51
|
Chen T, Zhang F, Chen J, Zhong Q, Hu Y, Wu R, Xie B, Jiang Y, Chen B. Effects of Alcohol Extracts From Ganoderma resinaceum on Sleep in Mice Using Combined Transcriptome and Metabolome Analysis. Front Nutr 2022; 9:745624. [PMID: 35165654 PMCID: PMC8837518 DOI: 10.3389/fnut.2022.745624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Ganoderma resinaceum is a valuable Chinese medicine. This study aimed to investigate whether a G. resinaceum alcohol extract (GRAE) improves sleep, and analyze the potential mechanism. After 30 days of continuous administration of GRAE at various doses, GRAE (1,000 mg/kg.bw) prolonged pentobarbital sodium-induced sleep, increased the rate of sleeping in mice treated with a subthreshold dose of pentobarbital sodium, and shortened sleep latency. The mice brain was analyzed using UPLC-MS/MS and RNA-sequencing. Metabolomics analysis revealed that 73 metabolites in the high-dose (HD) group had changed significantly, mainly in amino acids and their derivatives, especially the accumulation of L-glutamine and PGJ2 (11-oxo-15S-hydroxy-prosta-5Z, 9, 13E-trien-1-oic acid). Transcriptome analysis revealed 500 differential genes between HD and control groups, mainly enriched in neuroactive ligand-receptor interaction, amphetamine addiction, and cocaine addiction pathways. The conjoint analysis of the transcriptome and metabolome showed that the biosynthesis of L-glutamine might be regulated by Homer1, Homer3, and Grin3b. This suggests that GRAE may affect L-glutamine accumulation by regulating the expression of these genes. This study showed that GRAE may prolong the sleep time of mice by reducing the accumulation of L-glutamine and deepens our understanding of the regulatory network between certain genes and L-glutamine.
Collapse
Affiliation(s)
- Tianci Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangyi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanqin Chen
- Yongtai Agricultural and Rural Bureau, Fuzhou, China
| | - Qiangui Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxin Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruru Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuji Jiang
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Bingzhi Chen
| |
Collapse
|
52
|
Zhao Q, Fu Y, Zhang F, Wang C, Yang X, Bai S, Xue Y, Shen Q. Heat-treated adzuki bean protein hydrolysates reduce obesity in mice fed a high-fat diet via remodeling gut microbiota and improving metabolic function. Mol Nutr Food Res 2022; 66:e2100907. [PMID: 35072343 DOI: 10.1002/mnfr.202100907] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Heat-treated adzuki bean protein hydrolysates (APH) reduced cholesterol in vitro. However, it is unclear if APH have anti-obesity effects in vivo and, if so, the relationship between the effects and the improvement of gut microbiota composition and metabolic function. METHODS AND RESULTS Four groups of mice were fed either a normal control diet (NCD) or a high-fat diet (HFD) with or without APH for 12 weeks. In HFD-fed mice, APH supplementation significantly alleviated fat accumulation, dyslipidemia, insulin resistance, hepatic steatosis, and inflammation. In addition, APH supplementation regulated gut microbiota composition, reduced the abundance of harmful bacteria (Clostridium_sensu_stricto_1, Romboutsia, Blautia, Mucispirillum, Bilophila, and Peptococcus), enriched Lactobacillus and SCFA-producing bacteria (Lactobacillaceae, Eisenbergiella, Alistipes, Parabacteroides, Tannerellaceae, Eubacterium_nodatum_group, Acetatifactor, Rikenellaceae, and Odoribacter), and increased fecal SCFAs concentration. Importantly, APH supplementation significantly regulated the levels of serum metabolites, especially Lactobacillus-derived metabolites and tryptophan derivatives, which helped to alleviate obesity and its complications. CONCLUSION APH improved gut microbiota composition and metabolic function in mice and may help to prevent and treat obesity and related complications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| | - Fan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| | - Xuehao Yang
- Cofco Nutrition & Health Research Institute Co. LTD, Beijing, 100083, China
| | - Shuqun Bai
- Cofco Nutrition & Health Research Institute Co. LTD, Beijing, 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, Beijing, 100083, China
| |
Collapse
|
53
|
Wang MT, Guo WL, Yang ZY, Chen F, Lin TT, Li WL, Lv XC, Rao PF, Ai LZ, Ni L. Intestinal microbiomics and liver metabolomics insights into the preventive effects of chromium (III)-enriched yeast on hyperlipidemia and hyperglycemia induced by high-fat and high-fructose diet. Curr Res Food Sci 2022; 5:1365-1378. [PMID: 36092021 PMCID: PMC9449561 DOI: 10.1016/j.crfs.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia. Chromium-enriched yeast enhances glucose tolerance and liver glycogen synthesis. Chromium-enriched yeast ameliorates the disturbance of intestinal microbiota. Explore the hepatoprotective effect of chromium-enriched yeast based on metabolomics. Chromium-enriched yeast alleviates lipid metabolism through “gut-liver” axis. Chromium-enriched yeast intervention affects hepatic gene transcription levels.
Collapse
|
54
|
Martínez Y, Paredes J, Avellaneda MC, Botello A, Valdivié M. Diets with Ganoderma lucidum Mushroom Powder and Zinc-Bacitracin on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal Characteristics in Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - A Botello
- Universidad Técnica “Luis Vargas Torres” de Esmeraldas, Ecuador
| | - M Valdivié
- Centro Nacional para la Producción de Animales de Laboratorio, Cuba
| |
Collapse
|
55
|
Hu JP, Zheng TT, Zeng BF, Wu ML, Shi R, Zhang Y, Chen LJ, Cheng WJ, Liang P. Effects of Lactobacillus plantarum FZU3013-Fermented Laminaria japonica on Lipid Metabolism and Gut Microbiota in Hyperlipidaemic Rats. Front Nutr 2021; 8:786571. [PMID: 34938762 PMCID: PMC8685254 DOI: 10.3389/fnut.2021.786571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we explored the effect of Lactobacillus plantarum FZU3013-fermented Laminaria japonica (LPLJ) supplementation to prevent hyperlipidaemia in rats fed with a high-fat diet (HFD). The results indicate that LPLJ supplementation improved serum and hepatic biochemical indicators (p < 0.05), elevated short-chain fatty acid levels, reduced HFD-induced accumulation of lipid droplets in the liver, modulated the relative abundance of some microbial phylotypes, and reduced hyperlipidaemia in HFD-fed rats by adjusting the aminoacyl-tRNA, phenylalanine, tyrosine, and tryptophan biosynthetic pathways, as well as the phenylalanine, D-glutamine and D-glutamate, and glutathione metabolic pathways. Additionally, hepatic mRNA levels of the genes involved in lipid metabolism and bile acid homeostasis were significantly reduced by LPLJ intervention (p < 0.05). These results suggest that LPLJ has a positive effect on modulating lipid metabolism and has the potential to be a functional food that can help prevent hyperlipidaemia.
Collapse
Affiliation(s)
- Jin-Peng Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting-Ting Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin-Fen Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Man-Ling Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Jiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Jian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
56
|
Zhou HH, Wang G, Luo L, Ding W, Xu JY, Yu Z, Qin LQ, Wan Z. Dietary lactoferrin has differential effects on gut microbiota in young versus middle-aged APPswe/PS1dE9 transgenic mice but no effects on cognitive function. Food Nutr Res 2021; 65:5496. [PMID: 34776831 PMCID: PMC8559448 DOI: 10.29219/fnr.v65.5496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Existing evidence suggest that lactoferrin might be beneficial for Alzheimer’s disease, while precise mechanisms are not fully elucidated. Objective To determine the effects of lactoferrin intervention on cognitive function from APPswe/PS1dE9 (APP/PS1) mice, and potential mechanisms involved. Design Both the young and middle-aged male APP/PS1 mice were divided into the control and lactoferrin intervention groups with 16 weeks’ intervention. Results Lactoferrin had no effects on cognitive function for both the young and middle-aged mice, and no key markers involved in Aβ, tau pathology, neuro-inflammation and synaptic plasticity were altered after lactoferrin intervention. With regards to gut microbiota profiles, in the young APP/PS1 mice, lactoferrin elevated the α diversity index including ACE and Chao 1, and reduced the relative abundance of the genera Bacteroides and Alistipes and elevated Oscillibacter; in addition, Oscillibacter, Anaerotruncus, EF096579_g, EU454405_g, Mollicutes_RF39, EU474361_g, EU774448_g, and EF096976_g were specifically abundant via linear discriminant analysis with effect size (LEfSe) analysis. In the middle-aged APP/PS1 mice, the relative abundance of the phylum Proteobacteria, as well as the genera Oscillospira, Coprococcus, and Ruminococcus was significantly reduced post lactoferrin; additionally, S24_7, Bacteroidia, Bacteroidetes, and Methylobacterium were specific via LEfSe analysis in the lactoferrin group. Conclusions Dietary lactoferrin might be beneficial for gut microbiota homeostasis although it might have no effects on cognition.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical College of Soochow University, Suzhou, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
57
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
58
|
Ni Y, Hu L, Yang S, Ni L, Ma L, Zhao Y, Zheng A, Jin Y, Fu Z. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. CHEMOSPHERE 2021; 282:130952. [PMID: 34082316 DOI: 10.1016/j.chemosphere.2021.130952] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
59
|
An L, Wuri J, Zheng Z, Li W, Yan T. Microbiota modulate Doxorubicin induced cardiotoxicity. Eur J Pharm Sci 2021; 166:105977. [PMID: 34416387 DOI: 10.1016/j.ejps.2021.105977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023]
Abstract
Chemotherapy has several adverse effects to patients, some of which are life-threatening. We hypothesized that Doxorubicin induced microbiome imbalance and intestinal damage may contribute to Doxorubicin induced cardiac dysfunction. Male adult (2-3 months) C57BL/6 mice were administered 3 mg/kg, 5 mg/kg, 7.5 mg/kg,15 mg/kg, 20 mg/kg doses of Doxorubicin. Echocardiography was performed at 7 and 14 days after Doxorubicin administration. 16S rRNA amplicon sequencing was used to characterize microbiome changes. Fecal microbiota transplantation (FMT) was performed to evaluate the role of the microbiota on Doxorubicin induced cardiac dysfunction. Doxorubicin dose dependently increases mortality rate and induces cardiac dysfunction. 5 mg/kg-Doxorubicin significantly induces decreased left ventricular ejection fraction (LVEF) and fraction shortening (FS) as well as increased cardiac fibrosis, inflammation and oxidative stress respond without increasing mortality. 5 mg/kg-Doxorubicin induces significant decreased colorectum length, increased loss of goblet cells, numbers of ulcers and infiltration of lymphocyte clusters and decreased tight junction protein ZO-1, as well as increased plasma endotoxin level measured by ELISA assay. 16S rRNA microbiota analysis shows that Doxorubicin-induced microbiota dysbiosis with decreased community richness compared with normal control mice. FMT to Doxorubicin-5 mg treated mice significantly improved cardiac function by increasing LVEF and FS as well as decreased perivascular and interstitial fibrosis; increased colorectum length, decreased the loss of goblet cells,infiltration of lymphocyte clusters,the number of ulcers and plasma endotoxin level; improved microbiota composition, function and diversity with increased abundance of Alloprevotella, Prevotellaceae_UCG-001 and Rikenellaceae_RC9_gut_group. We find that normal fecal transplantation improves cardiac function, decreases gut damage and alter microbiota composition induced by Doxorubicin. The microbiota appears to contribute to heart-gut interaction.
Collapse
Affiliation(s)
- Lulu An
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Jimusi Wuri
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Zhitong Zheng
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Wenqui Li
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Tao Yan
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| |
Collapse
|
60
|
Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie 2021; 193:38-63. [PMID: 34688789 DOI: 10.1016/j.biochi.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.
Collapse
|
61
|
Zhang Q, Fan XY, Cao YJ, Zheng TT, Cheng WJ, Chen LJ, Lv XC, Ni L, Rao PF, Liang P. The beneficial effects of Lactobacillus brevis FZU0713-fermented Laminaria japonica on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet. Food Funct 2021; 12:7145-7160. [PMID: 34231612 DOI: 10.1039/d1fo00218j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the beneficial effects of the oral administration of Lactobacillus brevis FZU0713-fermented Laminaria japonica (FLJ) on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet (HFD). The results demonstrated that the oral administration of FLJ significantly inhibited obesity and improved the serum and hepatic biochemical parameters in HFD-fed rats. Histopathological results also indicated that FLJ intervention could significantly reduce the accumulation of lipid droplets in the liver induced by HFD feeding. Furthermore, FLJ intervention up-regulated the fecal short-chain fatty acid (SCFA) levels (mainly acetate, propionate and isobutyrate) in HFD-fed rats. Intestinal microbiota profiling by 16S rRNA gene sequencing revealed that FLJ intervention increased the relative abundance of Akkermansia, Collinsella, Ruminococcaceae_UCG-013, Defluviitaleaceae_UCG-011, Intestinimonas, Actinomyces and Tyzzerella, but decreased the abundance of Flavonifractor, Collinsella, Sporosarcina and Lacticigenium. Based on Spearman's correlation, the fecal levels of TC, TG, acetic acid and butyric acid were positively correlated with the relative abundance of Akkermansia and Ruminococcaceae_NK4A214, but negatively correlated with the relative amount of Flavonifractor and Collinsella. The metabolic function of intestinal microbiota predicted by PICRUSt analysis of 16S rRNA gene sequences demonstrated that primary and secondary bile acid biosyntheses, fatty acid biosynthesis, taurine and hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, etc. were significantly down-regulated after 8 weeks of FLJ intervention. Additionally, FLJ intervention significantly regulated the hepatic mRNA levels (including BSEP, CYP7A1, LDLR, HMGCR, CD36 and SREBP1-C) involved in lipid metabolism and bile acid homeostasis. In conclusion, these findings support the possibility that Laminaria japonica fermented with probiotic Lactobacillus has the potential to reduce the disturbance of lipid metabolism by regulating intestinal microflora and liver gene expression profiles, so it can be employed as a potential functional food to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
63
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
64
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
65
|
Yang H, Xie J, Wang N, Zhou Q, Lu Y, Qu Z, Wang H. Effects of Miao sour soup on hyperlipidemia in high-fat diet-induced obese rats via the AMPK signaling pathway. Food Sci Nutr 2021; 9:4266-4277. [PMID: 34401077 PMCID: PMC8358355 DOI: 10.1002/fsn3.2394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperlipidemia is a common characteristic of obese animals. Identifying the factors involved in the regulation of dietary lipid metabolism is the most beneficial way to improve health. Miao sour soup (MSS) is a fermented food made from tomato and red pepper that contains lycopene, capsaicin, and organic acids. We conducted this study to investigate the regulatory functions and mechanisms of MSS on the blood lipid levels of high-fat diet-induced obese rats. In our preventive study, rats were fed normal diet (ND1), high-fat diet (HFD1), HFD + 4 g/kg BW MSS (HFD + LS1), and HFD + 8 g/kg BW MSS (HFD + HS1). We found that MSS significantly reduced the body weight and fat accumulation and improved the blood lipid levels of rats. MSS significantly increased the expression of AMP-activated protein kinase-alpha (AMPKα), attenuated the expression of the adipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), and suppressed the expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase alpha (ACCα), the critical regulators of hepatic lipid metabolism. Additionally, we also conducted a treatment study, and we grouped rats to receive ND2, HFD2, PC2, HFD + LS2, and HFD + HS2 for another 10 weeks. MSS treatment reduced the body weight, fat deposition, and percentage of lipid droplets and regulated the plasma lipid content. MSS significantly increased the expression of AMPK and alleviated the expression of SREBP-1c, ACC, and FAS. Taken together, these findings suggest that MSS prevents and treats hyperlipidemia in obese rats by regulating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jiao Xie
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Nanlan Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Qianqian Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Yang Lu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Guiyang Maternal and Child Healthcare HospitalGuiyangChina
| | - Zihan Qu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Laishan District Center for Disease Control and PreventionYantaiChina
| | - Huiqun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
66
|
Guo W, Xiang Q, Mao B, Tang X, Cui S, Li X, Zhao J, Zhang H, Chen W. Protective Effects of Microbiome-Derived Inosine on Lipopolysaccharide-Induced Acute Liver Damage and Inflammation in Mice via Mediating the TLR4/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7619-7628. [PMID: 34156842 DOI: 10.1021/acs.jafc.1c01781] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This research assessed the anti-inflammatory and hepatoprotective properties of inosine and the associated mechanism. Inosine pretreatment significantly reduced the secretion of several inflammatory factors and serum alanine transaminase (ALT) and aspartate amino transferase (AST) levels in a dose-dependent manner compared with the lipopolysaccharide (LPS) group. In LPS-treated mice, inosine pretreatment significantly reduced the ALT and malondialdehyde (MDA) concentration and significantly elevated the antioxidant enzyme activity. Furthermore, inosine pretreatment significantly altered the relative abundance of the genera, Bifidobacterium, Lachnospiraceae UCG-006, and Muribaculum. Correlation analysis showed that Bifidobacterium and Lachnospiraceae UCG-006 were positively related to the cecal short-chain fatty acids but negatively related to the serum IL-6 and hepatic AST and ALT levels. Notably, inosine pretreatment significantly modulated the hepatic TLR4, MYD88, NF-κB, iNOS, COX2, AMPK, Nfr2, and IκB-α expression. These results suggested that inosine pretreatment alters the intestinal microbiota structure and improves LPS-induced acute liver damage and inflammation through modulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qunran Xiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
67
|
Shao M, Wang Z, He Y, Tan Z, Zhang J. Fecal microbial composition and functional diversity of Wuzhishan pigs at different growth stages. AMB Express 2021; 11:88. [PMID: 34117938 PMCID: PMC8197691 DOI: 10.1186/s13568-021-01249-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023] Open
Abstract
The mammalian gut microbiome participates in almost all life processes in the host. In addition to diet, the breed is the main factor affecting changes in the swine gut microbiota. The composition of the gut microbiota changes significantly during different growth stages. Research on developmental changes in the gut microbiota of indigenous Chinese pig breeds is limited. In this study, the fecal microbiota of Wuzhishan pigs (a Chinese indigenous miniature pig) at different growth stages was investigated using high-throughput 16S rRNA sequencing. Firmicutes and Bacteroidetes were the two dominant phyla, accounting for more than 80% of all sequences. With increasing age, the fecal microbial diversity increased, and the proportion of Firmicutes increased, whereas the proportion of Bacteroidetes decreased. A total of 49 biomarkers with statistical differences were detected in the four growth stages. The different microbiota among groups enhanced the ability to degrade fiber, carbohydrates, and other substances during the growth stages. The endocrine system was different in multiple growth stage paired comparisons, which was attributed to the different body statuses in the growth stages. This study revealed developmental changes in the structure and function of gut microbes in local pigs.
Collapse
Affiliation(s)
- Mingying Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Tropical Agriculture and Technology, Hainan College of Vocation and Technique, Haikou, 570216 , China
| | - Zhixin Wang
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Yingzhi He
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhen Tan
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China.
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
68
|
Lai P, Cao X, Xu Q, Liu Y, Li R, Zhang J, Zhang M. Ganoderma lucidum spore ethanol extract attenuates atherosclerosis by regulating lipid metabolism via upregulation of liver X receptor alpha. PHARMACEUTICAL BIOLOGY 2021; 58:760-770. [PMID: 32780606 PMCID: PMC7470073 DOI: 10.1080/13880209.2020.1798471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss.ex Fr.) Karst (Ganodermataceae) is a fungus that has been used in traditional Chinese medicine. OBJECTIVE This is the first investigation of the lipid-lowering and anti-atherosclerotic effects of Ganoderma lucidum spore ethanol extract (EEG) in hyperlipidemic rabbits. MATERIALS AND METHODS Fifty-four Japanese rabbits were randomly divided into six groups (n = 9): control, model, atorvastatin and three EEG groups (6, 24 and 96 mg/kg/day, p.o.). Control group was administered a normal diet and other groups were administered a high-fat diet to induce hyperlipidaemia and atherosclerosis for 14 weeks. During this time, lipid profiles were recorded; lipid testing and histopathological examination of aorta and liver were conducted. LXRα and its downstream genes expression in the liver and small intestine were examined. The effect of EEG on macrophage cholesterol efflux and ABCA1/G1 expression was observed under silenced LXRα expression. RESULTS EEG reduced serum cholesterol (20.33 ± 3.62 mmol/L vs 34.56 ± 8.27 mmol/L for the model group) and LDL-C, reduced the area of arterial plaques (24.8 ± 10% vs 53.9 ± 15.2% for the model group) and Intima/Medium thickness ratio, increased faecal bile acid content, upregulated LXRα, CYP7A1, ABCA1/G1, ABCG5/G8 expression in the liver, small intestine and macrophages. After silencing LXRα in macrophages, the ability of EEG to promote cholesterol efflux was inhibited. DISCUSSION AND CONCLUSION EEG exert lipid-lowering and anti-atherosclerotic effects via upregulating expression of LXRα and downstream genes associated with reverse cholesterol transport and metabolism. However, whether PPARα/γ are involved in the up-regulation of LXR expression by EEG remains to be elucidated.
Collapse
Affiliation(s)
- Peng Lai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xu Cao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qiao Xu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yixin Liu
- West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- School of Traditional Chinese Medicine, Chengdu University of TCM, Chengdu, China
| | - Ju Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Meng Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
69
|
Functional triterpenoids from medicinal fungi Ganoderma applanatum: A continuous search for antiadipogenic agents. Bioorg Chem 2021; 112:104977. [PMID: 34020237 DOI: 10.1016/j.bioorg.2021.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated the antiadipogenic benefits of Ganoderma triterpenoids (GTs), which indicated GTs have potential therapeutic implications for obesity. In this study, the EtOAc extract of Ganoderma applanatum was further phytochemically investigated for searching new antiadipogenic agents, which led to the isolation of a total of 15 highly oxygenated lanostane triterpenoids, including 9 new compounds (1-9) and 6 known analogues (10-15). Structurally, ganodapplanoic acids A and B (1, 2) are two rearranged 6/6/5/6-fused lanostane-type triterpenoids with an unusual C-13/C-15 oxygen bridge moiety. In addition, the EtOAc extract (GAE) and isolates (1-4,6-15) were assayed for their antiadipogenic effects in 3T3-L1 adipocytes. The results revealed that compound 9 effectively repressed adipogenesis through down-regulating the expression of major proteins (PPARγ, CEBPβ and FAS) involving differentiation and adipogenesis in 3T3-L1 adipocytes. Thus, the present study further demonstrated the antiadipogenic potential of GTs and provided a possible perspective for obesity treatment.
Collapse
|
70
|
Zeng M, Qi L, Guo Y, Zhu X, Tang X, Yong T, Xie Y, Wu Q, Zhang M, Chen D. Long-Term Administration of Triterpenoids From Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice. Front Aging Neurosci 2021; 13:628860. [PMID: 34025387 PMCID: PMC8134542 DOI: 10.3389/fnagi.2021.628860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
With the advent of the aging society, how to grow old healthily has become an important issue for the whole of society. Effective intervention strategies for healthy aging are most desired, due to the complexity and diversity of genetic information, it is a pressing concern to find a single drug or treatment to improve longevity. In this study, long-term administration of triterpenoids of Ganoderma lucidum (TGL) can mitigate brain physiological decline in normal aging mice. In addition, the age-associated pathological features, including cataract formation, hair loss, and skin relaxation, brown adipose tissue accumulation, the β-galactosidase staining degree of kidney, the iron death of spleen, and liver functions exhibit improvement. We used the APP/PS1 mice and 3 × Tg-AD mice model of Alzheimer's Disease (AD) to further verify the improvement of brain function by TGL and found that Ganoderic acid A might be the effective constituent of TGL for anti-aging of the brain in the 3 × Tg-AD mice. A potential mechanism of action may involve the regulation of sphingolipid metabolism, prolonging of telomere length, and enhance autophagy, which allows for the removal of pathological metabolites.
Collapse
Affiliation(s)
- Miao Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longkai Qi
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangxiang Zhu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Academy of Life Sciences, Jinan University, Guangzhou, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tianqiao Yong
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
71
|
Liu X, Guo W, Cui S, Tang X, Zhao J, Zhang H, Mao B, Chen W. A Comprehensive Assessment of the Safety of Blautia producta DSM 2950. Microorganisms 2021; 9:microorganisms9050908. [PMID: 33922843 PMCID: PMC8146736 DOI: 10.3390/microorganisms9050908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, Blautia has attracted attention for its role in ameliorating host diseases. In particular, Blautia producta DSM 2950 has been considered a potential probiotic due to its ability to mitigate inflammation in poly(I:C) induced HT-29 cells. Thus, to promote the development of indigenous intestinal microorganisms with potential probiotic function, we conducted a comprehensive experimental analysis of DSM 2950 to determine its safety. This comprised a study of its potential virulence genes, antibiotic resistance genes, genomic islands, antibiotic resistance, and hemolytic activity and a 14-day test of its acute oral toxicity in mice. The results indicated no toxin-related virulence genes in the DSM 2950 genome. Most of the genomic islands in DSM 2950 were related to metabolism, rather than virulence expression. DSM 2950 was sensitive to most of the tested antibiotics but was tolerant of treatment with kanamycin, neomycin, clindamycin, or ciprofloxacin, probably because it possessed the corresponding antibiotic resistance genes. Oral acute toxicity tests indicated that the consumption of DSM 2950 does not cause toxic side effects in mice. Overall, the safety profile of DSM 2950 confirmed that it could be a candidate probiotic for use in food and pharmaceutical preparations.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
72
|
Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
|
73
|
Zhu Z, Han Y, Ding Y, Zhu B, Song S, Xiao H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr Rev Food Sci Food Saf 2021; 20:2882-2913. [PMID: 33884748 DOI: 10.1111/1541-4337.12754] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yu Ding
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
74
|
Sheng X, Chen H, Wang J, Zheng Y, Li Y, Jin Z, Li J. Joint Transcriptomic and Metabolic Analysis of Flavonoids in Cyclocarya paliurus Leaves. ACS OMEGA 2021; 6:9028-9038. [PMID: 33842773 PMCID: PMC8028134 DOI: 10.1021/acsomega.1c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
Flavonoids are a class of commonly occurring natural compounds in the plant kingdom with various biological activities. This study compares the content of flavonoids in Cyclocarya paliurus at different developmental stages to better inform the selection of the optimal picking period. Thus, we analyzed the transcriptome and metabolome of C. paliurus at different developmental stages. The transcriptome analysis revealed 44 genes involved in the biosynthesis of flavonoids in C. paliurus, with 10 differentially expressed genes across the four different developmental stages. The metabolites were separated and identified by a combination of chromatography and mass spectrometry, followed by multi-reaction monitoring mode analysis of triple quadrupole mass spectrometry for complete metabolite quantification. In the flavonoid synthesis pathway, a total of 137 differential flavonoids were detected. The joint transcriptome and metabolome analysis showed that the expression trends in differential metabolites and genes were significantly related. Four MYB transcription factors and two bHLH transcription factors that are closely related to flavonoid biosynthesis were identified. The regulation network of flavonoid biosynthesis in C. paliurus was thus established, providing guidance for follow-up research.
Collapse
Affiliation(s)
- Xiaoling Sheng
- School
of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Huanwei Chen
- Forest
Research Institute of Longquan City, Longquan 323700, China
| | - Jianmei Wang
- Zhejiang
Yuanyang Agriculture Development Company Ltd., Suicang 323000, China
| | - Yongli Zheng
- Zhejiang
Provincial Agricultural Products Quality Safety Center, Hangzhou 310007, China
| | - Yueling Li
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Zexin Jin
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- , . Phone/Fax: +86 576 88660396
| |
Collapse
|
75
|
Song X, Wang Y, Guan R, Ma N, Yin L, Zhong M, Wang T, Shi L, Geng Y. Effects of pine pollen wall on gut microbiota and biomarkers in mice with dyslipidemia. Phytother Res 2021; 35:2057-2073. [PMID: 33210367 DOI: 10.1002/ptr.6952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Pinus yunnanensis pollen is rich in various physiological functions. However, whether the pine pollen wall (PW) plays a beneficial role in the body has not been studied. In this work, we have analyzed its effects on the metabolism and gut microbiota of mouse models of dyslipidemia. We found that the intake of pine PW prevents the liver pathologic changes and reduce the concentrations of TNF-α, IL-6, TC, and high-density lipoprotein cholesterol. Moreover, it can regulate bile acid and fat metabolism, SCFAs content, and the structure of the gut microbiota. According to the change of carbohydrate metabolites, we speculated that cellulose should be the main component to play the above beneficial role, and sporopollenin cannot be utilized in the intestine. Therefore, we consider this study of great significance as it gives a description of biological effects of the pine PW and paves the road to its use in health products.
Collapse
Affiliation(s)
- Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Rui Guan
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Ning Ma
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Lei Yin
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Micun Zhong
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Tong Wang
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Lihua Shi
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
76
|
Su L, Li D, Su J, Zhang E, Chen S, Zheng C, Luo T, Li M, Chen X, Huang G, Xie Y, Li S. Polysaccharides of Sporoderm-Broken Spore of Ganoderma lucidum Modulate Adaptive Immune Function via Gut Microbiota Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8842062. [PMID: 33859713 PMCID: PMC8009716 DOI: 10.1155/2021/8842062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
Ganoderma lucidum (Leyss.Fr.) Karst is one of the well-known medicinal macrofungi all over the world, and mounting researches have focused on the polysaccharides derived from the spores of G. lucidum. In the present study, BALB/c mice (n = 8-10) were administered with crude polysaccharides of G. lucidum spores (CPGS) and the refined polysaccharides of G. lucidum spores (RPGS) for 30 days to investigate their effect on the adaptive immune system. Results showed that CPGS and RPGS displayed diverse effects on the lymphocyte activity in the spleen. The splenocyte proliferation activity upon mitogen was suppressed by CPGS and RPGS, while the NK cell's tumor-killing ability was promoted by CPGS. Both CPGS and RPGS could increase the proportion of naïve T cells in thymus, but only RPGS significantly uplifted the percentage of T cells, as well as the T cell subsets, in peripheral blood, and promoted the activation by upregulating the expression of costimulatory factor CD28. Moreover, 16S sequencing results showed that the effects of CPGS and RPGS were closely related to the regulation of gut microbiota. β-diversity of the microbiome was evidently changed by CPGS and RPGS. The phytoestrogen/polysaccharide-metabolizing bacteria (Adlercreutzia, Parabacteroides, and Prevotella), and an unclassified Desulfovibrionaceae, were remarkably enriched by CPGS or RPGS, and functions involving carbohydrate metabolism, membrane transport, and lipid metabolism were regulated. Moreover, the enrichments of Adlercreutzia, Prevotella, and Desulfovibrionaceae were positively related to the immune regulation by CPGS and RPGS, while that of Parabacteroides displayed a negative correlation. These findings suggested a promising effect of the polysaccharide from sporoderm-broken spore of G. lucidum in immune regulation to promote health control.
Collapse
Affiliation(s)
- Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Jiyan Su
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Enqi Zhang
- Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Chaoqun Zheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Ting Luo
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Xiaohong Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Shanshan Li
- Department of Traditional Chinese Medicine, The People's Hospital of Dongying, Dongying, Shandong, China
| |
Collapse
|
77
|
Dat TD, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT, Hieu NH. The Application of Ethanolic Ultrasonication to Ameliorate the Triterpenoid Content Extracted from Vietnamese
Ganoderma lucidum
with the Examination by Gas Chromatography. ChemistrySelect 2021. [DOI: 10.1002/slct.202004242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Duc Viet
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Kim Ngan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Hoang Minh Nam
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trang Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
78
|
Li S, You J, Wang Z, Liu Y, Wang B, Du M, Zou T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int 2021; 143:110270. [PMID: 33992371 DOI: 10.1016/j.foodres.2021.110270] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023]
Abstract
Curcumin (Cur) is a natural polyphenol with beneficial effect against obesity and related metabolic disorders, but its precise mechanisms of action remain to be defined due to its limited systemic bioavailability. We hypothesized that gut microbiota may be a prospective therapeutic target for Cur-induced metabolic benefits. This study aimed to investigate whether the metabolic adaptations resulting from Cur supplementation were mediated by the gut microbiota in high-fat diet (HFD)-fed obese mice. C57BL/6 mice were fed a control diet or a HFD diet with or without 0.2% Cur for 10 weeks. Lipid profiles, insulin sensitivity, hepatic metabolism, gut microbiota composition and short-chain fatty acid (SCFA) production were determined. Dietary Cur reduced fat mass, hepatic steatosis and circulating lipopolysaccharide levels and improved the insulin sensitivity in HFD-fed mice. More importantly, Cur supplementation modulated the gut microbiota composition and ameliorated intestinal dysbiosis by decreasing the ratio of Firmicutes/Bacteroidetes and endotoxin-producing Desulfovibrio bacteria and increasing the abundance of Akkermansia population and SCFA-producing bacteria, such as Bacteroides, Parabacteroides, Alistipes and Alloprevotella, along with increases in caecal and colonic SCFA concentrations. These dominant bacterial genera altered by Cur showed strong correlations with the obesity-related metabolic parameters in HFD-fed mice. In conclusion, our data suggest that Cur alleviated metabolic features of hepatic steatosis and insulin resistance in HFD-fed obese mice, which might be associated with the modulation of gut microbiota composition and metabolites.
Collapse
Affiliation(s)
- Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Yue Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| |
Collapse
|
79
|
Mexican Ganoderma Lucidum Extracts Decrease Lipogenesis Modulating Transcriptional Metabolic Networks and Gut Microbiota in C57BL/6 Mice Fed with a High-Cholesterol Diet. Nutrients 2020; 13:nu13010038. [PMID: 33374283 PMCID: PMC7823885 DOI: 10.3390/nu13010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Prevention of hyperlipidemia and associated diseases is a health priority. Natural products, such as the medicinal mushroom Ganoderma lucidum (Gl), have demonstrated hypocholesterolemic, prebiotic and antidiabetic properties. However, the underlying transcriptomic mechanisms by which Gl exerts bioactivities are not completely understood. We report a comprehensive hepatic and renal transcriptome profiling of C57BL/6 mice under the consumption of a high-cholesterol diet and two standardized Gl extracts obtained from basidiocarps cultivated on conventional substrate (Gl-1) or substrate containing acetylsalicylic acid (ASA; Gl-2). We showed that Gl extracts modulate relevant metabolic pathways involving the restriction of lipid biosynthesis and the enrichment of lipid degradation and secretion. The Gl-2 extract exerts a major modulation over gene expression programs showing the highest similarity with simvastatin druggable-target-genes and these are enriched more in processes related to human obesity alterations in the liver. We further show a subset of Gl-modulated genes correlated with Lactobacillus enrichment and the reduction of circulating cholesterol-derived fats. Moreover, Gl extracts induce a significant decrease of macrophage lipid storage, which occurs concomitantly with the down-modulation of Fasn and Elovl6. Collectively, this evidence suggests a new link between Gl hypocholesterolemic and prebiotic activity, revealing thereby that standardized Mexican Gl extracts are a novel transcriptome modulator to prevent metabolic disorders associated with hypercholesterolemia.
Collapse
|
80
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
81
|
Deng J, Guo W, Guo J, Li Y, Zhou W, Lv W, Li L, Liu B, Xia G, Ni L, Rao P, Lv X. Regulatory effects of a Grifola frondosa extract rich in pseudobaptigenin and cyanidin-3-O-xylosylrutinoside on glycolipid metabolism and the gut microbiota in high-fat diet-fed rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
82
|
WU L, WENG M, ZHENG H, LAI P, TANG B, CHEN J, LI Y. Hypoglycemic effect of okra aqueous extract on streptozotocin-induced diabetic rats. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.28619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Minjie WENG
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Hengguang ZHENG
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Pufu LAI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Baosha TANG
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Junchen CHEN
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| |
Collapse
|
83
|
Chicoric Acid Ameliorates Nonalcoholic Fatty Liver Disease via the AMPK/Nrf2/NF κB Signaling Pathway and Restores Gut Microbiota in High-Fat-Diet-Fed Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9734560. [PMID: 33204402 PMCID: PMC7657699 DOI: 10.1155/2020/9734560] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
This study examines the effects of chicoric acid (CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat-diet- (HFD-) fed C57BL/6 mice. CA treatment decreased body weight and white adipose weight, mitigated hyperglycemia and dyslipidemia, and reduced hepatic steatosis in HFD-fed mice. Moreover, CA treatment reversed HFD-induced oxidative stress and inflammation both systemically and locally in the liver, evidenced by the decreased serum malondialdehyde (MDA) abundance, increased serum superoxide dismutase (SOD) activity, lowered in situ reactive oxygen species (ROS) in the liver, decreased serum and hepatic inflammatory cytokine levels, and reduced hepatic inflammatory cell infiltration in HFD-fed mice. In addition, CA significantly reduced lipid accumulation and oxidative stress in palmitic acid- (PA-) treated HepG2 cells. In particular, we identified AMPK as an activator of Nrf2 and an inactivator of NFκB. CA upregulated AMPK phosphorylation, the nuclear protein level of Nrf2, and downregulated NFκB protein level both in HFD mice and PA-treated HepG2 cells. Notably, AMPK inhibitor compound C blocked the regulation of Nrf2 and NFκB, as well as ROS overproduction mediated by CA in PA-treated HepG2 cells, while AMPK activator AICAR mimicked the effects of CA. Similarly, Nrf2 inhibitor ML385 partly blocked the regulation of antioxidative genes and ROS overproduction by CA in PA-treated HepG2 cells. Interestingly, high-throughput pyrosequencing of 16S rRNA suggested that CA could increase Firmicutes-to-Bacteroidetes ratio and modify gut microbial composition towards a healthier microbial profile. In summary, CA plays a preventative role in the amelioration of oxidative stress and inflammation via the AMPK/Nrf2/NFκB signaling pathway and shapes gut microbiota in HFD-induced NAFLD.
Collapse
|
84
|
Song J, Zhang J, Su Y, Zhang X, Li J, Tu L, Yu J, Zheng Y, Wang M. Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
85
|
Li M, Zhou W, Dang Y, Li C, Ji G, Zhang L. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice. Biomed Pharmacother 2020; 132:110953. [PMID: 33254441 DOI: 10.1016/j.biopha.2020.110953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Berberine compounds (BC), consisting of berberine (BBR), oryzanol and vitamin B6, have been used to treat diabetes and hyperlipidemia in recent years, but the potential mechanisms under the effects have not been well determined. In this study, we evaluated the effect of BC in db/db mice, and found that BC treatment reversed the increased levels of fasting glucose and hemoglobin A1c in db/db mice, which was superior to BBR treatment. Fecal 16S rRNA gene sequencing indicated that BC increased relative abundance of microbiomes Bacteroidaceae and Clostridiaceae, which may promote conversion of primary bile acid cholic acid (CA) into secondary bile acid deoxycholic acid (DCA). Gas chromatography/mass spectrometry (GC/MS)-based metabolomics revealed that BC treatment increased fecal DCA level. Since DCA processes the potential to activate bile acid receptor-takeda G protein-coupled receptor 5 (TGR5) and induce glucagon-like peptide (GLP) secretion, we detected TGR5 expression, and found that BC-treatment significantly increased the colonic TGR5 and serum GLP-1/-2 levels in db/db mice. Modulation of TGR5-GLP pathway may also affect metabolomic profiles of serum and liver, and BC treatment showed effects on restoring the altered carbohydrate, lipid, amino acid and nucleotide metabolism. Our study suggested that BC improved hyperglycemia, the effect might attribute to the increased microbiome mediated DCA production, which up-regulated colonic TGR5 expression and GLP secretion, and improved glucose, lipid and energy metabolism in db/db mice.
Collapse
Affiliation(s)
- Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
86
|
Li XJ, Wang M, Xue Y, Duan D, Li C, Han X, Wang K, Qiao R, Li XL. Identification of microflora related to growth performance in pigs based on 16S rRNA sequence analyses. AMB Express 2020; 10:192. [PMID: 33123840 PMCID: PMC7596147 DOI: 10.1186/s13568-020-01130-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal microorganisms have been shown to be important factors affecting the growth performance of pigs. Therefore, to investigate the effect of the intestinal microflora structure on the growth performance of pigs, samples from Duroc (n = 10), Landrace (n = 9) and Yorkshire (n = 21) pigs under the same diet and feeding conditions were collected. The fecal microbial composition was profiled via 16S ribosomal RNA (rRNA) gene sequencing. We also analyzed their growth performance. We found that Duroc and Landrace pigs had significant differences in average daily gain (ADG), feed efficiency ratio (FER), growth index (GI), and number of days taken to reach 100 kg (P < 0.05). Moreover, through analysis of the intestinal flora, we also identified 18 species of intestinal flora with significant differences between Duroc and Landrace pigs (P < 0.05). To eliminate the influence of genetic background, the differential intestinal flora of 21 Yorkshire pigs with differences in growth performance was analyzed. The results showed that there were significant correlations between Barnesiella, Dorea, Clostridium and Lactobacillus and pig growth performance. To explore the effect of the intestinal flora on the growth performance of pigs at the molecular level, Lactobacillus, which is the most abundant in the intestine, was selected for isolation and purification and cocultured with intestinal epithelial cells. qPCR was used to determine the effect of Lactobacillus on MC4R gene expression in intestinal epithelial cells. The results showed that Lactobacillus inhibited MC4R gene expression in these cells. The results provide a useful reference for further study of the relationship between the intestinal flora and pig growth performance.
Collapse
Affiliation(s)
- Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mingyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yahui Xue
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Dongdong Duan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Cong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
87
|
Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother 2020; 130:110539. [DOI: 10.1016/j.biopha.2020.110539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
|
88
|
Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res Int 2020; 136:109511. [DOI: 10.1016/j.foodres.2020.109511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
89
|
Ganoderma lucidum Ethanol Extracts Enhance Re-Epithelialization and Prevent Keratinocytes from Free-Radical Injury. Pharmaceuticals (Basel) 2020; 13:ph13090224. [PMID: 32872510 PMCID: PMC7557611 DOI: 10.3390/ph13090224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Ganoderma lucidum or Reishi is recognized as the most potent adaptogen present in nature, and its anti-inflammatory, antioxidant, immunomodulatory and anticancer activities are well known. Moreover, lately, there has been an increasing interest from pharmaceutical companies in antiaging G. lucidum-extract-based formulations. Nevertheless, the pharmacological mechanisms of such adaptogenic and regenerative actions remain unclear. The present investigation aimed to explore its molecular and cellular effects in vitro in epidermal keratinocyte cultures by applying liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) for analysis of ethanol extracts using ganoderic acid-A as a reference compound. The G. lucidum extract showed a keratinocyte proliferation induction accompanied by an increase of cyclic kinase protein expressions, such as CDK2 and CDK6. Furthermore, a noteworthy migration rate increase and activation of tissue remodelling factors, such as matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9), were observed. Finally, the extract showed an antioxidant effect, protecting from H2O2-induced cytotoxicity; preventing activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53 and p21; and reducing the number of apoptotic cells. Our study paves the path for elucidating pharmacological properties of G. lucidum and its potential development as cosmeceutical skin products, providing the first evidence of its capability to accelerate the healing processes enhancing re-epithelialization and to protect cells from free-radical action.
Collapse
|
90
|
Guo WL, Guo JB, Liu BY, Lu JQ, Chen M, Liu B, Bai WD, Rao PF, Ni L, Lv XC. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct 2020; 11:6818-6833. [PMID: 32686808 DOI: 10.1039/d0fo00436g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ganoderic acid A (GA) is one of the most abundant triterpenoids in Ganoderma lucidum, and has been proved to possess a wide range of beneficial health effects. The aim of the current study is to investigate the amelioration effects and mechanism of GA on improving hyperlipidemia in mice fed a high-fat diet (HFD). The results showed that GA intervention significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, and ameliorated the biochemical parameters of serum and liver related to lipid metabolism in HFD-fed mice. Histological analysis also showed that the excessive accumulation of lipid droplets in the liver induced by HFD-feeding was greatly alleviated by GA intervention. In addition, GA intervention also increased the level of short chain fatty acids (SCFAs) in the intestine and promoted the excretion of bile acids (BAs) through feces. High-throughput sequencing of bacterial full-length 16S rDNA revealed that daily supplementation with GA made significant structural changes in the gut microbial population of mice fed with HFD, in particular modulating the relative abundance of some function related microbial phylotypes. The relationships between lipid metabolic parameters and gut microbial phylotypes were also revealed by correlation analysis based on a heatmap and network. The result showed that 46 key gut microbial phylotypes (OTUs) were markedly correlated with at least one lipid metabolic parameter. Moreover, UPLC-QTOF/MS-based liver metabolomics showed that 111 biomarkers (47 up-regulated metabolites and 64 down-regulated metabolites) were significantly changed after high-dose GA intervention (75 mg kg-1 day-1), compared with the HFD-fed hyperlipidemic mice. Metabolic pathway enrichment analysis of the differential hepatic metabolites demonstrated that GA intervention had significant regulatory effects on primary bile acid biosynthesis, fatty acid biosynthesis, amino sugar and nucleotide sugar metabolism, inositol phosphate metabolism, and so on. In addition, GA intervention regulated the mRNA levels of hepatic genes involved in fatty acid metabolism and bile acid homeostasis. These findings present new evidence supporting that GA from G. lucidum has the potential to alleviate lipid metabolic disorders and ameliorate the imbalance of gut microflora in a positive way.
Collapse
Affiliation(s)
- Wei-Ling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Ge H, Lin P, Luo T, Yan Z, Xiao J, Miao S, Chen J. Fabrication of Ligusticum chuanxiong polylactic acid microspheres: A promising way to enhance the hepatoprotective effect on bioactive ingredients. Food Chem 2020; 317:126377. [PMID: 32113137 DOI: 10.1016/j.foodchem.2020.126377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/30/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
92
|
Huang ZR, Deng JC, Li QY, Cao YJ, Lin YC, Bai WD, Liu B, Rao PF, Ni L, Lv XC. Protective Mechanism of Common Buckwheat ( Fagopyrum esculentum Moench.) against Nonalcoholic Fatty Liver Disease Associated with Dyslipidemia in Mice Fed a High-Fat and High-Cholesterol Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6530-6543. [PMID: 32383865 DOI: 10.1021/acs.jafc.9b08211] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease (NAFLD) associated with dyslipidemia in mice that were fed a high-fat and high-cholesterol diet (HFD). Results showed that oral supplementation of common buckwheat significantly improved physiological indexes and biochemical parameters related to dyslipidemia and NAFLD in mice fed with HFD. Furthermore, the HFD-induced reductions in fecal short-chain fatty acids were reversed by common buckwheat intervention, which also increased the fecal bile acid (BA) abundance compared with HFD-induced hyperlipidemic mice. Liver metabolomics based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry demonstrated that common buckwheat supplementation made significant regulatory effects on the pentose phosphate pathway, starch and sucrose metabolism, primary BA biosynthesis, and so forth. The results of high-throughput sequencing revealed that common buckwheat supplementation significantly altered the structure of the intestinal microbiota in mice fed with HFD. The correlations between lipid metabolic parameters and intestinal microbial phylotypes were also revealed by the heatmap and network. Additionally, common buckwheat intervention regulated the mRNA expressions of genes responsible for liver lipid metabolism and BA homeostasis, thus promoting BA synthesis and excretion. These findings confirmed that common buckwheat has the outstanding ability of improving lipid metabolism and could be used as a potential functional food for the prevention of NAFLD and hyperlipidemia.
Collapse
Affiliation(s)
- Zi-Rui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Jia-Cong Deng
- School of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, P. R. China
| | - Qiu-Yi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Science and Engineering, Fuzhou University of International Studies and Trade, Fuzhou, Fujian 350202, P. R. China
| | - Ying-Jia Cao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Yi-Chen Lin
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Wei-Dong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Ping-Fan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xu-Cong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
93
|
Effects of supplementing feed with fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on cholesterol deposition in broiler chickens. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Zhang Q, Fan XY, Guo WL, Cao YJ, Lin YC, Cheng WJ, Chen LJ, Rao PF, Ni L, Lv XC. The protective mechanisms of macroalgae Laminaria japonica consumption against lipid metabolism disorders in high-fat diet-induced hyperlipidemic rats. Food Funct 2020; 11:3256-3270. [PMID: 32219261 DOI: 10.1039/d0fo00065e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroalgae Laminaria japonica (MLJ) has been reported to exhibit various biological activities including improving immunity, anti-aging, anti-tumor, anti-atherosclerosis and anti-diabetic, but the protective mechanisms of MLJ consumption against non-alcoholic fatty liver disease (NAFLD) associated with hyperlipidemia remain poorly understood. This study demonstrated that MLJ consumption prevented high-fat diet (HFD)-induced NAFLD associated with hyperlipidemia in a rat model, and improved hyperlipidemia-related parameters, e.g. serum and hepatic lipid profiles. Moreover, histological analysis showed that MLJ reduced lipid deposition in adipocytes and hepatocytes compared with the HFD group. Such beneficial effects may be associated with the modulation of the intestinal microbiota, especially some key microbial phylotypes involved in lipid metabolism homeostasis. The underlying protective mechanisms of MLJ consumption against HFD-induced NAFLD associated with hyperlipidemia were also studied by ultra-high performance liquid chromatography with quadruple-time of flight mass spectrometry (UPLC-QTOF/MS)-based liver metabolomics coupled with pathway analysis. The metabolic pathway enrichment analysis of the differentially abundant hepatic metabolites indicated that primary bile acid biosynthesis metabolism and cysteine and methionine metabolism were the two main metabolic pathways altered by MLJ consumption when compared with the model group. The analysis of the transcription levels of liver-related genes by RT-qPCR and the expressions of liver-related proteins by immunohistochemistry (IHC) showed that MLJ consumption could regulate the levels of mRNA transcription and protein expression related to hepatic lipid metabolism. In short, this study indicates that MLJ could be developed as functional food supplement for the prevention or treatment of NAFLD associated with hyperlipidemia.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiao-Yun Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Wei-Ling Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China and Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying-Jia Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi-Chen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen-Jian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Li-Jiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ping-Fan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xu-Cong Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China and Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
95
|
Zhang Q, Fan X, Ye R, Hu Y, Zheng T, Shi R, Cheng W, Lv X, Chen L, Liang P. The Effect of Simvastatin on Gut Microbiota and Lipid Metabolism in Hyperlipidemic Rats Induced by a High-Fat Diet. Front Pharmacol 2020; 11:522. [PMID: 32410994 PMCID: PMC7201051 DOI: 10.3389/fphar.2020.00522] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to investigate the effects of simvastatin (SIM) on lipid metabolism disorders and gut microbiota in high-fat diet-induced hyperlipidemic rats. The obtained results revealed that feeding rats with SIM (20 mg/kg/day) significantly decreased serum lipid level and inhibited hepatic lipid accumulation and steatosis. Histological analysis further indicated that SIM reduced lipid deposition in adipocytes and hepatocytes in comparison with that of the HFD group. The underlying mechanisms of SIM administration against HFD-induced hyperlipidemia were also studied by UPLC-Q-TOF/MS-based liver metabonomics coupled with pathway analysis. Metabolic pathway enrichment analysis of liver metabolites with significant difference in abundance indicated that fatty acids metabolism and amino acid metabolism were the main metabolic pathways altered by SIM administration. Meanwhile, operational taxonomic units (OTUs) analysis revealed that oral administration of SIM altered the composition of gut microbiota, including Ruminococcaceae (OTU960) and Lactobacillus (OTU152), and so on. Furthermore, SIM treatment also regulated the mRNA levels of the genes involved in lipid and cholesterol metabolism. Immunohistochemistry (IHC) analysis of the liver-related proteins (CD36, CYP7A1 and SREBP-1C) showed that oral administration of SIM could regulate the levels of the protein expression related to hepatic lipid metabolism.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Ye
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhong Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xucong Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
96
|
Wang X, Yang Z, Xu X, Jiang H, Cai C, Yu G. Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice. Carbohydr Polym 2020; 240:116261. [PMID: 32475553 DOI: 10.1016/j.carbpol.2020.116261] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Agaro- and neoagaro-oligosaccharides with even-numbered sugar units possess a variety of biological activities. However, the effects of the odd-numbered oligosaccharides from Gracilaria agarose (OGAOs) on type 2 diabetes mellitus (T2DM) have not been reported. In this study, we aimed to evaluate the effects of OGAOs on anti-T2DM from different aspects. We found that OGAOs treatment could alleviate oxidative stress, inflammation, and the related hyperglycemia, insulin resistance, lipid accumulation, and obesity in high-fat diet (HFD) induced T2DM. Investigation of the underlying mechanism showed that colitis and colonic microbiota dysbiosis in T2DM mice were ameliorated after OGAOs treatment. First, OGAOs increased the expression of ZO-1, occludin, and AMPK, and suppressed the TLR4/MAPK/NF-κB pathway in colon indicating that OGAOs enhance intestinal integrity and conduct the anti-apoptosis effects to prevent the invasion of toxins and harmful microorganisms. Moreover, the relative abundance of Akkermansia was significantly upregulated in the gut microbiome of T2DM mice associated with a dramatic decrease of the relative abundance of Helicobacter, which are both beneficial for alleviating colitis and T2DM. In addition, Spearman's correlation analysis indicated that changes in the colonic microbiota could regulate oxidative stress, inflammation, and hyperlipidemia. In summary, the underlying mechanism of OGAOs on alleviating colitis and colonic microbiota dysbiosis in T2DM has been intensively studied, illustrating that OGAOs could be further developed as a potential pharmaceutical agent for T2DM.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zimei Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Xu Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
97
|
Guo WL, Chen M, Pan WL, Zhang Q, Xu JX, Lin YC, Li L, Liu B, Bai WD, Zhang YY, Ni L, Rao PF, Lv XC. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice. Int J Biol Macromol 2020; 145:1208-1218. [DOI: 10.1016/j.ijbiomac.2019.09.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
|
98
|
Wang F, Huang X, Chen Y, Zhang D, Chen D, Chen L, Lin J. Study on the Effect of Capsaicin on the Intestinal Flora through High-Throughput Sequencing. ACS OMEGA 2020; 5:1246-1253. [PMID: 31984282 PMCID: PMC6977284 DOI: 10.1021/acsomega.9b03798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 05/04/2023]
Abstract
As a common kind of food, pepper is well known for its special effects on the physiological state of human individuals. Capsaicin, the main component of pepper, is speculated to be linked with intestinal microorganisms on account of their direct contact. Herein, we first utilized mouse models and 16S rRNA high-throughput sequencing to compare the differences in intestinal flora between mouse groups with and without capsaicin treatment by gavage. The mice in the two groups showed significantly distinct performance in terms of body weight, leukocyte count, fecal humidity, and constituent ratios of intestinal bacteria, such as Faecalibacterium, Akkermansia, Roseburia, Helicobacter, and Bacteroides species. In particular, the Faecalibacterium abundance was the most highly variable among the 5 bacterial genera. Based on statistical analysis and comparison, the variation tendency of body weight, leukocyte count, and fecal humidity was closely related to the bacteria. In conclusion, capsaicin could affect the physiological state of mice by changing the constitution of the intestinal flora.
Collapse
Affiliation(s)
- Fanghong Wang
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xiaoyu Huang
- Department
of Preventive Dentistry, School and Hospital
of Stomatology, Fujian Medical University, Fuzhou 350002, Fujian Province, P.R. China
| | - Yueyang Chen
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Danli Zhang
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Danyi Chen
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Lingxin Chen
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jun Lin
- Institute
of Applied Genomics, College of Biological Science and Engineering, and Fujian Key Laboratory
of Marine Enzyme Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
99
|
Peng Y, Yan Y, Wan P, Dong W, Huang K, Ran L, Mi J, Lu L, Zeng X, Cao Y. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Res Int 2019; 130:108952. [PMID: 32156393 DOI: 10.1016/j.foodres.2019.108952] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
Abstract
The relationship between diet, especially polyphenols, and health has been receiving increasing attention. Polyphenols were degraded by gut microbiota into metabolites and acted on the body to exert many bioactivities from several targets such as antioxidative stress, anti-inflammation, intestinal barrier and gut microbiota modulation. After long-term treatment of mice with anthocyanins from Lycium ruthenicum Murray (ACN), antioxidant status in liver (T-AOC, T-SOD, CAT, GSH and GSH-Px were increased and AST, ALT, ALP and MDA were decreased), anti-inflammatory status in colon (the expression of mRNA of iNos, Cox-2, Tnf-α, Il-6, Il-1β and Ifn-γ were significantly reduced), intestinal barrier (the expression of mRNA of Zo-1, Occludin, Claudin-1 and Muc1 were significantly increased) and gut microbiota (Barnesiella, Alistipes, Eisenbergiella, Coprobacter and Odoribacter were proliferated) were all regulated in ACN group. Meanwhile, the content of short-chain fatty acids in cecal contents and feces were increased. Taken together, long-term intake of ACN could promote organism healthy and these results have important implications for the development of ACN as a functional food ingredient.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
100
|
Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol 2019; 104:589-601. [PMID: 31865438 DOI: 10.1007/s00253-019-10312-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
A diverse range of symbiotic gut bacteria codevelops with the host and is considered a metabolic "organ" that not only facilitates harvesting of nutrients from the dietary components but also produces a class of metabolites. Many metabolites of gut microbes have an important impact on host health. For example, an inventory of metabolic intermediates derived from bacterial protein fermentation may affect host physiology and pathophysiology. Additionally, gut microbiota can convert cholesterol to bile acids and further into secondary bile acids which can conversely modulate microbial community. Moreover, new research identifies that microbes synthesize vitamins for us in the colon. Here, we will review data implicating a major class of bacterial metabolites through breaking down dietary fiber we cannot process, short-chain fatty acids (SCFAs), as crucial executors of alteration of immune mechanisms, regulation of metabolic homeostasis, and neuroprotective effects to combat disease and improve health.
Collapse
Affiliation(s)
- Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|