51
|
Huang C, Zheng D, Fu C, Cai Z, Zhang H, Xie Z, Luo L, Li H, Huang Y, Chen J. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1431-1444. [PMID: 36883729 DOI: 10.1002/tox.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhefan Xie
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huifang Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
52
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
53
|
Nguyen V, Zhang Q, Pan F, Jin Q, Sun M, Tangthianchaichana J, Du S, Lu Y. Zi-Su-Zi decoction improves airway hyperresponsiveness in cough-variant asthma rat model through PI3K/AKT1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116637. [PMID: 37187363 DOI: 10.1016/j.jep.2023.116637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cough-variant asthma (CVA) is one of the most common causes of chronic cough. Its pathogenesis is closely related to chronic airway inflammation and airway hyperresponsiveness. CVA belongs to the category of "wind cough" in Traditional Chinese medicine (TCM). Zi-Su-Zi decoction (ZSD) is a Chinese herbal formula that is clinically used for the treatment of cough and asthma, especially CVA. However, the mechanism of action remains unclear. AIM OF THE STUDY In this study, we aimed to explore the potential mechanism by which ZSD improves CVA airway hyperresponsiveness. MATERIALS AND METHODS The targets of ZSD in CVA were studied using a Network pharmacology. The main chemical components of ZSD were detected and analyzed using ultra-high-pressure liquid chromatography (UHPLC-MS/MS). In animal experiments, the rat model of CVA was established using Ovalbumin (OVA)/Aluminum hydroxide (AL(OH)3) sensitization. Moreover, the experiment also evaluated cough symptoms, percentage of eosinophils (EOS%), pulmonary function tests, histopathological sections, blood cytokine levels, mRNA and protein levels. RESULTS The results showed that Network pharmacology suggested 276 targets of ZSD and CVA and found that ZSD treatment with CVA was closely related to the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. UHPLC-MS/MS revealed that ZSD contained 52 main chemical components. Compared with the model group, the cough symptoms of the rats in the different ZSD concentration groups were relieved, the EOS% index was lowered, and body weight was increased. HE staining showed that ZSD reduced airway inflammation, edema and hyperplasia, thereby improving the pathological structure of lung tissue, and the effect of high-dose ZSD was especially significant. Our most important finding was that ZSD blocked the entry of hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa-B (NF-κB) into the nucleus by interfering with PI3K/AKT1/mechanistic target of rapamycin (mTOR), and janus kinase 2 (JAK2) signaling factors. Consequently, inhibiting the release of cytokines and immunoglobulin-E, thereby reducing airway hyperresponsiveness (AHR) and partially reverses airway remodeling. CONCLUSIONS This study showed that ZSD can improve airway hyperresponsiveness and partially reverse airway remodeling by inhibiting the PI3K/AKT1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB signaling pathways. Therefore, ZSD is an effective prescription for the treatment of CVA.
Collapse
Affiliation(s)
- Vietdung Nguyen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Fei Pan
- School of Clinical Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Qi Jin
- School of Clinical Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jakkree Tangthianchaichana
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China; Chulabhorn International College of Medicine, Thammasat University, 12121, Pathum Thani, Thailand
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
54
|
Lima C, Falcão MAP, Pinto FJ, Bernardo JTG, Lopes-Ferreira M. The Anti-Inflammatory Peptide TnP Is a Candidate Molecule for Asthma Treatment. Cells 2023; 12:924. [PMID: 36980265 PMCID: PMC10047759 DOI: 10.3390/cells12060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Asthma is the most common chronic lung disease, with increasing morbidity and mortality worldwide. Accumulation of peribronchial leukocytes is the hallmark of asthma, in particular, eosinophils, which have been reported as the primary cell associated with the induction of airway hyperresponsiveness. Continued exacerbation and accumulation of other leukocytes, such as neutrophils, Th1, and Th17 cells correlate with many of the long-term effects of asthma, such as airway remodeling. We have patented the TnP family of synthetic cyclic peptides, which is in the preclinical phase of developmental studies for chronic inflammatory diseases. The aim of this work was to investigate whether TnP could show anti-inflammatory activity in a murine model of asthma that includes a mixed phenotype of eosinophilic and neutrophilic inflammation. For this, Balb/c mice, sensitized with OVA and exposed to 1% challenge with OVA aerosol, were submitted to prophylactic treatment, receiving TnP at 0.3 mg/kg orally, 1 h before each challenge. We found that sensitized mice challenged with OVA and treated with TnP showed no airway hyperreactivity or lung remodeling. TnP acts systemically in secondary lymphoid organs and locally in the lung, inhibiting the production of Th2/Th17 cytokines. Furthermore, TnP prevented the infiltration of eosinophils and neutrophils in the BAL and lung tissue, inhibited the production of IgE/IgG1, prevented hyperplasia of mucus-producing cells, and decreased the thickening and deposition of sub-epithelial collagen. Our results showed TnP as a candidate molecule for the treatment of airway remodeling associated with inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil; (M.A.P.F.); (F.J.P.); (J.T.G.B.); (M.L.-F.)
| | | | | | | | | |
Collapse
|
55
|
Song S, Ding L, Liu G, Chen T, Zhao M, Li X, Li M, Qi H, Chen J, Wang Z, Wang Y, Ma J, Wang Q, Li X, Wang Z. The protective effects of baicalin for respiratory diseases: an update and future perspectives. Front Pharmacol 2023; 14:1129817. [PMID: 37007037 PMCID: PMC10060540 DOI: 10.3389/fphar.2023.1129817] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases.Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to “baicalin”, “Scutellaria baicalensis Georgi”, “COVID-19”, “acute lung injury”, “pulmonary arterial hypertension”, “asthma”, “chronic obstructive pulmonary disease”, “pulmonary fibrosis”, “lung cancer”, “pharmacokinetics”, “liposomes”, “nano-emulsions”, “micelles”, “phospholipid complexes”, “solid dispersions”, “inclusion complexes”, and other terms.Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-β/Smad, Nrf2/HO-1, and ERK/GSK3β pathways.Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.
Collapse
Affiliation(s)
- Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangwen Liu
- GCP Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| |
Collapse
|
56
|
Abstract
Asthma is one of the most common chronic non-communicable diseases worldwide and is characterised by variable airflow obstruction, causing dyspnoea and wheezing. Highly effective therapies are available; asthma morbidity and mortality have vastly improved in the past 15 years, and most patients can attain good asthma control. However, undertreatment is still common, and improving patient and health-care provider understanding of when and how to adjust treatment is crucial. Asthma management consists of a cycle of assessment of asthma control and risk factors and adjustment of medications accordingly. With the introduction of biological therapies, management of severe asthma has entered the precision medicine era-a shift that is driving clinical ambitions towards disease remission. Patients with severe asthma often have co-existing conditions contributing to their symptoms, mandating a multidimensional management approach. In this Seminar, we provide a clinically focused overview of asthma; epidemiology, pathophysiology, diagnosis, and management in children and adults.
Collapse
Affiliation(s)
- Celeste Porsbjerg
- Department of Respiratory and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Dominick Shaw
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
57
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
58
|
Wang Y, Fan J, Tong Y, Wang L, Wang L, Weng C, Lai C, Song J, Zhang W. Bioinformatics analysis of ferroptosis-related gene AKR1C3 as a potential biomarker of asthma and its identification in BEAS-2B cells. Comput Biol Med 2023; 158:106740. [PMID: 36996663 DOI: 10.1016/j.compbiomed.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a newly discovered type of cell death and has recently been shown to be associated with asthma. However, the relationship between them at the genetic level has not been elucidated via informatics analysis. In this study, bioinformatics analyses are conducted using asthma and ferroptosis datasets to identify candidate ferroptosis-related genes using the R software. Weighted gene co-expression network analysis is performed to identify co-expressed genes. Protein-protein interaction networks, the Kyoto encyclopedia of genes and genomes, and gene ontology enrichment analysis are used to identify the potential functions of the candidate genes. We experimentally validate the results of our analysis using small interfering RNAs and plasmids to silence and upregulate the expression of the candidate gene in human bronchial epithelial cells (BEAS-2B). The ferroptosis signature levels are examined. Bioinformatics analysis of the asthma dataset GDS4896 shows that the level of the aldo-keto reductase family 1 member C3 (AKR1C3) gene in the peripheral blood of patients with severe therapy-resistant asthma and controlled persistent mild asthma (MA) is significantly upregulated. The AUC values for asthma diagnosis and MA are 0.823 and 0.915, respectively. The diagnostic value of AKR1C3 is verified using the GSE64913 dataset. The gene module of AKR1C3 is evident in MA and functions through redox reactions and metabolic processes. Ferroptosis indicators are downregulated by the overexpression of AKR1C3 and upregulated by silencing AKR1C3. The ferroptosis-related gene AKR1C3 can be used as a diagnostic biomarker for asthma, particularly for MA, and regulates ferroptosis in BEAS-2B cells.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junwen Fan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Tong
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lingya Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuiye Weng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chuqiao Lai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
59
|
Acquired supraglottic stenosis. Asian J Surg 2023; 46:1380-1381. [PMID: 36117070 DOI: 10.1016/j.asjsur.2022.08.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
|
60
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
61
|
Yang W, Li Z, Wang W, Wu J, Ye X. Five-hub genes identify potential mechanisms for the progression of asthma to lung cancer. Medicine (Baltimore) 2023; 102:e32861. [PMID: 36820598 PMCID: PMC9907931 DOI: 10.1097/md.0000000000032861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Previous studies have shown that asthma is a risk factor for lung cancer, while the mechanisms involved remain unclear. We attempted to further explore the association between asthma and non-small cell lung cancer (NSCLC) via bioinformatics analysis. We obtained GSE143303 and GSE18842 from the GEO database. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) groups were downloaded from the TCGA database. Based on the results of differentially expressed genes (DEGs) between asthma and NSCLC, we determined common DEGs by constructing a Venn diagram. Enrichment analysis was used to explore the common pathways of asthma and NSCLC. A protein-protein interaction (PPI) network was constructed to screen hub genes. KM survival analysis was performed to screen prognostic genes in the LUAD and LUSC groups. A Cox model was constructed based on hub genes and validated internally and externally. Tumor Immune Estimation Resource (TIMER) was used to evaluate the association of prognostic gene models with the tumor microenvironment (TME) and immune cell infiltration. Nomogram model was constructed by combining prognostic genes and clinical features. 114 common DEGs were obtained based on asthma and NSCLC data, and enrichment analysis showed that significant enrichment pathways mainly focused on inflammatory pathways. Screening of 5 hub genes as a key prognostic gene model for asthma progression to LUAD, and internal and external validation led to consistent conclusions. In addition, the risk score of the 5 hub genes could be used as a tool to assess the TME and immune cell infiltration. The nomogram model constructed by combining the 5 hub genes with clinical features was accurate for LUAD. Five-hub genes enrich our understanding of the potential mechanisms by which asthma contributes to the increased risk of lung cancer.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
62
|
Hung MY, Hung MJ. Relationship between Inflammation and Vasospastic Angina. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020318. [PMID: 36837519 PMCID: PMC9960836 DOI: 10.3390/medicina59020318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Coronary artery spasm (CAS) is a dynamic coronary stenosis causing vasospastic angina (VSA). However, VSA is a potentially lethal medical condition with multiple presentations, including sudden cardiac death. Despite investigations to explore its pathogenesis, no single mechanism has been found to explain the entire process of VSA occurrence. The roles of elevated local and systemic inflammation have been increasingly recognized in VSA. Treatment strategies to decrease local and systemic inflammation deserve further investigation.
Collapse
Affiliation(s)
- Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ming-Jui Hung
- Section of Cardiovascular Imaging, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
63
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
64
|
Liu HB, Bai J, Wang WX. CST1 promotes the proliferation and migration of PDGF-BB-treated airway smooth muscle cells via the PI3K/AKT signaling pathway. Kaohsiung J Med Sci 2023; 39:145-153. [PMID: 36354198 DOI: 10.1002/kjm2.12619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Typically, airway remodeling caused by migration and proliferation of airway smooth muscle cells (ASMCs) plays a crucial role in the pathophysiological characteristics of asthma development. Cystatin 1 (CST1), a protein-coding gene referred to as Cystatin SN, is highly expressed in asthma patients. However, the role of CST1 and related molecular mechanisms in the development of asthma remains to be explored. This study aims to investigate the role of CST1 in asthma progression and present related molecular mechanisms. To explore these aspects, human ASMCs with platelet-derived growth factor BB (PDGF-BB) are initially stimulated and applied as a cellular model of asthma. Further, CST1 is knocked down with small interfering ribose nucleic acid (siRNA) overexpressed with plasmids. Then, 5-ethynyl-2'-deoxyuridine (EdU) and Cell Count Kit (CCK)-8 assays are applied to assess the cell proliferation rates. Further, Transwell and Western blot analyses for migration of cells and expression of MMP1 and MMP9 proteins are assessed, respectively. Under PDGF-BB stimulation, human ASMCs showed an increased CST1 expression, enhanced proliferation, and migration abilities, as well as up-regulated PI3K/AKT signaling pathway. Further, knockdown or overexpression of CST1 presented the declined or enhanced proliferation, migration, and up-regulation of the PI3K/AKT signaling pathway of human ASMCs. Inhibiting PI3K/AKT signaling pathway displayed the reduced migration and proliferation of human ASMCs. In summary, these findings indicated that CST1 played an essential role in the progression of asthma by activating the PI3K/AKT signaling pathway and promoting the migration and proliferation abilities of human ASMCs treated with PDGF-BB.
Collapse
Affiliation(s)
- Hong-Bo Liu
- Department of Paediatrics, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Bai
- Department of Paediatrics, Yantai Yeda Hospital, Yantai, China
| | - Wen-Xiao Wang
- Department of Paediatrics, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
65
|
Liu M, Liu S, Li F, Li C, Chen S, Gao X, Wang X. The miR-124-3p regulates the allergic airway inflammation and remodeling in an ovalbumin-asthmatic mouse model by inhibiting S100A4. Immun Inflamm Dis 2023; 11:e730. [PMID: 36799806 PMCID: PMC9896513 DOI: 10.1002/iid3.730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Asthma is a chronic respiratory disease with an increasing incidence every year. microRNAs (miRNAs) have been demonstrated to have implications for asthma. However, limited information is available regarding the effect of miR-124-3p on this disease. Therefore, this study aimed to explore the possible effects of miR-124-3p and S100A4 on inflammation and epithelial-mesenchymal transition (EMT) in asthma using mouse models. METHOD Ovalbumin was used to induce asthmatic mouse models. Lung injury in mouse models was assessed, and the bronchoalveolar lavage fluid of mice was collected to determine the number of eosinophilic granulocytes and assess inflammation. The expression levels of miR-124-3p, S100A4, E-cadherin, N-cadherin, Snail1, vimentin, and TGF-β1/Smad2 signaling pathway-related proteins were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. In vitro experiments, cells were transfected with miR-124-3p mimics or inhibitors to test the expression of S100A4 by RT-qPCR and western blot analysis, and the mutual binding of miR-124-3p and S100A4 was validated by dual-luciferase reporter gene assay. RESULTS Overexpression of miR-124-3p or inhibition of S100A4 expression attenuated bronchial mucus secretion and collagenous fibers and suppressed inflammatory cell infiltration. Additionally, upon miR-124-3p overexpression or S100A4 suppression, eosinophilic granulocytes were decreased, interleukin-4 (IL-4) and IL-13 expression levels were reduced in the bronchoalveolar lavage fluid, serum total IgE level was reduced, and the TGF-β1/Smad2 signaling pathway was suppressed. Mechanically, a dual-luciferase reporter gene assay verified the binding relationship between miR-124-3p and S100A4. CONCLUSION miR-124-3p can negatively target S100A4 to attenuate inflammation in asthmatic mouse models by suppressing the EMT process and the TGF-β/smad2 signaling pathway.
Collapse
Affiliation(s)
- Min Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shuang Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Fajiu Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Chenghong Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shi Chen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaoyan Gao
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaojiang Wang
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| |
Collapse
|
66
|
Xu J, Yang L, Lin T. β-sitosterol targets glucocorticoid receptor to reduce airway inflammation and remodeling in allergic asthma. Pulm Pharmacol Ther 2023; 78:102183. [PMID: 36481301 DOI: 10.1016/j.pupt.2022.102183] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In most asthma patients, symptoms are controlled by treatment with glucocorticoid, but long-term or high-dose use can produce adverse effects. Therefore, it is crucial to find new therapeutic strategies. β-sitosterol could suppress type Ⅱ inflammation in ovalbumin (OVA)-induced mice, but its mechanisms have remained unclear. METHODS A binding activity of β-sitosterol with glucocorticoid receptor (GR) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) and human bronchial smooth muscle cells (HBSMC) were treated with different concentrations (0, 1, 5, 10, 20, and 50 μg/mL) of β-sitosterol for suitable concentration selection. In transforming growth factor (TGF)-β1 treated BEAS-2B and HBSMC, cells were treated with 20 μg/mL β-sitosterol or dexamethasone (Dex) to analyze its possible mechanism. In OVA-induced mice, 2.5 mg/kg β-sitosterol or Dex administration was performed to analyze the therapeutic mechanism of β-sitosterol. A GR antagonist RU486 was used to confirm the mechanism of β-sitosterol in the treatment of asthma. RESULTS A good binding of β-sitosterol to GR (score = -8.2 kcal/mol) was found, and the GR expression was upregulated with β-sitosterol dose increase in BEAS-2B and HBSMC. Interleukin (IL)-25 and IL-33 secretion was significantly decreased by β-sitosterol in the TGF-β1-induced BEAS-2B, and the levels of collagen 1A and α-smooth muscle actin (SMA) were reduced in the TGF-β1-induced HBSMC. In the OVA-challenged mice, β-sitosterol treatment improved airway inflammation and remodeling through suppressing type Ⅱ immune response and collagen deposition. The therapeutic effects of β-sitosterol were similar to Dex treatment in vitro and in vivo. RU486 treatment clearly hampered the therapeutic effects of β-sitosterol in the TGF-β1-induced cells and OVA-induced mice. CONCLUSION This study identified that β-sitosterol binds GR to perform its functions in asthma treatment. β-sitosterol represent a potential therapeutic drug for allergic asthma.
Collapse
Affiliation(s)
- Jianfeng Xu
- Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Lei Yang
- Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Tiantian Lin
- Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| |
Collapse
|
67
|
Zheng J, Yue L, Wang B, Li Y, Zhang L, Xue B, Tian X, Lei R, Luo B. Seasonal characteristics of ambient temperature variation (DTR, TCN, and TV 0-t) and air pollutants on childhood asthma attack in a dry and cold city in China. ENVIRONMENTAL RESEARCH 2023; 217:114872. [PMID: 36435499 DOI: 10.1016/j.envres.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Very few researches have concentrated on a variety of time scales to evaluate the association between temperature variation (TV) and childhood asthma (CA), and the evidence for the interaction of air pollutants on this association is lacking. In this study, we aim to estimate the relative risks (RRs) of CA due to TV by following metrics: diurnal temperature range (DTR), temperature changes between neighboring days (TCN), and temperature variability (TV0-t); to quantify the seasonal attributable fraction (AF) and number (AN) of CA due to TV; to examine the interactive effects of the TV and air pollutants on CA in different seasons. We mainly applied distributed lagged nonlinear model (DLNM) and conditional Poisson models to evaluate the associations between TV and outpatient visits for CA during 2014-2019 in Lanzhou, China. Additionally, the bivariate response surface model was used to examine the interplay effect of air pollutants. We found that in warm season, the risks of DTR maximum at lag5 (RR = 1.073, 95% CI: 1.017-1.133); TCN showed protective effect. In cold season, the risks of DTR peaked at lag8 (RR = 1.063, 95% CI: 1.027-1.100); the risks of TCN maximum at lag0 (RR = 1.058 95% CI: 1.009-1.109); the estimation of total cases maximized at TV0-4 in cold season (RR = 1.039 at TV0-3, 95% CI: 1.001, 1.077) and was the lowest at TV0-1 in warm season (RR = 0.999, 95% CI: 0.969, 1.030). In addition, the response surface model graphically pictured ambient air pollutants enhanced the DTR/TV0-4-CA effect for girls. In conclusion, the RRs of CA are markedly increased by TV exposure, particularly during the colder months. A combined evaluation of DTR, TCN, TV0-5∼TV0-6, NO2, SO2, and PM2.5 should be used to identify the adverse effects of TV on CA.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Li Yue
- Department of Child Healthcare of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yanlin Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
68
|
Feng Y, Hu J, Liu F, Shang Y. Collagen Triple Helix Repeat Containing 1 Deficiency Protects Against Airway Remodeling and Inflammation in Asthma Models In Vivo and In Vitro. Inflammation 2023; 46:925-940. [PMID: 36640227 DOI: 10.1007/s10753-022-01781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and lung inflammation. Collagen triple helix repeat containing 1 (CTHRC1), a glycoprotein, is involved in multiple pathological processes, including inflammation and fibrosis. However, the function of CTHRC1 in asthma remains unclear. In the present study, the mouse asthma model was successfully generated by sensitizing and challenging mice with ovalbumin (OVA). CTHRC1 expression at both RNA and protein levels was significantly upregulated in lung tissues of asthmatic mice. Asthmatic mice exhibited significant airway remodeling as evidenced by increased bronchial wall and smooth muscle cell layer thickness, goblet cell hyperplasia and collagen deposition, and epithelial-mesenchymal transition (EMT), but those characteristics were reversed by CTHRC1 silencing. The cell model with transforming growth factor-β1 (TGF-β1) induction in bronchial epithelial cells (BEAS-2B) was conducted to verify the effects of CTHRC1 on EMT, a classic mechanism that mediates airway remodeling. The results showed that TGF-β1 stimulation increased CTHRC1 expression, and CTHRC1 knockdown inhibited TGF-β1-induced EMT. OVA-treated mice also showed increased inflammatory cell infiltration and the production of OVA-specific immunoglobulin E (IgE), interleukin (IL)-4, IL-5, and IL-13, which were decreased by CTHRC1 downregulation. The effects of CTHRC1 on OVA-induced airway inflammation were further determined by treating BEAS-2B cells with IL-13, in which CTHRC1 knockdown reduced the IL-13-induced secretion of pro-inflammatory factors, including IL-4 and IL-5. In conclusion, these results indicate that CTHRC1 silencing attenuates asthmatic airway remodeling and inflammation in vivo and in vitro, suggesting that CTHRC1 may be a potential target for asthma treatment.
Collapse
Affiliation(s)
- Yong Feng
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China
| | - Fen Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China.
| |
Collapse
|
69
|
She W, Sun T, Long C, Chen M, Chen X, Liao Q, Wang M. Linc00511 Knockdown Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition of Bronchial Epithelial Cells by Targeting miR-16-5p/Smad3. Am J Rhinol Allergy 2023; 37:313-323. [PMID: 36594176 DOI: 10.1177/19458924221144853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Airway remodeling in patients with asthma was correlated with induced epithelial-mesenchymal transition (EMT) of bronchial epithelial cells. OBJECTIVE This study examined the mechanism of Linc00511 on induced EMT of bronchial epithelial cells after transforming growth factor-β1 (TGF-β1) induction. METHODS The human bronchial epithelial cell 16HBE was treated with 10 ng/mL TGF-β1 for 12 h, 24 h, or 48 h to induce EMT. Cell proliferation and migration rate were detected using CCK8 and wound healing assays, respectively. The expression of key markers of EMT (E-cadherin, N-cadherin, Small mothers against decapentaplegic family member 3 [Smad3], and slug) was tested by Western blot. RESULTS We found that Linc00511 was time dependently increased in TGF-β-treated 16HBE cells. Silencing Linc00511 reduced 16HBE cell proliferation, migration, and EMT progress. In addition, the dual-luciferase reporter assay showed Linc00511 was a molecular sponge for miR-16-5p. MiR-16-5p decreased the expression of Smad3 by targeting its 3'-untranslated region (3'UTR). After TGF-β1 exposure, miR-16-5p silencing counteracted the decreases of 16HBE cell proliferation, migration, and EMT induced by Linc00511 knockdown. And Smad3 overexpression also reversed the inhibitory effect of Linc00511 knockdown on proliferation, migration, and EMT progression in TGF-β1-induced human bronchial epithelial cells. CONCLUSION Linc00511 may be a valuable biomarker for asthma therapy.
Collapse
Affiliation(s)
- Weiwei She
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China.,Department of Respiratory and Critical Care Medicine, Nanxishan Hospital affiliated to Guilin Medical College, Guilin, China
| | - Tianshou Sun
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chengfeng Long
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Meiyu Chen
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xu Chen
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qinxue Liao
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mingdong Wang
- Department of Respiratory and Critical Care Medicine, 477248Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
70
|
Fan L, Wang X, Lv T, Xue F, Wu B, Ma A, Lu M. Follow-up of patients with a 5-year survival after paraquat poisoning using computed tomography images and spirometry. Hum Exp Toxicol 2023; 42:9603271221150243. [PMID: 36622665 DOI: 10.1177/09603271221150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The study aimed to examine long-term survival of patients with acute paraquat poisoning using computed tomography (CT) images and spirometry. METHODS A total of 36 patients with long-term survival after paraquat poisoning were followed-up and divided into mild (11 patients), moderate (17 patients), and severe (8 patients) paraquat poisoning groups. Differences among the groups were compared using clinical indicators, such as peripheral capillary oxygen saturation, arterial partial pressure of oxygen and 6-min walk test (6-MWT), chest CT, spirometry, and serum immunoglobulin E (IgE). RESULTS The 6-MWT distance was significantly shorter in the severe paraquat poisoning group than that in the mild and moderate paraquat poisoning groups. In the mild paraquat poisoning group, CT revealed no obvious lung injury, and spirometry showed normal lung function in most patients. In moderate or severe paraquat poisoning group, CT images showed fibrotic lesions as cord-like high-density shadows, reticulations, and honeycombs. In addition, other pulmonary changes, including bronchiectasis, increased lung transparency, and pulmonary bullae, were discovered. In moderate or severe paraquat poisoning group, obvious obstructive ventilation dysfunction with slight restrictive and diffuse impairment were observed in some patients, with positive bronchial relaxation test and high serum IgE level. CONCLUSION In the long-term follow-up, patients with severe paraquat poisoning showed the lowest exercise endurance. In moderate or severe paraquat poisoning group, CT images revealed diversified changes, not only dynamic evolution of pulmonary fibrosis process, but also signs of bronchiectasis, and chronic obstructive pulmonary disease. Some patients with moderate or severe paraquat poisoning developed obstructive ventilatory dysfunction with airway hyperresponsiveness.
Collapse
Affiliation(s)
- Lu Fan
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Xuejie Wang
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Tianyi Lv
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Fei Xue
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Benhe Wu
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Aiwen Ma
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Mingfeng Lu
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
71
|
Wang Y, Dong X, Pan C, Zhu C, Qi H, Wang Y, Wei H, Xie Q, Wu L, Shen H, Li S, Xie Y. Single-cell transcriptomic characterization reveals the landscape of airway remodeling and inflammation in a cynomolgus monkey model of asthma. Front Immunol 2022; 13:1040442. [PMID: 36439114 PMCID: PMC9685410 DOI: 10.3389/fimmu.2022.1040442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 06/22/2024] Open
Abstract
Monkey disease models, which are comparable to humans in terms of genetic, anatomical, and physiological characteristics, are important for understanding disease mechanisms and evaluating the efficiency of biological treatments. Here, we established an A.suum-induced model of asthma in cynomolgus monkeys to profile airway inflammation and remodeling in the lungs by single-cell RNA sequencing (scRNA-seq). The asthma model results in airway hyperresponsiveness and remodeling, demonstrated by pulmonary function test and histological characterization. scRNA-seq reveals that the model elevates the numbers of stromal, epithelial and mesenchymal cells (MCs). Particularly, the model increases the numbers of endothelial cells (ECs), fibroblasts (Fibs) and smooth muscle cells (SMCs) in the lungs, with upregulated gene expression associated with cell functions enriched in cell migration and angiogenesis in ECs and Fibs, and VEGF-driven cell proliferation, apoptotic process and complement activation in SMCs. Interestingly, we discover a novel Fib subtype that mediates type I inflammation in the asthmatic lungs. Moreover, MCs in the asthmatic lungs are found to regulate airway remodeling and immunological responses, with elevated gene expression enriched in cell migration, proliferation, angiogenesis and innate immunological responses. Not only the numbers of epithelial cells in the asthmatic lungs change at the time of lung tissue collection, but also their gene expressions are significantly altered, with an enrichment in the biological processes of IL-17 signaling pathway and apoptosis in the majority of subtypes of epithelial cells. Moreover, the ubiquitin process and DNA repair are more prevalent in ciliated epithelial cells. Last, cell-to-cell interaction analysis reveals a complex network among stromal cells, MCs and macrophages that contribute to the development of asthma and airway remodeling. Our findings provide a critical resource for understanding the principle underlying airway remodeling and inflammation in a monkey model of asthma, as well as valuable hints for the future treatment of asthma, especially the airway remodeling-characterized refractory asthma.
Collapse
Affiliation(s)
- Yingshuo Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Dong
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhe Pan
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Cihang Zhu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hantao Qi
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangmin Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Respiratory Drugs Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
72
|
Comprehensive characterization of the chemical composition of Lurong dabu decoction and its absorbed prototypes and metabolites in rat plasma using UHPLC–Q Exactive Orbitrap–HRMS. Food Res Int 2022; 161:111852. [DOI: 10.1016/j.foodres.2022.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
73
|
Alizadeh Bahmani AH, Abdel-Aziz MI, Maitland-van der Zee AH, Vijverberg SJH. Recent advances in the treatment of childhood asthma: a clinical pharmacology perspective. Expert Rev Clin Pharmacol 2022; 15:1165-1176. [PMID: 36196626 DOI: 10.1080/17512433.2022.2131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Childhood asthma is a complex heterogenous inflammatory disease that can pose a large burden on patients and their caregivers. There is a strong need to adapt asthma treatment to the individual patient taking into account underlying inflammatory profiles, moving from a 'one size fits all' approach toward a much-needed personalized approach. AREAS COVERED This review article aims to provide an overview of recent advances in the management and treatment of pediatric asthma, including novel insights on the molecular heterogeneity of childhood asthma, the emergence of biologicals to treat severe asthma, and innovative e-health and home monitoring techniques to make asthma management more convenient and accessible. EXPERT OPINION Molecular technologies have provided new treatment leads. E-health and home monitoring technologies have helped to gain more insights into disease dynamics and improve adherence to treatment while bringing health care to the patient. However, uncontrolled childhood asthma is still a major unmet clinical need and precision-medicine approaches are still scarce in clinical practice. Advanced omics methods may help researchers or clinicians to more accurately phenotype and treat subtypes of childhood asthma and gain more insight into the complexity of the disease.
Collapse
Affiliation(s)
| | - Mahmoud I Abdel-Aziz
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anke H Maitland-van der Zee
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Paediatric Pulmonology, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Paediatric Pulmonology, Amsterdam, The Netherlands
| |
Collapse
|
74
|
Wei L, Gou X, Su B, Han H, Guo T, Liu L, Wang L, Zhang L, Chen W. Mahuang Decoction Attenuates Airway Inflammation and Remodeling in Asthma via Suppression of the SP1/FGFR3/PI3K/AKT Axis. Drug Des Devel Ther 2022; 16:2833-2850. [PMID: 36051156 PMCID: PMC9427210 DOI: 10.2147/dddt.s351264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lina Wei
- Children’s Medical Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Xulei Gou
- Department of Pediatrics, Beijing Daxing District Maternal and Child Health Care Hospital, Beijing, 102600, People’s Republic of China
| | - Baoning Su
- Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, Shanghai, 201800, People’s Republic of China
| | - Haiqiong Han
- Department of Rehabilitation Medicine, Community Health Service Center of Jiangqiao Town in Jiading District, Shanghai, 201803, People’s Republic of China
| | - Tingting Guo
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Liang Liu
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Lei Wang
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Lina Zhang
- Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, Shanghai, 201800, People’s Republic of China
- Correspondence: Lina Zhang, Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, No. 222, Bole Road, Jiading District, Shanghai, 201800, People’s Republic of China, Tel +86-18930568760, Email
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
- Weibin Chen, Department of Pediatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People’s Republic of China, Tel +86-18621863233, Email
| |
Collapse
|
75
|
Xia Y, Cao H, Zheng J, Chen L. Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Front Immunol 2022; 13:927465. [PMID: 35844593 PMCID: PMC9277052 DOI: 10.3389/fimmu.2022.927465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic march refers to the phenomenon wherein the occurrence of asthma and food allergy tends to increase after atopic dermatitis. The mechanism underlying the progression of allergic inflammation from the skin to gastrointestinal (GI) tract and airways has still remained elusive. Impaired skin barrier was proposed as a risk factor for allergic sensitization. Claudin-1 protein forms tight junctions and is highly expressed in the epithelium of the skin, airways, and GI tract, thus, the downregulation of claudin-1 expression level caused by CLDN-1 gene polymorphism can mediate common dysregulation of epithelial barrier function in these organs, potentially leading to allergic sensitization at various sites. Importantly, in patients with atopic dermatitis, asthma, and food allergy, claudin-1 expression level was significantly downregulated in the skin, bronchial and intestinal epithelium, respectively. Knockdown of claudin-1 expression level in mouse models of atopic dermatitis and allergic asthma exacerbated allergic inflammation, proving that downregulation of claudin-1 expression level contributes to the pathogenesis of allergic diseases. Therefore, we hypothesized that the tight junction dysfunction mediated by downregulation of claudin-1 expression level contributes to atopic march. Further validation with clinical data from patients with atopic march or mouse models of atopic march is needed. If this hypothesis can be fully confirmed, impaired claudin-1 expression level may be a risk factor and likely a diagnostic marker for atopic march. Claudin-1 may serve as a valuable target to slowdown or block the progression of atopic march.
Collapse
|
76
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
77
|
Expert Opinion on Practice Patterns in Mild Asthma After the GINA 2019 Updates: A Major Shift in Treatment Paradigms from a Long-Standing SABA-Only Approach to a Risk Reduction-Based Strategy with the Use of Symptom-Driven (As-Needed) Low-Dose ICS/LABA. Curr Allergy Asthma Rep 2022; 22:123-134. [PMID: 35689764 DOI: 10.1007/s11882-022-01038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This expert opinion, prepared by a panel of chest disease specialists, aims to review the current knowledge on practice patterns in real-life management of mild asthma and to address the relevant updates in asthma treatment by The Global Initiative for Asthma (GINA) to guide clinicians for the best clinical practice in applying these new treatment paradigms. RECENT FINDINGS On the basis of the emerging body of evidence suggesting the non-safety of short-acting β2-agonists (SABA)-only therapy and comparable efficacy of the as-needed inhaled corticosteroids (ICS)-formoterol combinations with maintenance ICS regimens, GINA recently released their updated Global Strategy for Asthma Management and Prevention Guide (2019). The new GINA 2019 recommendations no longer support the SABA-only therapy in mild asthma but instead includes new off-label recommendations such as symptom-driven (as-needed) low-dose ICS-formoterol and "low dose ICS taken whenever SABA is taken." The GINA 2019 asthma treatment recommendations include a major shift from long-standing approach of clinical practice regarding the use of symptom-driven SABA treatment alone in the management of mild asthma. This expert opinion supports the transition from a long-standing SABA-only approach to a risk reduction-based strategy, with the use of symptom-driven (as-needed) low-dose ICS/LABA in mild asthma patients, particularly in those with poor adherence to controller medications. The thoughtful and comprehensive approach of clinicians to these strategies is important, given that the exact far-reaching impact of this major change in management of mild asthma in the real-world settings will only be clarified over time.
Collapse
|
78
|
Yu CX, Shi ZA, Ou GC, Chen XJ, Liu Q, Zeng D, Nie XJ, Chen JJ. Maresin-2 alleviates allergic airway inflammation in mice by inhibiting the activation of NLRP3 inflammasome, Th2 type immune response and oxidative stress. Mol Immunol 2022; 146:78-86. [DOI: 10.1016/j.molimm.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
79
|
Yanghe Decoction Effectively Alleviates Lung Injury and Immune Disorder in Asthmatic Mice Induced by Ovalbumin. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6040575. [PMID: 35571714 PMCID: PMC9098286 DOI: 10.1155/2022/6040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Objective. To probe into the ameliorative effect of Yanghe Decoction on pulmonary injury and immunologic derangement in asthmatic mice. Methods. C57BL/6 mice were randomized into control (Con), Model, and Yanghe Decoction (YHF) groups, with 12 in each. The asthma model of adult female mice was induced by ovalbumin in the Model group, and the YHF group was treated by Yanghe Decoction on the basis of asthma modeling. The Con group received the same amount of normal saline. Inspiratory resistance (Ri), expiratory resistance (Re), lung compliance (CL), and maximal voluntary ventilation (MVV) were measured after modeling. Lung tissue was collected for the measurement of interleukin (IL)-4, IL-5, IL-6, IL-10, IL-13, and tumor necrosis factor-α (TNF-α) by ELISA kits. Combined with HE staining and PAS staining, the pathological alterations of the lung in each group were observed, and CD4+, Th2, and Th1 contents were determined by flow cytometry (FCM). Results. The pulmonary function (PF) test revealed notably reduced Ri and Re as well as enhanced CL and MVV in asthmatic mice after the application of Yanghe Decoction. Yanghe Decoction dramatically ameliorated the pathological changes of lung tissue in asthmatic mice, as demonstrated by the staining results. ELISA results showed that Yanghe Decoction validly reduces lung tissue IL-4, IL-5, IL-6, IL-13, TNF-α and upregulates IL-10 in asthmatic mice. FCM indicated that Yanghe Decoction obviously reduced the number of Th1 and Th2 cells in asthmatic mice, although it caused the decrease of CD4+ cells, but the difference was not statistically significant. Conclusions. Yanghe Decoction can effectively ameliorate the inflammatory reaction, immune cell disorder, and PF injury in ovalbumin-induced asthmatic mice.
Collapse
|
80
|
Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model. Cell Immunol 2022; 376:104536. [DOI: 10.1016/j.cellimm.2022.104536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023]
|
81
|
Ding L, Liu GL, Lu L, Ge L, Wang JY. circ_CSNK1E modulates airway smooth muscle cells proliferation and migration via miR-34a-5p/VAMP2 axis in asthma. Cell Signal 2022; 95:110340. [PMID: 35483563 DOI: 10.1016/j.cellsig.2022.110340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Excessive proliferation and migration of airway smooth muscle cells (ASMCs) directly lead to airway remodeling in asthma. However, the role of circular RNAs (circRNAs) in airway remodeling remains unclear. This study aimed to investigate the regulatory role and mechanism of circ_CSNK1E in ASMCs proliferation and migration. METHODS In this study, RNA-sequencing was used to analyze cicRNAs expression in asthma samples. ASMCs were treated with 25 ng/mL PDGF-BB to establish a model of asthma in vitro. Then, we used RT-qPCR to assess circRNAs, microRNAs (miRNAs) and messenger RNAs (mRNAs) expression. Besides, CCK-8, colony formation, wound healing and transwell chamber assays were carried out to explore cell proliferation and migration. Subcellular localization assay was used to detect the location of circRNA. Next, bioinformatics, luciferase reporter and RIP assays were performed to evaluate the relationship among circ_CSNK1E, miRNA-34a-5p and VAMP2. RESULTS circ_CSNK1E expression was found to be significantly up-regulated in asthma samples and PDGF-BB-induced ASMCs. Functional experiments revealed that inhibition of circRNA_CSNK1E suppressed proliferation and migration of ASMCs stimulated by PDGF-BB. Next, we found that circRNA_CSNK1E served as a sponge for miR-34a-5p in ASMCs, and miR-34a-5p mimic suppressed proliferation and migration of ASMCs. Moreover, VAMP2 was confirmed as a direct target of miR-34a-5p. At last, inhibition of circRNA_CSNK1E suppressed proliferation and migration of ASMCs stimulated by PDGF-BB through miR-34a-5p/VAMP2 axis. CONCLUSION Collectively, these findings clarified the importance of circ_CSNK1E/miRNA-34a-5p/VAMP2 axis for the proliferation and migration of ASMCs. These indicated that inhibition of circ_CSNK1E might be a potential target for the treatment of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ling Ding
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China; Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, No. 298, Nanpu Road, 210031 Nanjing, Jiangsu, China
| | - Guang-Ling Liu
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China
| | - Lu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, No. 262. Zhongshan North Road, 210003 Nanjing, Jiangsu, China
| | - Lei Ge
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, No. 262. Zhongshan North Road, 210003 Nanjing, Jiangsu, China
| | - Jin-Ya Wang
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China.
| |
Collapse
|
82
|
The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was aimed to evaluate the possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in the guinea pigs’ trachea and lung in early and late manifestations of the allergic inflammatory process.
Materials and methods.We have studied the distribution and quantitative changes of CD3-positive lymphocytes in trachea and lung of guinea pigs using histological, immunohistochemical, statistical methods in conditions of experimental inflammatory process.
Results. Our results revealed the applicability of anti-Human monoclonal antibody CD3 (Clone SP7, «DAKO», Denmark) cross-reaction with T-cells of guinea pigs’ tracheas and lungs. The most statistically significant elevation of the number of CD3-positive lymphocytes, in comparison with the control group (p*/**<0.05), observed in the experimental group III in the late stages of experimental inflammatory process. The elevation of the number of CD3-positive lymphocytes persists even after the termination of the allergen action, which indicates the continuation of the reaction of pulmonary local adaptive immunity to the allergen.
Conclusions. The results of our study may be useful in conditions of the deficiency of guinea pig-specific tests. The immunohistochemical assessment of guinea pigs’ trachea and lungs proved the possibility to use anti-Human monoclonal antibody CD3 as a panT-cell marker in guinea pigs. We demonstrated the activation of adaptive immune response (T-cells), represented by their immunohistochemical changes, predominantly in the late stages of experimental inflammatory process.
Collapse
|
83
|
Intelligent Enhancement Algorithm-Based High Resolution CT Image in Evaluation of Expelling Wind and Relieving Cough and Asthma Prescription on Bronchial Asthma with High Immunoglobulin E Expression. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022. [DOI: 10.1155/2022/5800155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The therapeutic effect of expelling wind and relieving cough and asthma prescription on bronchial asthma with high immunoglobulin E (IgE) expression was studied based on high resolution CT (HRCT) images of intelligent enhancement algorithm. 90 patients with bronchial asthma were randomly divided into control group (
) and therapy group (
). The control group was given budesonide inhalation. The therapy group was treated with expelling wind and relieving cough and asthma prescription on the basis of the treatment in the control group. Both groups were given 1 month of treatment time. The scanned images were processed by image enhancement algorithm, and the image quality and distribution separation measurement (DSM) were used as image evaluation indicators. The bronchial wall thickness (WT), inner diameter (L), wall area (WA), and percentage of wall area (WA%) were used as quantitative indicators of airway remodeling. The changes of traditional Chinese medicine (TCM) score before and after treatment were recorded and analyzed. The changes of serum IgE indicators before and after treatment were recorded. Results: the image quality of HRCT image enhancement algorithm was better, and the DSM was 36.7 larger than that of the control group. It was found that after 1 month of treatment, the TCM symptom score of the therapy group was lower than that of the control group (
), and compared with the control group, the IgE level of the therapy group was also reduced. Meanwhile, compared with the control group, the WT of segmental bronchial wall in the therapy group decreased, and the WT of left apical bronchus was smaller than that in the control group (
), and the WT of subsegmental bronchus decreased significantly (
). The
of segmental bronchus and subsegmental bronchus in the therapy group was wider (
). The WA of segmental bronchus and subsegmental bronchus decreased, but there was no statistical significance (
). Compared with the control group, the WA percentage of segmental bronchus and the WA percentage of subsegmental bronchus in the therapy group were significantly lower (
). In conclusion, image enhancement algorithm can improve the HRCT image quality of patients with bronchial asthma, which is helpful to improve the diagnostic efficiency in clinical treatment. Expelling wind and relieving cough and asthma prescription has a better therapeutic effect on bronchial asthma with high IgE expression.
Collapse
|
84
|
Ferrostatin-1 and 3-Methyladenine Ameliorate Ferroptosis in OVA-Induced Asthma Model and in IL-13-Challenged BEAS-2B Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9657933. [PMID: 35154576 PMCID: PMC8837457 DOI: 10.1155/2022/9657933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis was reported to be involved in the occurrence and development of asthma. However, the potential mechanism underlying the role of ferroptosis in asthma remains unclear. In this study, we established the mouse asthma model following the ovalbumin (OVA) method in C57BL/6 mice and the cell model with IL-13 induction in bronchial epithelial cells (BEAS-2B cells). Treatment of ferrostatin-1 (Ferr-1) and 3-methyladenine (3-MA) decreased iron deposition in IL-13-induced BEAS-2B cells and lung tissues of asthma mice, opposite to that in bronchoalveolar lavage fluid (BALF). Meanwhile, excessive lipid peroxidation asthma model in vivo and in vitro was alleviated by Ferr-1 or 3-MA treatment. In addition, Ferr-1 and 3-MA inhibited the expression of LC-3 in these cells and lung tissues of mice. Moreover, Ferr-1 and 3-MA also suppressed the production of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and oxidative stress factors (ROS and MDA), while promoting the level of SOD, in vivo and in vitro. Furthermore, application of Ferr-1 exhibited a greater inhibitory effect on iron release and lipid peroxidation in IL-13-induced BEAS-2B cells and asthma mice than 3-MA, accompanied with a weaker effect on ferritinophagy than 3-MA. Collectively, Ferr-1 and 3-MA ameliorated asthma in vivo and in vitro through inhibiting ferroptosis, providing a new strategy for the clinical treatment of asthma.
Collapse
|
85
|
Ran MY, Yuan Z, Fan CT, Ke Z, Wang XX, Sun JY, Su DJ. Multiplex-Heterogeneous Network-Based Capturing Potential SNP "Switches" of Pathways Associating With Diverse Disease Characteristics of Asthma. Front Cell Dev Biol 2022; 9:744932. [PMID: 34970542 PMCID: PMC8712737 DOI: 10.3389/fcell.2021.744932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Asthma is a complex heterogeneous respiratory disorder. In recent years nubbly regions of the role of genetic variants and transcriptome including mRNAs, microRNAs, and long non-coding RNAs in the pathogenesis of asthma have been separately excavated and reported. However, how to systematically integrate and decode this scattered information remains unclear. Further exploration would improve understanding of the internal communication of asthma. To excavate new insights into the pathogenesis of asthma, we ascertained three asthma characteristics according to reviews, airway inflammation, airway hyperresponsiveness, and airway remodeling. We manually created a contemporary catalog of corresponding risk transcriptome, including mRNAs, miRNAs, and lncRNAs. MIMP is a multiplex-heterogeneous networks-based approach, measuring the relevance of disease characteristics to the pathway by examining the similarity between the determined vectors of risk transcriptome and pathways in the same low-dimensional vector space. It was developed to enable a more concentrated and in-depth exploration of potential pathways. We integrated experimentally validated competing endogenous RNA regulatory information and the SNPs with significant pathways into the ceRNA-mediated SNP switching pathway network (CSSPN) to analyze ceRNA regulation of pathways and the role of SNP in these dysfunctions. We discovered 11 crucial ceRNA regulations concerning asthma disease feature pathway and propose a potential mechanism of ceRNA regulatory SNP → gene → pathway → disease feature effecting asthma pathogenesis, especially for MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL13 (rs201185816/rs1000978586/rs202101165) → Interleukin-4 and Interleukin-13 signaling → inflammation/airway remodeling and MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL17RB (rs948046241) → Interleukin-17 signaling (airway remodeling)/Cytokine-cytokine receptor interaction (inflammation). This study showed a systematic and propagable workflow for capturing the potential SNP “switch” of asthma through text and database mining and provides further information on the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ming-Yu Ran
- Department of College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhang Yuan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chui-Ting Fan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhou Ke
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Xing Wang
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Yuan Sun
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dong-Ju Su
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
86
|
Zhang YL, Yin Q, Peng HM, Huang R, Zhou JW, Liu LH, Gao HQ, Zhao CP, Peng XH, Xiao L, Nie J, Yang QC, He CY, Hu GS, Chen JC, Jia JM, Fang JB. Network pharmacology analysis and experimental validation to explore the mechanism of Hanchuan Zupa Granule in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114534. [PMID: 34419609 DOI: 10.1016/j.jep.2021.114534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hanchuan Zupa Granule (HCZP) is a classic prescription of Uyghur medicine, that is used for cough and abnormal mucinous asthma caused by a cold and "Nai-Zi-Lai". AIM OF THE STUDY This study aimed to explore the possible molecular mechanism of HCZP in the treatment of asthma, using a network pharmacology method and in vivo experiments. MATERIALS AND METHODS First, we conducted qualitative analysis of the chemical composition of HCZP as a basis for network pharmacology analysis. Using network pharmacology tools, the possible signaling pathways of HCZP in the treatment of asthma were obtained. An OVA-sensitized asthma model was established, and HCZP was continuously administered for one week. BALF was collected for cell counting, and serum and lung tissues were collected to analyze the expression of IgE, IL-4, IL-5, IL-13 and IFN-γ. Hematoxylin & eosin (H&E) staining was performed to assess the pathological changes in the lung tissues. Related protein expression in the lung tissues was analyzed by Western blotting for molecular mechanism exploration. RESULTS Fifty-six chemical compounds were identified by UPLC Q-TOF MS. According to the network pharmacology results, 18 active compounds were identified among the 56 compounds, and 68 target genes of HCZP in the treatment of asthma were obtained. A total of 19 pathways were responsible for asthma (P < 0.05) according to KEGG pathway analysis. In vivo results showed that OVA sensitivity induced increased respiratory system resistance and inflammatory responses, which included inflammatory cell infiltration and high levels of IgE, IL-4, IL-5 and IL-13 in serum and lung tissues. Furthermore, OVA upregulated p-PI3K, p-JNK and p-p38 expression in lung tissues. Moreover, HCZP treatment significantly downregulated respiratory system resistance, and the expression of IL-4, IL-5, IL-13 and IgE, as well as significantly improved inflammatory cell infiltration in lung tissues. Moreover, the protein expression of p-PI3K, p-JNK and p-p38 in lung tissues decreased after HCZP treatment. CONCLUSION HCZP significantly inhibited the OVA-induced inflammatory response via the PI3K-Akt and Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Ya-Li Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qiang Yin
- Xinjiang Uygur Pharmaceutical Co., Ltd, No. 2, Shenyang Street, Urumqi Economic and Technological Development Zone, Toutunhe District, Xinjiang Uygur Autonomous Region, Urumqi, 830026, Xinjiang, China.
| | - Hui-Ming Peng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Huang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China.
| | - Jie-Wen Zhou
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lin-Hui Liu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Han-Qi Gao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Peng Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin-Hang Peng
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Quan-Cheng Yang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chun-Ye He
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gao-Sheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jia-Chun Chen
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
87
|
Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorg Chem 2021; 117:105409. [PMID: 34749117 DOI: 10.1016/j.bioorg.2021.105409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type β (TGF-β) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-β-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.
Collapse
|
88
|
Chan YH, Liew KY, Tan JW, Shaari K, Israf DA, Tham CL. Pharmacological Properties of 2,4,6-Trihydroxy-3-Geranyl Acetophenone and the Underlying Signaling Pathways: Progress and Prospects. Front Pharmacol 2021; 12:736339. [PMID: 34531753 PMCID: PMC8438195 DOI: 10.3389/fphar.2021.736339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a bioactive phloroglucinol compound found in Melicope pteleifolia (Champ. ex Benth.) T.G.Hartley, a medicinal plant vernacularly known as “tenggek burung”. A variety of phytochemicals have been isolated from different parts of the plant including leaves, stems, and roots by using several extraction methods. Specifically, tHGA, a drug-like compound containing phloroglucinol structural core with acyl and geranyl group, has been identified in the methanolic extract of the young leaves. Due to its high nutritional and medicinal values, tHGA has been extensively studied by using various experimental models. These studies have successfully discovered various interesting pharmacological activities of tHGA such as anti-inflammatory, endothelial and epithelial barrier protective, anti-asthmatic, anti-allergic, and anti-cancer. More in-depth investigations later found that these activities were attributable to the modulatory actions exerted by tHGA on specific molecular targets. Despite these findings, the association between the mechanisms and signaling pathways underlying each pharmacological activity remains largely unknown. Also, little is known about the medicinal potentials of tHGA as a drug lead in the current pharmaceutical industry. Therefore, this mini review aims to summarize and relate the pharmacological activities of tHGA in terms of their respective mechanisms of action and signaling pathways in order to present a perspective into the overall modulatory actions exerted by tHGA. Besides that, this mini review will also pinpoint the unexplored potentials of this compound and provide some valuable insights into the potential applications of tHGA which may serve as a guide for the development of modern medication in the future.
Collapse
Affiliation(s)
- Yee Han Chan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
89
|
Zheng J, Wu Q, Zou Y, Wang M, He L, Guo S. Respiratory Microbiota Profiles Associated With the Progression From Airway Inflammation to Remodeling in Mice With OVA-Induced Asthma. Front Microbiol 2021; 12:723152. [PMID: 34526979 PMCID: PMC8435892 DOI: 10.3389/fmicb.2021.723152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background The dysbiosis of respiratory microbiota plays an important role in asthma development. However, there is limited information on the changes in the respiratory microbiota and how these affect the host during the progression from acute allergic inflammation to airway remodeling in asthma. Objective An ovalbumin (OVA)-induced mouse model of chronic asthma was established to explore the dynamic changes in the respiratory microbiota in the different stages of asthma and their association with chronic asthma progression. Methods Hematoxylin and eosin (H&E), periodic acid-schiff (PAS), and Masson staining were performed to observe the pathological changes in the lung tissues of asthmatic mice. The respiratory microbiota was analyzed using 16S rRNA gene sequencing followed by taxonomical analysis. The cytokine levels in bronchoalveolar lavage fluid (BALF) specimens were measured. The matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor (VEGF-A) expression levels in lung tissues were measured to detect airway remodeling in OVA-challenged mice. Results Acute allergic inflammation was the major manifestation at weeks 1 and 2 after OVA atomization stimulation, whereas at week 6 after the stimulation, airway remodeling was the most prominent observation. In the acute inflammatory stage, Pseudomonas was more abundant, whereas Staphylococcus and Cupriavidus were more abundant at the airway remodeling stage. The microbial compositions of the upper and lower respiratory tracts were similar. However, the dominant respiratory microbiota in the acute inflammatory and airway remodeling phases were different. Metagenomic functional prediction showed that the pathways significantly upregulated in the acute inflammatory phase and airway remodeling phase were different. The cytokine levels in BALF and the expression patterns of proteins associated with airway remodeling in the lung tissue were consistent with the metagenomic function results. Conclusion The dynamic changes in respiratory microbiota are closely associated with the progression of chronic asthma. Metagenomic functional prediction indicated the changes associated with acute allergic inflammation and airway remodeling.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Zou
- Department of Emergency Medicine, Putuo Hospital, Shanghai University of Traditional Medicine, Shanghai, China
| | - Meifen Wang
- Department of Pediatrics, Sanmen People's Hospital, Taizhou, China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
90
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|
91
|
Alonso PT, Schapochnik A, Klein S, Brochetti R, Damazo AS, de Souza Setubal Destro MF, Lino-Dos-Santos-Franco A. Transcutaneous systemic photobiomodulation reduced lung inflammation in experimental model of asthma by altering the mast cell degranulation and interleukin 10 level. Lasers Med Sci 2021; 37:1101-1109. [PMID: 34146193 DOI: 10.1007/s10103-021-03359-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Asthma is a chronic inflammatory disease characterized by recurrent and reversible episodes of wheezing, dyspnea, chest stiffness, and cough. Its treatment includes several drugs, high cost, and considerable side effects. Photobiomodulation (PBM) emerges as an alternative treatment, showing good results, and it can be applied locally or systemically. Here, we aim to evaluate the effect of transcutaneous systemic photobiomodulation (TSPBM) by red diode light. Therefore, adult rats were sensitized and challenged with ovalbumin (OVA) plus alum for induction of asthma and irradiated or not with TSPBM in the caudal vein (wavelength 660 ± 10 nm; total radiant emission 15 J; area 2.8 cm2; energy density 5.35 J/cm2; irradiance 33.3 mW/cm2; exposure time 150 s). Our investigations prioritized the cell migration into the alveolar space and lung, tracheal responsiveness, release and gene expression of cytokines, mast cell degranulation, and anaphylactic antibodies. Our results showed that TSPBM reduced the cell migration and mast cell degranulation without altering the tracheal responsiveness and ovalbumin antibody titers. Indeed, TSPBM increased the levels of interleukin 10 (IL-10) in the BAL fluid without altering the gene expression of cytokines in the lung tissue. Thus, this study showed that transcutaneous systemic irradiation reduced lung inflammation by altering mast cells degranulation and IL-10 level. Considering that this study is a pioneer in the used of light by the systemic route to treat asthma, the data are interesting and instigate future investigations, mainly in relation to the mechanisms involved and in dosimetry.
Collapse
Affiliation(s)
- Paula Tatiane Alonso
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Schapochnik
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Klein
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson Brochetti
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amílcar Sabino Damazo
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Basic Science in Health, Faculty of Medical Sciences, Federal University of Cuiabá, Cuiabá, Brazil
| | - Maria Fernanda de Souza Setubal Destro
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied To Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
92
|
TSLP-induced collagen type-I synthesis through STAT3 and PRMT1 is sensitive to calcitriol in human lung fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119083. [PMID: 34147561 DOI: 10.1016/j.bbamcr.2021.119083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.
Collapse
|
93
|
Barron SL, Saez J, Owens RM. In Vitro Models for Studying Respiratory Host-Pathogen Interactions. Adv Biol (Weinh) 2021; 5:e2000624. [PMID: 33943040 PMCID: PMC8212094 DOI: 10.1002/adbi.202000624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory diseases and lower respiratory tract infections are among the leading cause of death worldwide and, especially given the recent severe acute respiratory syndrome coronavirus-2 pandemic, are of high and prevalent socio-economic importance. In vitro models, which accurately represent the lung microenvironment, are of increasing significance given the ethical concerns around animal work and the lack of translation to human disease, as well as the lengthy time to market and the attrition rates associated with clinical trials. This review gives an overview of the biological and immunological components involved in regulating the respiratory epithelium system in health, disease, and infection. The evolution from 2D to 3D cell biology and to more advanced technological integrated models for studying respiratory host-pathogen interactions are reviewed and provide a reference point for understanding the in vitro modeling requirements. Finally, the current limitations and future perspectives for advancing this field are presented.
Collapse
Affiliation(s)
- Sarah L. Barron
- Bioassay Impurities and QualityBiopharmaceuticals DevelopmentR&DAstraZenecaCambridgeCB21 6GPUK
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Janire Saez
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
94
|
He H, Ma Y, Huang H, Huang C, Chen Z, Chen D, Gu Y, Wang X, Chen J. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti-carcinogenic activities. Eur J Pharmacol 2020; 893:173803. [PMID: 33359648 DOI: 10.1016/j.ejphar.2020.173803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diallyl disulfide (DADS), an oil-soluble sulfur compound that is responsible for the biological effects of garlic, displays numerous biological activities, among which its anti-cancer activities are the most famous ones. In recent years, the pharmacological effects of DADS other than its anti-carcinogenic activities have attracted numerous attentions. For example, it has been reported that DADS can prevent the microglia-mediated neuroinflammatory response and depression-like behaviors in mice. In the cardiovascular system, DADS administration was found to ameliorate the isoproterenol- or streptozotocin-induced cardiac dysfunction via the activation of the nuclear factor E2-related factor 2 (Nrf2) and insulin-like growth factor (IGF)-phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling. DADS administration can also produce neuroprotective effects in animal models of Alzheimer's disease and protect the heart, endothelium, liver, lung, and kidney against cellular or tissue damages induced by various toxic factors, such as the oxidized-low density lipoprotein (ox-LDL), carbon tetrachloride (CCl4), ethanol, acetaminophen, Cis-Diammine Dichloroplatinum (CisPt), and gentamicin. The major mechanisms of action of DADS in disease prevention and/or treatment include inhibition of inflammation, oxidative stress, and cellular apoptosis. Mechanisms, including the activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase A (PKA), and cyclic adenosine monophosphate-response element binding protein (CREB) and the inhibition of histone deacetylases (HDACs), can also mediate the cellular protective effects of DADS in different tissues and organs. In this review, we summarize and discuss the pharmacological effects of DADS other than its anti-carcinogenic activities, aiming to reveal more possibilities for DADS in disease prevention and/or treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huaxing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yiming Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaohua Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
95
|
Zhou X, Cui Z, Liu Y, Yue Z, Xie F, Ding L, Xu S, Han J, Zhang H. Correlation of Bromodomain Protein BRD4 Expression With Epithelial-Mesenchymal Transition and Disease Severity in Chronic Rhinosinusitis With Nasal Polyps. Front Med (Lausanne) 2020; 7:413. [PMID: 32923445 PMCID: PMC7456959 DOI: 10.3389/fmed.2020.00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study aimed to explore the relationship between bromodomain-containing protein 4 (BRD4), epithelial–mesenchymal transition (EMT), and disease severity in chronic rhinosinusitis with nasal polyps (CRSwNP). Methods: We performed immunofluorescent (IF) staining to evaluate the expression of BRD4 in the polyp tissues of CRSwNP and inferior turbinate mucosa of healthy controls. The relationship between BRD4 and EMT was evaluated by the BRD inhibitor JQ1 and BRD4 siRNA in primary human nasal polyp–derived epithelial cells. Disease severity was scored by using the Lund–Mackay scores of paranasal sinus computed tomography (CT) scans. Results: The expression of BRD4 in patients with CRSwNP was significantly higher than that in healthy controls. The loss of BRD4 function by the BRD inhibitor JQ1 and BRD4 siRNA resulted in the reduction of E-cadherin, increasing vimentin, and Snai1 mRNA expression. Moreover, the expression of BRD4 was related to the total CT scan scores (r = 0.4682, P = 0.0210). Conclusions: BRD4 had higher expression in CRSwNP than in healthy controls and might be associated with EMT in CRSwNP. BRD4 mRNA expression was associated with disease severity in CRSwNP.
Collapse
Affiliation(s)
- Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhaoyang Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiqing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengyang Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Han
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hong Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|