51
|
Yang SU, Kim J, Kim H, Suh MC. Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression. PLANTS (BASEL, SWITZERLAND) 2019; 8:E284. [PMID: 31412690 PMCID: PMC6724121 DOI: 10.3390/plants8080284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023]
Abstract
Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferase 9 (GPAT9), which catalyzes the synthesis of lysophosphatidic acid (LPA) from a glycerol-3-phosphate and acyl-CoA, was isolated from Physcomitrella patens, which produces high levels of very-long-chain PUFAs in protonema and gametophores. P. patens GPAT9 shares approximately 50%, 60%, and 70% amino acid similarity with GPAT9 from Chlamydomonas reinhardtii, Klebsormidium nitens, and Arabidopsis thaliana, respectively. PpGPAT9 transcripts were detected in both the protonema and gametophores. Fluorescent signals from the eYFP:PpGPAT9 construct were observed in the ER of Nicotiana benthamiana leaf epidermal cells. Ectopic expression of PpGPAT9 increased the seed oil content by approximately 10% in Arabidopsis. The levels of PUFAs (18:2, 18:3, and 20:2) and saturated FAs (16:0, 18:0, and 20:0) increased by 60% and 43%, respectively, in the storage oil of the transgenic seeds when compared with the wild type. The transgenic embryos with increased oil content contained larger embryonic cells than the wild type. Thus, PpGPAT9 may be a novel genetic resource to enhance storage oil yields from oilseed crops.
Collapse
Affiliation(s)
- Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Hyojin Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
52
|
WRINKLED1, a "Master Regulator" in Transcriptional Control of Plant Oil Biosynthesis. PLANTS 2019; 8:plants8070238. [PMID: 31336651 PMCID: PMC6681333 DOI: 10.3390/plants8070238] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
A majority of plant species generate and accumulate triacylglycerol (TAG) in their seeds, which is the main resource of carbon and energy supporting the process of seedling development. Plant seed oils have broad ranges of uses, being not only important for human diets but also renewable feedstock of industrial applications. The WRINKLED1 (WRI1) transcription factor is vital for the transcriptional control of plant oil biosynthetic pathways. Since the identification of the Arabidopsis WRI1 gene (AtWRI1) fifteen years ago, tremendous progress has been made in understanding the functions of WRI1 at multiple levels, ranging from the identification of AtWRI1 target genes to location of the AtWRI1 binding motif, and from discovery of intrinsic structural disorder in WRI1 to fine-tuning of WRI1 modulation by post-translational modifications and protein-protein interactions. The expanding knowledge on the functional understanding of the WRI1 regulatory mechanism not only provides a clearer picture of transcriptional regulation of plant oil biosynthetic pathway, but also helps generate new strategies to better utilize WRI1 for developing novel oil crops.
Collapse
|
53
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
54
|
Zheng Y, Jin Y, Yuan Y, Feng D, Chen L, Li D, Zhou P. Identification and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from the endosperm of coconut (Cocos nucifera L.). Gene 2019; 702:75-82. [PMID: 30928362 DOI: 10.1016/j.gene.2019.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
Abstract
Coconut (Cocos nucifera L.) is one of the most characteristic plants of tropical areas. Coconut oil and its derivatives have been widely used in various industries. In this paper, a type 2 diacylglycerol acyltransferase (DGAT2), which is one of the key enzymes involved in triacylglycerol (TAG) biosynthesis, was first characterized in coconut pulp (endosperm). The results indicated that CoDGAT2 was highly expressed in coconut pulp approximately 7 months after pollination. The heterologous expression of CoDGAT2 in the mutant yeast H1246 restored TAG biosynthesis in the yeast, which exhibited substrate preference for two unsaturated fatty acids (UFAs), palmitoleic acid (C16:1) and oleic acid (C18:1). Moreover, the seed-specific overexpression of CoDGAT2 in Arabidopsis thaliana led to a significant increase in the linoleic acid (C18:2) content (approximately 6%) compared with that in the wild type. In contrast, the proportions of eicosadienoic acid (C20:1) and arachidic acid (C20:0) were decreased. These results offer new insights on the function of CoDGAT2 in coconut and provide a novel molecular target for lipid genetic modification to change the fatty acid (FA) composition of oils.
Collapse
Affiliation(s)
- Yusheng Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China
| | - Yuanhang Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China
| | - Dan Feng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China
| | - Lizhi Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China
| | - Dongdong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Bioengineering, Hainan University, Hainan 570228, China.
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
55
|
Shockey J, Lager I, Stymne S, Kotapati HK, Sheffield J, Mason C, Bates PD. Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils. PLANTA 2019; 249:1285-1299. [PMID: 30610363 DOI: 10.1007/s00425-018-03086-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/29/2018] [Indexed: 05/20/2023]
Abstract
In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.
Collapse
Affiliation(s)
- Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | - Hari Kiran Kotapati
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Jennifer Sheffield
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Catherine Mason
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
56
|
Cao H, Sethumadhavan K, Li K, Boue SM, Anderson RA. Cinnamon Polyphenol Extract and Insulin Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Adipocytes and Macrophages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:115-121. [PMID: 30637573 DOI: 10.1007/s11130-018-0709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cinnamon polyphenol extract (CPE) improves people with insulin resistance. The objective was to investigate CPE and insulin on diacylglycerol acyltransferase (DGAT) gene expression important for lipid biosynthesis and compared it to anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) gene expression known to be regulated by both agents. Mouse 3T3-L1 adipocytes and RAW264.7 macrophages were treated with insulin and CPE followed by qPCR evaluation of DGAT and TTP mRNA levels. Insulin decreased DGAT1 and DGAT2 mRNA levels in adipocytes but had no effect on DGAT1 and increased DGAT2 mRNA levels 3-fold in macrophages. Insulin increased TTP mRNA levels 3-fold in adipocytes but had no effect in macrophages. CPE effect on DGAT1 gene expression was minimal but increased DGAT2 mRNA levels 2-4 fold in adipocytes and macrophages. CPE increased TTP mRNA levels 2-7 fold in adipocytes and macrophages. We conclude that CPE and insulin exhibited overlapping and independent effects on DGAT and TTP gene expression and suggest that CPE and insulin have profound effects on fat biosynthesis and inflammatory responses.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Stephen M Boue
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | | |
Collapse
|
57
|
Wayne LL, Gachotte DJ, Walsh TA. Transgenic and Genome Editing Approaches for Modifying Plant Oils. Methods Mol Biol 2019; 1864:367-394. [PMID: 30415347 DOI: 10.1007/978-1-4939-8778-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vegetable oils are important for human and animal nutrition and as renewable resources for chemical feedstocks. We provide an overview of transgenic and genome editing approaches for modifying plant oils, describing useful model and crop systems and different strategies for transgenic modifications. We also describe new genome editing approaches that are beginning to be applied to oilseed plants and crops. These approaches are illustrated with examples for modifying the nutritional quality of vegetable oils by altering fatty acid desaturation, producing non-native fatty acids in oilseeds, and enhancing the overall accumulation of oil in seeds and leaves.
Collapse
Affiliation(s)
- Laura L Wayne
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Daniel J Gachotte
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Terence A Walsh
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
58
|
Jeppson S, Demski K, Carlsson AS, Zhu LH, Banaś A, Stymne S, Lager I. Crambe hispanica Subsp. abyssinica Diacylglycerol Acyltransferase Specificities Towards Diacylglycerols and Acyl-CoA Reveal Combinatorial Effects That Greatly Affect Enzymatic Activity and Specificity. FRONTIERS IN PLANT SCIENCE 2019; 10:1442. [PMID: 31798607 PMCID: PMC6863138 DOI: 10.3389/fpls.2019.01442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
Crambe is an oil crop suitable for industrial purposes due to the high content of erucic acid (22:1) in the seed oil. The final acylation of diacylglycerols (DAG) with acyl-CoA in the production of triacylglycerols (oil) is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. We identified eight forms of DGATs in crambe and characterized them in microsomal preparations of yeast expressing the enzymes using various acyl-CoAs and both di-6:0-DAG and long-chain DAG species as acyl acceptors. All DGATs accepted 22:1-CoA when using di-6:0-DAG as acyl acceptor. When di-22:1-DAG was the acyl acceptor, the DGAT1 type of enzyme utilized 22:1-CoA at a much-reduced rate compared to assays with sn-1-22:1-sn-2-18:1(oleoyl)-DAG, the most frequently available DAG precursor in crambe seeds. None of the DGAT2 enzymes was able to acylate di-22:1-DAG. Our results indicate that formation of trierucin by crambe DGATs is a limiting step for further increasing the levels of 22:1 in the previously developed transgenic crambe lines due to their poor abilities to acylate di-22:1-DAG. We also show that the acyl-CoA specificities and the enzymatic activities are highly influenced by the fatty acid composition of the DAG acyl acceptor. This finding implies that the use of artificial acyl acceptors (e.g. di-6:0-DAG) may not always reflect the actual acyl-CoA specificities of DGATs in planta. The relevance of the here reported pronounced specificities for specific DAG species exerted by DGAT enzymes is discussed in the context of the findings of DAG pools of distinct catalytic origin in triacylglycerol biosynthesis in the seed oil.
Collapse
Affiliation(s)
- Simon Jeppson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- *Correspondence: Simon Jeppson,
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anders S. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
59
|
Cao H. Identification of the major diacylglycerol acyltransferase mRNA in mouse adipocytes and macrophages. BMC BIOCHEMISTRY 2018; 19:11. [PMID: 30547742 PMCID: PMC6293574 DOI: 10.1186/s12858-018-0103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023]
Abstract
Background Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds. Methods qPCR evaluated DGAT mRNA levels in mouse 3 T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds. Results TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3. Conclusion The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| |
Collapse
|
60
|
Zienkiewicz K, Benning U, Siegler H, Feussner I. The type 2 acyl-CoA:diacylglycerol acyltransferase family of the oleaginous microalga Lobosphaera incisa. BMC PLANT BIOLOGY 2018; 18:298. [PMID: 30477429 PMCID: PMC6257963 DOI: 10.1186/s12870-018-1510-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising sources of energy-rich triacylglycerols (TAGs) for direct use for food, feed and industrial applications. Lobosphaera incisa is a fresh water unicellular alga, which in response to nutrient stress accumulates a high amount of TAGs with a high proportion of arachidonic acid (ARA). The final committed step of de novo TAG biosynthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs), which add a fatty acid (FA) to the final sn-3 position of diacylglycerol (DAG). RESULTS Genome analysis revealed the presence of five putative DGAT isoforms in L. incisa, including one DGAT of type 1, three DGATs of type 2 and a single isoform of a type 3 DGAT. For LiDGAT1, LiDGAT2.1, LiDGAT2.2 and LiDGAT2.3 enzyme activity was confirmed by expressing them in the TAG-deficient yeast strain H1246. Feeding experiments of yeast transformants with fatty acids suggest a broad substrate specificity spectrum for LiDGAT1. A significant TAG production in response to exogenous ARA was found for LiDGAT2.2. Cellular localization of the four type 1 and type 2 DGATs expressed in yeast revealed that they all localize to distinct ER domains. A prominent association of LiDGAT1 with ER domains in close proximity to forming lipid droplets (LDs) was also observed. CONCLUSIONS The data revealed a distinct molecular, functional and cellular nature of type 1 and type 2 DGATs from L. incisa, with LiDGAT1 being a major contributor to the TAG pool. LiDGATs of type 2 might be in turn involved in the incorporation of unusual fatty acids into TAG and thus regulate the composition of TAG. This report provides a valuable resource for the further research of microalgae DGATs oriented towards production of fresh-water strains with higher oil content of valuable composition, not only for oil industry but also for human and animal nutrition.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Urs Benning
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Heike Siegler
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077 Goettingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
61
|
Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P, Fontecave M, Chardot T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep 2018; 8:17254. [PMID: 30467384 PMCID: PMC6250708 DOI: 10.1038/s41598-018-35545-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
Acyl-CoA:diacylglycerol acyltransferases 3 (DGAT3) are described as plant cytosolic enzymes synthesizing triacylglycerol. Their protein sequences exhibit a thioredoxin-like ferredoxin domain typical of a class of ferredoxins harboring a [2Fe-2S] cluster. The Arabidopsis thaliana DGAT3 (AtDGAT3; At1g48300) protein is detected in germinating seeds. The recombinant purified protein produced from Escherichia coli, although very unstable, exhibits DGAT activity in vitro. A shorter protein version devoid of its N-terminal putative chloroplast transit peptide, Δ46AtDGAT3, was more stable in vitro, allowing biochemical and spectroscopic characterization. The results obtained demonstrate the presence of a [2Fe-2S] cluster in the protein. To date, AtDGAT3 is the first metalloprotein described as a DGAT.
Collapse
Affiliation(s)
- Laure Aymé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Simon Arragain
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231, Paris, CEDEX 05, France
| | - Michel Canonge
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Nadia Touati
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005, Paris, France
| | - Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231, Paris, CEDEX 05, France
| | - Franjo Jagic
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Christelle Louis-Mondésir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231, Paris, CEDEX 05, France.
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
62
|
Shockey J, Kuhn D, Chen T, Cao H, Freeman B, Mason C. Cyclopropane fatty acid biosynthesis in plants: phylogenetic and biochemical analysis of Litchi Kennedy pathway and acyl editing cycle genes. PLANT CELL REPORTS 2018; 37:1571-1583. [PMID: 30083958 DOI: 10.1007/s00299-018-2329-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
This report describes the most extensive known gene discovery study from an oilseed that produces cyclopropane fatty acids, a novel industrial feedstock. Nature contains hundreds of examples of plant species that accumulate unusual fatty acids in seed triacylglycerols (TAG). Although lipid metabolic genes have been cloned from several exotic plant species, the underlying mechanisms that control the production of novel TAG species are still poorly understood. One such class of unusual fatty acids contain in-chain cyclopropane or cyclopropene functionalities that confer chemical and physical properties useful in the synthesis of lubricants, cosmetics, dyes, coatings, and other types of valuable industrial feedstocks. These cyclopropyl fatty acids, or CPFAs, are only produced by a small number of plants, primarily in the order Malvidae. Litchi chinensis is one member of this group; its seed oil contains at least 40 mol% CPFAs. Several genes, representing early, middle, and late steps in the Litchi fatty acid and TAG biosynthetic pathways have been cloned and characterized here. The tissue-specific and developmental transcript expression profiles and biochemical characteristics observed indicate which enzymes might play a larger role in Litchi seed TAG biosynthesis and accumulation. These data, therefore, provide insights into which genes likely represent the best targets for either silencing or overexpression, in future metabolic engineering strategies aimed at altering CPFA content.
Collapse
Affiliation(s)
- Jay Shockey
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| | - David Kuhn
- Subtropical Horticulture Research Station, United States Department of Agriculture-Agricultural Research Service, Miami, FL, 33158, USA
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, 518004, Guangdong, China
| | - Heping Cao
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Barbara Freeman
- Subtropical Horticulture Research Station, United States Department of Agriculture-Agricultural Research Service, Miami, FL, 33158, USA
| | - Catherine Mason
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| |
Collapse
|
63
|
Rosli R, Chan PL, Chan KL, Amiruddin N, Low ETL, Singh R, Harwood JL, Murphy DJ. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:84-96. [PMID: 30107884 DOI: 10.1016/j.plantsci.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 05/14/2023]
Abstract
The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.
Collapse
Affiliation(s)
- Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom; Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
64
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
65
|
Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome 2018; 61:735-743. [PMID: 30092654 DOI: 10.1139/gen-2018-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the only rate-limiting step in the pathway of plant oil (TAG) biosynthesis and is involved in plant development. In this study, five DGAT family members were identified from maize genome database. Phylogenetic analysis classified the ZmDGATs into type-I, II, and III clusters. Conserved functional domain analysis revealed that the proteins encoded by ZmDGAT1 contained conserved MBOAT domains, while two ZmDGAT2-encoding proteins harbored LPLAT domains. qRT-PCR analysis showed that ZmDGAT genes exhibited very high relative expression in developing seeds, especially at the early stage of seed development. Under various abiotic stress conditions, differential responses of ZmDGAT genes were observed. An overall significant induction of ZmDGAT genes under cold stress in leaves and a quick and strong response to osmotic stresses in roots were highlighted. This study provides useful information for understanding the roles of DGATs in oil accumulation and stress responses in higher plants.
Collapse
Affiliation(s)
- Bowei Yan
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.,b Institute for Comprehensive Utilization of Agricultural and Animal Husbandry, Heilongjiang Academy of Land Reclamation sciences, Harbin, 150000, Heilongjiang, China
| | - Xiaoxuan Xu
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yingnan Gu
- c Remote Sensing Technology Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Ying Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xunchao Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lin He
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Changjiang Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zuotong Li
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jingyu Xu
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| |
Collapse
|
66
|
Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys 2018; 655:1-11. [PMID: 30077544 DOI: 10.1016/j.abb.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023]
Abstract
The esterification of a fatty acyl moiety to diacylglycerol to form triacylglycerol (TAG) is catalysed by two diacylglycerol O-acyltransferases (DGATs) encoded by genes belonging to two distinct gene families. The enzymes are referred to as DGAT1 and DGAT2 in order of their identification. Both proteins are transmembrane proteins localized in the endoplasmic reticulum. Their membrane topologies are however significantly different. This difference is hypothesized to give the two isozymes different abilities to interact with other proteins and organelles and access to different pools of fatty acids, thereby creating a distinction between the enzymes in terms of their role and contribution to lipid metabolism. DGAT1 is proposed to have dual topology contributing to TAG synthesis on both sides of the ER membrane and esterifying only the pre-formed fatty acids. There is evidence to suggest that DGAT2 translocates to the lipid droplet (LD), associates with other proteins, and synthesizes cytosolic and luminal apolipoprotein B associated LD-TAG from both endogenous and exogenous fatty acids. The aim of this review is to differentiate between the two DGAT enzymes by comparing the genes that encode them, their proposed topologies, the proteins they interact with, and their roles in lipid metabolism.
Collapse
Affiliation(s)
- Bhumika Bhatt-Wessel
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - T William Jordan
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - John H Miller
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, New Zealand.
| |
Collapse
|
67
|
Kong Q, Ma W. WRINKLED1 transcription factor: How much do we know about its regulatory mechanism? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:153-156. [PMID: 29807586 DOI: 10.1016/j.plantsci.2018.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 05/25/2023]
Abstract
Many plant species produce and build up triacylglycerol (TAG) in their seeds as a main resource to provide carbon and energy during seedling development. Plant seed oils are important not only for human diets but also as renewable feedstock of industrial uses. WRINKLED1 (WRI1), an APETALA2 (AP2) transcription factor, plays an essential role in the transcriptional regulation of TAG biosynthesis as WRI1 regulates the expression of key genes in the glycolytic and fatty acid biosynthetic pathways. Recent work has identified intrinsic structural disorder in WRI1 that may affect the stability of the protein. Furthermore, WRI1 activity is modulated by post-translational modifications and interacting partners. These progresses shed light on regulatory functions of WRI1 at the molecular levels, paving new paths to the use of WRI1 for bioengineering of TAG in plants.
Collapse
Affiliation(s)
- Que Kong
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
68
|
Cao H, Sethumadhavan K. Cottonseed Extracts and Gossypol Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6022-6030. [PMID: 29807418 DOI: 10.1021/acs.jafc.8b01240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant bioactive polyphenols have been used for the prevention and treatment of various diseases since ancient history. Cotton ( Gossypium hirsutum L.) seeds are classified as glanded or glandless depending on the presence or absence of pigment glands, which contain polyphenolic gossypol. Diacylglycerol acyltransferases (DGATs) are integral membrane proteins that catalyze the last step of triacylglycerol biosynthesis in eukaryotes. Understanding the regulation of DGATs will provide information for therapeutic intervention for obesity and related diseases. However, little was known if DGAT gene expression was regulated by natural products. The objective of this study was to investigate the effects of cottonseed extracts and gossypol on DGAT gene expression in mouse RAW264.7 macrophages. Mouse cells were treated with different concentrations of cottonseed extracts, gossypol, and lipopolysaccharides (LPS) for various times. Quantitative polymerase chain reaction assay showed that coat extract of glanded seeds had a modest effect on DGAT1 and minimal effect on DGAT2 mRNA levels. Kernel extract of glanded seeds had a minimal effect on DGAT1 but increased DGAT2 mRNA levels more than 20-fold. Coat extract of glandless seeds and LPS had minimal effects on DGAT mRNA levels. Kernel extract of glandless seeds did not have much effect on DGAT1 and slightly increased DGAT2 mRNA levels. Gossypol increased DGAT1 and DGAT2 mRNA levels by up to three-fold and more than 80-fold, respectively. The coefficient correlations ( R2) between DGAT2 mRNA levels and glanded kernel extract and gossypol concentrations were 0.82-0.99. This study suggests that Dgat2 is an inducible gene rapidly responding to stimulators such as polyphenols whose protein product DGAT2 plays an important role in fat biosynthesis. We conclude that gossypol and ethanol extract from glanded cottonseed kernel are strong stimulators of DGAT2 gene expression and that they may be novel agents for intervention of lipid-related dysfunction via increasing DGAT2 gene expression in target tissues.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| |
Collapse
|
69
|
Guo Y, Huang Y, Gao J, Pu Y, Wang N, Shen W, Wen J, Yi B, Ma C, Tu J, Fu T, Zou J, Shen J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:124. [PMID: 29743952 PMCID: PMC5930439 DOI: 10.1186/s13068-018-1122-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Accumulation of storage compounds during seed development plays an important role in the life cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of seedlings. RESULTS In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana (L.) Heynh. Atcipk9 knockout mutants (cipk9) was higher than that of WT plants. Seedling of cipk9 mutants failed to establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-free medium. Mutants, cipk9, cbl2, and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 might work together and play similar roles in root establishment under sugar-free condition. CONCLUSION This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana. The functional characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus. We believe that our study makes a significant contribution to the literature because it provides information on how CIPKs coordinate stress regulation and energy signaling.
Collapse
Affiliation(s)
- Yanli Guo
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
- Crop Research Institute of TIANJIN Academy of Agricultural Sciences, Tianjin, 300384 China
| | - Yi Huang
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanyuan Pu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
70
|
Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1034-1045. [PMID: 28975735 PMCID: PMC5902773 DOI: 10.1111/pbi.12847] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Present address:
Centre for BiotechnologyMaharshi Dayanand UniversityRohtak124001India
| | - Hesham M. Abdullah
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Biotechnology DepartmentFaculty of AgricultureAl‐Azhar UniversityCairoEgypt
| | - Parisa Akbari
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| | - Danny Schnell
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Om Parkash Dhankher
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| |
Collapse
|
71
|
Lin P, Wang K, Zhou C, Xie Y, Yao X, Yin H. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Int J Mol Sci 2018; 19:ijms19010118. [PMID: 29301285 PMCID: PMC5796067 DOI: 10.3390/ijms19010118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023] Open
Abstract
Camellia oleifera is a major tree species for producing edible oil. Its seed oil is well known for the high level of oleic acids; however, little is known regarding the molecular mechanism of lipid biosynthesis in C. oleifera. Here, we measured the oil contents and fatty acid (FA) compositions at four developmental stages and investigated the global gene expression profiles through transcriptomics sequencing. We identified differentially-expressed genes (DEGs) among the developmental stages and found that the distribution of numbers of DEGs was associated with the accumulation pattern of seed oil. Gene Ontology (GO) enrichment analysis revealed some critical biological processes related to oil accumulation, including lipid metabolism and phosphatidylcholine metabolism. Furthermore, we investigated the expression patterns of lipid biosynthesis genes. We showed that most of the genes were identified with single or multiple copies, and some had correlated profiles along oil accumulation. We proposed that the higher levels of stearoyl-ACP desaturases (SADs) coupled with lower activities of fatty acid desaturase 2 (FAD2) might be responsive to the boost of oleic acid at the late stage of C. oleifera seeds’ development. This work presents a comprehensive transcriptomics study of C. oleifera seeds and uncovers valuable DEGs that are associated with the seed oil accumulation.
Collapse
Affiliation(s)
- Ping Lin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Changfu Zhou
- Research Institute of Horticulture, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yunhai Xie
- Forestry Seedling Management Station of Zhejiang Province, Hangzhou 310020, China.
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
72
|
Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, Shan L. Seed-Specific Expression of AtLEC1 Increased Oil Content and Altered Fatty Acid Composition in Seeds of Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:260. [PMID: 29559985 PMCID: PMC5845668 DOI: 10.3389/fpls.2018.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the major oil crops and is the fifth largest source of plant oils in the world. Numerous genes participate in regulating the biosynthesis and accumulation of the storage lipids in seeds or other reservoir organs, among which several transcription factors, such as LEAFY COTYLEDON1 (AtLEC1), LEC2, and WRINKLED1 (WRI1), involved in embryo development also control the lipid reservoir in seeds. In this study, the AtLEC1 gene was transferred into the peanut genome and expressed in a seed-specific manner driven by the NapinA full-length promoter or its truncated 230-bp promoter. Four homozygous transgenic lines, two lines with the longer promoter and the other two with the truncated one, were selected for further analysis. The AtLEC1 mRNA level and the corresponding protein accumulation in different transgenic overexpression lines were altered, and the transgenic plants grew and developed normally without any detrimental effects on major agronomic traits. In the developing seeds of transgenic peanuts, the mRNA levels of a series of genes were upregulated. These genes are associated with fatty acid (FA) biosynthesis and lipid accumulation. The former set of genes included the homomeric ACCase A (AhACC II), the BC subunit of heteromeric ACCase (AhBC4), ketoacyl-ACP synthetase (AhKAS II), and stearoyl-ACP desaturase (AhSAD), while the latter ones were the diacylglycerol acyltransferases and oleosins (AhDGAT1, AhDGAT2, AhOle1, AhOle2, and AhOle3). The oil content and seed weight increased by 4.42-15.89% and 11.1-22.2%, respectively, and the levels of major FA components including stearic acid, oleic acid, and linoleic acid changed significantly in all different lines.
Collapse
Affiliation(s)
- Guiying Tang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pingli Xu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenhua Ma
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
| | - Fang Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| | - Lei Shan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| |
Collapse
|
73
|
Pellaud S, Bory A, Chabert V, Romanens J, Chaisse-Leal L, Doan AV, Frey L, Gust A, Fromm KM, Mène-Saffrané L. WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis. THE NEW PHYTOLOGIST 2018; 217:245-260. [PMID: 29105089 DOI: 10.1111/nph.14856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Photosynthetic organisms such as plants, algae and some cyanobacteria synthesize tocochromanols, a group of compounds that encompasses tocopherols and tocotrienols and that exhibits vitamin E activity in animals. While most vitamin E biosynthetic genes have been identified in plant genomes, regulatory genes controlling tocopherol accumulation are currently unknown. We isolated by forward genetics Arabidopsis enhanced vitamin E (eve) mutants that overaccumulate the classic tocopherols and plastochromanol-8, and a tocochromanol unknown in this species. We mapped eve1 and eve4, and identified the unknown Arabidopsis tocochromanol by using a combination of analytical tools. In addition, we determined its biosynthetic pathway with a series of tocochromanol biosynthetic mutants and transgenic lines. eve1 and eve4 are two seed lipid mutants affecting the WRINKLED1 (WRI1) and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) genes, respectively. The unknown tocochromanol is 11'-12' γ-tocomonoenol, whose biosynthesis is VITAMIN E 1 (VTE1) - and VTE2-dependent and is initiated by the condensation of homogentisate (HGA) and tetrahydrogeranylgeranyl pyrophosphate. This study identifies the first two regulatory genes, WRI1 and DGAT1, that control the synthesis of all tocochromanol forms in seeds, and shows the existence of a metabolic trade-off between lipid and tocochromanol metabolisms. Moreover, it shows that Arabidopsis possesses a tocomonoenol biosynthetic pathway that competes with tocopherol synthesis.
Collapse
Affiliation(s)
- Sébastien Pellaud
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Alexandre Bory
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Valentin Chabert
- Department of Chemistry, University of Fribourg, Chemin du musée, 9, CH-1700, Fribourg, Switzerland
| | - Joëlle Romanens
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Laurie Chaisse-Leal
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Anh Vu Doan
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Lucas Frey
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| | - Andrea Gust
- Department of Plant Biochemistry, ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du musée, 9, CH-1700, Fribourg, Switzerland
| | - Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
74
|
Zhao C, Li H, Zhang W, Wang H, Xu A, Tian J, Zou J, Taylor DC, Zhang M. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2205. [PMID: 29312429 PMCID: PMC5744481 DOI: 10.3389/fpls.2017.02205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.
Collapse
Affiliation(s)
- Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Hailan Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jitao Zou
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
75
|
Wei Y, Gossing M, Bergenholm D, Siewers V, Nielsen J. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express 2017; 7:34. [PMID: 28168573 PMCID: PMC5293708 DOI: 10.1186/s13568-017-0333-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022] Open
Abstract
Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0–C18:1–C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0–C18:1–C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0–C18:1–C18:0), but CB supply is limited. Therefore, CB-like lipids (CBL, which are composed of POP, POS and SOS) are in great demand. Saccharomyces cerevisiae produces TAGs as storage lipids, which are also mainly composed of C16 and C18 fatty acids. However, POP, POS and SOS are not among the major TAG forms in yeast. TAG synthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT). In order to produce CBL in S. cerevisiae, we selected six cocoa genes encoding GPAT, LPAT and DGAT potentially responsible for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast strains harboring cocoa genes increased 190, 230 and 196% over the control strain, respectively; especially, the potential SOS content of the three yeast strains increased 254, 476 and 354% over the control strain. Moreover, one of the three yeast strains had a 2.25-fold increased TAG content and 6.7-fold higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.
Collapse
|
76
|
Yuan L, Mao X, Zhao K, Ji X, Ji C, Xue J, Li R. Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses. Biol Open 2017; 6:1024-1034. [PMID: 28679505 PMCID: PMC5550922 DOI: 10.1242/bio.026534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an important oilseed worldwide, Camelina sativa is being increasingly explored for its use in production of food, feed, biofuel and industrial chemicals. However, detailed mechanisms of camelina oil biosynthesis and accumulation, particularly in vegetative tissues, are understood to a very small extent. Here, we present genome-wide identification, cloning and functional analysis of phospholipid diacylglycerol acyltransferase (PDAT) in C. sativa, which catalyses the final acylation step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl moiety from a phospholipid to diacylglycerol (DAG). We identified five genes (namely CsPDAT1-A, B, and C and CsPDAT2-A and B) encoding PDATs from the camelina genome. CsPDAT1-A is mainly expressed in seeds, whereas CsPDAT1-C preferentially accumulates in flower and leaf tissues. High expression of CsPDAT2-A and CsPDAT2-B was detected in stem and root tissues, respectively. Cold stress induced upregulation of CsPDAT1-A and CsPDAT1-C expression by 3.5- and 2.5-fold, respectively, compared to the control. Salt stress led to an increase in CsPDAT2-B transcripts by 5.1-fold. Drought treatment resulted in an enhancement of CsPDAT2-A mRNAs by twofold and a reduction of CsPDAT2-B expression. Osmotic stress upregulated the expression of CsPDAT1-C by 3.3-fold. Furthermore, the cDNA clones of these CsPDAT genes were isolated for transient expression in tobacco leaves. All five genes showed PDAT enzymatic activity and substantially increased TAG accumulation in the leaves, with CsPDAT1-A showing a higher preference for ɑ-linolenic acid (18:3 ω-3). Overall, this study demonstrated that different members of CsPDAT family contribute to TAG synthesis in different tissues. More importantly, they are involved in different types of stress responses in camelina seedlings, providing new evidence of their roles in oil biosynthesis and regulation in camelina vegetative tissue. The identified CsPDATs may have practical applications in increasing oil accumulation and enhancing stress tolerance in other plants as well. Summary: Five CsPDAT family members were identified from Camelina sativa and they contribute to TAG synthesis in different tissues and various stress responses, offering new targets for lipid metabolic engineering.
Collapse
Affiliation(s)
- Lixia Yuan
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.,College of Biological Science and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Xue Mao
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kui Zhao
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xiajie Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
77
|
Peng H, Moghaddam L, Brinin A, Williams B, Mundree S, Haritos VS. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnol Appl Biochem 2017. [DOI: 10.1002/bab.1573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Huadong Peng
- Department of Chemical Engineering; Monash University; Clayton Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Anthony Brinin
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | | |
Collapse
|
78
|
Aznar-Moreno JA, Durrett TP. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. PLANT & CELL PHYSIOLOGY 2017; 58:1260-1267. [PMID: 28444368 DOI: 10.1093/pcp/pcx058] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/14/2017] [Indexed: 05/20/2023]
Abstract
The ability to transform Camelina sativa easily with biosynthetic enzymes derived from other plants has made this oil seed crop an ideal platform for the production of unusual lipids valuable for different applications. However, in addition to expressing transgenic enzymes, the suppression of endogenous enzyme activity to reduce competition for common substrates or cofactors is also required to enhance the production of target compounds. As camelina possesses a relatively undifferentiated hexaploid genome, up to three gene homeologs can code for any particular enzymatic activity, complicating efforts to alter endogenous biosynthetic pathways. New genome editing technologies, such as that offered by the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system, offer the capability to introduce mutations into specifically targeted genomic sites. Here, by using a carefully designed guide RNA identical to all three homeologs, we demonstrate the ability of the CRISPR/Cas genome editing system to introduce mutations in all three CsDGAT1 or CsPDAT1 homeologous genes important for triacylglycerol (TAG) synthesis in developing seeds. Sequence analysis from transgenic T1 plants revealed that each CsDGAT1 or each CsPDAT1 homeolog was altered by multiple mutations, resulting in a genetic mosaic in the plants. Interestingly, seed harvested from both CsDGAT1- and CsPDAT1-targeted lines was often shrunken and wrinkled. Further, lipid analysis revealed that many lines produced seed with reduced oil content and altered fatty acid composition, consistent with the role of the targeted genes in seed oil biosynthesis. The CRISPR/Cas system therefore represents a useful method to alter endogenous biosynthetic pathways efficiently in polyploid species such as camelina.
Collapse
Affiliation(s)
- J A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - T P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
79
|
Li Q, Shen W, Zheng Q, Tan Y, Gao J, Shen J, Wei Y, Kunst L, Zou J. Effects of eIFiso4G1 mutation on seed oil biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:966-978. [PMID: 28244172 DOI: 10.1111/tpj.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/01/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Fatty acid biosynthesis is a primary metabolic pathway that occurs in plastids, whereas the formation of glycerolipid molecules for the majority of cellular membrane systems and the deposition of storage lipid in seeds takes place in the cytosolic compartment. In this report, we present a study of an Arabidopsis mutant, ar21, with a novel seed fatty acid phenotype showing higher contents of eicosanoic acid (20:1) and oleic acid (18:1) and a reduced level of α-linolenic acid (18:3). A combination of map-based cloning and whole-genome sequencing identified the genetic basis underlying the fatty acid phenotype as a lesion in the plant-specific eukaryotic translation initiation factor eIFiso4G1. Transcriptome analysis on developing seeds revealed a reduced level of plastid-encoded genes. Specifically, decreases in both transcript and protein levels of an enzyme involved in fatty acid biosynthesis, the β-subunit of the plastidic heteromeric acetyl-CoA carboxylase (htACCase) encoded by accD, were evident in the mutant. Biochemical assays showed that the developing seeds of the mutant possessed a decreased htACCase activity in the plastid but an elevated activity of homomeric acetyl-CoA carboxylase (hmACCase). These results suggested that the increased 20:1 was attributable at least in part to the enhanced cytosolic hmACCase activity. We also detected a significant repression of FATTY ACID DESATURASE 3 (FAD3) during seed development, which correlated with a decreased 18:3 level in seed oil. Together, our study on a mutant of eIFiso4G1 uncovered multifaceted interactions between the cytosolic and plastidic compartments in seed lipid biosynthesis that impact major seed oil traits.
Collapse
Affiliation(s)
- Qiang Li
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Wenyun Shen
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qian Zheng
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yifang Tan
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No. 1, Shizi Shan Street, Wuhan, Hubei, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No. 1, Shizi Shan Street, Wuhan, Hubei, 430070, China
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
80
|
Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li Z, Shrestha P, Vanhercke T, Ral J, Liang G, Wang M, White R, Larkin P, Singh S, Petrie J. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:56-67. [PMID: 27307093 PMCID: PMC5253471 DOI: 10.1111/pbi.12590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/06/2023]
Abstract
Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs.
Collapse
Affiliation(s)
- Qing Liu
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Qigao Guo
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Sehrish Akbar
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- National University of Science and Technology (NUST) IslamabadIslamabadPakistan
| | - Yao Zhi
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Madeline Mitchell
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Jean‐Philippe Ral
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Guolu Liang
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Ming‐Bo Wang
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Rosemary White
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Philip Larkin
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Surinder Singh
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - James Petrie
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| |
Collapse
|
81
|
Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C, Marmon S, Farré EM, Feussner I, Benning C. Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:8. [PMID: 28070221 PMCID: PMC5210179 DOI: 10.1186/s13068-016-0686-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/10/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. RESULTS Based on their expression profile, six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6) were chosen for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. CONCLUSIONS Taken together, our results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Agnieszka Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
| | - Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zhi-Yan Du
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Katharina Vollheyde
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Sofia Marmon
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Dept. of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eva M. Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, 37073 Göttingen, Germany
| | - Christoph Benning
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
82
|
Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J. A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:174. [PMID: 28694845 PMCID: PMC5499063 DOI: 10.1186/s13068-017-0858-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, Nannochloropsis oceanica, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of N. oceanica, but the functional role of DGAT genes, especially type-I DGAT (DGAT1), remains ambiguous. RESULTS Nannochloropsis oceanica IMET1 possesses two DGAT1 genes: NoDGAT1A and NoDGAT1B. Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of N. oceanica. NoDGAT1A knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. NoDGAT1A overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. Interestingly, NoDGAT1A overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L-1 at the end of a 10-day batch culture, 47% greater than that of the control line. CONCLUSIONS Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in N. oceanica. NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.
Collapse
Affiliation(s)
- Hehong Wei
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Ying Shi
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xiaonian Ma
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MA 21202 USA
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Henri Gerken
- School of Sustainable Engineering and the Built Environment, Arizona State University Polytechnic campus, Mesa, AZ 85212 USA
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
83
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 PMCID: PMC5127155 DOI: 10.1590/1678-4685-gmb-2016-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was
characterized in plants, a number of studies have focused on understanding the role
of DGAT activity in plant triacylglycerol (TAG) biosynthesis.
DGAT enzyme is essential in controlling TAGs synthesis and is
encoded by different genes. DGAT1 and DGAT2 are the
two major types of DGATs and have been well characterized in many
plants. On the other hand, the DGAT3 and WS/DGAT
have received less attention. In this study, we present the first general view of the
presence of putative DGAT3 and
WS/DGAT in several plant species and report on
the diversity and evolution of these genes and its relationships with the two main
DGAT genes (DGAT1 and DGAT2).
According to our analyses DGAT1, DGAT2, DGAT3 and
WS/DGAT are very divergent genes and may have
distinct origin in plants. They also present divergent expression patterns in
different organs and tissues. The maintenance of several types of genes encoding DGAT
enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis.
Evolutionary history studies of DGATs coupled with their expression patterns help us
to decipher their functional role in plants, helping to drive future biotechnological
studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
84
|
Zhang M, Cao X, Jia Q, Ohlrogge J. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:95-107. [PMID: 27288837 DOI: 10.1111/tpj.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 05/08/2023]
Abstract
Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold over controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| | - Xia Cao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
85
|
Sanyal A, Decocq G. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils. BMC Evol Biol 2016; 16:187. [PMID: 27613109 PMCID: PMC5017040 DOI: 10.1186/s12862-016-0752-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/23/2016] [Indexed: 11/22/2022] Open
Abstract
Background Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. Result It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. Conclusion The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0752-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anushree Sanyal
- Unité "Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS), Université de Picardie Jules Verne, 1 rue des Louvels, Amiens Cedex, FR-80037, France. .,Institute for Organismal Biology, Systematic Biology, Uppsala University, Uppsala, 75236, Sweden.
| | - Guillaume Decocq
- Unité "Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS), Université de Picardie Jules Verne, 1 rue des Louvels, Amiens Cedex, FR-80037, France
| |
Collapse
|
86
|
Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnol Adv 2016; 34:1046-1063. [DOI: 10.1016/j.biotechadv.2016.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022]
|
87
|
Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 2016; 229:65-71. [DOI: 10.1016/j.jbiotec.2016.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
|
88
|
Chen B, Wang J, Zhang G, Liu J, Manan S, Hu H, Zhao J. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci Rep 2016; 6:28541. [PMID: 27345221 PMCID: PMC4921965 DOI: 10.1038/srep28541] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Diacylglycerol acyltransferases (DGATs) play a key role in plant triacylglycerol (TAG) biosynthesis. Two type 1 and 2 DGATs from soybean were characterized for their functions in TAG biosynthesis and physiological roles. GmDGAT1A is highly expressed in seeds while GmDGAT2D is mainly expressed in flower tissues. They showed different expression patterns in response to biotic and abiotic stresses. GmDGAT2D was up-regulated by cold and heat stress and ABA signaling, and repressed by insect biting and jasmonate, whereas GmDGAT1A show fewer responses. Both GmDGAT1A and GmDGAT2D were localized to the endoplasmic reticulum and complemented the TAG deficiency of a yeast mutant H1246. GmDGAT2D-transgenic hairy roots synthesized more 18:2- or 18:1-TAG, whereas GmDGAT1A prefers to use 18:3-acyl CoA for TAG synthesis. Overexpression of both GmDGATs in Arabidopsis seeds enhanced the TAG production; GmDGAT2D promoted 18:2-TAG in wild-type but enhanced 18:1-TAG production in rod1 mutant seeds, with a decreased 18:3-TAG. However, GmDGAT1A enhanced 18:3-TAG and reduced 20:1-TAG contents. The different substrate preferences of two DGATs may confer diverse fatty acid profiles in soybean oils. While GmDGAT1A may play a role in usual seed TAG production and GmDGAT2D is also involved in usual TAG biosynthesis in other tissues in responses to environmental and hormonal cues.
Collapse
Affiliation(s)
- BeiBei Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junejie Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130047, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
89
|
Liu J, Han D, Yoon K, Hu Q, Li Y. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:3-19. [PMID: 26919811 DOI: 10.1111/tpj.13143] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 05/03/2023]
Abstract
Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts.
Collapse
Affiliation(s)
- Jin Liu
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, 21202, USA
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kangsup Yoon
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, 21202, USA
| |
Collapse
|
90
|
Bates PD. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1214-1225. [PMID: 27003249 DOI: 10.1016/j.bbalip.2016.03.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Philip D Bates
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Dr. #5043, Hattiesburg, MS 39406-0001, United States.
| |
Collapse
|
91
|
Arroyo-Caro JM, Mañas-Fernández A, Alonso DL, García-Maroto F. Type I Diacylglycerol Acyltransferase (MtDGAT1) from Macadamia tetraphylla: Cloning, Characterization, and Impact of Its Heterologous Expression on Triacylglycerol Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:277-285. [PMID: 26666454 DOI: 10.1021/acs.jafc.5b04805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acyltransferase enzymes have been reported as useful biotechnological tools in order to increase oil yield and modify fatty acid composition. Macadamia species are able to accumulate unusually high levels of palmitoleic acid that besides oleic acid amounts to over 80% of monounsaturated fatty acids in the seed oil. In this work, a gene encoding a type 1 acyl-CoA:diacylglycerol acyltransferase (DGAT1) was cloned from M. tetraphylla. DGAT activity of the protein encoded by MtDGAT1 was confirmed by heterologous expression in a yeast mutant. Fatty acid composition of triacylglycerols synthesized by MtDGAT1 was compared to that of DGAT1 enzymes from Arabidopsis and Echium, with the results suggesting a substrate preference for monounsaturated over polyunsaturated fatty acids. Characteristics of MtDGAT1 may contribute to biochemical mechanisms determining the particular fatty acid composition of Macadamia oil and also indicate the possibility of using this enzyme in biotechnological approaches where a reduction of polyunsaturated fatty acids in the oil is desired.
Collapse
Affiliation(s)
- José María Arroyo-Caro
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Aurora Mañas-Fernández
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Diego López Alonso
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Federico García-Maroto
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| |
Collapse
|
92
|
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:226. [PMID: 27790288 PMCID: PMC5073959 DOI: 10.1186/s13068-016-0642-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jatropha curcas is an important biofuel crop due to the presence of high amount of oil in its seeds suitable for biodiesel production. Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. Diacylglycerol O-acyltransferase (DGAT1) enzyme is responsible for the last and only committed step in seed TAG biosynthesis. Direct upregulation of TAG biosynthesis in seeds and vegetative tissues through overexpression of the DGAT1 could enhance the energy density of the biomass, making significant impact on biofuel production. RESULTS The enzyme diacylglycerol O-acyltransferase is the rate-limiting enzyme responsible for the TAG biosynthesis in seeds. We generated transgenic Jatropha ectopically expressing an Arabidopsis DGAT1 gene through Agrobacterium-mediated transformation. The resulting AtDGAT1 transgenic plants showed a dramatic increase in lipid content by 1.5- to 2 fold in leaves and 20-30 % in seeds, and an overall increase in TAG and DAG, and lower free fatty acid (FFA) levels compared to the wild-type plants. The increase in oil content in transgenic plants is accompanied with increase in average plant height, seeds per tree, average 100-seed weight, and seed length and breadth. The enhanced TAG accumulation in transgenic plants had no penalty on the growth rates, growth patterns, leaf number, and leaf size of plants. CONCLUSIONS In this study, we produced transgenic Jatropha ectopically expressing AtDGAT1. We successfully increased the oil content by 20-30 % in seeds and 1.5- to 2.0-fold in leaves of Jatropha through genetic engineering. Transgenic plants had reduced FFA content compared with control plants. Our strategy of increasing energy density by enhancing oil accumulation in both seeds and leaves in Jatropha would make it economically more sustainable for biofuel production.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Prabin Kumar Sharma
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Yasufumi Kobayashi
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Vaibhav V. Goud
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Nozomu Sakurai
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Lingaraj Sahoo
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
93
|
Kirchner L, Wirshing A, Kurt L, Reinard T, Glick J, Cram EJ, Jacobsen HJ, Lee-Parsons CW. Identification, characterization, and expression of diacylgylcerol acyltransferase type-1 from Chlorella vulgaris. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
94
|
Kim HU, Lee KR, Jung SJ, Shin HA, Go YS, Suh MC, Kim JB. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1346-59. [PMID: 25790072 PMCID: PMC5448714 DOI: 10.1111/pbi.12354] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/28/2014] [Accepted: 01/30/2015] [Indexed: 05/08/2023]
Abstract
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
- Corresponding author: Hyun Uk Kim, Tel: 82-031-299-1703, Fax: 82-031-299-1672,
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Su-Jin Jung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Hyun A Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Mi-Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jong Bum Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| |
Collapse
|
95
|
Aymé L, Jolivet P, Nicaud JM, Chardot T. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica. PLoS One 2015; 10:e0143113. [PMID: 26581109 PMCID: PMC4651311 DOI: 10.1371/journal.pone.0143113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.
Collapse
Affiliation(s)
- Laure Aymé
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pascale Jolivet
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | | | - Thierry Chardot
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- * E-mail:
| |
Collapse
|
96
|
Probst KV, Schulte LR, Durrett TP, Rezac ME, Vadlani PV. Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 2015; 36:942-55. [DOI: 10.3109/07388551.2015.1064855] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle V. Probst
- IGERT in Biorefining,
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry,
| | | | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
97
|
van Erp H, Shockey J, Zhang M, Adhikari ND, Browse J. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis. PLANT PHYSIOLOGY 2015; 168:36-46. [PMID: 25739701 PMCID: PMC4424008 DOI: 10.1104/pp.114.254110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.
Collapse
Affiliation(s)
- Harrie van Erp
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (H.v.E., N.D.A., J.B.);Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, Louisiana 70124 (J.S.); andDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312 (M.Z.)
| | - Jay Shockey
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (H.v.E., N.D.A., J.B.);Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, Louisiana 70124 (J.S.); andDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312 (M.Z.)
| | - Meng Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (H.v.E., N.D.A., J.B.);Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, Louisiana 70124 (J.S.); andDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312 (M.Z.)
| | - Neil D Adhikari
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (H.v.E., N.D.A., J.B.);Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, Louisiana 70124 (J.S.); andDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312 (M.Z.)
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (H.v.E., N.D.A., J.B.);Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, Louisiana 70124 (J.S.); andDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312 (M.Z.)
| |
Collapse
|
98
|
McGlew K, Shaw V, Zhang M, Kim RJ, Yang W, Shorrosh B, Suh MC, Ohlrogge J. An annotated database of Arabidopsis mutants of acyl lipid metabolism. PLANT CELL REPORTS 2015; 34:519-32. [PMID: 25487439 PMCID: PMC4371839 DOI: 10.1007/s00299-014-1710-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 05/19/2023]
Abstract
We have constructed and annotated a web-based database of over 280 Arabidopsis genes that have characterized mutants associated with Arabidopsis acyl lipid metabolism. Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. In addition, the database of mutants is integrated within the ARALIP plant acyl lipid metabolism website ( http://aralip.plantbiology.msu.edu ) so that information on mutants is displayed on and can be accessed from metabolic pathway maps. Mutants for at least 30% of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. The database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.
Collapse
Affiliation(s)
- Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Vincent Shaw
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Ryeo Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - Weili Yang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | | | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
99
|
Jin HH, Jiang JG. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3067-77. [PMID: 25672855 DOI: 10.1021/jf505975k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT.
Collapse
Affiliation(s)
- Hong-Hao Jin
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
100
|
Lee KR, Chen GQ, Kim HU. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. PLANT CELL REPORTS 2015; 34:603-615. [PMID: 25577331 DOI: 10.1007/s00299-015-1736-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Hydroxy fatty acids produced in plant seed oil are important industrial material. This review focuses on the use of metabolic engineering approaches for the production of hydroxy fatty acids in transgenic plants. Vegetable oil is not only edible but can also be used for industrial purposes. The industrial demand for vegetable oil will increase with the continued depletion of fossil fuels and ensuing environmental issues such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high levels of unusual fatty acids in their seeds, and these fatty acids (FAs) have properties that make them suitable for industrial applications. Hydroxy fatty acids (HFAs) are some of the most important of these industrial FAs. Castor oil is the conventional source of HFA. However, due to the presence of toxin ricin in its seeds, castor is not cultivated on a large scale. Lesquerella is another HFA accumulator and is currently being developed as a new crop for a safe source of HFAs. The mechanisms of HFA synthesis and accumulation have been extensively studied using castor genes and the model plant Arabidopsis. HFAs accumulated to 17% in the seed oil of Arabidopsis expressing a FA hydroxylase gene from castor (RcFAH12), but its seed oil content and plant growth decreased. When RcFAH12 gene was coexpressed with additional castor gene(s) in Arabidopsis, ~30% HFAs were accumulated and the seed oil content and plant growth was almost restored to the wild-type level. Further advancement of our understanding of pathways, genes and regulatory mechanisms underlying synthesis and accumulation of HFAs is essential to developing and implementing effective genetic approaches for enhancing HFA production in oilseeds.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | | | | |
Collapse
|