51
|
Bariya M, Li L, Ghattamaneni R, Ahn CH, Nyein HYY, Tai LC, Javey A. Glove-based sensors for multimodal monitoring of natural sweat. SCIENCE ADVANCES 2020; 6:eabb8308. [PMID: 32923646 PMCID: PMC7455190 DOI: 10.1126/sciadv.abb8308] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 05/18/2023]
Abstract
Sweat sensors targeting exercise or chemically induced sweat have shown promise for noninvasive health monitoring. Natural thermoregulatory sweat is an attractive alternative as it can be accessed during routine and sedentary activity without impeding user lifestyles and potentially preserves correlations between sweat and blood biomarkers. We present simple glove-based sensors to accumulate natural sweat with minimal evaporation, capitalizing on high sweat gland densities to collect hundreds of microliters in just 30 min without active sweat stimulation. Sensing electrodes are patterned on nitrile gloves and finger cots for in situ detection of diverse biomarkers, including electrolytes and xenobiotics, and multiple gloves or cots are worn in sequence to track overarching analyte dynamics. Direct integration of sensors into gloves represents a simple and low-overhead scheme for natural sweat analysis, enabling sweat-based physiological monitoring to become practical and routine without requiring highly complex or miniaturized components for analyte collection and signal transduction.
Collapse
Affiliation(s)
- Mallika Bariya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lu Li
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rahul Ghattamaneni
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Christine Heera Ahn
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Li-Chia Tai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
52
|
Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. Proc Natl Acad Sci U S A 2020; 117:19017-19025. [PMID: 32719130 DOI: 10.1073/pnas.2009979117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To achieve the mission of personalized medicine, centering on delivering the right drug to the right patient at the right dose, therapeutic drug monitoring solutions are necessary. In that regard, wearable biosensing technologies, capable of tracking drug pharmacokinetics in noninvasively retrievable biofluids (e.g., sweat), play a critical role, because they can be deployed at a large scale to monitor the individuals' drug transcourse profiles (semi)continuously and longitudinally. To this end, voltammetry-based sensing modalities are suitable, as in principle they can detect and quantify electroactive drugs on the basis of the target's redox signature. However, the target's redox signature in complex biofluid matrices can be confounded by the immediate biofouling effects and distorted/buried by the interfering voltammetric responses of endogenous electroactive species. Here, we devise a wearable voltammetric sensor development strategy-centering on engineering the molecule-surface interactions-to simultaneously mitigate biofouling and create an "undistorted potential window" within which the target drug's voltammetric response is dominant and interference is eliminated. To inform its clinical utility, our strategy was adopted to track the temporal profile of circulating acetaminophen (a widely used analgesic and antipyretic) in saliva and sweat, using a surface-modified boron-doped diamond sensing interface (cross-validated with laboratory-based assays, R 2 ∼ 0.94). Through integration of the engineered sensing interface within a custom-developed smartwatch, and augmentation with a dedicated analytical framework (for redox peak extraction), we realized a wearable solution to seamlessly render drug readouts with minute-level temporal resolution. Leveraging this solution, we demonstrated the pharmacokinetic correlation and significance of sweat readings.
Collapse
|
53
|
Xu C, Yang Y, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. MATTER 2020; 2:1414-1445. [PMID: 32510052 PMCID: PMC7274218 DOI: 10.1016/j.matt.2020.03.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent advances in skin-interfaced wearable sensors have enabled tremendous potential towards personalized medicine and digital health. Compared with traditional healthcare, wearable sensors could perform continuous and non-invasive data collection from the human body and provide an insight into both fitness monitoring and medical diagnostics. In this review, we summarize the latest progress of skin-interfaced wearable sensors along with their integrated systems. We first introduce the strategies of materials selection and structure design that can be accommodated for intimate contact with human skin. Current development of physical and biochemical sensors is then classified and discussed with an emphasis on their sensing mechanisms. System-level integration including power supply, wireless communication and data analysis are also briefly discussed. We conclude with an outlook of this field and identify the key challenges and opportunities for future wearable devices and systems.
Collapse
Affiliation(s)
- Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- Lead Contact
- Correspondence:
| |
Collapse
|
54
|
Pirovano P, Dorrian M, Shinde A, Donohoe A, Brady AJ, Moyna NM, Wallace G, Diamond D, McCaul M. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020; 219:121145. [PMID: 32887090 DOI: 10.1016/j.talanta.2020.121145] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
The SwEatch platform, a wearable sensor for sampling and measuring the concentration of electrolytes in human sweat in real time, has been improved in order to allow the sensing of two analytes. The solid contact ion-sensitive electrodes (ISEs) for the detection of Na+ and K+ have been developed in two alternative formulations, containing either poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3-octylthiophene-2,5-diyl) (POT) as a conductive polymer transducing component. The solution-processable POT formulation simplifies the fabrication process, and sensor to sensor reproducibility has been improved via partial automation using an Opentron® automated pipetting robot. The resulting electrodes showed good sensitivity (52.4 ± 6.3 mV/decade (PEDOT) and 56.4 ± 2.2 mV/decade (POT) for Na+ ISEs, and 45.7 ± 7.4 mV/decade (PEDOT) and 54.3 ± 1.5 mV/decade (POT) for K+) and excellent selectivity towards potential interferents present in human sweat (H+, Na+, K+, Mg2+, Ca2+). The 3D printed SwEatch platform has been redesigned to incorporate a double, mirrored fluidic unit which is capable of drawing sweat from the skin through passive capillary action and bring it in contact with two independent electrodes. The potentiometric signal generated by the electrodes is measured by an integrated electronics board, digitised and transmitted via Bluetooth to a laptop. The results obtained from on-body trials on athletes during cycling show a relatively small increase in sodium (1.89 mM-2.97 mM) and potassium (3.31 mM-7.25 mM) concentrations during the exercise period of up to 90 min.
Collapse
Affiliation(s)
- Paolo Pirovano
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Matthew Dorrian
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Akshay Shinde
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew Donohoe
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Aidan J Brady
- School of Health and Human Performance, Dublin City University, Dublin 9, Ireland
| | - Niall M Moyna
- School of Health and Human Performance, Dublin City University, Dublin 9, Ireland
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Margaret McCaul
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
55
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
56
|
Shay T, Saha T, Dickey MD, Velev OD. Principles of long-term fluids handling in paper-based wearables with capillary-evaporative transport. BIOMICROFLUIDICS 2020; 14:034112. [PMID: 32566070 PMCID: PMC7286699 DOI: 10.1063/5.0010417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 05/24/2023]
Abstract
We construct and investigate paper-based microfluidic devices, which model long-term fluid harvesting, transport, sensing, and analysis in new wearables for sweat analysis. Such devices can continuously wick fluid mimicking sweat and dispose of it on evaporation pads. We characterize and analyze how the action of capillarity and evaporation can cooperatively be used to transport and process sweat mimics containing dissolved salts and model analytes. The results point out that non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal can enable sweat collection and monitoring for durations longer than 10 days. We model the fluid flow in the new capillary-evaporative devices and identify the parameters enabling their long-term operation. We show that the transport rates are sufficiently large to handle natural sweat rates, while we envision that such handling can be interfaced with osmotic harvesting of sweat, a concept that we demonstrated recently. Finally, we illustrate that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time will preserve a record of analytes that may be used for long-term biomarker monitoring in sweat. These principles can be implemented in future platforms for wearable skin-interfacing assays or electronic biomarker monitors.
Collapse
Affiliation(s)
- Timothy Shay
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| |
Collapse
|
57
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
58
|
Nagamine K, Nomura A, Ichimura Y, Izawa R, Sasaki S, Furusawa H, Matsui H, Tokito S. Printed Organic Transistor-based Biosensors for Non-invasive Sweat Analysis. ANAL SCI 2020; 36:291-302. [PMID: 31904007 DOI: 10.2116/analsci.19r007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/25/2019] [Indexed: 08/09/2023]
Abstract
This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Ayako Nomura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryota Izawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shiori Sasaki
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Furusawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
59
|
Iitani K, Naisierding M, Toma K, Arakawa T, Mitsubayashi K. Evaluation for regional difference of skin-gas ethanol and sweat rate using alcohol dehydrogenase-mediated fluorometric gas-imaging system (sniff-cam). Analyst 2020; 145:2915-2924. [PMID: 32133466 DOI: 10.1039/c9an02089f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skin gas that contains volatile metabolites (volatilome) is emanated continuously and is thus expected to be suitable for non-invasive monitoring. The aim of this study was to investigate the relationship between the regional difference of sweat rate and skin volatilome distribution to identify the suitable site to monitor metabolisms. In this study, we developed a biofluorometric gas-imaging system (sniff-cam) based on nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) to visualize transcutaneous ethanol (EtOH) distribution. The EtOH distribution was converted to a fluorescence distribution of reduced NAD with autofluorescence property. First, we optimized the solution volume and concentration of the oxidized NAD, which was a coenzyme of ADH. Owing to the optimization, a two-dimensional distribution of EtOH could be visualized from 0.05-10 ppm with good sensitivity and selectivity. Subsequently, transcutaneous EtOH imaging and measurement of sweat rate were performed at the palm, dorsum of hand, and wrist of participants who consumed alcohol. Transcutaneous EtOH from all skin parts was imaged using the sniff-cam; the concentrations initially increased until 30 min after drinking, followed by a gradual decrease. Although the determined peak EtOH concentrations of typical subjects were approximately 1100 ± 35 ppb (palm), which were higher than 720 ± 18 ppb (dorsum) and 620 ± 13 ppb (wrist), the results of sweat rate suggested that the dorsum of hand and the wrist were appropriate sites. Finally, the sniff-cam could visualize the individual difference of alcohol metabolism capacity originating from aldehyde dehydrogenase phenotype by imaging transcutaneous EtOH.
Collapse
Affiliation(s)
- Kenta Iitani
- Postdoctoral Research Fellow PD, Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | | | | | | | | |
Collapse
|
60
|
Physiological mechanisms determining eccrine sweat composition. Eur J Appl Physiol 2020; 120:719-752. [PMID: 32124007 PMCID: PMC7125257 DOI: 10.1007/s00421-020-04323-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Purpose The purpose of this paper is to review the physiological mechanisms determining eccrine sweat composition to assess the utility of sweat as a proxy for blood or as a potential biomarker of human health or nutritional/physiological status. Methods This narrative review includes the major sweat electrolytes (sodium, chloride, and potassium), other micronutrients (e.g., calcium, magnesium, iron, copper, zinc, vitamins), metabolites (e.g., glucose, lactate, ammonia, urea, bicarbonate, amino acids, ethanol), and other compounds (e.g., cytokines and cortisol). Results Ion membrane transport mechanisms for sodium and chloride are well established, but the mechanisms of secretion and/or reabsorption for most other sweat solutes are still equivocal. Correlations between sweat and blood have not been established for most constituents, with perhaps the exception of ethanol. With respect to sweat diagnostics, it is well accepted that elevated sweat sodium and chloride is a useful screening tool for cystic fibrosis. However, sweat electrolyte concentrations are not predictive of hydration status or sweating rate. Sweat metabolite concentrations are not a reliable biomarker for exercise intensity or other physiological stressors. To date, glucose, cytokine, and cortisol research is too limited to suggest that sweat is a useful surrogate for blood. Conclusion Final sweat composition is not only influenced by extracellular solute concentrations, but also mechanisms of secretion and/or reabsorption, sweat flow rate, byproducts of sweat gland metabolism, skin surface contamination, and sebum secretions, among other factors related to methodology. Future research that accounts for these confounding factors is needed to address the existing gaps in the literature. Electronic supplementary material The online version of this article (10.1007/s00421-020-04323-7) contains supplementary material, which is available to authorized users.
Collapse
|
61
|
Zhao Y, Wang B, Hojaiji H, Wang Z, Lin S, Yeung C, Lin H, Nguyen P, Chiu K, Salahi K, Cheng X, Tan J, Cerrillos BA, Emaminejad S. A wearable freestanding electrochemical sensing system. SCIENCE ADVANCES 2020; 6:eaaz0007. [PMID: 32219164 PMCID: PMC7083607 DOI: 10.1126/sciadv.aaz0007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
To render high-fidelity wearable biomarker data, understanding and engineering the information delivery pathway from epidermally retrieved biofluid to a readout unit are critical. By examining the biomarker information delivery pathway and recognizing near-zero strained regions within a microfluidic device, a strain-isolated pathway to preserve biomarker data fidelity is engineered. Accordingly, a generalizable and disposable freestanding electrochemical sensing system (FESS) is devised, which simultaneously facilitates sensing and out-of-plane signal interconnection with the aid of double-sided adhesion. The FESS serves as a foundation to realize a system-level design strategy, addressing the challenges of wearable biosensing, in the presence of motion, and integration with consumer electronics. To this end, a FESS-enabled smartwatch was developed, featuring sweat sampling, electrochemical sensing, and data display/transmission, all within a self-contained wearable platform. The FESS-enabled smartwatch was used to monitor the sweat metabolite profiles of individuals in sedentary and high-intensity exercise settings.
Collapse
Affiliation(s)
- Yichao Zhao
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Wang
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannaneh Hojaiji
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhaoqing Wang
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuyu Lin
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Yeung
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haisong Lin
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peterson Nguyen
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaili Chiu
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kamyar Salahi
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xuanbing Cheng
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiawei Tan
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Betto Alcitlali Cerrillos
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sam Emaminejad
- Interconnected & Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
62
|
Zhao FJ, Bonmarin M, Chen ZC, Larson M, Fay D, Runnoe D, Heikenfeld J. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. LAB ON A CHIP 2020; 20:168-174. [PMID: 31796944 DOI: 10.1039/c9lc00911f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quantifiably monitoring sweat rate and volume is important to assess the stress level of individuals and/or prevent dehydration, but despite intense research, a convenient, continuous, and low-cost method to monitor sweat rate and total sweat volume loss remains an un-met need. We present here an ultra-simple wearable sensor capable of measuring sweat rate and volume accurately. The device continuously monitors sweat rate by wicking the produced sweat into hydrogels that measurably swell in their physical geometry. The device has been designed as a simple to fabricate, low-cost, disposable patch. This patch exhibits stable and predictable operation over the maximum variable chemistry expected for sweat (pH 4-9 and salinity 0-100 mM NaCl). Preliminary in vivo testing of the patch has been achieved during aerobic exercise, and the sweat rates measured via the patch accurately follow actual sweat rates.
Collapse
Affiliation(s)
- F J Zhao
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China and Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - M Bonmarin
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA and School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, Winterthur, Zurich 8400, Switzerland
| | - Z C Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - M Larson
- Eccrine Systems Inc., 1775 Mentor Ave, Cincinnati, Ohio 45212, USA
| | - D Fay
- Eccrine Systems Inc., 1775 Mentor Ave, Cincinnati, Ohio 45212, USA
| | - D Runnoe
- Eccrine Systems Inc., 1775 Mentor Ave, Cincinnati, Ohio 45212, USA
| | - J Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
63
|
Kim SB, Koo J, Yoon J, Hourlier-Fargette A, Lee B, Chen S, Jo S, Choi J, Oh YS, Lee G, Won SM, Aranyosi AJ, Lee SP, Model JB, Braun PV, Ghaffari R, Park C, Rogers JA. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. LAB ON A CHIP 2020; 20:84-92. [PMID: 31776526 DOI: 10.1039/c9lc01045a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.
Collapse
Affiliation(s)
- Sung Bong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jahyun Koo
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Jangryeol Yoon
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Advanced Research Team, R&D Center, Samsung Display, Yongin-si, Gyeonggi-do 17113, South Korea
| | - Aurélie Hourlier-Fargette
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Institut Charles Sadron, CNRS, Université de Strasbourg, UPR22, 23 rue du Loess, 67034 Strasbourg cedex 2, France
| | - Boram Lee
- Department of Medicine, Konkuk University, Seoul 05029, South Korea
| | - Shulin Chen
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Seongbin Jo
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, Seoul 02707, South Korea
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Geumbee Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Sang Min Won
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Alexander J Aranyosi
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen P Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jeffrey B Model
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Paul V Braun
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chulwhan Park
- Dept. of Chem. Eng., Kwangwoon University, Seoul 01897, South Korea
| | - John A Rogers
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA and Department of Chemistry, Department of Electrical Engineering and Computer Science, Department of Neurological Surgery, Simpson Querrey Institute for Nano/Biotechnology, McCormick School of Engineering and Feinberg, School of Medicine, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
64
|
Chung M, Fortunato G, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface 2019; 16:20190217. [PMID: 31594525 PMCID: PMC6833321 DOI: 10.1098/rsif.2019.0217] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Abstract
The state-of-the-art in wearable flexible sensors (WFSs) for sweat analyte detection was investigated. Recent advances show the development of integrated, mechanically flexible and multiplexed sensor systems with on-site circuitry for signal processing and wireless data transmission. When compared with single-analyte sensors, such devices provide an opportunity to more accurately analyse analytes that are dependent on other parameters (such as sweat rate and pH) by improving calibration from in situ real-time analysis, while maintaining a lightweight and wearable design. Important health conditions can be monitored and on-demand regulating drugs can be delivered using integrated wearable systems but require correlation verification between sweat and blood measurements using in vivo validation tests before any clinical application can be considered. Improvements are necessary for device sensitivity, accuracy and repeatability to provide more reliable and personalized continuous measurements. With rapid recent development, it can be concluded that non-invasive WFSs for sweat analysis have only skimmed the surface of their health monitoring potential and further significant advancement is sure to be made in the medical field.
Collapse
Affiliation(s)
- Michael Chung
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Norbert Radacsi
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|
65
|
Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2019; 92:378-396. [DOI: 10.1021/acs.analchem.9b04668] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sadagopan Krishnan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
66
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A-PHYSICAL 2019. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
67
|
Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron 2019; 141:111422. [DOI: 10.1016/j.bios.2019.111422] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 11/18/2022]
|
68
|
Abstract
Conventional skin and blood sampling techniques for disease diagnosis, though effective, are often highly invasive and some even suffer from variations in analysis. With the improvements in molecular detection, the amount of starting sample quantity needed has significantly reduced in some diagnostic procedures, and this has led to an increased interest in microsampling techniques for disease biomarker detection. The miniaturization of sampling platforms driven by microsampling has the potential to shift disease diagnosis and monitoring closer to the point of care. The faster turnaround time for actionable results has improved patient care. The variations in sample quantification and analysis remain a challenge in the microsampling field. The future of microsampling looks promising. Emerging techniques are being clinically tested and monitored by regulatory bodies. This process is leading to safer and more reliable diagnostic platforms. This review discusses the advantages and disadvantages of current skin and blood microsampling techniques.
Collapse
Affiliation(s)
- Benson U W Lei
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Building MM - MM2-01F, GPO Box 2471, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA, 5095, Australia.,Dermatology Research Centre, Faculty of Medicine, The University of Queensland, St. Lucia, Australia
| | - Tarl W Prow
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Building MM - MM2-01F, GPO Box 2471, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA, 5095, Australia. .,Dermatology Research Centre, Faculty of Medicine, The University of Queensland, St. Lucia, Australia.
| |
Collapse
|
69
|
Nyein HYY, Bariya M, Kivimäki L, Uusitalo S, Liaw TS, Jansson E, Ahn CH, Hangasky JA, Zhao J, Lin Y, Happonen T, Chao M, Liedert C, Zhao Y, Tai LC, Hiltunen J, Javey A. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. SCIENCE ADVANCES 2019; 5:eaaw9906. [PMID: 31453333 PMCID: PMC6697435 DOI: 10.1126/sciadv.aaw9906] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/08/2019] [Indexed: 05/21/2023]
Abstract
Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.
Collapse
Affiliation(s)
- Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Mallika Bariya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Liisa Kivimäki
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Sanna Uusitalo
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Tiffany Sun Liaw
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elina Jansson
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Christine Heera Ahn
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John A. Hangasky
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiangqi Zhao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Yuanjing Lin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Tuomas Happonen
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Minghan Chao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina Liedert
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Yingbo Zhao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Li-Chia Tai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
| | - Jussi Hiltunen
- VTT-Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
70
|
Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digit Med 2019; 2:72. [PMID: 31341957 PMCID: PMC6646404 DOI: 10.1038/s41746-019-0150-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Athletes are continually seeking new technologies and therapies to gain a competitive edge to maximize their health and performance. Athletes have gravitated toward the use of wearable sensors to monitor their training and recovery. Wearable technologies currently utilized by sports teams monitor both the internal and external workload of athletes. However, there remains an unmet medical need by the sports community to gain further insight into the internal workload of the athlete to tailor recovery protocols to each athlete. The ability to monitor biomarkers from saliva or sweat in a noninvasive and continuous manner remain the next technological gap for sports medical personnel to tailor hydration and recovery protocols per the athlete. The emergence of flexible and stretchable electronics coupled with the ability to quantify biochemical analytes and physiological parameters have enabled the detection of key markers indicative of performance and stress, as reviewed in this paper.
Collapse
|
71
|
Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS, Martin A, Tang G, Shah R, Mishra RK, Kim J, Zucolotto V, Escarpa A, Wang J. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron 2019; 137:161-170. [PMID: 31096082 PMCID: PMC8372769 DOI: 10.1016/j.bios.2019.04.058] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023]
Abstract
We report on a wearable tear bioelectronic platform, integrating a microfluidic electrochemical detector into an eyeglasses nose-bridge pad, for non-invasive monitoring of key tear biomarkers. The alcohol-oxidase (AOx) biosensing fluidic system allowed real-time tear collection and direct alcohol measurements in stimulated tears, leading to the first wearable platform for tear alcohol monitoring. Placed outside the eye region this fully wearable tear-sensing platform addresses drawbacks of sensor systems involving direct contact with the eye as the contact lenses platform. Integrating the wireless electronic circuitry into the eyeglasses frame thus yielded a fully portable, convenient-to-use fashionable sensing device. The tear alcohol sensing concept was demonstrated for monitoring of alcohol intake in human subjects over multiple drinking courses, displaying good correlation to parallel BAC measurements. We also demonstrate for the first time the ability to monitor tear glucose outside the eye and the utility of wearable devices for monitoring vitamin nutrients in connection to enzymatic flow detector and rapid voltammetric scanning, respectively. These developments pave the way to build an effective eyeglasses system capable of chemical tear analysis.
Collapse
Affiliation(s)
- Juliane R Sempionatto
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Laís Canniatti Brazaca
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Sao Carlos Physics Institute, University of Sao Paulo, Sao Carlos, 13566-590, Sao Paulo, Brazil
| | - Laura García-Carmona
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Analytical Chemistry, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - Gulcin Bolat
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Alan S Campbell
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Aida Martin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Guangda Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Rushabh Shah
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jayoung Kim
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Valtencir Zucolotto
- Sao Carlos Physics Institute, University of Sao Paulo, Sao Carlos, 13566-590, Sao Paulo, Brazil
| | - Alberto Escarpa
- Department of Analytical Chemistry, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
72
|
Guk K, Han G, Lim J, Jeong K, Kang T, Lim EK, Jung J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E813. [PMID: 31146479 PMCID: PMC6631918 DOI: 10.3390/nano9060813] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
Wearable devices are becoming widespread in a wide range of applications, from healthcare to biomedical monitoring systems, which enable continuous measurement of critical biomarkers for medical diagnostics, physiological health monitoring and evaluation. Especially as the elderly population grows globally, various chronic and acute diseases become increasingly important, and the medical industry is changing dramatically due to the need for point-of-care (POC) diagnosis and real-time monitoring of long-term health conditions. Wearable devices have evolved gradually in the form of accessories, integrated clothing, body attachments and body inserts. Over the past few decades, the tremendous development of electronics, biocompatible materials and nanomaterials has resulted in the development of implantable devices that enable the diagnosis and prognosis through small sensors and biomedical devices, and greatly improve the quality and efficacy of medical services. This article summarizes the wearable devices that have been developed to date, and provides a review of their clinical applications. We will also discuss the technical barriers and challenges in the development of wearable devices, and discuss future prospects on wearable biosensors for prevention, personalized medicine and real-time health monitoring.
Collapse
Affiliation(s)
- Kyeonghye Guk
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Gaon Han
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Jaewoo Lim
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Keunwon Jeong
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Taejoon Kang
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Eun-Kyung Lim
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| | - Juyeon Jung
- BioNano technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.
| |
Collapse
|
73
|
Ray T, Choi J, Reeder J, Lee SP, Aranyosi AJ, Ghaffari R, Rogers JA. Soft, skin-interfaced wearable systems for sports science and analytics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
74
|
Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019; 37:407-419. [DOI: 10.1038/s41587-019-0040-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
|
75
|
Brothers MC, DeBrosse M, Grigsby CC, Naik RR, Hussain SM, Heikenfeld J, Kim SS. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms. Acc Chem Res 2019; 52:297-306. [PMID: 30688433 DOI: 10.1021/acs.accounts.8b00555] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiological sensors in a wearable form have rapidly emerged on the market due to technological breakthroughs and have become nearly ubiquitous with the Apple Watch, FitBit, and other wearable devices. While these wearables mostly monitor simple biometric signatures, new devices that can report on the human readiness level through sensing molecular biomarkers are critical to optimizing the human factor in both commercial sectors and the Department of Defense. The military is particularly interested in real-time, wearable, minimally invasive monitoring of fatigue and human performance to improve the readiness and performance of the war fighter. However, very few devices have ventured into the realm of reporting directly on biomarkers of interest. Primarily this is because of the difficulties of sampling biological fluids in real-time and providing accurate readouts using highly selective and sensitive sensors. When additional restrictions to only use sweat, an excretory fluid, are enforced to minimize invasiveness, the demands on sensors becomes even greater due to the dilution of the biomarkers of interest, as well as variability in salinity, pH, and other physicochemical variables which directly impact the read-out of real-time biosensors. This Account will provide a synopsis not only on exemplary demonstrations and technological achievements toward implementation of real-time, wearable sweat sensors but also on defining problems that still remain toward implementation in wearable devices that can detect molecular biomarkers for real world applications. First, the authors describe the composition of minimally invasive biofluids and then identify what biomarkers are of interest as biophysical indicators. This Account then reviews demonstrated techniques for extracting biofluids from the site of generation and transport to the sensor developed by the authors. Included in this discussion is a detailed description on biosensing recognition elements and transducers developed by the authors to enable generation of selective electrochemical sensing platforms. The authors also discuss ongoing efforts to identify biorecognition elements and the chemistries necessary to enable high affinity, selective biorecognition elements. Finally, this Account presents the requirements for wearable, real-time sensors to be (1) highly stable, (2) portable, (3) reagentless, (4) continuous, and (5) responsive in real-time, before delving into specific methodologies to sense classes of biomarkers that have been explored by academia, government laboratories, and industry. Each platform has its areas of greatest utility, but also come with corresponding weaknesses: (1) ion selective electrodes are robust and have been demonstrated in wearables but are limited to detection of ions, (2) enzymatic sensors enable indirect detection of metabolites and have been demonstrated in wearables, but the compounds that can be detected are limited to a subset of small molecules and the sensors are sensitive to flow, (3) impedance-based sensors can detect a wide range of compounds but require further research and development for deployment in wearables. In conclusion, while substantial progress has been made toward wearable molecular biosensors, substantial barriers remain and need to be solved to enable deployment of minimally invasive, wearable biomarker monitoring devices that can accurately report on psychophysiological status.
Collapse
Affiliation(s)
- Michael C. Brothers
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Madeleine DeBrosse
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
| | - Claude C. Grigsby
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Saber M. Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Jason Heikenfeld
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Steve S. Kim
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
76
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
77
|
Cuartero M, Parrilla M, Crespo GA. Wearable Potentiometric Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E363. [PMID: 30658434 PMCID: PMC6359219 DOI: 10.3390/s19020363] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/26/2023]
Abstract
Wearable potentiometric sensors have received considerable attention owing to their great potential in a wide range of physiological and clinical applications, particularly involving ion detection in sweat. Despite the significant progress in the manner that potentiometric sensors are integrated in wearable devices, in terms of materials and fabrication approaches, there is yet plenty of room for improvement in the strategy adopted for the sample collection. Essentially, this involves a fluidic sampling cell for continuous sweat analysis during sport performance or sweat accumulation via iontophoresis induction for one-spot measurements in medical settings. Even though the majority of the reported papers from the last five years describe on-body tests of wearable potentiometric sensors while the individual is practicing a physical activity, the medical utilization of these devices has been demonstrated on very few occasions and only in the context of cystic fibrosis diagnosis. In this sense, it may be important to explore the implementation of wearable potentiometric sensors into the analysis of other biofluids, such as saliva, tears and urine, as herein discussed. While the fabrication and uses of wearable potentiometric sensors vary widely, there are many common issues related to the analytical characterization of such devices that must be consciously addressed, especially in terms of sensor calibration and the validation of on-body measurements. After the assessment of key wearable potentiometric sensors reported over the last five years, with particular attention paid to those for medical applications, the present review offers tentative guidance regarding the characterization of analytical performance as well as analytical and clinical validations, thereby aiming at generating debate in the scientific community to allow for the establishment of well-conceived protocols.
Collapse
Affiliation(s)
- María Cuartero
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Marc Parrilla
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Gaston A Crespo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| |
Collapse
|