoring the development of AMR in non-AMR bacteria, in the environment, and in clinical settings.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Microbe AI Lab, Department of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Nanditha Pramod
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605014, India
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|