51
|
Lignelli E, Palumbo F, Bayindir SG, Nagahara N, Vadász I, Herold S, Seeger W, Morty RE. The H 2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development. Nitric Oxide 2021; 107:31-45. [PMID: 33338600 DOI: 10.1016/j.niox.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Selahattin Görkem Bayindir
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; Institute for Lung Health (ILH), Justus Liebig University Giessen, Aulweg 130, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.
| |
Collapse
|
52
|
Li M, Mao JC, Zhu YZ. Hydrogen Sulfide: a Novel Immunoinflammatory Regulator in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:161-179. [PMID: 34302692 DOI: 10.1007/978-981-16-0991-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous, gaseous, signaling transmitter, has been shown to have vasodilative, anti-oxidative, anti-inflammatory, and cytoprotective activities. Increasing evidence also indicates that H2S can suppress the production of inflammatory mediators by immune cells, for example, T cells and macrophages. Inflammation is closely related to an immune response in several diseases such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and cancer. Considering these biological effects of H2S, a potential role in the treatment of immune-related RA is being exploited. In the present review, we will provide an overview of the therapeutic potential of H2S in RA treatment.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Jian-Chun Mao
- Department of Rheumatology, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
53
|
Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690830. [PMID: 34249061 PMCID: PMC8264797 DOI: 10.3389/fpls.2021.690830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.
Collapse
Affiliation(s)
- Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
- *Correspondence: Moshe Sagi
| |
Collapse
|
54
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
55
|
Croppi G, Zhou Y, Yang R, Bian Y, Zhao M, Hu Y, Ruan BH, Yu J, Wu F. Discovery of an Inhibitor for Bacterial 3-Mercaptopyruvate Sulfurtransferase that Synergistically Controls Bacterial Survival. Cell Chem Biol 2020; 27:1483-1499.e9. [DOI: 10.1016/j.chembiol.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
|
56
|
Guo H, Chen C, Lee DJ. Manipulating denitrifying sulfide removal of Pseudomonas sp. C27 with nitrite as sole nitrogen source: Shotgun proteomics analysis. BIORESOURCE TECHNOLOGY 2020; 318:124074. [PMID: 32916462 DOI: 10.1016/j.biortech.2020.124074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Pseudomonas sp. C27 can effectively conduct denitrifying sulfide removal (DSR) reactions via autotrophic denitrification, heterotrophic denitrification and coupled-cycle pathway. This study is the first to cultivate strain C27 using nitrite as the sole nitrogen source, and to conduct shotgun proteomics analysis and investigate the characteristics of DSR growth of strain C27 with nitrate or nitrite as sole nitrogen source. Shotgun proteomics analysis identified a total of 42 specially expressed proteins of C27 in the nitrite medium, based on which, together with chemical analysis data, a supplementary pathway of sulfur metabolism for C27 from sulfate to thiosulfate via intermediate adenosine-5'-phosphosulfate and 3'-phosphoadenosine-5'-phosphosulfate was proposed. Based on the newly revised scheme, the use of nitrite as sole nitrogen source expands the assessible regime of DSR reactions by C27 and provides the potential to recover renewable chemicals such as pyruvate and succinate from the coupled-cycle pathway.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan; College of Engineering, Tunghai University, Taichung 40070, Taiwan.
| |
Collapse
|
57
|
Abstract
Significance: Oxidative stress in moderation positively affects homeostasis through signaling, while in excess it is associated with adverse health outcomes. Both activities are generally attributed to reactive oxygen species (ROS); hydrogen peroxide as the signal, and cysteines on regulatory proteins as the target. However, using antioxidants to affect signaling or benefit health has not consistently translated into expected outcomes, or when it does, the mechanism is often unclear. Recent Advances: Reactive sulfur species (RSS) were integral in the origin of life and throughout much of evolution. Sophisticated metabolic pathways that evolved to regulate RSS were easily "tweaked" to deal with ROS due to the remarkable similarities between the two. However, unlike ROS, RSS are stored, recycled, and chemically more versatile. Despite these observations, the relevance and regulatory functions of RSS in extant organisms are generally underappreciated. Critical Issues: A number of factors bias observations in favor of ROS over RSS. Research conducted in room air is hyperoxic to cells, and promotes ROS production and RSS oxidation. Metabolic rates of rodent models greatly exceed those of humans; does this favor ROS? Analytical methods designed to detect ROS also respond to RSS. Do these disguise the contributions of RSS? Future Directions: Resolving the ROS/RSS issue is vital to understand biology in general and human health in particular. Improvements in experimental design and analytical methods are crucial. Perhaps the most important is an appreciation of all the attributes of RSS and keeping an open mind.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA
| |
Collapse
|
58
|
Ji Y, Li Y, Zhao Z, Li P, Xie Y. Hydrogen Sulfide Overproduction Is Involved in Acute Ischemic Cerebral Injury Under Hyperhomocysteinemia. Front Neurosci 2020; 14:582851. [PMID: 33424533 PMCID: PMC7793897 DOI: 10.3389/fnins.2020.582851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aimed to identify the involvement of hydrogen sulfide overproduction in acute brain injury under ischemia/reperfusion and hyperhomocysteinemia. Methods In vitro and in vivo experiments were conducted to determine: the effect of sodium hydrosulfide treatment on the human neuroblastoma cell line (SH-SY5Y) under conditions of oxygen and glucose deprivation; the changes of hydrogen sulfide levels, inflammatory factors, energetic metabolism, and mitochondrial function in the brain tissue of rats under either ischemia/reperfusion alone or a combination of ischemia/reperfusion and hyperhomocysteinemia; and the potential mechanism underlying the relationship between homocysteine and these changes through the addition of the related inhibitors. Furthermore, experimental technologies, including western blot, enzyme-linked immunosorbent assay, immunofluorescence, reverse transcription polymerase chain reaction, and flow cytometry, were used. Results Our study found that high concentration of sodium hydrosulfide treatment aggravated the decrease in mitochondrial membrane potential, the increase in both mitochondrial permeability transition pore and translocation of cytochrome C, as well as the accumulation of reactive oxygen species in oxygen and glucose deprived SH-SY5Y cells. As a result, neurological deficit appeared in rats with ischemia/reperfusion or ischemia/reperfusion and hyperhomocysteinemia, and a higher water content and larger infarction size of cerebral tissue appeared in rats combined ischemia/reperfusion and hyperhomocysteinemia. Furthermore, alterations in hydrogen sulfide production, inflammatory factors, and mitochondria morphology and function were more evident under the combined ischemia/reperfusion and hyperhomocysteinemia. These changes were, however, alleviated by the addition of inhibitors for CBS, CSE, Hcy, H2S, and NF-κB, although at different levels. Finally, we observed a negative relationship between the blockage of: (a) the nuclear factor kappa-B pathway and the levels of cystathionine β-synthase and hydrogen sulfide; and (b) the hydrogen sulfide pathway and the levels of inflammatory factors. Conclusion Hydrogen sulfide overproduction and reactive inflammatory response are involved in ischemic cerebral injury under hyperhomocysteinemia. Future studies in this direction are warranted to provide a scientific base for targeted medicine development.
Collapse
Affiliation(s)
- Yan Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zichen Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panxing Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020; 11:564281. [PMID: 33364941 PMCID: PMC7751760 DOI: 10.3389/fphar.2020.564281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-β1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Attia Afzal
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Saadullah Khattak
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin Zhang
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Diseases and Bio-Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
60
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
61
|
Pedre B, Dick TP. 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol Chem 2020; 402:223-237. [PMID: 33055309 DOI: 10.1515/hsz-2020-0249] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
3-Mercaptopyruvate sulfurtransferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate to generate an enzyme-bound hydropersulfide. Subsequently, MPST transfers the persulfide's outer sulfur atom to proteins or small molecule acceptors. MPST activity is known to be involved in hydrogen sulfide generation, tRNA thiolation, protein urmylation and cyanide detoxification. Tissue-specific changes in MPST expression correlate with ageing and the development of metabolic disease. Deletion and overexpression experiments suggest that MPST contributes to oxidative stress resistance, mitochondrial respiratory function and the regulation of fatty acid metabolism. However, the role and regulation of MPST in the larger physiological context remain to be understood.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120Heidelberg, Germany
| |
Collapse
|
62
|
Nguyen PT, Toh-E A, Nguyen NH, Imanishi-Shimizu Y, Watanabe A, Kamei K, Shimizu K. Identification and characterization of a sulfite reductase gene and new insights regarding the sulfur-containing amino acid metabolism in the basidiomycetous yeast Cryptococcus neoformans. Curr Genet 2020; 67:115-128. [PMID: 33001274 DOI: 10.1007/s00294-020-01112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022]
Abstract
The amino acid biosynthetic pathway of invasive pathogenic fungi has been studied as a potential antifungal drug target. Studies of the disruption of genes involved in amino acid biosynthesis have demonstrated the importance of this pathway in the virulence of Cryptococcus neoformans. Here, we identified the MET5 (CNL05500) and MET10 (CNG03990) genes in this pathway, both encoding sulfite reductase, which catalyzes the reduction of sulfite to sulfide. The MET14 (CNE03880) gene was also identified, which is responsible for the conversion of sulfate to sulfite. The use of cysteine as a sulfur source led to the production of methionine via hydrogen sulfide synthesis mediated by CYS4 (CNA06170), CYS3 (CNN01730), and MST1 (CND03690). MST1 exhibited high homology with the TUM1 gene of Saccharomyces cerevisiae, which has functional similarity with the 3-mercaptopyruvate sulfurtransferase (3-MST) gene in humans. Although the hypothesis that hydrogen sulfide is produced from cysteine via CYS4, CYS3, and MST1 warrants further study, the new insight into the metabolic pathway of sulfur-containing amino acids in C. neoformans provided here indicates the usefulness of this system in the development of screening tools for antifungal drug agents.
Collapse
Affiliation(s)
- Phuong-Thao Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan.,Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Akio Toh-E
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chiba, 260-8673, Japan
| | - Ngoc-Hung Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan.,Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Yumi Imanishi-Shimizu
- College of Science and Engineering, Kanto Gakuin University, Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama, Kanagawa, 236-8501, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chiba, 260-8673, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan. .,Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chiba, 260-8673, Japan.
| |
Collapse
|
63
|
Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8294158. [PMID: 33062147 PMCID: PMC7545470 DOI: 10.1155/2020/8294158] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/28/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants' organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
- Department of Organic Chemistry, Instituto Universitario de Bio-Orgánica Antonio González, University of La Laguna, La Laguna, 38296 Tenerife, Spain
| | - Alessia Baseggio Conrado
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
64
|
Kimura H. Hydrogen sulfide signalling in the CNS - Comparison with NO. Br J Pharmacol 2020; 177:5031-5045. [PMID: 32860641 DOI: 10.1111/bph.15246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) together with polysulfides (H2 Sn , n > 2) are signalling molecules like NO with various physiological roles including regulation of neuronal transmission, vascular tone, inflammation and oxygen sensing. H2 S and H2 Sn diffuse to the target proteins for S-sulfurating their cysteine residues that induces the conformational changes to alter the activity. On the other hand, 3-mercaptopyruvate sulfurtransferase transfers sulfur from a substrate 3-mercaptopyruvate to the cysteine residues of acceptor proteins. A similar mechanism has also been identified in S-nitrosylation. S-sulfuration and S-nitrosylation by enzymes proceed only inside the cell, while reactions induced by H2 S, H2 Sn and NO even extend to the surrounding cells. Disturbance of signalling by these molecules as well as S-sulfuration and S-nitrosylation causes many nervous system diseases. This review focuses on the signalling by H2 S and H2 Sn with S-sulfuration comparing to that of NO with S-nitrosylation and discusses on their roles in physiology and pathophysiology.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| |
Collapse
|
65
|
Shinkai Y, Kumagai Y. Sulfane Sulfur in Toxicology: A Novel Defense System Against Electrophilic Stress. Toxicol Sci 2020; 170:3-9. [PMID: 30985901 DOI: 10.1093/toxsci/kfz091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Electrophiles can undergo covalent modification of cellular proteins associated with its dysfunction, thereby exerting toxicity. Small nucleophilic molecules such as glutathione protect cells from electrophilic insult by binding covalently to electrophiles to form adducts that are excreted into the extracellular space. Recent studies indicate that sulfane sulfur, which is defined as a sulfur atom with 6 valence electrons and no charge, plays an essential role in protection against electrophile toxicity because sulfane sulfur can be highly nucleophilic compared to the corresponding thiol group. Advances in the development of assays to detect sulfane sulfur have revealed that sulfane sulfur-containing molecules such as persulfide/polysulfide species are ubiquitous in cells and tissues. Also, there is growing evidence that the binding of sulfane sulfur to electrophiles forms sulfur adducts as detoxified metabolites. Although the biosynthesis pathways of sulfane sulfur are known, its regulatory function in toxicology is still unclear. This review outlines the current knowledge of the synthesis, chemical properties, detection methods, interactions with electrophiles, and toxicological significance of sulfane sulfur, as well as suggesting directions for future research.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
66
|
Nagahara N. Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System. Biomolecules 2020; 10:biom10060826. [PMID: 32481517 PMCID: PMC7356906 DOI: 10.3390/biom10060826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Glutaredoxin (EC 1.15-1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant Escherichia coli glutaredoxin1 (Cys14 is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.
Collapse
Affiliation(s)
- Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
67
|
Hanschmann EM, Petry SF, Eitner S, Maresch CC, Lingwal N, Lillig CH, Linn T. Paracrine regulation and improvement of β-cell function by thioredoxin. Redox Biol 2020; 34:101570. [PMID: 32473461 PMCID: PMC7260591 DOI: 10.1016/j.redox.2020.101570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The failure of insulin-producing β-cells is the underlying cause of hyperglycemia in diabetes mellitus. β-cell decay has been linked to hypoxia, chronic inflammation, and oxidative stress. Thioredoxin (Trx) proteins are major actors in redox signaling and essential for signal transduction and the cellular stress response. We have analyzed the cytosolic, mitochondrial, and extracellular Trx system proteins in hypoxic and cytokine-induced stress using β-cell culture, isolated pancreatic islets, and pancreatic islet transplantation modelling low oxygen supply. Protein levels of cytosolic Trx1 and Trx reductase (TrxR) 1 significantly decreased, while mitochondrial Trx2 and TrxR2 increased upon hypoxia and reoxygenation. Interestingly, Trx1 was secreted by β-cells during hypoxia. Moreover, murine and human pancreatic islet grafts released Trx1 upon glucose stimulation. Survival of transplanted islets was substantially impaired by the TrxR inhibitor auranofin. Since a release was prominent upon hypoxia, putative paracrine effects of Trx1 on β-cells were examined. In fact, exogenously added recombinant hTrx1 mitigated apoptosis and preserved glucose sensitivity in pancreatic islets subjected to hypoxia and inflammatory stimuli, dependent on its redox activity. Human subjects were studied, demonstrating a transient increase in extracellular Trx1 in serum after glucose challenge. This increase correlated with better pancreatic islet function. Moreover, hTrx1 inhibited the migration of primary murine macrophages. In conclusion, our study offers evidence for paracrine functions of extracellular Trx1 that improve the survival and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Susanne Eitner
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | | | - Neelam Lingwal
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany.
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
68
|
Zhong H, Yu H, Chen J, Sun J, Guo L, Huang P, Zhong Y. Hydrogen Sulfide and Endoplasmic Reticulum Stress: A Potential Therapeutic Target for Central Nervous System Degeneration Diseases. Front Pharmacol 2020; 11:702. [PMID: 32477150 PMCID: PMC7240010 DOI: 10.3389/fphar.2020.00702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
There are three members of the endogenous gas transmitter family. The first two are nitric oxide and carbon monoxide, and the third newly added member is hydrogen sulfide (H2S). They all have similar functions: relaxing blood vessels, smoothing muscles, and getting involved in the regulation of neuronal excitation, learning, and memory. The cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfur transferase acts together with cysteine aminotransferase (3-MST/CAT), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase with D-amino acid oxidase (3-MST/DAO) pathways are involved in the enzymatic production of H2S. More and more researches focus on the role of H2S in the central nervous system (CNS), and H2S plays a significant function in neuroprotection processes, regulating the function of the nervous system as a signaling molecule in the CNS. Endoplasmic reticulum stress (ERS) and protein misfolding in its mechanism are related to neurodegenerative diseases. H2S exhibits a wide variety of cytoprotective and physiological functions in the CNS degenerative diseases by regulating ERS. This review summarized on the neuroprotective effect of H2S for ERS played in several CNS diseases including Alzheimer’s disease, Parkinson’s disease, and depression disorder, and discussed the corresponding possible signaling pathways or mechanisms as well.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
69
|
Moseler A, Selles B, Rouhier N, Couturier J. Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak. THE NEW PHYTOLOGIST 2020; 226:967-977. [PMID: 31032955 DOI: 10.1111/nph.15870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 05/21/2023]
Abstract
Sulfurtransferases (STRs) constitute a large and complex protein family characterized by the presence of a rhodanese domain and implicated in diverse molecular and signaling processes as sulfur carriers. Although sulfurtransferases are present in the three domains of life and share evolutionary relationships, a high variability exists at different levels including the protein length and active site sequence, the presence of an indispensable catalytic cysteine residue, the domain arrangement and the subcellular localization. Because only Arabidopsis thaliana sequences have been inventoried so far, this paper aims at providing a detailed classification and inventory of evolutionary features of this family in photosynthetic organisms using comparative genomics, focusing on the oak genome. Based on the expansion of STRs in higher photosynthetic organisms, we classified the STR family in nine clusters depending on their primary sequence and domain arrangement. We found that oak possesses at least one isoform in all defined clusters and that clusters IV, V and VI contain plant-specific isoforms that are located mostly in chloroplasts. The novel classification proposed here provides the basis for functional genomics approaches in order to dissect the biochemical characteristics and physiological functions of individual STR representatives.
Collapse
Affiliation(s)
- Anna Moseler
- Université de Lorraine, Inra, IAM, F-54000, Nancy, France
| | | | | | | |
Collapse
|
70
|
Nagahara N, Wróbel M. H 2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects. Biomolecules 2020; 10:biom10040640. [PMID: 32326219 PMCID: PMC7226236 DOI: 10.3390/biom10040640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
We have been studying the general aspects of the functions of H2S and polysulfides, and the enzymes involved in their biosynthesis, for more than 20 years. Our aim has been to elucidate novel physiological and pathological functions of H2S and polysulfides, and unravel the regulation of the enzymes involved in their biosynthesis, including cystathionine β-synthase (EC 4.2.1.22), cystathionine γ-lyase (EC 4.4.1.1), thiosulfate sulfurtransferase (rhodanese, EC 2.8.1.1), and 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2). Physiological and pathological functions, alternative biosynthetic processes, and additional functions of H2S and polysulfides have been reported. Further, the structure and reaction mechanisms of related enzymes have also been reported. We expect this issue to advance scientific knowledge regarding the detailed functions of H2S and polysulfides as well as the general properties and regulation of the enzymes involved in their metabolism. We would like to cover four topics: the physiological and pathological functions of H2S and polysulfides, the mechanisms of the biosynthesis of H2S and polysulfides, the properties of the biosynthetic enzymes, and the regulation of enzymatic activity. The knockout mouse technique is a useful tool to determine new physiological functions, especially those of H2S and polysulfides. In the future, we shall take a closer look at symptoms in the human congenital deficiency of each enzyme. Further studies on the regulation of enzymatic activity by in vivo substances may be the key to finding new functions of H2S and polysulfides.
Collapse
Affiliation(s)
- Noriyuki Nagahara
- Nippon Medical School, Isotope Research Institute, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (N.N.); (M.W.); Tel.: +81-3-3822-2131 (N.N.); +48-12-4227400 (M.W.)
| | - Maria Wróbel
- Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Cracow, 31-034 Krakow, Poland
- Correspondence: (N.N.); (M.W.); Tel.: +81-3-3822-2131 (N.N.); +48-12-4227400 (M.W.)
| |
Collapse
|
71
|
Olson KR, Gao Y, Steiger AK, Pluth MD, Tessier CR, Markel TA, Boone D, Stahelin RV, Batinic-Haberle I, Straubg KD. Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules 2020; 25:molecules25040980. [PMID: 32098303 PMCID: PMC7070779 DOI: 10.3390/molecules25040980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Manganese porphyrins (MnPs), MnTE-2-PyP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are superoxide dismutase (SOD) mimetics and form a redox cycle between O2 and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H2O2). We previously found that MnPs oxidize hydrogen sulfide (H2S) to polysulfides (PS; H2Sn, n = 2–6) in buffer. Here, we examine the effects of MnPs for 24 h on H2S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H2S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H2S production and increased intracellular PS. H2S metabolism and PS production were unaffected by cellular O2 (5% versus 21% O2), H2O2 or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H2S production in HEK293 cells and that MnPs decrease mitochondrial H2S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H2S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: ; Tel.: +1 (574) 631-7560
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Andrea K. Steiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; (A.K.S.); (M.D.P.)
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; (A.K.S.); (M.D.P.)
| | - Charles R. Tessier
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Troy A. Markel
- Indiana University School of Medicine, Riley Hospital for Children at IU Health, 705 Riley Hospital Dr, RI 2500, Indianapolis, IN 46202, USA;
| | - David Boone
- Indiana University School of Medicine-South Bend Center, South Bend, IN 46617, USA; (Y.G.); (C.R.T.); (D.B.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Karl D. Straubg
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
72
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
73
|
Kimura H. Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 2020; 177:720-733. [PMID: 30657595 PMCID: PMC7024735 DOI: 10.1111/bph.14579] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is a signalling molecule that regulates neuronal transmission, vascular tone, cytoprotection, inflammatory responses, angiogenesis, and oxygen sensing. Some of these functions have recently been ascribed to its oxidized form polysulfides (H2 Sn ), which can be produced by 3-mercaptopyruvate sulfurtransferase (MPST), also known as a H2 S-producing enzyme. H2 Sn activate ion channels, tumour suppressors, transcription factors, and protein kinases. H2 Sn S-sulfurate (S-sulfhydrate) cysteine residues of these target proteins to modify their activity by inducing conformational changes through the formation of a disulfide bridge between the two cysteine residues involved. The chemical interaction between H2 S and NO also generates H2 Sn , which may be a chemical entity that exerts the synergistic effect of H2 S and NO. MPST also produces redox regulators cysteine persulfide (CysSSH), GSH persulfide (GSSH), and persulfurated proteins. In addition to MPST, haemoproteins such as haemoglobin, myoglobin, neuroglobin, and catalase as well as SOD can produce H2 Sn , and sulfide quinone oxidoreductase and cysteinyl tRNA synthetase can make GSSH and CysSSH. This review focuses on the recent progress in the study of the production and physiological roles of these persulfurated and polysulfurated molecules. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Hideo Kimura
- National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
74
|
Olson KR, Briggs A, Devireddy M, Xian M, Gao Y. Are the beneficial effects of 'antioxidant' lipoic acid mediated through metabolism of reactive sulfur species? Free Radic Biol Med 2020; 146:139-149. [PMID: 31676393 DOI: 10.1016/j.freeradbiomed.2019.10.410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
The health benefits of lipoic acid (LA) are generally attributed to mitigating the harmful effects of reactive oxygen species (ROS). ROS are chemically similar to reactive sulfur species (RSS) and signal through identical mechanisms. Here we examined the effects of LA on RSS in HEK293 cells using H2S and polysulfide (PS) specific fluorophores, AzMC and SSP4. We show that LA concentration-dependently increased both H2S and PS. Physioxia (5% O2) augmented the effects of LA on H2S production but decreased PS production. Thiosulfate, a known substrate for reduced LA, and an intermediate in the catabolism of H2S enhanced the effects of LA on H2S and PS production. Inhibiting peroxiredoxins with conoidin A and gluraredoxins with tiopronin augmented the effects of LA on PS and H2S, respectively while decreasing glutathione with buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased the stimulatory effect of LA on H2S production but augmented LA's effect on PS. Aminooxyacetate (AOA) and propargylglycine (PPG), inhibitors of H2S production from cysteine partially inhibited LA augmentation of H2S production and further decreased the LA effect when applied concurrently with BSO and DEM. The selective and cell-permeable H2S scavenger, SS20, inhibited the effects of LA on cellular H2S. Estimates of single-cell H2S production suggest that 0.1-0.2% of O2 consumption is used to metabolize H2S and these requirements may increase to 1-2% with 1 mM LA. Collectively, these results suggest that LA rescues H2S from irreversible oxidation and that the effects of LA on RSS directly confer antioxidant, anti-inflammatory and cytoprotective responses. They also suggest that TS may be an effective supplement to increase the efficacy of LA in clinical settings.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Austin Briggs
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| | - Monesh Devireddy
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yan Gao
- Indiana University School of Medicine, South Bend Center, South Bend, IN, 46617, USA
| |
Collapse
|
75
|
Kimura H. [Signaling molecules hydrogen sulfide (H 2S), polysulfides (H 2S n), and sulfite (H 2SO 3)]. Nihon Yakurigaku Zasshi 2019; 154:115-120. [PMID: 31527360 DOI: 10.1254/fpj.154.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
More than twenty years have passed since the demonstration of hydrogen sulfide (H2S) as a signaling molecule. Various roles of this molecule have been reported including neuromodulation, vascular relaxation, cytoprotection, anti-inflammation, and oxygen sensing. During the study of its effect on neuromodulation, we found TRP channels as a target of H2S, and later identified polysulfides (H2Sn) as chemical entity of the ligand. We found that H2S relaxes vasculatures in synergy with NO, and recently identified H2Sn as products produced by the chemical interaction between H2S and NO to exert the effect, suggesting that it may be a mechanism for the synergy between the two molecules. It has attracted attention that sulfite, a further metabolite of H2S and H2Sn, protects neurons from oxidative stress by a mechanism different from that by H2S and H2Sn.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Science, Sanyo Onoda City University
| |
Collapse
|
76
|
Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4139-4154. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is an essential element for the growth and development of plants, which synthesize cysteine and methionine from the reductive assimilation of sulfate. Besides its incorporation into proteins, cysteine is the building block for the biosynthesis of numerous sulfur-containing molecules and cofactors. The required sulfur atoms are extracted either directly from cysteine by cysteine desulfurases or indirectly after its catabolic transformation to 3-mercaptopyruvate, a substrate for sulfurtransferases (STRs). Both enzymes are transiently persulfidated in their reaction cycle, i.e. the abstracted sulfur atom is bound to a reactive cysteine residue in the form of a persulfide group. Trans-persulfidation reactions occur when sulfur atoms are transferred to nucleophilic acceptors such as glutathione, proteins, or small metabolites. STRs form a ubiquitous, multigenic protein family. They are characterized by the presence of at least one rhodanese homology domain (Rhd), which usually contains the catalytic, persulfidated cysteine. In this review, we focus on Arabidopsis STRs, presenting the sequence characteristics of all family members as well as their biochemical and structural features. The physiological functions of particular STRs in the biosynthesis of molybdenum cofactor, thio-modification of cytosolic tRNAs, arsenate tolerance, cysteine catabolism, and hydrogen sulfide formation are also discussed.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, Inra, IAM, Nancy, France
| | | | | |
Collapse
|
77
|
Hou N, Yan Z, Fan K, Li H, Zhao R, Xia Y, Xun L, Liu H. OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli. Redox Biol 2019; 26:101293. [PMID: 31421411 PMCID: PMC6831875 DOI: 10.1016/j.redox.2019.101293] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H2O2, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress. OxyR also senses sulfane sulfur stress and activates the genes for its removal. OxyR senses hydrogen polysulfide via persulfidation of OxyR at Cys199. OxyR responds to sulfane sulfur stress under both aerobic and anaerobic conditions. OxyR is widely distributed in bacterial genomes, including anaerobic bacteria.
Collapse
Affiliation(s)
- Ningke Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhenzhen Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Kaili Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Huanjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
78
|
Zuhra K, Tomé CS, Masi L, Giardina G, Paulini G, Malagrinò F, Forte E, Vicente JB, Giuffrè A. N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells. Cells 2019; 8:cells8080828. [PMID: 31382676 PMCID: PMC6721681 DOI: 10.3390/cells8080828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.
Collapse
Affiliation(s)
- Karim Zuhra
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Letizia Masi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Paulini
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Malagrinò
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Alessandro Giuffrè
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
79
|
Yuan C, Hou HT, Chen HX, Wang J, Wang ZQ, Chen TN, Novakovic A, Marinko M, Yang Q, Liu ZG, He GW. Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. J Int Med Res 2019; 47:3778-3791. [PMID: 31155983 PMCID: PMC6726794 DOI: 10.1177/0300060519847386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the role of hydrogen sulfide (H2S) in human internal mammary arteries (IMA) and its interaction with endothelial nitric oxide synthase (eNOS) and phosphodiesterase (PDE)5A activity. Methods Human IMA segments from patients undergoing coronary artery bypass grafting (CABG) were studied by myography for acetylcholine and sodium hydrosulfide (NaHS)-induced relaxation. Locations of 3-mercaptopyruvate sulfurtransferase (3-MPST) and cysteine aminotransferase (CAT) were examined immunohistochemically. Levels of H2S, eNOS, phosphorylated-eNOSser1177, and PDE5A were measured. Results In IMA segments from 47 patients, acetylcholine-induced relaxation (resistant to NG-nitro-L-arginine and indomethacin) was significantly attenuated by aminooxyacetic acid or L-aspartate (CAT inhibitors), iberiotoxin (large-conductance calcium-activated K+ channel blocker), TRAM-34 plus apamin (intermediate- and small-conductance Ca2+-activated K+ channel blockers) or glibenclamide (ATP-sensitive K+ channel blocker). 3-MPST and mitochondrial CAT were found in endothelial and smooth muscle cells while cytosolic CAT was located only in endothelial cells. Acetylcholine significantly increased the H2S levels. The H2S donor, NaHS, increased eNOS phosphorylation and down-regulated PDE5A. Conclusions Human conduit artery endothelium releases H2S under basal and stimulated conditions, involving the 3-MPST/CAT pathway, eNOS phosphorylation, PDE5A activity, and potassium channels. These findings may provide new therapeutic targets for treating vasospasm in CABG grafts and facilitate the development of new vasodilator drugs.
Collapse
Affiliation(s)
- Chao Yuan
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Postdoctoral Station, Medical College, Nankai University, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Medical College, Zhejiang University, Hangzhou, China
| | - Huan-Xin Chen
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zheng-Qing Wang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tie-Nan Chen
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Qin Yang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
- Medical College, Zhejiang University, Hangzhou, China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
80
|
van den Born JC, Frenay ARS, Koning AM, Bachtler M, Riphagen IJ, Minovíc I, Feelisch M, Dekker MM, Bulthuis MLC, Gansevoort RT, Hillebrands JL, Pasch A, Bakker SJL, van Goor H. Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population. Antioxid Redox Signal 2019; 30:1999-2010. [PMID: 29905081 DOI: 10.1089/ars.2017.7040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aims: Thiosulfate and sulfate are metabolites of hydrogen sulfide (H2S), a gaseous signaling molecule with cardiovascular (CV) protective properties. Urinary thiosulfate excretion and sulfate excretion are associated with favorable disease outcome in high-risk patient groups. We investigated the relationship between urinary excretion of sulfur metabolites, and risk of CV events and all-cause mortality in the general population. Results: Subjects (n = 6839) of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study were followed prospectively. At baseline, 24-h urinary excretion of thiosulfate and sulfate was determined. Median urinary thiosulfate and sulfate excretion values were 1.27 (interquartile range [IQR] 0.89-2.37) μmol/24 h and 15.7 (IQR 12.0-20.3) mmol/24 h, respectively. Neither thiosulfate nor sulfate excretion showed an independent association with risk of CV events. Sulfate, but not thiosulfate, was inversely associated with risk of all-cause mortality, independent of potential confounders (hazard ratio 0.73 [95% confidence interval 0.63-0.84], p < 0.001). This association appeared most pronounced for normolipidemic subjects (pinteraction = 0.019). Innovation: The strong association between sulfate excretion and mortality in the general population emphasizes the (patho)physiological importance of sulfate or its precursor H2S. Conclusion: We hypothesize that urinary sulfate excretion, which is inversely associated with all-cause mortality in the general population, holds clinical relevance as a beneficial modulator in health and disease. Antioxid. Redox Signal. 30, 1999-2010.
Collapse
Affiliation(s)
- Joost C van den Born
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne-Roos S Frenay
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne M Koning
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,2 Department of Surgery, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Matthias Bachtler
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ineke J Riphagen
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Isidor Minovíc
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Martin Feelisch
- 6 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,7 NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom.,8 University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Marinda M Dekker
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Marian L C Bulthuis
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Ron T Gansevoort
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Andreas Pasch
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephan J L Bakker
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Harry van Goor
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| |
Collapse
|
81
|
Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochem Int 2019; 126:118-125. [DOI: 10.1016/j.neuint.2019.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/13/2023]
|
82
|
Abstract
Dr. Hideo Kimura is recognized as a redox pioneer because he has published an article in the field of antioxidant and redox biology that has been cited >1000 times, and 29 articles that have been cited >100 times. Since the first description of hydrogen sulfide (H2S) as a toxic gas 300 years ago, most studies have been devoted to its toxicity. In 1996, Dr. Kimura demonstrated a physiological role of H2S as a mediator of cognitive function and cystathionine β-synthase as an H2S-producing enzyme. In the following year, he showed H2S as a vascular smooth muscle relaxant in synergy with nitric oxide and its production by cystathionine γ-lyase in vasculature. Subsequently he reported the cytoprotective effect of H2S on neurons against oxidative stress. Since then, studies on H2S have unveiled numerous physiological roles such as the regulation of inflammation, cell growth, oxygen sensing, and senescence. He also discovered polysulfides (H2Sn), which have a higher number of sulfur atoms than H2S and are one of the active forms of H2S, as potent signaling molecules produced by 3-mercaptopyruvate sulfurtransferase. H2Sn regulate ion channels and transcription factors to upregulate antioxidant genes, tumor suppressors, and protein kinases to, in turn, regulate blood pressure. These findings led to the re-evaluation of other persulfurated molecules such as cysteine persulfide and glutathione persulfide. Dr. Kimura is a pioneer of studies on H2S and H2Sn as signaling molecules. It is fortunate to come across a secret of nature and pick it up. -Prof. Hideo Kimura.
Collapse
Affiliation(s)
- David Lefer
- CV Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
83
|
Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019; 135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| |
Collapse
|
84
|
Nagahara N, Tanaka M, Tanaka Y, Ito T. Novel Characterization of Antioxidant Enzyme, 3-Mercaptopyruvate Sulfurtransferase-Knockout Mice: Overexpression of the Evolutionarily-Related Enzyme Rhodanese. Antioxidants (Basel) 2019; 8:antiox8050116. [PMID: 31052467 PMCID: PMC6562775 DOI: 10.3390/antiox8050116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 11/22/2022] Open
Abstract
The antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase (MST, EC 2.8.1.2) is localized in the cytosol and mitochondria, while the evolutionarily-related enzyme, rhodanese (thiosulfate sulfurtransferase, TST, EC 2.8.1.1) is localized in the mitochondria. Recently, both enzymes have been shown to produce hydrogen sulfide and polysulfide. Subcellular fractionation of liver mitochondria revealed that the TST activity ratio of MST-knockout (KO)/wild-type mice was approximately 2.5; MST activity was detected only in wild-type mice, as expected. The ratio of TST mRNA expression of KO/wild-type mice, as measured by real-time quantitative polymerase chain reaction analysis, was approximately 3.3. It is concluded that TST is overexpressed in MST-KO mice.
Collapse
Affiliation(s)
- Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan.
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan.
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
85
|
Mao Z, Huang Y, Zhang Z, Yang X, Zhang X, Huang Y, Sawada N, Mitsui T, Takeda M, Yao J. Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin. Free Radic Biol Med 2019; 134:190-199. [PMID: 30639567 DOI: 10.1016/j.freeradbiomed.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator with multifaceted biological activities. It has anti-inflammatory and anti-oxidative effects. Currently, the mechanisms are not fully understood. Given that Trx/ASK1/P38 signaling pathway mediates many oxidative cell responses, we tested whether and how H2S affected this pathway. Exposure of podocytes to Adriamycin (ADR), an antitumor drug, led to a P38-mediated oxidative cell injury, as evidenced by the increased protein carbonylation, oxidative activation of P38, and prevention of the cell death by antioxidants, NADPH oxidase inhibitor and P38 inhibitor. In the presence of H2S donor NaHS, however, the podocyte injury was largely prevented. NaHS also significantly prevented cell death elicited by H2O2, menadione, and thioredoxin (Trx) inhibitors. These effects of H2S were also associated with a potent inhibition of P38. Further analysis revealed that H2S did not affect the protein level of TXNIP and Trx, two pivotal regulators of ASK1/P38 activation, but it promoted the dissociation of Trx from TXNIP. Moreover, it disrupted the H2O2-initiated polymerization of Trx and converted Trx from the oxidized to the reduced form. In HepG2 cells, inhibition of H2S-producing enzyme cystathionine γ-lyase (CSE) increased Trx oxidation, promoted Trx binding to TXNIP and exaggerated cell injury caused by Trx inhibition. Collectively, our results indicate that H2S exerted its antioxidative effects through the regulation of the redox state of Trx and interference with Trx/ASK1/P38 signaling pathway. Given the importance of the pathway in the mediation of multiple oxidative cell responses, our study thus provides novel mechanistic insight into the action of H2S.
Collapse
Affiliation(s)
- Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiling Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yong Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
86
|
Wang J, Wu D, Wang H. Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol Res 2019; 68:335-345. [PMID: 30904008 DOI: 10.33549/physiolres.933996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autophagy can regulate cell growth, proliferation, and stability of cell environment. Its dysfunction can be involved in a variety of diseases. Hydrogen sulfide (H(2)S) is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H(2)S plays an important protective role in many diseases through influencing autophagy, but its mechanism is not fully understood. This article reviewed the progress about the effect of H(2)S on autophagy in diseases in recent years in order to provide theoretical basis for the further research on the interaction of H(2)S and autophagy and the mechanisms involved.
Collapse
Affiliation(s)
- J Wang
- School of Basic Medical Science, Henan University, Kaifeng, Henan, China.
| | | | | |
Collapse
|
87
|
Expression and activity of hydrogen sulfide generating enzymes in murine macrophages stimulated with lipopolysaccharide and interferon-γ. Mol Biol Rep 2019; 46:2791-2798. [DOI: 10.1007/s11033-019-04725-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
|
88
|
Gopalakrishnan P, Shrestha B, Kaskas AM, Green J, Alexander JS, Pattillo CB. Hydrogen sulfide: Therapeutic or injurious in ischemic stroke? PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2019; 26:1-10. [PMID: 30528175 DOI: 10.1016/j.pathophys.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S) has been identified as a vasodilatory, neuromodulatory, and anti-inflammatory gasotransmitter with antioxidant properties. Studies focused in cardiac tissue suggest H2S functions as a protective agent; however in the central nervous system (CNS) the effects of H2S during states of stress or injury, such as stroke, remain controversial. Currently, the application of H2S donors and modulators in stroke depends on the type of H2S donor and the timing of the therapy.
Collapse
Affiliation(s)
- Priya Gopalakrishnan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - B Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - A M Kaskas
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - J Green
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - C B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
89
|
Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, Xun L. Escherichia coli Uses Separate Enzymes to Produce H 2S and Reactive Sulfane Sulfur From L-cysteine. Front Microbiol 2019; 10:298. [PMID: 30873134 PMCID: PMC6401616 DOI: 10.3389/fmicb.2019.00298] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to have various physiological functions, and it may function through reactive sulfane sulfur. Since the two sulfur forms often coexist, they are normally considered interchangeable. Here, we characterized the production of H2S and reactive sulfane sulfur in Escherichia coli MG1655 and found that they are not readily interchangeable. They are primarily produced from L-cysteine via different enzymes. L-Cysteine desulfhydrases consumed L-cysteine and directly generated H2S. The produced H2S was mainly lost through evaporation into the gas phase, as E. coli does not have enzymes that easily oxidize H2S to reactive sulfane sulfur. L-Cysteine desulfhydrases were also responsible for the degradation of exogenous L-cysteine, which is toxic at high levels. Conversely, L-cysteine aminotransferase and 3-mercaptopyruvate sulfurtransferase sequentially metabolized endogenous L-cysteine to produce cellular reactive sulfane sulfur; however, it was not a major route of H2S production during normal growth or during the metabolism of exogenous L-cysteine by the resting cells. Noticeably, the 3-mercaptopyruvate sulfurtransferase mutant contained less reactive sulfane sulfur and displayed a greater sensitivity to H2O2 than did the wild type. Thence, reactive sulfane sulfur is likely a common cellular component, involved in protein sulfhydration and protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yufeng Xin
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
90
|
Bolton SG, Cerda MM, Gilbert AK, Pluth MD. Effects of sulfane sulfur content in benzyl polysulfides on thiol-triggered H 2S release and cell proliferation. Free Radic Biol Med 2019; 131:393-398. [PMID: 30579781 PMCID: PMC6347403 DOI: 10.1016/j.freeradbiomed.2018.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Investigations into hydrogen sulfide (H2S) signaling pathways have demonstrated both the generation and importance of persulfides, which are reactive sulfur species that contain both reduced and oxidized sulfur. These observations have led researchers to suggest that oxidized sulfur species, including sulfane sulfur (S0), are responsible for many of the physiological phenomena initially attributed to H2S. A common method of introducing S0 to biological systems is the administration of organic polysulfides, such as diallyl trisulfide (DATS). However, prior reports have demonstrated that commercially-available DATS often contains a mixture of polysulfides, and furthermore a lack of structure-activity relationships for organic polysulfides has limited our overall understanding of different polysulfides and their function in biological systems. Advancing our interests in the chemical biology of reactive sulfur species including H2S and S0, we report here our investigations into the rates and quantities of H2S release from a series of synthetic, pure benzyl polysulfides, ranging from monosulfide to tetrasulfide. We demonstrate that H2S is only released from the trisulfide and tetrasulfide, and that this release requires thiol-mediated reduction in the presence of cysteine or reduced glutathione. Additionally, we demonstrate the different effects of trisulfides and tetrasulfides on cell proliferation in murine epithelial bEnd.3 cells.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Matthew M Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Annie K Gilbert
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
91
|
Thiotaurine: From Chemical and Biological Properties to Role in H2S Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:755-771. [DOI: 10.1007/978-981-13-8023-5_66] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Bełtowski J. Synthesis, Metabolism, and Signaling Mechanisms of Hydrogen Sulfide: An Overview. Methods Mol Biol 2019; 2007:1-8. [PMID: 31148102 DOI: 10.1007/978-1-4939-9528-8_1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) has recently emerged as the novel gasotransmitter involved in the regulation of the nervous system, cardiovascular functions, inflammatory response, gastrointestinal system, and renal function. H2S is synthesized from L-cysteine and/or L-homocysteine by cystathionine β-synthase, cystathionine γ-lyase, and cysteine aminotransferase together with 3-mercaptopyruvate sulfurtransferase. In addition, H2S is enzymatically metabolized in mitochondria by sulfide:quinone oxidoreductase, persulfide dioxygenase, and sulfite oxidase to thiosulfate, sulfite, and sulfate which enables to regulate its level by factors such as oxygen pressure, mitochondria density, or efficacy of mitochondrial electron transport. H2S modifies protein structure and function through the so-called sulfuration or persulfidation, that is, conversion of cysteine thiol (-SH) to persulfide (-SSH) groups. This, as well as other signaling mechanisms, is partially mediated by more oxidized H2S-derived species, polysulfides (H2Sn). In addition, H2S is able to react with reactive oxygen and nitrogen species to form other signaling molecules such as thionitrous acid (HSNO), nitrosopersulfide (SSNO-), and nitroxyl (HNO). All H2S-synthesizing enzymes are expressed in the vascular wall, and H2S has been demonstrated to regulate vascular tone, endothelial barrier permeability, angiogenesis, vascular smooth muscle cell proliferation and apoptosis, and inflammatory reaction. H2S-modifying therapies are promising approach for diseases such as arterial hypertension, diabetic angiopathy, and atherosclerosis.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| |
Collapse
|
93
|
Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018; 9:3108. [PMID: 30631314 PMCID: PMC6315149 DOI: 10.3389/fmicb.2018.03108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T = DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing co-cultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The co-culture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The co-culture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach. Note: The locus tag for the genes encoded in Lucifera butyrica is LUCI_∗. To avoid repetition of the prefix along the text, the locus tags are represented by the specific identifier.
Collapse
Affiliation(s)
| | | | - Jeltzlin Semerel
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
94
|
Augsburger F, Szabo C. Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H 2S) pathway in cancer cells. Pharmacol Res 2018; 154:104083. [PMID: 30500457 DOI: 10.1016/j.phrs.2018.11.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2S), produced by various endogenous enzyme systems, serves various biological regulatory roles in mammalian cells in health and disease. Over recent years, a new concept emerged in the field of H2S biology, showing that various cancer cells upregulate their endogenous H2S production, and utilize this mediator in autocrine and paracrine manner to stimulate proliferation, bioenergetics and tumor angiogenesis. Initial work identified cystathionine-beta-synthase (CBS) in many tumor cells as the key source of H2S. In other cells, cystathionine-gamma-lyase (CSE) has been shown to play a pathogenetic role. However, until recently, less attention has been paid to the third enzymatic source of H2S, 3-mercaptopyruvate sulfurtransferase (3-MST), even though several of its biological and biochemical features - e.g. its partial mitochondrial localization, its ability to produce polysulfides, which, in turn, can induce functionally relevant posttranslational protein modifications - makes it a potential candidate. Indeed, several lines of recent data indicate the potential role of the 3-MST system in cancer biology. In many cancers (e.g. colon adenocarcinoma, lung adenocarcinoma, urothelial cell carcinoma, various forms of oral carcinomas), 3-MST is upregulated compared to the surrounding normal tissue. According to in vitro studies, 3-MST upregulation is especially prominent in cancer cells that recover from oxidative damage and/or develop a multidrug-resistant phenotype. Emerging data with newly discovered pharmacological inhibitors of 3-MST, as well as data using 3-MST silencing approaches suggest that the 3-MST/H2S system plays a role in maintaining cancer cell proliferation; it may also regulate bioenergetic and cell-signaling functions. Many questions remain open in the field of 3-MST/cancer biology; the last section of current article highlights these open questions and lays out potential experimental strategies to address them.
Collapse
Affiliation(s)
- Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
95
|
Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I. Insight into the sulfur metabolism of Desulfurella amilsii by differential proteomics. Environ Microbiol 2018; 21:209-225. [PMID: 30307104 PMCID: PMC6378623 DOI: 10.1111/1462-2920.14442] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022]
Abstract
Many questions regarding proteins involved in microbial sulfur metabolism remain unsolved. For sulfur respiration at low pH, the terminal electron acceptor is still unclear. Desulfurella amilsii is a sulfur-reducing bacterium that respires elemental sulfur (S0 ) or thiosulfate, and grows by S0 disproportionation. Due to its versatility, comparative studies on D. amilsii may shed light on microbial sulfur metabolism. Requirement of physical contact between cells and S0 was analyzed. Sulfide production decreased by around 50% when S0 was trapped in dialysis membranes, suggesting that contact between cells and S0 is beneficial, but not strictly needed. Proteome analysis was performed under the aforementioned conditions. A Mo-oxidoreductase suggested from genome analysis to act as sulfur reductase was not detected in any growth condition. Thiosulfate and sulfite reductases showed increased abundance in thiosulfate-reducing cultures, while rhodanese-like sulfurtransferases were highly abundant in all conditions. DsrE and DsrL were abundantly detected during thiosulfate reduction, suggesting a modified mechanism of sulfite reduction. Proteogenomics suggest a different disproportionation pathway from what has been reported. This work points to an important role of rhodaneses in sulfur processes and these proteins should be considered in searches for sulfur metabolism in broader fields like meta-omics.
Collapse
Affiliation(s)
- Anna P Florentino
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Inês A C Pereira
- Instituto de Tecnologia Quimica e Biologica António Xavier, Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157, Oeiras, Portugal
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michael van den Born
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
96
|
Mikami Y. [Pathophysiological functions of gas mediators in neurodegeneration]. Nihon Yakurigaku Zasshi 2018; 152:233-239. [PMID: 30393255 DOI: 10.1254/fpj.152.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Since the discovery of nitric oxide (NO) as gaseous signaling molecule, two other gaseous mediators, carbon monoxide (CO) and hydrogen sulfide (H2S) have been found to be also involved in many physiological and pathophysiological functions. This review will briefly summarize our recent progress in the pathophysiology of NO and H2S. In the photoreceptor cells, the level of intracellular Ca2+ is kept relatively low by H2S. Intraperitoneal injection of H2S donor to mice protected photoreceptor cells from light-induced retinal degeneration caused by oxidative stress and elevation of intracellular Ca2+. Another gaseous mediator NO induces Ca2+ release from the endoplasmic reticulum via S-nitrosylated type 1 ryanodine receptor (RyR1) Ca2+ release channel. NO-induced Ca2+ release (NICR) was abolished in primary cultured neurons from the knock-in mice, in which the S-nitrosylation site Cys-3636 of RyR1 was replaced by Ala (Ryr1C3636A). The neurons in hippocampal CA3 region of Ryr1C3636A mice were protected against seizure-induced neuronal cell death. The result indicates that NICR is critical for status epilepticus-induced neurodegeneration. The developments in the pathophysiology of gaseous mediators in the central nervous system will provide a better pharmacological advances for the treatment of neurodegenerative diseases.
Collapse
|
97
|
Xiao Q, Ying J, Xiang L, Zhang C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore) 2018; 97:e13065. [PMID: 30383685 PMCID: PMC6221678 DOI: 10.1097/md.0000000000013065] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Hydrogen sulfide (H2S), a colorless, water soluble, flammable gas with a characteristic smell of rotten eggs, has been known as a highly toxic gas for several years. However, much like carbon monoxide (CO) and nitric oxide (NO), the initial negative perception of H2S has developed with the discovery that H2S is generated enzymatically in animals under normal conditions. With the result of this discovery, much more work is needed to elucidate the biologic effects of H2S. In recent years, its cytoprotective properties have been recognized in multiple organs and tissues. In particular, H2S plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) and protect the body from oxidative stress. Therefore, this review discusses the biologic effect of H2S and how it protects cells in various diseases by acting as an antioxidant that reduces excessive amounts of ROS and RNS. ETHICS AND DISSEMINATION Ethical approval and informed consent are not required, as the study will be a literature review and will not involve direct contact with patients or alterations to patient care. CONCLUSION H2S has been found to be cytoprotective in oxidative stress in a wide range of physiologic and pathologic conditions, an increasing number of therapeutic potentials of H2S also have been revealed. However, there is still much debate on the clear mechanism of action of H2S, so that the mechanisms of cell signaling that promote cellular survival and organ protection need to be further investigated to provide better H2S-based therapeutics.
Collapse
|
98
|
Mir JM, Maurya RC. Physiological and pathophysiological implications of hydrogen sulfide: a persuasion to change the fate of the dangerous molecule. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22243682.2018.1493951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| |
Collapse
|
99
|
Qiu X, Liu K, Xiao L, Jin S, Dong J, Teng X, Guo Q, Chen Y, Wu Y. Alpha-lipoic acid regulates the autophagy of vascular smooth muscle cells in diabetes by elevating hydrogen sulfide level. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3723-3738. [PMID: 30251691 DOI: 10.1016/j.bbadis.2018.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
Dysfunctional vascular smooth muscle (VSM) plays a vital role in the process of atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Alpha-lipoic acid (ALA) can prevent the altered VSM induced by diabetes. However, the precise mechanism underlying the beneficial effect of ALA is not well understood. This study aimed to determine whether ALA ameliorates VSM function by elevating hydrogen sulfide (H2S) level in diabetes and whether this effect is associated with regulation of autophagy of VSM cells (VSMCs). We found decreased serum H2S levels in Chinese patients and rats with type 2 diabetes mellitus (T2DM). ALA treatment could increase H2S level, which reduced the autophagy-related index and activation of the 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, thereby protecting vascular function in rats with T2DM. Propargylglycine (PPG), a cystathionine-γ-lyase inhibitor, could weaken the ALA effect. In cultured VSMCs, high glucose level also reduced H2S level, upregulated the autophagy-related index and activated the AMPK/mTOR pathway, which were reversed by concomitant application of sodium hydrosulfide (NaHS, an H2S donor) or ALA. The protective effect of NaHS or ALA was attenuated by rapamycin (an autophagy activator), 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (an AMPK activator) or PPG. In contrast, Compound C (an AMPK inhibitor) enhanced the effect of ALA or NaHS. ALA may have a protective effect on VSMCs in T2DM by elevating H2S level and downregulating autophagy via the AMPK/mTOR pathway. This study provides a new target for addressing diabetic macroangiopathy.
Collapse
Affiliation(s)
- Xuan Qiu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Kuanzhi Liu
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jinghui Dong
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yuhong Chen
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Intensive Care Unit, Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, China; Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
100
|
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|