51
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Vascular calcification: When should we interfere in chronic kidney disease patients and how? World J Nephrol 2016; 5:398-417. [PMID: 27648404 PMCID: PMC5011247 DOI: 10.5527/wjn.v5.i5.398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) patients are endangered with the highest mortality rate compared to other chronic diseases. Cardiovascular events account for up to 60% of the fatalities. Cardiovascular calcifications affect most of the CKD patients. Most of this calcification is related to disturbed renal phosphate handling. Fibroblast growth factor 23 and klotho deficiency were incriminated in the pathogenesis of vascular calcification through different mechanisms including their effects on endothelium and arterial wall smooth muscle cells. In addition, deficient klotho gene expression, a constant feature of CKD, promotes vascular pathology and shares in progression of the CKD. The role of gut in the etio-pathogenesis of systemic inflammation and vascular calcification is a newly discovered mechanism. This review will cover the medical history, prevalence, pathogenesis, clinical relevance, different tools used to diagnose, the ideal timing to prevent or to withhold the progression of vascular calcification and the different medications and medical procedures that can help to prolong the survival of CKD patients.
Collapse
|
52
|
Ketteler M, Liangos O, Biggar PH. Treating hyperphosphatemia – current and advancing drugs. Expert Opin Pharmacother 2016; 17:1873-9. [DOI: 10.1080/14656566.2016.1220538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Vazquez-Padron RI, Allon M. New Insights into Dialysis Vascular Access: Impact of Preexisting Arterial and Venous Pathology on AVF and AVG Outcomes. Clin J Am Soc Nephrol 2016; 11:1495-1503. [PMID: 27401525 PMCID: PMC4974874 DOI: 10.2215/cjn.01860216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant improvements in preoperative patient evaluation and surgical planning, vascular access failure in patients on hemodialysis remains a frequent and often unforeseeable complication. Our inability to prevent this complication is, in part, because of an incomplete understanding of how preexisting venous and arterial conditions influence the function of newly created arteriovenous fistulas and grafts. This article reviews the relationship between three preexisting vascular pathologies associated with CKD (intimal hyperplasia, vascular calcification, and medial fibrosis) and hemodialysis access outcomes. The published literature indicates that the pathogenesis of vascular access failure is multifactorial and not determined by any of these pathologies individually. Keeping this observation in mind should help focus our research on the true causes responsible for vascular access failure and the much needed therapies to prevent it.
Collapse
Affiliation(s)
- Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
54
|
Avin KG, Chen NX, Organ JM, Zarse C, O’Neill K, Conway RG, Konrad RJ, Bacallao RL, Allen MR, Moe SM. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. PLoS One 2016; 11:e0159411. [PMID: 27486747 PMCID: PMC4972446 DOI: 10.1371/journal.pone.0159411] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy and impaired muscle function are associated with lower health-related quality of life, and greater disability and mortality risk in those with chronic kidney disease (CKD). However, the pathogenesis of skeletal dysfunction in CKD is unknown. We used a slow progressing, naturally occurring, CKD rat model (Cy/+ rat) with hormonal abnormalities consistent with clinical presentations of CKD to study skeletal muscle signaling. The CKD rats demonstrated augmented skeletal muscle regeneration with higher activation and differentiation signals in muscle cells (i.e. lower Pax-7; higher MyoD and myogenin RNA expression). However, there was also higher expression of proteolytic markers (Atrogin-1 and MuRF-1) in CKD muscle relative to normal. CKD animals had higher indices of oxidative stress compared to normal, evident by elevated plasma levels of an oxidative stress marker, 8-hydroxy-2' -deoxyguanosine (8-OHdG), increased muscle expression of succinate dehydrogenase (SDH) and Nox4 and altered mitochondria morphology. Furthermore, we show significantly higher serum levels of myostatin and expression of myostatin in skeletal muscle of CKD animals compared to normal. Taken together, these data show aberrant regeneration and proteolytic signaling that is associated with oxidative stress and high levels of myostatin in the setting of CKD. These changes likely play a role in the compromised skeletal muscle function that exists in CKD.
Collapse
Affiliation(s)
- Keith G. Avin
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, IN, United States of America
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| | - Neal X. Chen
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jason M. Organ
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Chad Zarse
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Kalisha O’Neill
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Richard G. Conway
- Lilly Research laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Robert J. Konrad
- Lilly Research laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Robert L. Bacallao
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Matthew R. Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sharon M. Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
55
|
Kay AM, Simpson CL, Stewart JA. The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes Res 2016; 2016:6809703. [PMID: 27547766 PMCID: PMC4980539 DOI: 10.1155/2016/6809703] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022] Open
Abstract
AGE/RAGE signaling has been a well-studied cascade in many different disease states, particularly diabetes. Due to the complex nature of the receptor and multiple intersecting pathways, the AGE/RAGE signaling mechanism is still not well understood. The purpose of this review is to highlight key areas of AGE/RAGE mediated vascular calcification as a complication of diabetes. AGE/RAGE signaling heavily influences both cellular and systemic responses to increase bone matrix proteins through PKC, p38 MAPK, fetuin-A, TGF-β, NFκB, and ERK1/2 signaling pathways in both hyperglycemic and calcification conditions. AGE/RAGE signaling has been shown to increase oxidative stress to promote diabetes-mediated vascular calcification through activation of Nox-1 and decreased expression of SOD-1. AGE/RAGE signaling in diabetes-mediated vascular calcification was also attributed to increased oxidative stress resulting in the phenotypic switch of VSMCs to osteoblast-like cells in AGEs-induced calcification. Researchers found that pharmacological agents and certain antioxidants decreased the level of calcium deposition in AGEs-induced diabetes-mediated vascular calcification. By understanding the role the AGE/RAGE signaling cascade plays diabetes-mediated vascular calcification will allow for pharmacological intervention to decrease the severity of this diabetic complication.
Collapse
Affiliation(s)
- Amber M. Kay
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - C. LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - James A. Stewart
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
56
|
Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep 2016; 6:24807. [PMID: 27095121 PMCID: PMC4837411 DOI: 10.1038/srep24807] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Vascular calcification powerfully predicts mortality and morbidity from cardiovascular disease. Men have a greater risk of cardiovascular disease, compared to women of a similar age. These gender disparities suggest an influence of sex hormones. Testosterone is the primary and most well-recognised androgen in men. Therefore, we addressed the hypothesis that exogenous androgen treatment induces vascular calcification. Immunohistochemical analysis revealed expression of androgen receptor (AR) in the calcified media of human femoral artery tissue and calcified human valves. Furthermore, in vitro studies revealed increased phosphate (Pi)-induced mouse vascular smooth muscle cell (VSMC) calcification following either testosterone or dihydrotestosterone (DHT) treatment for 9 days. Testosterone and DHT treatment increased tissue non-specific alkaline phosphatase (Alpl) mRNA expression. Testosterone-induced calcification was blunted in VSMC-specific AR-ablated (SM-ARKO) VSMCs compared to WT. Consistent with these data, SM-ARKO VSMCs showed a reduction in Osterix mRNA expression. However, intriguingly, a counter-intuitive increase in Alpl was observed. These novel data demonstrate that androgens play a role in inducing vascular calcification through the AR. Androgen signalling may represent a novel potential therapeutic target for clinical intervention.
Collapse
|
57
|
Gluba-Brzózka A, Michalska-Kasiczak M, Franczyk B, Nocuń M, Toth P, Banach M, Rysz J. Markers of increased atherosclerotic risk in patients with chronic kidney disease: a preliminary study. Lipids Health Dis 2016; 15:22. [PMID: 26843213 PMCID: PMC4739105 DOI: 10.1186/s12944-016-0191-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease is rising continuously. Cardiovascular disease is among leading causes of death and premature mortality of patients with chronic kidney disease. Even the earliest stages of chronic kidney disease are associated with higher risk of subsequent coronary heart disease. The aim of this study was to determine markers of increased risk of atherosclerosis in CKD. METHODS The study group consisted of a total of 80 patients (20 patients with stage I/II CKD, 20 with stage III CKD, 20 stage IV CKD and 20 stage V/dialysis) and 24 healthy volunteers. Levels of proteins (osteoprotegerin, osteopontin, osteocalcin, matrix γ-carboxyglutamic acid protein, fetuin A, MMP-2, MMP-9, TIMP-1, TIMP-2) and biochemical parameters were measured to analyse their influence on atherosclerosis risk in CKD patients. Cardiac echocardiography was performed to assess structural integrity and function, presence of left ventricular hypertrophy and systolic and diastolic function dysfunction. RESULTS This study shows that the prevalence of ventricular hypertrophy (95.3 %) and diastolic dysfunction (93.2 %) in CKD patients is high. Also E/E' ratio was significantly higher (13.6 ± 4.4, p = 0.001), tricuspid insufficiency (27.3 in CKD I/II vs. 71.4 in CKD V, p = 0.016), contractile dysfunction (33.3 in CKD I/II vs. 78.9 in CKD V, p = 0.040), mitral valve calcification (0 in CKD I/II vs. 28.6 in CKD V, p = 0.044) and aortic valve calcification (0 in CKD I/II vs. 61.9 in CKD V, p = 0.0008) were significantly more frequent in patients with CKD stage V/dialysis than in other groups. Only MMP-2, MMP-2/TIMP-2 ratio and TIMP-1 differed significantly between groups. CONCLUSIONS This study shows high prevalence of ventricular hypertrophy and diastolic dysfunction in CKD patients. Contractile dysfunction, mitral and aortic valve calcification in HD patients were significantly more frequent than in patients with other CKD stages. Significantly increased levels of MMP-2, MMP-2/TIMP-2 ratio and lower TIMP-1 suggests that these factors may be involved in the pathogenesis of atherosclerosis in CKD patients.
Collapse
Affiliation(s)
- Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital of Lodz, Poland, Żeromskiego 113, 90-549, Łódź, Poland.
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland.
| | - Marta Michalska-Kasiczak
- Department of Hypertension, Medical University of Lodz, Poland, Żeromskiego 113, 90-549, Łódź, Poland.
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital of Lodz, Poland, Żeromskiego 113, 90-549, Łódź, Poland.
| | - Marek Nocuń
- Nofer Institute of Occupational Medicine, Lodz, Poland, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| | - Peter Toth
- Preventive Cardiology, CGH Medical Center, Sterling, IL, USA.
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA.
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland, Żeromskiego 113, 90-549, Łódź, Poland.
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland.
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital of Lodz, Poland, Żeromskiego 113, 90-549, Łódź, Poland.
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
58
|
Savinov AY, Salehi M, Yadav MC, Radichev I, Millán JL, Savinova OV. Transgenic Overexpression of Tissue-Nonspecific Alkaline Phosphatase (TNAP) in Vascular Endothelium Results in Generalized Arterial Calcification. J Am Heart Assoc 2015; 4:e002499. [PMID: 26675253 PMCID: PMC4845279 DOI: 10.1161/jaha.115.002499] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ectopic vascular calcification is a common condition associated with aging, atherosclerosis, diabetes, and/or chronic kidney disease. Smooth muscle cells are the best characterized source of osteogenic progenitors in the vasculature; however, recent studies suggest that cells of endothelial origin can also promote calcification. To test this, we sought to increase the osteogenic potential of endothelial cells by overexpressing tissue-nonspecific alkaline phosphatase (TNAP), a key enzyme that regulates biomineralization, and to determine the pathophysiological effect of endothelial TNAP on vascular calcification and cardiovascular function. METHODS AND RESULTS We demonstrated previously that mice transgenic for ALPL (gene encoding human TNAP) develop severe arterial medial calcification and reduced viability when TNAP is overexpressed in smooth muscle cells. In this study, we expressed the ALPL transgene in endothelial cells following endothelial-specific Tie2-Cre recombination. Mice with endothelial TNAP overexpression survived well into adulthood and displayed generalized arterial calcification. Genes associated with osteochondrogenesis (Runx2, Bglap, Spp1, Opg, and Col2a1) were upregulated in the aortas of endothelial TNAP animals compared with controls. Lesions in coronary arteries of endothelial TNAP mice showed immunoreactivity to Runx2, osteocalcin, osteopontin, and collagen II as well as increased deposition of sialoproteins revealed by lectin staining. By 23 weeks of age, endothelial TNAP mice developed elevated blood pressure and compensatory left ventricular hypertrophy with preserved ejection fraction. CONCLUSIONS This study presented a novel genetic model demonstrating the osteogenic potential of TNAP-positive endothelial cells in promoting pathophysiological vascular calcification.
Collapse
Affiliation(s)
- Alexei Y. Savinov
- Children's Health Research CenterSanford ResearchSioux FallsSD
- Department of PediatricsSanford School of MedicineUniversity of South DakotaSioux FallsSD
| | - Maryam Salehi
- Children's Health Research CenterSanford ResearchSioux FallsSD
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSD
| | - Manisha C. Yadav
- Sanford Children's Health Research CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCA
| | - Ilian Radichev
- Children's Health Research CenterSanford ResearchSioux FallsSD
| | - José Luis Millán
- Sanford Children's Health Research CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCA
| | | |
Collapse
|
59
|
Abstract
Vascular calcification can lead to cardiovascular morbidity and mortality. The initiating factors and clinical consequences depend on the underlying disease state and location of the calcification. The pathogenesis of vascular calcification is complex and involves a transformation of vascular smooth muscle cells to an osteo/chondrocytic cell that expresses RUNX2 and produces matrix vesicles. The imbalance of promoters (such as hyperphosphatemia and hypercalcemia) and inhibitors (e.g., fetuin-A) is critical in the development of vascular calcification. The altered mineral metabolism and deficiency in inhibitors are common in patients with chronic kidney disease (CKD) and is one reason why vascular calcification is so prevalent in that population.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA.
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
60
|
Sesión de hemodiálisis: la tormenta perfecta para la calcificación vascular. Nefrologia 2015; 35:448-56. [DOI: 10.1016/j.nefro.2015.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
|
61
|
The role of bone in CKD-mediated mineral and vascular disease. Pediatr Nephrol 2015; 30:1379-88. [PMID: 25168424 PMCID: PMC6434948 DOI: 10.1007/s00467-014-2919-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Cardiovascular disease is the leading cause of death in pediatric patients with chronic kidney disease (CKD), and vascular calcifications start early in the course of CKD. Based on the growing body of evidence that alterations of bone and mineral metabolism and the therapies designed to treat the skeletal consequences of CKD are linked to cardiovascular calcifications, the Kidney Disease, Improving Global Outcomes (KDIGO) working group redefined renal osteodystrophy as a systemic disorder of mineral and bone metabolism due to CKD, and this newly defined disorder is now known as "chronic kidney disease-mineral bone disorder (CKD-MBD)". Elevated fibroblast growth factor 23 (FGF23), a bone-derived protein, is the first biochemical abnormality to be associated with CKD-MBD, and high FGF23 levels correlate with increased cardiovascular morbidity and mortality, suggesting that bone is central to both initiating and perpetuating the abnormal mineral metabolism and vascular disease in CKD. The current standard therapies for CKD-MBD affect FGF23 levels differently; non-calcium-based binders with or without concurrent use of dietary phosphate restriction reduce FGF23 levels, while calcium-based binders seem to either increase or have no effect on FGF23 levels. Active vitamin D sterols increase FGF23 levels, whereas therapy with calcimimetics decreases FGF23 levels. Thus, the appropriate therapy that will minimize the rise in FGF23 and prevent cardiovascular morbidity remains to be defined.
Collapse
|
62
|
Byon CH, Chen Y. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Curr Osteoporos Rep 2015; 13:206-15. [PMID: 25947259 PMCID: PMC4489999 DOI: 10.1007/s11914-015-0270-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and increases mortality in those patients. Impaired calcium and phosphate homeostasis, increased oxidative stress, and loss of calcification inhibitors have been linked to vascular calcification in CKD. Additionally, impaired bone may perturb serum calcium/phosphate and their key regulator, parathyroid hormone, thus contributing to increased vascular calcification in CKD. Therapeutic approaches for CKD, such as phosphate binders and bisphosphonates, have been shown to ameliorate bone loss as well as vascular calcification. The precise mechanisms responsible for vascular calcification in CKD and the contribution of bone metabolism to vascular calcification have not been elucidated. This review discusses the role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD. The regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcification of CKD are emphasized.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
- Department of Pathology, Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
63
|
Panizo S, Naves-Díaz M, Carrillo-López N, Martínez-Arias L, Fernández-Martín JL, Ruiz-Torres MP, Cannata-Andía JB, Rodríguez I. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. J Am Soc Nephrol 2015; 27:824-34. [PMID: 26187577 DOI: 10.1681/asn.2014050520] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/11/2015] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a frequent cause of morbidity and mortality in patients with CKD and the general population. The common association between vascular calcification and osteoporosis suggests a link between bone and vascular disorders. Because microRNAs (miRs) are involved in the transdifferentiation of vascular smooth muscle cells into osteoblast-like cells, we investigated whether miRs implicated in osteoblast differentiation and bone formation are involved in vascular calcification. Different levels of uremia, hyperphosphatemia, and aortic calcification were induced by feeding nephrectomized rats a normal or high-phosphorus diet for 12 or 20 weeks, at which times the levels of eight miRs (miR-29b, miR-125, miR-133b, miR-135, miR-141, miR-200a, miR-204, and miR-211) in the aorta were analyzed. Compared with controls and uremic rats fed a normal diet, uremic rats fed a high-phosphorous diet had lower levels of miR-133b and miR-211 and higher levels of miR-29b that correlated respectively with greater expression of osteogenic RUNX2 and with lower expression of several inhibitors of osteoblastic differentiation. Uremia per se mildly reduced miR-133b levels only. Similar results were obtained in two in vitro models of vascular calcification (uremic serum and high-calcium and -phosphorus medium), and experiments using antagomirs and mimics to modify miR-29b, miR-133b, and miR-211 expression levels in these models confirmed that these miRs regulate the calcification process. We conclude that miR-29b, miR-133b, and miR-211 have direct roles in the vascular smooth muscle calcification induced by high phosphorus and may be new therapeutic targets in the management of vascular calcification.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - María Piedad Ruiz-Torres
- Department of Systems Biology, Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain; and
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Reina Sofia Institute of Renal Research (IRSIN), Renal Research Network (REDinREN) from Carlos III Health Institute (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain;
| |
Collapse
|
64
|
Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1958-69. [PMID: 25987250 DOI: 10.1016/j.ajpath.2015.03.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2(f/f)) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22-recombinase transgenic allele mice (Runx2(ΔSM)) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2(f/f) mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D-treated Runx2(ΔSM) mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2(f/f) SMCs calcified to a much greater extent than those derived from Runx2(ΔSM) mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients.
Collapse
|
65
|
Arterial Stiffness and Renal Replacement Therapy: A Controversial Topic. Int J Nephrol 2015; 2015:729609. [PMID: 26064684 PMCID: PMC4439473 DOI: 10.1155/2015/729609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
The increase of arterial stiffness has been to have a significant impact on predicting mortality in end-stage renal disease patients. Pulse wave velocity (PWV) is a noninvasive, reliable parameter of regional arterial stiffness that integrates the vascular geometry and arterial wall intrinsic elasticity and is capable of predicting cardiovascular mortality in this patient population. Nevertheless, reports on PWV in dialyzed patients are contradictory and sometimes inconsistent: some reports claim the arterial wall stiffness increases (i.e., PWV increase), others claim that it is reduced, and some even state that it augments in the aorta while it simultaneously decreases in the brachial artery pathway. The purpose of this study was to analyze the literature in which longitudinal or transversal studies were performed in hemodialysis and/or peritoneal dialysis patients, in order to characterize arterial stiffness and the responsiveness to renal replacement therapy.
Collapse
|
66
|
Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, Chhea TN, Sergienko EA, Kapoor K, Jackson MR, Hoylaerts MF, Pinkerton AB, O'Neill WC, Millán JL. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 2015; 30:824-36. [PMID: 25428889 PMCID: PMC4406354 DOI: 10.1002/jbmr.2420] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 01/03/2023]
Abstract
Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre(+/-) ; Hprt(ALPL) (/Y) or TNAP-OE) show extensive vascular calcification, high blood pressure, and cardiac hypertrophy, and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre(+/-) ; Hprt(ALPL) (/-) ) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target.
Collapse
MESH Headings
- Alkaline Phosphatase/antagonists & inhibitors
- Alkaline Phosphatase/metabolism
- Animals
- Animals, Newborn
- Aorta/enzymology
- Aorta/pathology
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Male
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Ultrasonography
- Vascular Calcification/blood
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/enzymology
- Vascular Calcification/physiopathology
Collapse
Affiliation(s)
- Campbell R Sheen
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Maintaining phosphate homeostasis is essential and any deviation can lead to several acute and chronic disease states. To maintain normal physiological levels, phosphate needs to be tightly regulated. This is achieved through a complex relationship of organ cross-talk via hormonal regulation of the type II sodium-dependent phosphate co-transporters. This editorial provides evidence of the importance of intestinal NPT2b in health and chronic kidney disease (CKD). RECENT FINDINGS The advent of the different Npt2b knockout mice has increased our understanding of how the intestinal phosphate co-transporter contributes to the regulation of systemic phosphate. In addition, these studies have suggested that Npt2b may participate in the phosphate-sensing machinery important for organ cross-talk. Studies using Drosophila have expanded our knowledge of phosphate sensing mechanisms and may provide a foundation for delineating these pathways in humans. Several preclinical studies using different agents to modulate Npt2b, and clinical studies using nicotinamide, have provided evidence that Npt2b is a viable therapeutic target for the management of hyperphosphatemia. SUMMARY Over the last couple of years, new experimental approaches have increased our understanding of the important role of Npt2b in maintaining phosphate homeostasis. In addition, several clinical studies have associated the detrimental effects of elevated phosphate with cardiovascular events, and decreased lifespan. Although several key questions about intestinal phosphate transport remain to be answered, it is clear that the intestine is an important player, with current evidence suggesting that it is a prime target for regulating phosphate uptake and improving health outcomes in CKD.
Collapse
|
68
|
Xu J, Bai Y, Jin J, Zhang J, Zhang S, Cui L, Zhang H. Magnesium modulates the expression levels of calcification-associated factors to inhibit calcification in a time-dependent manner. Exp Ther Med 2015; 9:1028-1034. [PMID: 25667672 PMCID: PMC4316900 DOI: 10.3892/etm.2015.2215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023] Open
Abstract
Vascular calcification, a common complication in patients with chronic kidney disease, involves a variety of mechanisms associated with the regulation of calcification-associated factors. Previous clinical studies have indicated that magnesium is involved in the reduction of vascular calcification; however, the mechanism underlying this process remains unknown. The aim of the present study was to investigate the effects of magnesium on β-glycerophosphate (β-GP)-induced calcification and the underlying mechanisms. Primary rat vascular smooth muscle cells (VSMCs) were exposed to 10 mM β-GP in medium with or without the addition of 3 mM magnesium or 2-aminoethoxy-diphenylborate (2-APB; an inhibitor of magnesium transport), for a 14-day period. Calcium deposition and alkaline phosphatase (ALP) activity were measured by Alizarin red staining, quantification of calcium and enzyme-linked immunosorbent assay. The expression levels of core-binding factor α-1 (Cbfα1), matrix Gla protein (MGP) and osteopontin (OPN) were determined by reverse transcription-polymerase chain reaction or western blot analysis, following incubation for 0, 3, 6, 10 and 14 days with the different media. VSMC calcification and ALP activity was reduced significantly in the high-magnesium medium compared with the calcification medium, during the 14-day incubation. The magnesium-induced changes in the VSMCs included a β-GP-induced downregulation of Cbfα1 by day 3 of incubation, an effect that was gradually enhanced over the 14-day period. By contrast, magnesium produced notable increases in MGP and OPN expression levels, with an opposite pattern to that observed in the Cbfα1 expression levels. However, the addition of 2-APB appeared to inhibit the protective effect of magnesium on the VSMCs. Therefore, magnesium was able to effectively reduce β-GP-induced calcification in rat VSMCs by regulating the expression levels of calcification-associated factors in a time-dependent manner.
Collapse
Affiliation(s)
- Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junxia Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liwen Cui
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
69
|
Rees L, Shroff R. The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr Nephrol 2015; 30:2061-71. [PMID: 25543193 PMCID: PMC4623082 DOI: 10.1007/s00467-014-3017-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 01/16/2023]
Abstract
In children with chronic kidney disease (CKD) optimal control of mineral and bone disorder (MBD) is essential not only for the prevention of debilitating skeletal complications and for achieving adequate growth, but also for preserving long-term cardiovascular health. The growing skeleton is particularly vulnerable to the effects of CKD, and bone pain, fractures and deformities are common in children on dialysis. Defective bone mineralisation has been linked with ectopic calcification, which in turn leads to significant morbidity and mortality. Despite national and international guidelines for the management of CKD-MBD, the management of mineral dysregulation in CKD can be extremely challenging, and a significant proportion of patients have calcium, phosphate or parathyroid hormone levels outside the normal ranges. Clinical and experimental studies have shown that, in the setting of CKD, low serum calcium levels are associated with poor bone mineralisation, whereas high serum calcium levels can lead to arterial calcification, even in children. The role of calcium in CKD-MBD is the focus of this review.
Collapse
Affiliation(s)
- Lesley Rees
- Paediatric Nephrology, Great Ormond Street Hospital for Children, Great Ormond St, London, WC1N 3JH, UK.
| | - Rukshana Shroff
- Paediatric Nephrology, Great Ormond Street Hospital for Children, Great Ormond St, London, WC1N 3JH, UK
| |
Collapse
|
70
|
Evrard S, Delanaye P, Kamel S, Cristol JP, Cavalier E. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 2015; 438:401-14. [PMID: 25236333 DOI: 10.1016/j.cca.2014.08.034] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023]
Abstract
The link between vascular calcification (VC) and increased mortality is now well established. Over time, as clinical importance of this phenomenon has begun to be fully considered, scientists have highlighted more and more physiopathological mechanisms and signaling pathways that underlie VC. Several conditions such as diabetes, dyslipidemia and renal diseases are undoubtedly identified as predisposing factors. But even if the process is better understood, many questions still remain unanswered. This review briefly develops the various theories that attempt to explain mineralization genesis. Nonetheless, the main purpose of the article is to provide a profile of the various existing biomarkers of VC. Indeed, in the past years, a lot of inhibitors and promoters, which form a dense and interconnected network, were identified. Given importance to assess and control mineralization process, a focusing on accumulated knowledge of each marker seemed to be necessary. Therefore, we tried to define their respective role in the physiopathology and how they can contribute to calcification risk assessment. Among these, Klotho/fibroblast growth factor-23, fetuin-A, Matrix Gla protein, Bone morphogenetic protein-2, osteoprotegerin, osteopontin, osteonectin, osteocalcin, pyrophosphate and sclerostin are specifically discussed.
Collapse
Affiliation(s)
- Séverine Evrard
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - Pierre Delanaye
- Department of Nephrology, Dialysis and Hypertension, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - Said Kamel
- Laboratoire de Biochimie, CHU Amiens, Amiens, France; INSERM U1088, Université de Picardie Jules-Verne, Amiens, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie, CHRU de Montpellier, Hôpital Lapeyronie, Montpellier, France
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium.
| |
Collapse
|
71
|
Galassi A, Cupisti A, Santoro A, Cozzolino M. Phosphate balance in ESRD: diet, dialysis and binders against the low evident masked pool. J Nephrol 2014; 28:415-29. [PMID: 25245472 DOI: 10.1007/s40620-014-0142-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
Abstract
Phosphate metabolism is crucial in the pathophysiology of secondary hyperparathyroidism and vascular calcification. High phosphate levels have been consistently associated with unfavorable outcomes in dialysis patients, but several limitations are still hampering a resolutive definition of the optimal targets of phosphate serum levels to be achieved in this cohort. Nonetheless, hyperphosphatemia is a late marker of phosphate overload in humans. Clinical nephrologists routinely counteract the positive phosphate balance in dialysis patients through nutritional counseling, stronger phosphate removal by dialysis and prescription of phosphate binders. However, the superiority against placebo of phosphate control by diet, dialysis or binders in terms of survival has never been tested in dedicated randomized controlled trials. The present review discusses this conundrum with particular emphasis on the rationale supporting the value of a simultaneous intervention against phosphate overload in dialysis patients via the improvement of dietary intakes, dialysis efficiency and an individualized choice of phosphate binders.
Collapse
Affiliation(s)
- A Galassi
- Department of Medicine, Renal and Dialysis Unit, Desio Hospital, Desio, Italy,
| | | | | | | |
Collapse
|
72
|
Basile C, Lomonte C, Lisi P, Karohl C, Di Iorio B, Bellasi A. Physical activity in chronic kidney disease: a plausible approach to vascular calcification? Kidney Blood Press Res 2014; 39:154-63. [PMID: 25117909 DOI: 10.1159/000355791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Vascular calcification (VC) is a prominent feature that affects up to 40 to 80% of Chronic Kidney Disease (CKD) patients depending on the degree of renal impairment. Though etiology and pathogenesis of the different types of VC are far from being elucidated, it is conceivable that an imbalance between promoters and inhibitors represents the condition that triggers VC deposition and progression. In addition to traditional cardiovascular risk factors, several lines of evidence suggest that specific factors may affect the arterial system and prognosis in CKD. Over the last decade, a few pharmacological strategies aimed at controlling different selected risk factors for VC have been investigated yielding conflicting results. In light of the complicated interplay between inhibitors and promoters as well as the fact that VC represents the result of cumulative and prolonged exposure to multiple risk factors, a more comprehensive risk modification approach such as lifestyle modification or physical activity (PA) may represent a valid strategy to attenuate VC deposition and progression.We herein aim at reviewing the rationale and current evidence on the potential for lifestyle modification with a specific focus on PA as a cost-effective strategy for VC treatment.
Collapse
Affiliation(s)
- Carlo Basile
- Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti (BA), Italy
| | | | | | | | | | | |
Collapse
|
73
|
C-type natriuretic peptide inhibiting vascular calcification might involve decreasing bone morphogenic protein 2 and osteopontin levels. Mol Cell Biochem 2014; 392:65-76. [PMID: 24710639 DOI: 10.1007/s11010-014-2019-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/05/2014] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease. Paracrine/autocrine factors such as vasoactive peptides are involved in VC development. Here, we investigated the expression of the novel peptide C-type natriuretic peptide (CNP) in the vasculature, tested its ability to prevent VC in vivo and in vitro, and examined the mechanism involved. Rat aortic VC was induced by vitamin D3 plus nicotine (VDN). CNP (500 ng/kg/h) was administered by mini-osmotic pump. Calcification was examined by von Kossa staining; CNP and cyclic guanosine monophosphate (cGMP) contents were detected by radioimmunoassay, and mRNA and protein levels were examined by real-time PCR and Western blot analysis in aortas and calcified vascular smooth muscle cells (VSMCs). VDN-treated rat aortas showed higher CNP content and decreased expression of its receptor natriuretic peptide receptor B, along with increased vascular calcium deposition and alkaline phosphatase (ALP) activity. Low CNP levels were accompanied by increased vascular calcium deposition and ALP activity in VDN-treated rats when compared to vehicle treatment, which was further confirmed in cultured VSMCs. Administration of CNP greatly reduced VC in VDN-treated aortas compared with controls, which was confirmed in calcified VSMCs. The decrease in alpha-actin expression was ameliorated by CNP in vitro. Moreover, protein expression levels of osteopontin (OPN) were significantly up-regulated in calcified aortas, and CNP increased OPN expression in calcified aortas. Furthermore, CNP downregulated OPN and bone morphogenic protein 2 (BMP-2) expression in calcified aortas and VSMCs. Modulation of OPN and BMP-2 expression by CNP and the beneficial effects of CNP on calcified VSMCs were blocked significantly by protein kinase G inhibitor H7. Impaired local endogenous CNP and its receptor system may be associated with increased mineralization in vivo in rat aortas with VC, and administration of CNP inhibits VC development in vivo and in vitro, at least in part, via a cGMP/PKG pathway.
Collapse
|
74
|
Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 2014; 25:1760-73. [PMID: 24578135 DOI: 10.1681/asn.2013080818] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In chronic kidney disease, vascular calcification, renal osteodystrophy, and phosphate contribute substantially to cardiovascular risk and are components of CKD-mineral and bone disorder (CKD-MBD). The cause of this syndrome is unknown. Additionally, no therapy addresses cardiovascular risk in CKD. In its inception, CKD-MBD is characterized by osteodystrophy, vascular calcification, and stimulation of osteocyte secretion. We tested the hypothesis that increased production of circulating factors by diseased kidneys causes the CKD-MBD in diabetic mice subjected to renal injury to induce stage 2 CKD (CKD-2 mice). Compared with non-CKD diabetic controls, CKD-2 mice showed increased renal production of Wnt inhibitor family members and higher levels of circulating Dickkopf-1 (Dkk1), sclerostin, and secreted klotho. Neutralization of Dkk1 in CKD-2 mice by administration of a monoclonal antibody after renal injury stimulated bone formation rates, corrected the osteodystrophy, and prevented CKD-stimulated vascular calcification. Mechanistically, neutralization of Dkk1 suppressed aortic expression of the osteoblastic transcription factor Runx2, increased expression of vascular smooth muscle protein 22-α, and restored aortic expression of klotho. Neutralization of Dkk1 did not affect the elevated plasma levels of osteocytic fibroblast growth factor 23 but decreased the elevated levels of sclerostin. Phosphate binder therapy restored plasma fibroblast growth factor 23 levels but had no effect on vascular calcification or osteodystrophy. The combination of the Dkk1 antibody and phosphate binder therapy completely treated the CKD-MBD. These results show that circulating Wnt inhibitors are involved in the pathogenesis of CKD-MBD and that the combination of Dkk1 neutralization and phosphate binding may have therapeutic potential for this disorder.
Collapse
Affiliation(s)
- Yifu Fang
- Departments of Pediatrics/Nephrology and
| | | | - Michael Seifert
- Departments of Pediatrics/Nephrology and Department of Pediatric Nephrology, Southern Illinois School of Medicine, Springfield, Illinois
| | | | | | | | - Barry I Freedman
- Internal Medicine/Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Hartmut Malluche
- Department of Medicine/Nephrology, University of Kentucky, Lexington, Kentucky
| | - Keith A Hruska
- Departments of Pediatrics/Nephrology and Medicine, Washington University, St. Louis, Missouri;
| |
Collapse
|
75
|
Khavandgar Z, Roman H, Li J, Lee S, Vali H, Brinckmann J, Davis EC, Murshed M. Elastin haploinsufficiency impedes the progression of arterial calcification in MGP-deficient mice. J Bone Miner Res 2014; 29:327-37. [PMID: 23857752 DOI: 10.1002/jbmr.2039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 05/18/2013] [Accepted: 06/10/2013] [Indexed: 01/12/2023]
Abstract
Matrix gla protein (MGP) is a potent inhibitor of extracellular matrix (ECM) mineralization. MGP-deficiency in humans leads to Keutel syndrome, a rare genetic disease hallmarked by abnormal soft tissue calcification. MGP-deficient (Mgp(-/-)) mice show progressive deposition of hydroxyapatite minerals in the arterial walls and die within 2 months of age. The mechanism of antimineralization function of MGP is not fully understood. We examined the progression of vascular calcification and expression of several chondrogenic/osteogenic markers in the thoracic aortas of Mgp(-/-) mice at various ages. Although cells with chondrocyte-like morphology have been reported in the calcified aorta, our gene expression data indicate that chondrogenic/osteogenic markers are not upregulated in the arteries prior to the initiation of calcification. Interestingly, arterial calcification in Mgp(-/-) mice appears first in the elastic laminae. Considering the known mineral scaffolding function of elastin (ELN), a major elastic lamina protein, we hypothesize that elastin content in the laminae is a critical determinant for arterial calcification in Mgp(-/-) mice. To investigate this, we performed micro-computed tomography (µCT) and histological analyses of the aortas of Mgp(-/-);Eln(+/-) mice and show that elastin haploinsufficiency significantly reduces arterial calcification in this strain. Our data suggest that MGP deficiency leads to alterations of vascular ECM that may in turn initiate arterial calcification.
Collapse
|
76
|
van Venrooij NA, Pereira RC, Tintut Y, Fishbein MC, Tumber N, Demer LL, Salusky IB, Wesseling-Perry K. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant 2014; 29:1525-32. [PMID: 24459137 DOI: 10.1093/ndt/gft523] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) levels are elevated in chronic kidney disease (CKD) and elevated values have been associated with both heart disease and mortality. Recent studies show that FGF23, a protein synthesized by osteocytes, is also present in calcified atherosclerotic plaques and may be induced by heart disease. Whether vascular expression of FGF23 is associated with progressive CKD, however, remains unknown. Therefore, the relationship between kidney function, vascular calcification and FGF23 expression was evaluated in patients with heart disease. METHODS Immunohistochemistry for FGF23 was performed in coronary arteries of all patients undergoing heart transplantation at UCLA between February 2008 and 2010. Immunohistochemical staining for Klotho, DMP1, FGFR1, and FGFR3; calcium deposition; and RNA expression of Klotho and DMP1 were assessed in a subset of eight samples. RESULTS FGF23 was detected by immunohistochemistry in 56% of the coronary artery specimens. Vascular FGF23 expression correlated with declining kidney function, as evidenced by reduced creatinine clearance. FGFR1 and FGFR3 were detected throughout the vascular tissue and in calcified plaques. Calcium deposition, Klotho expression and DMP1 expression correlated with FGF23 immunoreactivity. CONCLUSIONS The findings suggest that the Klotho-FGF23-FGFR system is active in coronary arteries and its upregulation correlates with impaired renal function and matrix calcium deposition.
Collapse
Affiliation(s)
| | - Renata C Pereira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael C Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Navdeep Tumber
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Linda L Demer
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
77
|
Abstract
Cardiovascular complications are the leading cause of mortality in chronic (CKD) and end-stage renal disease (ESRD). The risk of developing cardiovascular complications is associated with changes in the structure and function of the arterial system, which are in many aspects similar to those occurring with aging. The presence of traditional risk factors does not fully explain the extension and severity of arterial disease. Therefore, other factors associated with CKD and ESRD must also be involved. Arterial calcification (AC) is a common complication of CKD and ESRD, and the extent of AC in general population as well as in patients with CKD is predictive of subsequent cardiovascular mortality beyond established conventional risk factors. AC is an active process similar to bone formation that implicates a variety of proteins involved in bone and mineral metabolism and is considered part of a systemic dysfunction defined as CKD-associated mineral and bone disorder (CKD-MBD).
Collapse
|
78
|
Kramann R, Kunter U, Brandenburg VM, Leisten I, Ehling J, Klinkhammer BM, Knüchel R, Floege J, Schneider RK. Osteogenesis of heterotopically transplanted mesenchymal stromal cells in rat models of chronic kidney disease. J Bone Miner Res 2013; 28:2523-34. [PMID: 23703894 DOI: 10.1002/jbmr.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022]
Abstract
The current study is based on the hypothesis of mesenchymal stromal cells (MSCs) contributing to soft-tissue calcification and ectopic osteogenesis in chronic kidney disease (CKD). Rat MSCs were transplanted intraperitoneally in an established three-dimensional collagen-based model in healthy control animals and two rat models of CKD and vascular calcification: (1) 5/6 nephrectomy + high phosphorus diet; and (2) adenine nephropathy. As internal controls, collagen gels without MSCs were transplanted in the same animals. After 4 and 8 weeks, MSCs were still detectable and proliferating in the collagen gels (fluorescence-activated cell sorting [FACS] analysis and confocal microscopy after fluorescence labeling of the cells). Aortas and MSC-containing collagen gels in CKD animals showed distinct similarities in calcification (micro-computed tomography [µCT], energy-dispersive X-ray [EDX] analysis, calcium content), induction of osteogenic markers, (ie, bone morphogenic protein 2 [BMP-2], Runt related transcription factor 2 [Runx2], alkaline phosphatase [ALP]), upregulation of the osteocytic marker sclerostin and extracellular matrix remodeling with increased expression of osteopontin, collagen I/III/IV, fibronectin, and laminin. Calcification, osteogenesis, and matrix remodeling were never observed in healthy control animals and non-MSC-containing collagen gels in all groups. Paul Karl Horan 26 (PKH-26)-labeled, 3G5-positive MSCs expressed Runx2 and sclerostin in CKD animals whereas PKH-26-negative migrated cells did not express osteogenic markers. In conclusion, heterotopically implanted MSCs undergo osteogenic differentiation in rat models of CKD-induced vascular calcification, supporting our hypothesis of MSCs as possible players in heterotopic calcification processes of CKD patients.
Collapse
Affiliation(s)
- Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
O'Neill WC, Adams AL. Breast arterial calcification in chronic kidney disease: absence of smooth muscle apoptosis and osteogenic transdifferentiation. Kidney Int 2013; 85:668-76. [PMID: 24048381 DOI: 10.1038/ki.2013.351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/09/2022]
Abstract
The pathophysiology of medial arterial calcification in chronic kidney disease (CKD) is unclear but has been ascribed to phenotypic changes in vascular smooth muscle, possibly in conjunction with intimal proliferation and atherosclerosis. As the prevalence of calcification in breast arteries is increased in women with CKD and end-stage renal disease (ESRD), this was examined histologically in mastectomy specimens from 19 women with CKD or ESRD. Arterial calcification was present in 18, was exclusively medial, and occurred in vessels as small as arterioles. Intimal thickening was common but unrelated to calcification. There was no evidence of atherosclerosis. The earliest calcification presented as small punctate lesions scattered throughout the media, often with calcification of the internal elastic lamina. Arterial calcification was present in all samples from an age- and diabetes-matched cohort without CKD but was much milder. While smooth muscle cell density was reduced one-third in arteries from patients with ESRD, the cells appeared normal, expressed SM22α, and exhibited no apoptosis. Staining for the bone-specific protein osteocalcin, the osteoblastic transcription factors Runx2 or osterix, or the chondrocytic transcription factor SOX9 was absent in regions of early calcification. Thus, medial calcification in breast arteries of patients with CKD can occur in the absence of smooth muscle cell apoptosis and/or osteogenic transdifferentiation. This suggests that the pathologic mineralization process may differ from one arterial type to the other.
Collapse
Affiliation(s)
- W Charles O'Neill
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amy L Adams
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
80
|
Zhong H, Liu F, Dai X, Zhou L, Fu P. Sodium thiosulfate protects human aortic smooth muscle cells from osteoblastic transdifferentiation via high-level phosphate. Kaohsiung J Med Sci 2013; 29:587-93. [PMID: 24183352 DOI: 10.1016/j.kjms.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/05/2012] [Indexed: 02/05/2023] Open
Abstract
Vascular calcification is recognized as a common complication in some patients, such as chronic renal failure. The purpose of this study was to investigate the role of sodium thiosulfate (STS) for the transdifferentiation of human aortic vascular smooth muscle cells into osteoblast-like cells induced by high-level phosphate. All human aortic vascular smooth muscle cells were divided into STS group 1 (treatment with STS) and STS group 2 (culture in a medium containing a high level of phosphate). STS group 1 included a normal group, a high-level phosphate group, and other subgroups based on treatment with different concentrations of STS. Cells of STS group 2 were cultured in a medium containing a high level of phosphate for 72 hours, and then divided into a high-phosphate control group and other subgroups based on treatment with different concentrations of STS. The mRNA and protein expressions of bone morphogenetic protein-2 (BMP-2), core binding factor α-1 (Cbfα-1), and matrix Gla protein (MGP) were detected. Meanwhile, calcium concentration and alkaline phosphatase (ALP) activation were measured. In STS group 1, the mRNA levels of BMP-2 and Cbfα-1 were elevated significantly in the high-level phosphate group compared with the normal group (p < 0.05). However, both gene expressions were attenuated in the STS-treated groups (vs. normal group, p < 0.05). MGP mRNA levels were reduced in the high-level phosphate group (vs. normal group, p < 0.05). In the STS-treated groups, mRNA expression of MGP was elevated compared to the high-level phosphate group (p < 0.05). In STS group 2, expression of MGP was enhanced significantly (vs. high-phosphate control group, p < 0.05) with both BMP-2 and Cbfα-1 reducing in the STS-treated groups (vs. high-phosphate-control group, p < 0.05). STS attenuates calcium concentration and ALP activation. It can reverse osteoblast differentiation of vascular smooth muscle cells and modulate the expressions of calcification-related factors.
Collapse
Affiliation(s)
- Hui Zhong
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
81
|
Abstract
Childhood and adolescence are crucial times for the development of a healthy skeletal and cardiovascular system. Disordered mineral and bone metabolism accompany chronic kidney disease (CKD) and present significant obstacles to optimal bone strength, final adult height, and cardiovascular health. Early increases in bone and plasma fibroblast growth factor 23 (FGF23) are associated with early defects in skeletal mineralization. Later in the course of CKD, secondary hyperparathyroidism--caused by a combination of declining calcitriol values and phosphate retention--results in high-turnover renal osteodystrophy whereas increased levels of both phosphate and FGF23 contribute to cardiovascular disease. Treatment of hyperphosphatemia and secondary hyperparathyroidism improves high-turnover bone disease but fails to correct defects in skeletal mineralization. Because overtreatment may result in adynamic bone disease, growth failure, hypercalcemia, and progression of cardiovascular calcifications, therapy therefore must be titrated carefully to maintain optimal serum biochemical parameters according to stage of CKD. Newer therapeutic agents and new treatment paradigms may suppress serum PTH levels effectively while limiting intestinal calcium absorption and skeletal FGF23 stimulation and may provide future therapeutic alternatives for children with CKD.
Collapse
Affiliation(s)
- Katherine Wesseling-Perry
- Department of Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
82
|
Choi JI, Han DS, Kim HS, Lee YH, Kim HS, Ahn SE, Jeon YC, Yi JH. [A case of isolated small intestinal wall calcification on patient with continuous ambulatory peritoneal dialysis]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2013; 62:55-8. [PMID: 23954961 DOI: 10.4166/kjg.2013.62.1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metastatic calcification is defined as the deposition of calcium salt in normal tissue with an abnormal serum biochemical environment, such as chronic kidney disease, hyperparathyroidism, and hypercalcemia related with malignancy. Although the metastatic calcification can develop in any organs and tissues, presenting its symptoms and complications are rare. Thus a few cases have been reported. This case shows the metastatic calcification of the small intestine without any peritoneal and mesenteric vascular calcification which was early diagnosed by computed tomography and mesenteric angiography in a patient with abdominal pain, receiving continuous ambulatory peritoneal dialysis due to end stage renal disease. The clinician should early consider the metastatic calcification as differential diagnosis when unidentified calcifications are noted in simple abdominal X-ray such as in the present case, and promptly confirm it by using appropriate diagnostic tests in order to prevent its complications and progression.
Collapse
Affiliation(s)
- Jeong Im Choi
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Goldenstein PT, Elias RM, do Carmo LPDF, Coelho FO, Magalhães LP, Antunes GL, Custódio MR, de Menezes Montenegro FL, Titan SM, Jorgetti V, Moysés RMA. Parathyroidectomy improves survival in patients with severe hyperparathyroidism: a comparative study. PLoS One 2013; 8:e68870. [PMID: 23940515 PMCID: PMC3734286 DOI: 10.1371/journal.pone.0068870] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/01/2013] [Indexed: 01/01/2023] Open
Abstract
Background and objectives Secondary hyperparathyroidism (SHPT) in CKD is associated with an increased risk for mortality, but definitive data showing that parathormone control decreases mortality is still lacking. This study aimed to compare the mortality of patients with severe SHPT submitted to parathyroidectomy(PTX) with those who did not have access to surgery. Methods This is a retrospective study in a cohort of 251 CKD patients with severe SHPT who were referred to a CKD-MBD Center for PTX from 2005 until 2012. Results Most of our patients had indication of PTX, but only 49% of them had access to this surgical procedure. After a mean follow-up of 23 months, 72 patients had died. Non-survivors were older; more often had diabetes, lower serum 25 vitamin D and mostly had not been submitted to surgery. The relative risk of death was lower in the PTX patients (0.428; 95% CI, 0.28 to 0.67; p<0.0001). After adjustments, mortality risk was dependent on age (1.04; 95% CI, 1.01 to 1.07; p = 0.002), 25 vitamin D (0.43; 95% CI, 0.24 to 0.81; p = 0.006) and no access to PTX (4.13; 95% CI, 2.16 to 7.88; p<0.0001). Results remained the same in a second model using the PTX date as the study start date for the PTX group. Conclusions Our data confirms the benefit of PTX on mortality in patients with severe SHPT. The high mortality encountered in our population is significant and urges the need to better treat these patients.
Collapse
Affiliation(s)
| | - Rosilene Motta Elias
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Fernanda Oliveira Coelho
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciene Pereira Magalhães
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Lins Antunes
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Melani Ribeiro Custódio
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Silvia Maria Titan
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vanda Jorgetti
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Affonso Moysés
- Nephrology Division, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
84
|
Human uraemic serum displays calcific potential in vitro that increases with advancing chronic kidney disease. Clin Sci (Lond) 2013; 125:237-45. [PMID: 23464884 DOI: 10.1042/cs20120638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC) strongly correlates with declining renal function and contributes to the high morbidity and mortality of patients with CKD (chronic kidney disease). It is closely regulated by circulating factors but little is known about the capacity of serum from patients to induce calcification outside the disease setting, which we now define as the calcific potential of serum. We have therefore examined the ability of serum from age- and sex-matched subjects with and without advancing CKD to induce calcification of cultured SMCs (smooth muscle cells). Samples from patients with CKD induced significant calcification compared with controls. More importantly, samples from patients on haemodialysis induced significantly higher calcification than those with moderate or advanced CKD. The calcification induced by the latter two but not those on haemodialysis could be enhanced with calcium chloride and β-GP (β-glycerophosphate). A positive correlation was evident between measured serum creatinine, phosphate, PTH (parathyroid hormone), OPG (osteoprotegerin) and the degree of calcification in vitro. eGFR (estimated glomerular filtration rate), DBP (diastolic blood pressure), haemoglobin and serum albumin correlated negatively. Stepwise multivariate analysis of log-transformed calcific potential data highlighted serum creatinine, albumin and OPG as significant predictors, explaining approximately 50% of the variation. Thus, other regulators, either not investigated or as yet unidentified, may contribute to the calcification potential of serum in vitro. Furthermore, uraemic serum can induce graded calcification outside of the disease milieu that reflects the degree of kidney impairment in vivo. These findings could have important clinical relevance in terms of developing novel diagnostic and/or therapeutic strategies for subjects with CKD.
Collapse
|
85
|
Asamiya Y, Yajima A, Tsuruta Y, Otsubo S, Nitta K. Oxidised LDL/LDL-cholesterol ratio and coronary artery calcification in haemodialysis patients. Nutr Metab Cardiovasc Dis 2013; 23:619-627. [PMID: 22608251 DOI: 10.1016/j.numecd.2012.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 12/31/2011] [Accepted: 02/08/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Serum malondialdehyde-modified low-density lipoprotein (MDA-LDL) and MDA-LDL/LDL-cholesterol (LDL-c) ratio are risk factors for arteriosclerosis and cardiovascular disease (CVD). However, no information is available on these parameters or their associations with coronary artery calcification (CAC) in haemodialysis (HD) patients. METHODS AND RESULTS Fifty-seven HD patients and 26 control subjects were included in this cross-sectional study. Serum MDA-LDL concentrations and MDA-LDL/LDL-c ratios were examined. HD patients had significantly higher MDA-LDL/LDL-c ratios than the controls (105.1 ± 27.5 vs. 81.4 ± 18.9 mU/mg, P < 0.001); however, there was no significant difference in serum MDA-LDL levels between the 2 groups. CAC scores were examined only in HD patients and their possible associations with the clinical/laboratory data were analysed. Analysis of HD patients showed that MDA-LDL/LDL-c ratio has an association with presence of CVD, CAC score, HD duration, MDA-LDL, or haemoglobin A1C. In addition, the CAC score was positively correlated with serum MDA-LDL level (P = 0.048) and MDA-LDL/LDL-c ratio (P = 0.006). Furthermore, multivariate logistic regression analysis showed that MDA-LDL/LDL-c ratio (β = 0.04, P = 0.003) and HD duration (β = 0.16, P = 0.007) were independently associated with CAC score. CONCLUSION The MDA-LDL/LDL-c ratio of HD patients was significantly higher than that of non-HD subjects and was independently associated with the CAC score. Therefore, this ratio could be an important risk factor for CAC in HD patients.
Collapse
Affiliation(s)
- Y Asamiya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, 8-1, Kawada-chou, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
86
|
Ciceri P, Elli F, Brenna I, Volpi E, Romagnoli S, Tosi D, Braidotti P, Brancaccio D, Cozzolino M. Lanthanum prevents high phosphate-induced vascular calcification by preserving vascular smooth muscle lineage markers. Calcif Tissue Int 2013; 92:521-30. [PMID: 23416967 DOI: 10.1007/s00223-013-9709-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Vascular calcification (VC) represents a major cardiovascular risk factor in chronic kidney disease patients. High phosphate (Pi) levels are strongly associated with VC in this population. Therefore, Pi binders are commonly used to control high Pi levels. The aim of this work was to study the mechanism of action of lanthanum chloride (LaCl3) on the progression of Pi-induced VC through its direct effect on vascular smooth muscle cells (VSMCs) in vitro. High Pi induced VSCM Ca deposition. We evaluated the action of LaCl3, compared to gadolinium chloride (GdCl3), and found different effects on the modulation of VSMC lineage markers, such as α-actin and SM22α. In fact, only LaCl3 preserved the expression of both VSMC lineage markers compared to high Pi-treated cells. Interestingly, both LaCl3 and GdCl3 reduced the high Pi-induced elevations of bone morphogenic protein 2 mRNA expression, with no reduction of the high core binding factor-alpha 1 mRNA levels observed in calcified VSMCs. Furthermore, we also found that only LaCl3 completely prevented the matrix GLA protein mRNA levels and osteonectin protein expression elevations induced by high Pi compared to GdCl3. Finally, LaCl3, in contrast to GdCl3, prevented the high Pi-induced downregulation of Axl, a membrane tyrosine kinase receptor involved in apoptosis. Thus, our results suggest that LaCl3 prevents VC by preserving VSMC lineage markers and by decreasing high Pi-induced osteoblastic differentiation.
Collapse
Affiliation(s)
- Paola Ciceri
- Laboratory of Experimental Nephrology, Dipartimento di Scienze della Salute, Università di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Wesseling-Perry K, Jüppner H. The osteocyte in CKD: new concepts regarding the role of FGF23 in mineral metabolism and systemic complications. Bone 2013; 54:222-9. [PMID: 23079136 PMCID: PMC3582844 DOI: 10.1016/j.bone.2012.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 12/23/2022]
Abstract
The identification of elevated circulating levels of the osteocytic protein fibroblast growth factor 23 (FGF23) in patients with chronic kidney disease (CKD), along with recent data linking these values to the pathogenesis of secondary hyperparathyroidism and to systemic complications, has changed the approach to the pathophysiology and treatment of disordered bone and mineral metabolism in renal failure. It now appears that osteocyte biology is altered very early in the course of CKD and these changes have implications for bone biology, as well as for progressive cardiovascular and renal disease. Since circulating FGF23 values are influenced by therapies used to treat secondary hyperparathyroidism, the effects of different therapeutic paradigms on FGF23 have important implications for mineral metabolism as well as for morbidity and mortality. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization and turnover as well as the potential effects that current therapeutic options may have on osteocyte biology.
Collapse
|
88
|
Chen NX, Kiattisunthorn K, O'Neill KD, Chen X, Moorthi RN, Gattone VH, Allen MR, Moe SM. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One 2013; 8:e64558. [PMID: 23717629 PMCID: PMC3661525 DOI: 10.1371/journal.pone.0064558] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022] Open
Abstract
Patients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses. Expression of these vascular miRNAs miR-125b, miR-145, and miR-155 was decreased in the thoracic aorta in CKD rats compared to normal rats, with concordant changes in target genes of RUNX2, angiotensin II type I receptor (AT1R), and myocardin. Furthermore, the expression of miR-155 was negatively correlated with the quantity of calcification in the aorta, a process known to be preceded by vascular de-differentiation in these animals. We then examined the mechanisms of miRNA regulation in primary VSMC and found decreased expression of miR-125b, 145, and 155 in VSMC from rats with CKD compared to normal littermates but no alteration in DROSHA or DICER, indicating that the low levels of expression is not due to altered intracellular processing. Finally, overexpression of miR-155 in VSMC from CKD rats inhibited AT1R expression and decreased cellular proliferation supporting a direct effect of miR-155 on VSMC. In conclusion, we have found ex vivo and in vitro evidence for decreased expression of these vascular miRNA in CKD, suggesting that alterations in miRNAs may lead to the synthetic state of VSMC found in CKD. The decreased levels in the circulation may reflect decreased vascular release but more studies are needed to confirm this relationship.
Collapse
Affiliation(s)
- Neal X Chen
- Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Liu F, Fu P, Fan W, Gou R, Huang Y, Qiu H, Zhong H, Huang S. Involvement of parathyroid hormone-related protein in vascular calcification of chronic haemodialysis patients. Nephrology (Carlton) 2012; 17:552-60. [PMID: 22448974 DOI: 10.1111/j.1440-1797.2012.01601.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS To investigate the role of parathyroid hormone-related protein (PTHrP) in vascular calcification of patients with chronic hemodialysis. METHODS The inferior epigastric arteries were obtained from 23 patients on chronic haemodialysis and 16 patients with renal carcinoma as control. Haematoxylin-eosin staining, elastic fibre staining, Alizarin Red calcium staining and immunohistochemical staining of PTHrP, bone morphogenetic protein-2 (BMP-2), Cbfa1/Runx2 were performed. Real-time polymerase chain reaction (PCR) was used to examine mRNA expressions of PTHrP, BMP-2 and Cbfa1/Runx2. Western blot and real-time PCR were used to detect the effects of PTHrP-siRNA and rh-PTHrP-1-34 on the expressions of PTHrP, BMP-2 and Cbfa1/Runx2 in human aortic smooth muscle cells (HASMC). Alkaline phosphatase (ALP) activities and intracellular calcium content in HASMCs were assessed after treatment with 10 mmol/L β-glycerol phosphoric acid for 48 h. RESULTS Vascular calcification was confirmed in 78.2% of patients on chronic haemodialysis, and the expressions of PTHrP, BMP-2 and Cbfa1 in the arteries were significantly upregulated. PTHrP-siRNA could downregulate the expression of PTHrP by 60%, BMP-2 by 25% and Cbfa1 by 25% at 24 h (P < 0.05). Exogenous rh-PTHrP-1-34 could upregulate the expressions of BMP-2 and Cbfa1 by 1.37-fold and 1.46-fold, respectively, at 24 h in a time-independent manner (P < 0.05), which were attenuated by PTHrP-siRNA. Moreover, it could promote intracellular calcium deposition and increase ALP activities, which were partially blocked by PTHrP-siRNA (P < 0.05). CONCLUSIONS Vascular calcification was common in patients with chronic haemodialysis, to which PTHrP might contribute by activating BMP-2/ Cbfa1 signalling pathway.
Collapse
Affiliation(s)
- Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Kiattisunthorn K, Moe SM. Chronic Kidney Disease-Mineral Bone Disorder: Definitions and Rationale for a Systemic Disorder. Clin Rev Bone Miner Metab 2012. [DOI: 10.1007/s12018-011-9119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
91
|
Lewis R. Mineral and bone disorders in chronic kidney disease: new insights into mechanism and management. Ann Clin Biochem 2012; 49:432-40. [PMID: 22807503 DOI: 10.1258/acb.2012.012004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic kidney disease (CKD) is now recognized as a major public health issue. One consequence of this condition is disturbance of mineral and bone homeostasis. Bone disease (renal osteodystrophy) as a consequence of CKD has long been recognized. However, it is now appreciated that the mineral and bone disturbances of CKD (and perhaps treatment of them) lead to vascular calcification, which is a cause of significant morbidity. In recognition of the widespread nature of the condition, the term CKD-mineral bone disorder (CKD-MBD) is now in general use to describe the biochemical, skeletal and vascular changes that occur in CKD. The pathogenesis of CKD-MBD is incompletely understood but has recently been redefined with the emergence of fibroblast growth factor 23 (FGF-23) as a major influence on control of vitamin D and parathyroid hormone. This review describes the classification of CKD and current understanding of the mechanisms underlying CKD-MBD (incorporating FGF-23). It describes and evaluates the means of identifying CKD-MBD in the clinical setting and the interventions available for treatment. It then reviews current clinical guidelines for the use of biochemical markers in clinical decision-making. In acknowledgement of the paucity of evidence upon which these guidelines are based, areas where clinical research might be directed in the future will be identified.
Collapse
Affiliation(s)
- Robert Lewis
- Wessex Renal and Transplant Service, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK.
| |
Collapse
|
92
|
Disthabanchong S. Vascular calcification in chronic kidney disease: Pathogenesis and clinical implication. World J Nephrol 2012; 1:43-53. [PMID: 24175241 PMCID: PMC3782198 DOI: 10.5527/wjn.v1.i2.43] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/21/2011] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death among patients with chronic kidney disease (CKD). Vascular calcification (VC) is one of the independent risk factors associated with cardiovascular disease and cardiovascular mortality in both the general population and CKD patients. Earlier evidence revealed substantially higher prevalence of VC in young adults on chronic hemodialysis compared to the general population in the same age range, indicating the influence of CKD-related risk factors on the development of VC. Pathogenesis of VC involves an active, highly organized cellular transformation of vascular smooth muscle cells to bone forming cells evidenced by the presence of bone matrix proteins in the calcified arterial wall. VC occurs in both the intima and the media of arterial wall with medial calcification being more prevalent in CKD. In addition to traditional cardiovascular risks, risk factors specific to CKD such as phosphate retention, excess of calcium, history of dialysis, active vitamin D therapy in high doses and deficiency of calcification inhibitors play important roles in promoting the development of VC. Non-contrast multi-slice computed tomography has often been used to detect coronary artery calcification. Simple plain radiographs of the lateral lumbar spine and pelvis can also detect VC in the abdominal aorta and femoral and iliac arteries. Currently, there is no specific therapy to reverse VC. Reduction of calcium load, lowering phosphate retention using non-calcium containing phosphate binders, and moderate doses of active vitamin D may attenuate progression. Parenteral sodium thiosulfate has also been shown to delay VC progression.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Sinee Disthabanchong, Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
93
|
Karohl C, Raggi P. Cinacalcet: will it play a role in reducing cardiovascular events? Future Cardiol 2012; 8:357-70. [PMID: 22420327 DOI: 10.2217/fca.11.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary hyperparathyroidism is a common complication of chronic kidney disease and it is associated with high morbidity and mortality. It is characterized by high parathyroid hormone levels and bone turnover leading to bone pain, deformity and fragility. Furthermore, secondary hyperparathyroidism adversely affects the cardiovascular system and has been associated with cardiovascular calcification and cardiomyopathy. Cinacalcet, a type II calcimimetic, is an effective and well-tolerated oral therapy for the management of secondary hyperparathyroidism. It is an allosteric activator of the calcium-sensing receptor enhancing sensitivity of parathyroid cells to extracellular calcium, which leads to inhibition of parathyroid hormone secretion. The calcium-sensing receptor expression in cardiomyocytes, endothelial cells and vascular smooth muscle cells raises the possibility that this receptor may be implicated in the pathophysiology of cardiovascular disease and constitute a potential therapeutic target. This article reviews the role of the calcimimetic agent cinacalcet in the prevention and progression of cardiovascular calcification and uremic cardiomyopathy in the chronic kidney disease setting.
Collapse
Affiliation(s)
- Cristina Karohl
- Division of Cardiology & Department of Medicine, Emory University, 1365 Clifton Rd NE, AT-504, Atlanta, GA 30322, USA
| | | |
Collapse
|
94
|
Yamada S, Taniguchi M, Tokumoto M, Toyonaga J, Fujisaki K, Suehiro T, Noguchi H, Iida M, Tsuruya K, Kitazono T. The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. J Bone Miner Res 2012; 27:474-85. [PMID: 21987400 DOI: 10.1002/jbmr.539] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vascular calcification is closely related to cardiovascular morbidity and mortality. Accumulating data indicate that oxidative stress is associated with dysfunction of various organs, including cardiovascular diseases in chronic kidney disease (CKD). However, it remains undetermined if oxidative stress induced by uremia promotes arterial medial calcification. The present study investigated the role of oxidative stress in the pathogenesis of arterial medial calcification in uremic rats. Rats with uremia induced by adenine-rich diet progressively developed arterial medial calcification, which was accompanied by time-dependent increases in both aortic and systemic oxidative stress. Immunohistochemical and biochemical analyses showed that the arterial medial calcification progressed in a time-dependent manner that is parallel to the osteogenic transdifferentiation of vascular smooth muscle cells. Accumulation of oxidative stress was also identified in the calcified regions. Time-course studies indicated that both oxidative stress and hyperphosphatemia correlated with arterial medial calcification. Tempol, an antioxidant, ameliorated osteogenic transdifferentiation of vascular smooth muscle cells and arterial medial calcification in uremic rats, together with reduction in aortic and systemic oxidative stress levels, without affecting serum biochemical parameters. Our data suggest that oxidative stress induced by uremia can play a role in the pathogenesis of vascular calcification in CKD, and that antioxidants such as tempol are potentially useful in preventing the progression of vascular calcification in CKD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Vitamin D deficiency and arterial wall stiffness in children with chronic kidney disease. Pediatr Cardiol 2012; 33:122-8. [PMID: 21912948 DOI: 10.1007/s00246-011-0101-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Arterial wall stiffness is a recognized complication in children with chronic kidney disease (CKD). Vascular abnormalities in these patients are shown to predate cardiac abnormalities such as left ventricular hypertrophy and diastolic dysfunction. The etiology of vascular abnormalities in these patients currently is not clear. This study explored the relationship between various parameters of calcium-phosphorus metabolism including 25-hydroxy vitamin D and arterial wall stiffness in pediatric patients with CKD. This study investigated a cohort of 43 children with CKD who had no history of underlying congenital or structural cardiac disease. The Augmentation Index (AI), a measure of peripheral arterial reflective properties using radial artery tonometry, was used as an indirect measure of central aortic stiffness. Serum biochemical markers of calcium-phosphorus metabolism were simultaneously measured. Univariate testing showed that AI correlated with worsening kidney function. Serum 25-hydroxy vitamin D levels were low and correlated negatively with AI (r = -0.39; p < 0.05). Multiple regression analysis showed that 25-hydroxy vitamin D was the only significant independent predictor of increased central arterial stiffness in the subgroup of children receiving hemodialysis. No association was observed between AI and any other measured biochemical parameter of calcium-phosphorus metabolism. This is the first study to investigate pediatric patients with CKD that suggests an association between nutritional vitamin D deficiency and increased arterial stiffness in children with CKD. The pathophysiologic mechanisms of vitamin D that regulate increased arterial stiffness need to be integrated further in pediatric CKD patients.
Collapse
|
96
|
Zhou YB, Zhang J, Cai Y, Teng X, Duan XH, Song JQ, Du J, Tang CS, Qi YF. Insulin resistance induces medial artery calcification in fructose-fed rats. Exp Biol Med (Maywood) 2012; 237:50-7. [PMID: 22238287 DOI: 10.1258/ebm.2011.011252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteogenic differentiation of vascular smooth muscle cells (VSMCs) results in medial artery calcification, which is common in diabetes, but the pathogenesis is poorly understood. We aimed to explore the pathophysiological roles of insulin resistance (IR) on medial artery calcification in rats with 10% fructose in drinking water. After 12 weeks of fructose feeding, rats showed severe IR, with increased levels of fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Fructose-fed rats showed aortic calcification, increased aortic calcium deposition and irregular elastic fibers in the medial layer of the vessel wall. Moreover, plasma phosphorus concentration, calcium × phosphorus product and alkaline phosphatase (ALP) activity, and aortic calcium content and ALP activity were significantly increased. Fructose feeding increased mRNA levels of osteopontin, type III sodium-dependent phosphate co-transporter, bone morphogenetic protein-2 and the key transcription factor core binding factor alpha 1 in aortic tissue and downregulated mRNA levels of osteoprotegerin and matrix γ-carboxyglutamic acid protein. Fructose feeding decreased protein levels of smooth-muscle lineage markers and induced severe lipid peroxidation injury. IR induced by high fructose feeding could evoke osteogenic transdifferentiation of VSMCs and promote vascular calcification.
Collapse
MESH Headings
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/metabolism
- Animals
- Aorta, Thoracic/pathology
- Blood Glucose/metabolism
- Bone Morphogenetic Proteins/biosynthesis
- Bone Morphogenetic Proteins/genetics
- Calcium/analysis
- Calcium-Binding Proteins/biosynthesis
- Cell Differentiation
- Core Binding Factor Alpha 1 Subunit/biosynthesis
- Core Binding Factor Alpha 1 Subunit/genetics
- Dietary Carbohydrates/administration & dosage
- Extracellular Matrix Proteins/biosynthesis
- Fructose/administration & dosage
- Glucose Tolerance Test
- Insulin/blood
- Insulin Resistance
- Lipid Peroxidation
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Osteopontin/biosynthesis
- Osteopontin/genetics
- Osteoprotegerin/biosynthesis
- Phosphorus/blood
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Sodium-Phosphate Cotransporter Proteins, Type III/biosynthesis
- Sodium-Phosphate Cotransporter Proteins, Type III/genetics
- Tunica Media/pathology
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Ye-bo Zhou
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kendrick J, Chonchol M. The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 2011; 58:826-34. [PMID: 21956015 PMCID: PMC3199354 DOI: 10.1053/j.ajkd.2011.07.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/21/2011] [Indexed: 12/16/2022]
Abstract
Vascular calcification is associated with significant cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). Factors unique to patients with CKD, such as hyperphosphatemia, predispose these patients to early and progressive vascular calcification. Hyperphosphatemia appears to be involved in a number of mechanisms that trigger and advance the progression of vascular calcification, including (1) transition of vascular smooth muscle cells (VSMCs) from a contractile to an osteochondrogenic phenotype and mineralization of VSMC matrix through sodium-dependent phosphate cotransporters, (2) induction of VSMC apoptosis, (3) inhibition of monocyte/macrophage differentiation into osteoclast-like cells, (4) elevation of fibroblast growth factor 23 levels, and (5) decreases in klotho expression. Whether vascular calcification can be prevented or reversed with strategies aimed at maintaining phosphate homeostasis presently is unknown. This review discusses these mechanisms in depth, exploring the interplay among vascular calcification promoters, inhibitors, and substrate that affect phosphorus handling leading to vascular calcification in individuals with CKD.
Collapse
Affiliation(s)
- Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA.
| | | |
Collapse
|
98
|
Scialla JJ, Leonard MB, Townsend RR, Appel L, Wolf M, Budoff MJ, Chen J, Lustigova E, Gadegbeku CA, Glenn M, Hanish A, Raj D, Rosas SE, Seliger SL, Weir MR, Parekh RS. Correlates of osteoprotegerin and association with aortic pulse wave velocity in patients with chronic kidney disease. Clin J Am Soc Nephrol 2011; 6:2612-9. [PMID: 21940840 DOI: 10.2215/cjn.03910411] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Osteoprotegerin (OPG), a cytokine that regulates bone resorption, has been implicated in the process of vascular calcification and stiffness. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serum OPG was measured in 351 participants with chronic kidney disease (CKD) from one site of the Chronic Renal Insufficiency Cohort Study. Cortical bone mineral content (BMC) was measured by quantitative computed tomography in the tibia. Multivariable linear regression was used to test the association between serum OPG and traditional cardiovascular risk factors, measures of abnormal bone and mineral metabolism, and pulse wave velocity. RESULTS Higher serum OPG levels were associated with older age, female gender, greater systolic BP, lower estimated GFR, and lower serum albumin. OPG was not associated with measures of abnormal bone or mineral metabolism including serum phosphorus, albumin-corrected serum calcium, intact parathyroid hormone, bone-specific alkaline phosphatase, or cortical BMC. Among 226 participants with concurrent aortic pulse wave velocity measurements, increasing tertiles of serum OPG were associated with higher aortic pulse wave velocity after adjustment for demographics, traditional vascular risk factors, and nontraditional risk factors such as estimated GFR, albuminuria, serum phosphate, corrected serum calcium, presence of secondary hyperparathyroidism, serum albumin, and C-reactive protein or after additional adjustment for cortical BMC in a subset (n = 161). CONCLUSIONS These data support a strong relationship between serum OPG and arterial stiffness independent of many potential confounders including traditional cardiovascular risk factors, abnormal bone and mineral metabolism, and inflammation.
Collapse
Affiliation(s)
- Julia J Scialla
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 2011; 109:697-711. [PMID: 21885837 PMCID: PMC3249146 DOI: 10.1161/circresaha.110.234914] [Citation(s) in RCA: 679] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular calcification contributes to the high risk of cardiovascular mortality in chronic kidney disease (CKD) patients. Dysregulation of calcium (Ca) and phosphate (P) metabolism is common in CKD patients and drives vascular calcification. In this article, we review the physiological regulatory mechanisms for Ca and P homeostasis and the basis for their dysregulation in CKD. In addition, we highlight recent findings indicating that elevated Ca and P have direct effects on vascular smooth muscle cells (VSMCs) that promote vascular calcification, including stimulation of osteogenic/chondrogenic differentiation, vesicle release, apoptosis, loss of inhibitors, and extracellular matrix degradation. These studies suggest a major role for elevated P in promoting osteogenic/chondrogenic differentiation of VSMC, whereas elevated Ca has a predominant role in promoting VSMC apoptosis and vesicle release. Furthermore, the effects of elevated Ca and P are synergistic, providing a major stimulus for vascular calcification in CKD. Unraveling the complex regulatory pathways that mediate the effects of both Ca and P on VSMCs will ultimately provide novel targets and therapies to limit the destructive effects of vascular calcification in CKD patients.
Collapse
|
100
|
Karohl C, D'Marco Gascón L, Raggi P. Noninvasive imaging for assessment of calcification in chronic kidney disease. Nat Rev Nephrol 2011; 7:567-77. [PMID: 21862991 DOI: 10.1038/nrneph.2011.110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular calcification is highly prevalent in patients with chronic kidney disease and has a progressive course. Several cardiovascular and uremia-related risk factors, such as abnormalities in mineral metabolism, contribute to the development of vascular calcification, although the pathophysiological mechanisms are still unclear. The presence and extent of vascular calcification is associated with an increased risk of cardiovascular events and mortality. By contrast, patients who do not have calcification seem to have a good prognosis, with minimal or no calcification progression over an extended period of time. A number of noninvasive imaging methods are available to detect vascular calcification and may help clinicians to make therapeutic decisions. Cardiac CT remains the reference standard to detect and quantify coronary artery, aortic and cardiac valve calcification. However, the high cost of equipment, the inability to perform in-office testing and the expertise required limit its use on a routine basis. Other imaging methods, such as planar X-ray, ultrasound and echocardiography, are appropriate alternatives to evaluate vascular and valvular calcification. In this review, we discuss the noninvasive imaging methods most frequently used to assess vascular and valvular calcification, with their advantages and limitations.
Collapse
Affiliation(s)
- Cristina Karohl
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Avenida Paulo Gama 110, Porto Alegre, RS 90040-060, Brazil
| | | | | |
Collapse
|