51
|
Kamphues C, Lefevre JH, Wang J, Amini N, Beaugerie L, Kuehn F, Park SH, Andreatos N, Lauscher JC, Enea D, Lehmann KS, Peru N, Weixler B, Kirchgesner J, Degro CE, Pozios I, van Beekum CJ, Schölch S, Zambonin D, Schineis C, Loch FN, Geka D, Theoxari M, Wu B, Wang PP, Antoniou E, Pikoulis E, Moussata D, Theodoropoulos G, Ouaissi M, Seeliger H, Inaba Y, Scaringi S, Reißfelder C, Vilz TO, Lin C, Yang SK, Beyer K, Renz BW, Sasaki K, Margonis GA, Svrcek M, Kreis ME. Prognostic value of primary tumor sidedness in patients with non-metastatic IBD related CRC - Is it the exception to the rule? Surg Oncol 2022; 45:101874. [PMID: 36257179 PMCID: PMC10266238 DOI: 10.1016/j.suronc.2022.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although primary tumor sidedness (PTS) has a known prognostic role in sporadic colorectal cancer (CRC), its role in Inflammatory Bowel Disease related CRC (IBD-CRC) is largely unknown. Thus, we aimed to evaluate the prognostic role of PTS in patients with IBD-CRC. METHODS All eligible patients with surgically treated, non-metastatic IBD-CRC were retrospectively identified from institutional databases at ten European and Asian academic centers. Long term endpoints included recurrence-free (RFS) and overall survival (OS). Multivariable Cox proportional hazard regression as well as propensity score analyses were performed to evaluate whether PTS was significantly associated with RFS and OS. RESULTS A total of 213 patients were included in the analysis, of which 32.4% had right-sided (RS) tumors and 67.6% had left-sided (LS) tumors. PTS was not associated with OS and RFS even on univariable analysis (5-year OS for RS vs LS tumors was 68.0% vs 77.3%, respectively, p = 0.31; 5-year RFS for RS vs LS tumors was 62.8% vs 65.4%, respectively, p = 0.51). Similarly, PTS was not associated with OS and RFS on propensity score matched analysis (5-year OS for RS vs LS tumors was 82.9% vs 91.3%, p = 0.79; 5-year RFS for RS vs LS tumors was 85.1% vs 81.5%, p = 0.69). These results were maintained when OS and RFS were calculated in patients with RS vs LS tumors after excluding patients with rectal tumors (5-year OS for RS vs LS tumors was 68.0% vs 77.2%, respectively, p = 0.38; 5-year RFS for RS vs LS tumors was 62.8% vs 59.2%, respectively, p = 0.98). CONCLUSIONS In contrast to sporadic CRC, PTS does not appear to have a prognostic role in IBD-CRC.
Collapse
Affiliation(s)
- Carsten Kamphues
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Jeremie H Lefevre
- Sorbonne Université, Department of Digestive Surgery, Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Saint Antoine, Paris, France
| | - Jane Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda Amini
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Beaugerie
- Department of Gastroenterology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Florian Kuehn
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - Sang Hyoung Park
- Department of Gastroenterology and Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Nikolaos Andreatos
- Department of Surgery and Department of Internal Medicine and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Johannes C Lauscher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Diana Enea
- Sorbonne Université, Assistance Publique des Hôpitaux de Paris AP-HP, Department of Pathology, Saint-Antoine Hospital, Paris, France
| | - Kai S Lehmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Nicolas Peru
- Sorbonne Université, Department of Digestive Surgery, Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Saint Antoine, Paris, France
| | - Benjamin Weixler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Julien Kirchgesner
- Department of Gastroenterology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Claudius E Degro
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Ioannis Pozios
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | | | - Sebastian Schölch
- Department of Surgery, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniela Zambonin
- Department of Experimental and Clinical Medicine, IBD Unit, Careggi University Hospital, Florence, Italy
| | - Christian Schineis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Florian N Loch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Despoina Geka
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Theoxari
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Pei-Pei Wang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Efstathios Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Pikoulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mehdi Ouaissi
- Department of Digestive, Oncological, Endocrine, Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Colorectal Surgery Unit, Trousseau Hospital, Tours, France
| | - Hendrik Seeliger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Yosuke Inaba
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, IBD Unit, Careggi University Hospital, Florence, Italy
| | - Christoph Reißfelder
- Department of Surgery, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim O Vilz
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Suk-Kyun Yang
- Department of Gastroenterology and Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Katharina Beyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - Kazunari Sasaki
- Department of Surgery and Department of Internal Medicine and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Georgios Antonios Margonis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Magali Svrcek
- Sorbonne Université, Assistance Publique des Hôpitaux de Paris AP-HP, Department of Pathology, Saint-Antoine Hospital, Paris, France
| | - Martin E Kreis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of General and Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
52
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
53
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
54
|
Molecular mechanisms associated with the chemoprotective role of protocatechuic acid and its potential benefits in the amelioration of doxorubicin-induced cardiotoxicity: A review. Toxicol Rep 2022; 9:1713-1724. [PMID: 36561952 PMCID: PMC9764176 DOI: 10.1016/j.toxrep.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Since its discovery in the 1960 s, doxorubicin (DOX) has constantly elicited the broadest spectrum of cancerocidal activity against human cancers. However, cardiotoxicity caused by DOX directly as well as its metabolites is a great source of concern over the continuous use of DOX in chemotherapy. While the exact mechanism of DOX-induced cardiotoxicity is yet to be completely understood, recent studies indicate oxidative stress, inflammation, and several forms of cell death as key pathogenic mechanisms that underpin the etiology of doxorubicin-induced cardiotoxicity (DIC). Notably, these key mechanistic events are believed to be negatively regulated by 3,4-dihydroxybenzoic acid or protocatechuic acid (PCA)-a plant-based phytochemical with proven anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Here, we review the experimental findings detailing the potential ameliorative effects of PCA under exposure to DOX. We also discuss molecular insights into the pathophysiology of DIC, highlighting the potential intervention points where the use of PCA as a veritable chemoprotective agent may ameliorate DOX-induced cardiotoxicities as well as toxicities due to other anticancer drugs like cisplatin. While we acknowledge that controlled oral administration of PCA during chemotherapy may be insufficient to eliminate all toxicities due to DOX treatment, we propose that the ability of PCA to block oxidative stress, attenuate inflammation, and abrogate several forms of cardiomyocyte cell death underlines its great promise in the amelioration of DIC.
Collapse
|
55
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
56
|
Cui HY, Wei W, Qian MR, Tian RF, Fu X, Li HW, Nan G, Yang T, Lin P, Chen X, Zhu YM, Wang B, Sun XX, Dou JH, Jiang JL, Li L, Wang SJ, Chen ZN. PDGFA-associated protein 1 is a novel target of c-Myc and contributes to colorectal cancer initiation and progression. Cancer Commun (Lond) 2022; 42:750-767. [PMID: 35716012 PMCID: PMC9395323 DOI: 10.1002/cac2.12322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanism underlying colorectal cancer (CRC) initiation and progression remains elusive, and overall survival is far from satisfactory. Previous studies have shown that PDGFA-associated protein 1 (PDAP1) is upregulated in several cancers including CRC. Here, we aimed to identify the cause and consequence of PDAP1 dysregulation in CRC and evaluate its role as a potential therapeutic target. METHODS Multi-omics data analysis was performed to identify potential key players in CRC initiation and progression. Immunohistochemistry (IHC) staining was applied to determine the expression pattern of PDAP1 in CRC tissues. Pdap1 conditional knockout mice were used to establish colitis and CRC mouse models. RNA sequencing, a phosphoprotein antibody array, western blotting, histological analysis, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, and interactome analysis were applied to identify the underlying mechanisms of PDAP1. A human patient-derived xenograft (PDX) model was used to assess the potential of PDAP1 as a therapeutic target. RESULTS PDAP1 was identified as a potential key player in CRC development using multi-omics data analysis. PDAP1 was overexpressed in CRC cells and correlated with reduced overall survival. Further investigation showed that PDAP1 was critical for the regulation of cell proliferation, migration, invasion, and metastasis. Significantly, depletion of Pdap1 in intestinal epithelial cells impaired mucosal restitution in dextran sulfate sodium salt-induced colitis and inhibited tumor initiation and growth in colitis-associated cancers. Mechanistic studies showed that c-Myc directly transactivated PDAP1, which contributed to the high PDAP1 expression in CRC cells. PDAP1 interacted with the juxtamembrane domain of epidermal growth factor receptor (EGFR) and facilitated EGFR-mitogen-activated protein kinase (MAPK) signaling activation, which resulted in FOS-related antigen 1 (FRA-1) expression, thereby facilitating CRC progression. Notably, silencing of PDAP1 could hinder the growth of patient-derived xenografts that sustain high PDAP1 levels. CONCLUSIONS PDAP1 facilitates mucosal restitution and carcinogenesis in colitis-associated cancer. c-Myc-driven upregulation of PDAP1 promotes proliferation, migration, invasion, and metastasis of CRC cells via the EGFR-MAPK-FRA-1 signaling axis. These findings indicated that PDAP1 inhibition is warranted for CRC patients with PDAP1 overexpression.
Collapse
Affiliation(s)
- Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Wei Wei
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Mei-Rui Qian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ruo-Fei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin Fu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ting Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China.,Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jian-Hua Dou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Jie Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
57
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
58
|
Jou E, Rodriguez-Rodriguez N, Ferreira ACF, Jolin HE, Clark PA, Sawmynaden K, Ko M, Murphy JE, Mannion J, Ward C, Matthews DJ, Buczacki SJA, McKenzie ANJ. An innate IL-25-ILC2-MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci Immunol 2022; 7:eabn0175. [PMID: 35658010 PMCID: PMC7612821 DOI: 10.1126/sciimmunol.abn0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-25 (IL-25) and group 2 innate lymphoid cells (ILC2s) defend the host against intestinal helminth infection and are associated with inappropriate allergic reactions. IL-33-activated ILC2s were previously found to augment protective tissue-specific pancreatic cancer immunity. Here, we showed that intestinal IL-25-activated ILC2s created an innate cancer-permissive microenvironment. Colorectal cancer (CRC) patients with higher tumor IL25 expression had reduced survival and increased IL-25R-expressing tumor-resident ILC2s and myeloid-derived suppressor cells (MDSCs) associated with impaired antitumor responses. Ablation of IL-25 signaling reduced tumors, virtually doubling life expectancy in an Apc mutation-driven model of spontaneous intestinal tumorigenesis. Mechanistically, IL-25 promoted intratumoral ILC2s, which sustained tumor-infiltrating MDSCs to suppress antitumor immunity. Therapeutic antibody-mediated blockade of IL-25 signaling decreased intratumoral ILC2s, MDSCs, and adenoma/adenocarcinoma while increasing antitumor adaptive T cell and interferon-γ (IFN-γ)-mediated immunity. Thus, the roles of innate epithelium-derived cytokines IL-25 and IL-33 as well as ILC2s in cancer cannot be generalized. The protumoral nature of the IL-25-ILC2 axis in CRC highlights this pathway as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | | | - Helen E. Jolin
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jane E. Murphy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Christopher Ward
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | | - Simon J. A. Buczacki
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | |
Collapse
|
59
|
Chen HM, MacDonald JA. Molecular Network Analyses Implicate Death-Associated Protein Kinase 3 (DAPK3) as a Key Factor in Colitis-Associated Dysplasia Progression. Inflamm Bowel Dis 2022; 28:1485-1496. [PMID: 35604388 PMCID: PMC9527615 DOI: 10.1093/ibd/izac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a progressive disorder that elevates the risk of colon cancer development through a colitis-dysplasia-carcinoma sequence. Gene expression profiling of colitis-associated lesions obtained from patients with varied extents of UC can be mined to define molecular panels associated with colon cancer development. METHODS Differential gene expression profiles of 3 UC clinical subtypes and healthy controls were developed for the GSE47908 microarray data set of healthy controls, left-sided colitis, pancolitis, and colitis-associated dysplasia (CAD) using limma R. RESULTS A gene ontology enrichment analysis of differentially expressed genes (DEGs) revealed a shift in the transcriptome landscape as UC progressed from left-sided colitis to pancolitis to CAD, from being immune-centric to being cytoskeleton-dependent. Hippo signaling (via Yes-associated protein [YAP]) and Ephrin receptor signaling were the top canonical pathways progressively altered in concert with the pathogenic progression of UC. A molecular interaction network analysis of DEGs in left-sided colitis, pancolitis, and CAD revealed 1 pairwise line, or edge, that was topologically important to the network structure. This edge was found to be highly enriched in actin-based processes, and death-associated protein kinase 3 (DAPK3) was a critical member and sole protein kinase member of this network. Death-associated protein kinase 3 is a regulator of actin-cytoskeleton reorganization that controls proliferation and apoptosis. Differential correlation analyses revealed a negative correlation for DAPK3-YAP in healthy controls that flipped to positive in left-sided colitis. With UC progression to CAD, the DAPK3-YAP correlation grew progressively more positive. CONCLUSION In summary, DAPK3 was identified as a candidate gene involved in UC progression to dysplasia.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Justin A MacDonald
- Address correspondence to: Justin A. MacDonald, PhD, Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6 ()
| |
Collapse
|
60
|
Cancer evolution: special focus on the immune aspect of cancer. Semin Cancer Biol 2022; 86:420-435. [PMID: 35589072 DOI: 10.1016/j.semcancer.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Cancer is an evolutionary disease. Intra-tumor heterogeneity (ITH), which describes the diversity within individual tumors, sets the foundation for evolution. The fitness of tumor cells is determined by their microenvironment, which exerts intense selection pressure that generally favors cells with survival and proliferation advantages. It has been revealed that host immunity dramatically influences the evolutionary trajectory of cancer. As technologies advance, a refined map of the immune system's involvement in cancer evolution has gradually come to our knowledge. Here we specifically view cancer through the lens of evolutionary immunological biology. We will cover the neoplastic evolution under immunosurveillance, including how the host immunity shapes the tumor evolutionary trajectory and how progressive tumors modulate the host immunity to survive. A comprehensive understanding of the interplay between cancer evolution and cancer immunity provides clues to combating cancer strategically.
Collapse
|
61
|
de Krijger M, Carvalho B, Rausch C, Bolijn AS, Delis-van Diemen PM, Tijssen M, van Engeland M, Mostafavi N, Bogie RMM, Dekker E, Masclee AAM, Verheij J, Meijer GA, Ponsioen CY. Genetic Profiling of Colorectal Carcinomas of Patients with Primary Sclerosing Cholangitis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1309-1320. [PMID: 35554535 PMCID: PMC9434447 DOI: 10.1093/ibd/izac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients with primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) run a 10-fold increased risk of developing colorectal cancer (CRC) compared to patients with IBD only. The aim of this study was to perform an extensive screen of known carcinogenic genomic alterations in patients with PSC-IBD, and to investigate whether such changes occur already in nondysplastic mucosa. METHODS Archival cancer tissue and nondysplastic mucosa from resection specimens of 19 patients with PSC-IBD-CRC were characterized, determining DNA copy-number variations, microsatellite instability (MSI), mutations on 48 cancer genes, and CpG island methylator phenotype (CIMP). Genetic profiles were compared with 2 published cohorts of IBD-associated CRC (IBD-CRC; n = 11) and sporadic CRC (s-CRC; n = 100). RESULTS Patterns of chromosomal aberrations in PSC-IBD-CRC were similar to those observed in IBD-CRC and s-CRC, MSI occurred only once. Mutation frequencies were comparable between the groups, except for mutations in KRAS, which were less frequent in PSC-IBD-CRC (5%) versus IBD-CRC (38%) and s-CRC (31%; P = .034), and in APC, which were less frequent in PSC-IBD-CRC (5%) and IBD-CRC (0%) versus s-CRC (50%; P < .001). Cases of PSC-IBD-CRC were frequently CIMP positive (44%), at similar levels to cases of s-CRC (34%; P = .574) but less frequent than in cases with IBD-CRC (90%; P = .037). Similar copy number aberrations and mutations were present in matched cancers and adjacent mucosa in 5/15 and 7/11 patients, respectively. CONCLUSIONS The excess risk of CRC in patients with PSC-IBD was not explained by copy number aberrations, mutations, MSI, nor CIMP status, in cancer tissue, nor in adjacent mucosa. These findings set the stage for further exome-wide and epigenetic studies.
Collapse
Affiliation(s)
- Manon de Krijger
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands,Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Beatriz Carvalho
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christian Rausch
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne S Bolijn
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Marianne Tijssen
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Nahid Mostafavi
- Biostatistics Unit of Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Roel M M Bogie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ad A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cyriel Y Ponsioen
- Address Correspondence to: Cyriel Y. Ponsioen, MD, PhD, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands ()
| |
Collapse
|
62
|
Bernardazzi C, Castelo-Branco MTL, Pêgo B, Ribeiro BE, Rosas SLB, Santana PT, Machado JC, Leal C, Thompson F, Coutinho-Silva R, de Souza HSP. The P2X7 Receptor Promotes Colorectal Inflammation and Tumorigenesis by Modulating Gut Microbiota and the Inflammasome. Int J Mol Sci 2022; 23:ijms23094616. [PMID: 35563010 PMCID: PMC9099551 DOI: 10.3390/ijms23094616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R−/− mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R−/− and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R−/− and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.
Collapse
Affiliation(s)
- Claudio Bernardazzi
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724, USA;
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Morgana Teixeira Lima Castelo-Branco
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Pêgo
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - Patrícia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
| | - João Carlos Machado
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Camille Leal
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (C.L.); (F.T.)
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (C.L.); (F.T.)
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil;
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (M.T.L.C.-B.); (B.P.); (B.E.R.); (S.L.B.R.); (P.T.S.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
- Correspondence: ; Tel.: +55-21-39382669
| |
Collapse
|
63
|
Klingler S, Hsu KS, Hua G, Martin ML, Adileh M, Baslan T, Zhang Z, Paty PB, Fuks Z, Brown AM, Kolesnick R. Disruption of the crypt niche promotes outgrowth of mutated colorectal tumor stem cells. JCI Insight 2022; 7:153793. [PMID: 35260534 PMCID: PMC8983138 DOI: 10.1172/jci.insight.153793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5–positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane–dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury–induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.
Collapse
Affiliation(s)
- Stefan Klingler
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kuo-Shun Hsu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guoqiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Maria Laura Martin
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mohammad Adileh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | - Zvi Fuks
- Department of Radiation Oncology, and
| | - Anthony Mc Brown
- Department of Cell & Developmental Biology, Weill Cornell Medicine, New York, New York, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
64
|
Biscaglia G, Latiano A, Castellana S, Fontana R, Gentile A, Latiano T, Corritore G, Panza A, Nardella M, Martino G, Bossa F, Perri F, Mazza T, Andriulli A, Palmieri O. Germline Alterations in Patients With IBD-associated Colorectal Cancer. Inflamm Bowel Dis 2022; 28:447-454. [PMID: 34347074 DOI: 10.1093/ibd/izab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with inflammatory bowel diseases (IBD), both ulcerative colitis (UC) and Crohn's disease (CD), are at risk of developing a colorectal cancer (CRC). No information is available on the contribution of patients' genetic background to CRC occurrence. This study investigates germline alterations in patients with IBD-associated CRC. METHODS We profiled a panel of 39 genes potentially involved in cancer predisposition and searched for germline variants in IBD patients with CRC or high-grade dysplasia. RESULTS After clinical exclusion of genetic cancer syndromes, 25 IBD patients (4 CD and 21 UC) with CRC or high-grade dysplasia were studied. After excluding variants with low likelihood of pathogenicity (classes 1 or 2 according the International Agency for Research on Cancer [IARC]), the panel identified pathogenic variants, likely pathogenic, or variants with unknown significance in 18 patients (72%). Six patients (24%) carried pathogenic or likely variants (IARC class 5 or 4). Of the identified variants, 4 encompassed the APC region, 3 the MLH1 gene, and the remaining ones the MSH2, MSH3, monoallelic MUTYH, EPCAM, BRCA1, CHEK2, POLD1, POLE, CDKN2A, and PDGFRA genes. Four patients carried at least 2 variants in different genes. Duration of IBD was significantly shorter in carriers of 4 or 5 IARC variants (7 years; range 0-21; P = .002) and in those with variants with unknown significance (12 years; range 0-22; P = .005) compared with patients without or with only benign variations (23.5 years; range 15-34). CONCLUSIONS In silico analysis and sequence-based testing of germline DNA from IBD patients with CRC or high-grade dysplasia detected 24% of variants positioned in pathogenic classes. In patients with type 3, 4, and 5 variants, the onset of high-grade dysplasia or CRC was significantly earlier than in patients with benign or unidentified variants. The screening for these genes could identify IBD patients requiring a more intensive endoscopic surveillance for earlier detection of dysplastic changes.
Collapse
Affiliation(s)
- Giuseppe Biscaglia
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Anna Latiano
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Rosanna Fontana
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Gentile
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Latiano
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Corritore
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Anna Panza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marianna Nardella
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppina Martino
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Bossa
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Andriulli
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palmieri
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
65
|
Shah SC, Itzkowitz SH. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022; 162:715-730.e3. [PMID: 34757143 PMCID: PMC9003896 DOI: 10.1053/j.gastro.2021.10.035] [Citation(s) in RCA: 361] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Patients with inflammatory bowel disease (IBD) are at increased risk of developing colorectal cancer (CRC), despite decreases in CRC incidence in recent years. Chronic inflammation is the driver of neoplastic progression, resulting in dysplastic precursor lesions that may arise in multiple areas of the colon through a process of field cancerization. Colitis-associated CRC shares many molecular similarities with sporadic CRC, and preclinical investigations have demonstrated a potential role for the microbiome in concert with the host immune system in the development of colitis-associated colorectal cancer (CAC). Some unique molecular differences occur in CAC, but their role in the pathogenesis and behavior of inflammation-associated cancers remains to be elucidated. Nonconventional types of dysplasia have been increasingly recognized, but their natural history is not well defined, and they have not been incorporated into surveillance algorithms. The concept of cumulative inflammatory burden highlights the importance of considering histologic inflammation over time as an important risk factor for CAC. Dysplasia is arguably the most important risk factor for developing CAC, and advances have been made in the endoscopic detection and removal of precancerous lesions, thereby deferring or avoiding surgical resection. Some of the agents used to treat IBD are chemopreventive. It is hoped that by gaining better control of the underlying inflammation with newer medications and better endoscopic detection and management, a more sophisticated appreciation of clinicopathologic risk factors, and growing awareness of the genetic, immunologic, and environmental causes of colitis- associated neoplasia, that colitis-associated colorectal neoplasia will become even more predictable and manageable in the coming years.
Collapse
Affiliation(s)
- Shailja C Shah
- Division of Gastroenterology, University of California San Diego, San Diego, California; GI Section, VA San Diego Healthcare Center, San Diego, California
| | - Steven H Itzkowitz
- The Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
66
|
Qin Z, Yuan X, Liu J, Shi Z, Cao L, Yang L, Wu K, Lou Y, Tong H, Jiang L, Du J. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice. Front Pharmacol 2022; 13:833077. [PMID: 35264966 PMCID: PMC8899018 DOI: 10.3389/fphar.2022.833077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation is an important risk factor in the development of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Accumulating evidence indicates that some phytochemicals have anti-cancer properties. Polysaccharides extracted from Albuca bracteata (AB) have been reported to possess anti-neoplastic activities on colorectal cancer (CRC) models. However, it is still unclear whether they exert therapeutic effects on colorectal cancer. In this study, we investigate the properties of polysaccharides of A. bracteate, named ABP. The average molecular weight of ABP was 18.3 kDa and ABP consisted of glucose, mannose, galactose, xylose, galacturonic acid, glucuronic acid at a molar ratio of 37.8:8:2.5:1.7:1:1. An Azoxymethane/Dextran sodium sulfate (AOM/DSS) induced CAC mouse model was established. The CAC mice treated with ABP showed smaller tumor size and lower tumor incidence than untreated ones. ABP increased anti-inflammatory cytokine IL-10, inhibited secretion of pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α), mitigated oxidative stress by increasing GSH and decreasing MDA levels, suppressed the activation of STAT3 and expressions of its related genes c-Myc and cyclin D1. Moreover, ABP treatment increased the relative abundance of beneficial bacteria (f_Ruminococcaceae, g_Roseburia, g_Odoribacter, g_Oscillospira, and g_Akkermansia) and the levels of fecal short-chain fatty acid (SCFA) in CAC model mice. In summary, our data suggest that ABP could be a potential therapeutic agent for treating CAC.
Collapse
Affiliation(s)
- Ziyan Qin
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Xinyu Yuan
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhuqing Shi
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Leipeng Cao
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Lexuan Yang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| | - Lei Jiang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| | - Jimei Du
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| |
Collapse
|
67
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|
68
|
Porter RJ, Arends MJ, Churchhouse AMD, Din S. Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational Risks from Mechanisms to Medicines. J Crohns Colitis 2021; 15:2131-2141. [PMID: 34111282 PMCID: PMC8684457 DOI: 10.1093/ecco-jcc/jjab102] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cumulative impact of chronic inflammation in patients with inflammatory bowel diseases predisposes to the development of inflammatory bowel disease-associated colorectal cancer [IBD-CRC]. Inflammation can induce mutagenesis, and the relapsing-remitting nature of this inflammation, together with epithelial regeneration, may exert selective pressure accelerating carcinogenesis. The molecular pathogenesis of IBD-CRC, termed the 'inflammation-dysplasia-carcinoma' sequence, is well described. However, the immunopathogenesis of IBD-CRC is less well understood. The impact of novel immunosuppressive therapies, which aim to achieve deep remission, is mostly unknown. Therefore, this timely review summarizes the clinical context of IBD-CRC, outlines the molecular and immunological basis of disease pathogenesis, and considers the impact of novel biological therapies.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, UK
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer & Genetics, Western General Hospital, University of Edinburgh, UK
| | | | - Shahida Din
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
- Corresponding author: Dr Shahida Din, Edinburgh IBD Unit, Anne Ferguson Building, Western General Hospital, Edinburgh EH4 2XU, UK. Tel: +44 (0) 131 537 1758;
| |
Collapse
|
69
|
Degirmenci B, Dincer C, Demirel HC, Berkova L, Moor AE, Kahraman A, Hausmann G, Aguet M, Tuncbag N, Valenta T, Basler K. Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. iScience 2021; 24:103369. [PMID: 34849464 PMCID: PMC8607204 DOI: 10.1016/j.isci.2021.103369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors. Acquired expression of epithelial Wnts can drive colon cancer in murine AOM/DSS model Blocking epithelial Wnt-secretion induces apoptosis of AOM/DSS cancer cells The loss of epithelial Wnts promotes differentiation of Wnt-dependent colon tumors Organoids derived from AOM/DSS cancer depend on self-autonomously secreted Wnts
Collapse
Affiliation(s)
- Bahar Degirmenci
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Cansu Dincer
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Andreas E Moor
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
70
|
Sahgal P, Huffman BM, Patil DT, Chatila WK, Yaeger R, Cleary JM, Sethi NS. Early TP53 Alterations Shape Gastric and Esophageal Cancer Development. Cancers (Basel) 2021; 13:5915. [PMID: 34885025 PMCID: PMC8657039 DOI: 10.3390/cancers13235915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric and esophageal (GE) adenocarcinomas are the third and sixth most common causes of cancer-related mortality worldwide, accounting for greater than 1.25 million annual deaths. Despite the advancements in the multi-disciplinary treatment approaches, the prognosis for patients with GE adenocarcinomas remains poor, with a 5-year survival of 32% and 19%, respectively, mainly due to the late-stage diagnosis and aggressive nature of these cancers. Premalignant lesions characterized by atypical glandular proliferation, with neoplastic cells confined to the basement membrane, often precede malignant disease. We now appreciate that premalignant lesions also carry cancer-associated mutations, enabling disease progression in the right environmental context. A better understanding of the premalignant-to-malignant transition can help us diagnose, prevent, and treat GE adenocarcinoma. Here, we discuss the evidence suggesting that alterations in TP53 occur early in GE adenocarcinoma evolution, are selected for under environmental stressors, are responsible for shaping the genomic mechanisms for pathway dysregulation in cancer progression, and lead to potential vulnerabilities that can be exploited by a specific class of targeted therapy.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (P.S.); (B.M.H.); (J.M.C.)
- Cancer Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (P.S.); (B.M.H.); (J.M.C.)
| | - Deepa T. Patil
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
| | - Walid K. Chatila
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10021, USA;
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (P.S.); (B.M.H.); (J.M.C.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nilay S. Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (P.S.); (B.M.H.); (J.M.C.)
- Cancer Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
71
|
Reznicek E, Arfeen M, Shen B, Ghouri YA. Colorectal Dysplasia and Cancer Surveillance in Ulcerative Colitis. Diseases 2021; 9:86. [PMID: 34842672 PMCID: PMC8628786 DOI: 10.3390/diseases9040086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a risk factor for the development of inflammation-associated dysplasia or colitis-associated neoplasia (CAN). This transformation results from chronic inflammation, which induces changes in epithelial proliferation, survival, and migration via the induction of chemokines and cytokines. There are notable differences in genetic mutation profiles between CAN in UC patients and sporadic colorectal cancer in the general population. Colonoscopy is the cornerstone for surveillance and management of dysplasia in these patients. There are several modalities to augment the quality of endoscopy for the better detection of dysplastic or neoplastic lesions, including the use of high-definition white-light exam and image-enhanced colonoscopy, which are described in this review. Clinical practice guidelines regarding surveillance strategies in UC have been put forth by various GI societies, and overall, there is agreement between them except for some differences, which we highlight in this article. These guidelines recommend that endoscopically detected dysplasia, if feasible, should be resected endoscopically. Advanced newer techniques, such as endoscopic mucosal resection and endoscopic submucosal dissection, have been utilized in the treatment of CAN. Surgery has traditionally been the mainstay of treating such advanced lesions, and in cases where endoscopic resection is not feasible, a proctocolectomy, followed by ileal pouch-anal anastomosis, is generally recommended. In this review we summarize the approach to surveillance for cancer and dysplasia in UC. We also highlight management strategies if dysplasia is detected.
Collapse
Affiliation(s)
- Emily Reznicek
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mohammad Arfeen
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA
| | - Bo Shen
- Interventional IBD Center, Department of Medicine and Surgery, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yezaz A. Ghouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
72
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
73
|
Bogach J, Pond G, Eskicioglu C, Simunovic M, Seow H. Extent of Surgical Resection in Inflammatory Bowel Disease Associated Colorectal Cancer: a Population-Based Study. J Gastrointest Surg 2021; 25:2610-2618. [PMID: 33559097 DOI: 10.1007/s11605-021-04913-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/10/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The extent of surgical resection in inflammatory bowel disease (IBD) patients who develop colorectal cancer (CRC) is not prescribed by guidelines. We aim to evaluate, at a population level, the association of extent of surgical resection with survival outcomes. METHODS Using a validated Ontario registry of Crohn's disease (CD) and ulcerative colitis (UC) patients, we identified patients who underwent colorectal cancer resection between 2007 and 2015. Patient, tumor, and treatment factors, including type of surgical resection, were collected. Resections were grouped as segmental, total colectomy, and proctocolectomy. Multivariable cox proportional hazard regression was performed to identify factors associated with survival, including extent of surgical resection. RESULTS Between 2007 and 2015, 84,694 patients had resections for CRC in the province of Ontario, 599 had ulcerative colitis (UC), and 366 had Crohn's disease (CD). Segmental resection was the most common operation performed and was more common in CD patients compared to UC (68% vs. 45.6%, p < 0.001). Five-year survival was 63.7% (95% CI 59.5-67.7) in UC patients and 57.5% (95% CI 51.9-62.7) in CD patients (p = 0.033). Multivariable analysis showed worse survival in patients undergoing total colectomy, compared to segmental resection [HR 1.70 (95% CI 1.31-2.21), p < 0.001]. There was no significant difference in survival between patients undergoing segmental resection and proctocolectomy [HR 0.99 (95% CI 0.78-1.27)]. This pattern was similar within the subtypes of IBD. CONCLUSION In the setting of IBD-associated CRC, segmental resection and proctocolectomy are associated with similar survival outcomes in both UC and CD patients. Prospective study is essential to explore these findings.
Collapse
Affiliation(s)
- Jessica Bogach
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
- , Hamilton, Canada.
| | - Gregory Pond
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Cagla Eskicioglu
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Marko Simunovic
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Hsien Seow
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
74
|
Lin VA, Lohse R, Madsen MT, Fransgaard T, Remzi FH, Gögenur I. Long-Term Outcomes After Colorectal Surgery in Patients with Ulcerative Colitis-Associated Colorectal Cancer Versus Sporadic Colorectal Cancer. Ann Surg Oncol 2021; 29:2505-2512. [PMID: 34482452 DOI: 10.1245/s10434-021-10759-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ulcerative colitis is associated with a higher risk for developing colorectal cancer. It is unknown whether this translates into a worse prognosis when malignancy occurs. The goal of this study was to compare long-term outcomes between patients with ulcerative colitis-associated colorectal cancer and sporadic colorectal cancer. METHODS All patients who underwent surgery with curative intent for colorectal cancer in Denmark between January 2004 and June 2016 were included in the study. Patients diagnosed with ulcerative colitis were identified and matched 1:5 with patients with sporadic colorectal cancer using propensity score matching. The primary outcome was disease-free survival, with recurrence-free survival and all-cause mortality as secondary outcomes. In order to relate the results of the study to the existing literature, a systematic review with meta-analysis was conducted. RESULTS A total of 1332 patients, 222 with ulcerative colitis and 1110 with sporadic colorectal cancer were included in the study. Disease-free survival was similar between the two groups with a hazards ratio (HR) 1.06 [95% confidence interval (CI) 0.85-1.32], as was recurrence-free survival HR 1.14 (95% CI 0.86-1.53) and all-cause mortality HR 1.15 (95% CI 0.89-1.48). The results of the systematic review identified seven other relevant studies. Meta-analysis showed a HR 1.67 (95% CI 0.61-4.56) for recurrence-free survival and HR 1.21 (95% CI 0.93-1.56) for all-cause mortality. CONCLUSIONS There were no significant differences in long-term outcomes between ulcerative colitis-associated and sporadic colorectal cancer. However, the current results are limited by possible residual confounding and the meta-analysis by heterogeneity in confounding adjustment.
Collapse
Affiliation(s)
- Viviane A Lin
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark. .,Department of Surgery, Nordsjællands Hospital Hillerød, Hillerød, Denmark.
| | - Robin Lohse
- Department of Anesthesiology, Herlev Hospital, Herlev, Denmark
| | - Michael T Madsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Tina Fransgaard
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Feza H Remzi
- Department of Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
75
|
Yang T, Hao L, Yang X, Luo C, Wang G, Lin Cai C, Qi S, Li Z. Prognostic value of derived neutrophil-to-lymphocyte ratio (dNLR) in patients with non-small cell lung cancer receiving immune checkpoint inhibitors: a meta-analysis. BMJ Open 2021; 11:e049123. [PMID: 34475167 PMCID: PMC8413941 DOI: 10.1136/bmjopen-2021-049123] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Derived neutrophil-to-lymphocytes ratio (dNLR) has recently been reported as a novel potential biomarker associated with prognosis of non-small cell lung cancer (NSCLC). However, evidence for the prognostic utility of dNLR in patients with NSCLC treated with immune checkpoint inhibitors (ICIs) remains inconsistent. The objective of this work was to evaluate the association between pretreatment dNLR and prognosis of patients with NSCLC treated with ICIs. DESIGN This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. DATA SOURCES PubMed, EMBASE, Web of Science and the Cochrane Library were searched for eligible studies up to 16 October 2020. ELIGIBILITY CRITERIA: (1) Human subjects receiving ICIs therapy and who had been diagnosed with NSCLC; (2) the baseline values of dNLR were obtained; (3) the objective of the study was to investigate the relationships between dNLR and overall survival (OS) or progression-free survival (PFS) in NSCLC and (4) HR and 95% CI were displayed in the original article or could be extracted from Kaplan-Meier curves. DATA EXTRACTION AND SYNTHESIS Two investigators extracted data independently. Data synthesis was performed via systematic review and meta-analysis of eligible cohort studies. Meta-analysis was performed with Cochran's Q test and I2 statistics. Publication bias of studies was assessed by Begg's test and Egger's test. We used V.12.0 of the Stata statistical software. RESULTS This analysis included eight studies (2456 cases) on the prognostic utility of dNLR in ICI therapy for NSCLC. The results indicate that higher dNLR significantly predicted poor OS (HR=1.65, 95% CI 1.46 to 1.88; p<0.001) and PFS (HR=1.38, 95% CI 1.23 to 1.55; p<0.001). Subgroup analyses of OS-related studies indicated that there were similar results in stratifications by ethnicity, sample size, type of HR and dNLR cut-off value. As for PFS-related studies, subgroup analyses showed no significant difference in Asian populations. Publication biases were not detected using Begg's test and Egger's linear regression test. CONCLUSIONS This meta-analysis indicated that elevated pretreatment dNLR may be a negative prognostic predictor for patients with NSCLC treated with ICIs. More large-sample and higher-quality studies are warranted to support our findings. PROSPERO REGISTRATION NUMBER CRD42021214034.
Collapse
Affiliation(s)
- Tao Yang
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lizheng Hao
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Xinyu Yang
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Changyong Luo
- Beijing University of Chinese Medicine, Beijing, China
| | - Guomi Wang
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Shuo Qi
- Department of Thyroid, Sun Simiao hospital, Beijing University of Chinese Medicine, Tongchuan, China
| | - Zhong Li
- Department of Hematology and Oncology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| |
Collapse
|
76
|
Fukumoto Y, Kobayashi Y, Takemura S, Maeda K, Nakamura F, Inatomi O, Andoh A, Ban H. A case of appendix adenocarcinoma associated with ulcerative colitis. Clin Case Rep 2021; 9:e04768. [PMID: 34484784 PMCID: PMC8405520 DOI: 10.1002/ccr3.4768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disorder of the colon. Patients with UC have an increased risk of developing colorectal cancer. However, appendix adenocarcinoma associated with UC is extremely rare.
Collapse
Affiliation(s)
- Yohsuke Fukumoto
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| | - Yuh Kobayashi
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| | | | - Kiyosumi Maeda
- Division of RadiologyKusatsu General HospitalKusatsuJapan
| | | | - Osamu Inatomi
- Department of MedicineShiga University of Medical ScienceKusatsuJapan
| | - Akira Andoh
- Department of MedicineShiga University of Medical ScienceKusatsuJapan
| | - Hiromitsu Ban
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| |
Collapse
|
77
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
78
|
Liu S, Ma Y, You W, Li J, Li JN, Qian JM. Hamartomatous polyposis syndrome associated malignancies: Risk, pathogenesis and endoscopic surveillance. J Dig Dis 2021; 22:444-451. [PMID: 34145757 DOI: 10.1111/1751-2980.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Hamartomatous polyposis syndromes (HPS) are a heterogeneous spectrum of diseases that are characterized by diffuse hamartomatous polyps lining the gastrointestinal (GI) tract together with extra-GI manifestations. Classical HPS includes juvenile polyposis syndrome, Peutz-Jeghers syndrome, PTEN hamartoma tumor syndrome and hereditary mixed polyposis syndrome. Patients with HPS have a higher risk of GI and extra-GI malignancies than the general population, although the underlying mechanisms remain unclear and are obviously different from the carcinogenesis of classical adenocarcinoma and colitis-associated malignancy. In this review we aimed to clarify the risks, possible mechanism and endoscopic surveillance of HPS-associated GI malignancies.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Ma
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen You
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Ming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
79
|
Rajamäki K, Taira A, Katainen R, Välimäki N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV, Vartiainen E, Sulo P, Ravantti J, Lehtipuro S, Granberg KJ, Nykter M, Tanskanen T, Ristimäki A, Koskensalo S, Renkonen-Sinisalo L, Lepistö A, Böhm J, Taipale J, Mecklin JP, Aavikko M, Palin K, Aaltonen LA. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer. Gastroenterology 2021; 161:592-607. [PMID: 33930428 DOI: 10.1053/j.gastro.2021.04.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5'untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.
Collapse
Affiliation(s)
- Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Kuosmanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Roosa-Maria Plaketti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; Department of Surgical Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Maarit Ahtiainen
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Emilia Vartiainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Sulo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Suvi Lehtipuro
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Tomas Tanskanen
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jukka-Pekka Mecklin
- Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
80
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021; 12:642608. [PMID: 34306002 PMCID: PMC8299211 DOI: 10.3389/fgene.2021.642608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
81
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021. [DOI: 10.3389/fgene.2021.642608
expr 881161437 + 993839471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
|
82
|
Yalchin M, Baker AM, Graham TA, Hart A. Predicting Colorectal Cancer Occurrence in IBD. Cancers (Basel) 2021; 13:2908. [PMID: 34200768 PMCID: PMC8230430 DOI: 10.3390/cancers13122908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with colonic inflammatory bowel disease (IBD) are at an increased risk of developing colorectal cancer (CRC), and are therefore enrolled into a surveillance programme aimed at detecting dysplasia or early cancer. Current surveillance programmes are guided by clinical, endoscopic or histological predictors of colitis-associated CRC (CA-CRC). We have seen great progress in our understanding of these predictors of disease progression, and advances in endoscopic technique and management, along with improved medical care, has been mirrored by the falling incidence of CA-CRC over the last 50 years. However, more could be done to improve our molecular understanding of CA-CRC progression and enable better risk stratification for patients with IBD. This review summarises the known risk factors associated with CA-CRC and explores the molecular landscape that has the potential to complement and optimise the existing IBD surveillance programme.
Collapse
Affiliation(s)
- Mehmet Yalchin
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ann-Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Trevor A. Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ailsa Hart
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
| |
Collapse
|
83
|
Hirsch D, Hardt J, Sauer C, Heselmeyer-Hadded K, Witt SH, Kienle P, Ried T, Gaiser T. Molecular characterization of ulcerative colitis-associated colorectal carcinomas. Mod Pathol 2021; 34:1153-1166. [PMID: 33318582 PMCID: PMC8154647 DOI: 10.1038/s41379-020-00722-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Patients with ulcerative colitis (UC) are at increased risk for developing colorectal cancer (CRC). In contrast to sporadic colorectal tumorigenesis, TP53 mutations occur early in the progression from inflamed colonic epithelium to dysplasia to CRC, and are sometimes readily detectable in inflamed, (yet) non-dysplastic mucosa. Here, we analyzed formalin-fixed paraffin-embedded tissue samples from 19 patients with long-standing UC (median 18 years, range 3 to 34) who had developed CRC as a consequence of chronic inflammation of the large bowel. We performed microsatellite instability testing, copy number analysis by array-based comparative genomic hybridization, mutation analysis by targeted next generation sequencing (48-gene panel) and TP53 immunostaining. The results were compared to The Cancer Genome Atlas (TCGA) data on sporadic CRC. All UC-CRC lesions in our cohort were microsatellite stable. Overall, genomic imbalances of UC-CRCs showed patterns of chromosomal aneuploidies characteristic for sporadic CRC with the exception of gains of chromosome arm 5p (12 of 23 UC-CRC, 52%), which are rare in sporadic CRCs from TCGA (21 of 144, 15%; FDR adjusted P = 0.006). UC-CRCs showed a predilection for TP53 alterations, which was the most frequently mutated gene in our cohort (20 of 23, 87%). Interestingly, spatially separated tumor lesions from individual patients tended to harbor distinct TP53 mutations. Similar to CRCs arising in a background of Crohn's colitis, the genetic landscape of UC-CRCs was characterized by TP53 mutations and chromosomal aneuploidies including gains of chromosome arm 5p. Both alterations harbor the potential for early detection in precursor lesions, thus complementing morphologic diagnosis.
Collapse
Affiliation(s)
- Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Julia Hardt
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Sauer
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kerstin Heselmeyer-Hadded
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kienle
- General and Visceral Surgery, Theresienkrankenhaus and St. Hedwig-Klinik GmbH, Mannheim, Germany
| | - Thomas Ried
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
84
|
Galuppini F, Fassan M, Mastracci L, Gafà R, Lo Mele M, Lazzi S, Remo A, Parente P, D'Amuri A, Mescoli C, Tatangelo F, Lanza G. The histomorphological and molecular landscape of colorectal adenomas and serrated lesions. Pathologica 2021; 113:218-229. [PMID: 34294939 PMCID: PMC8299322 DOI: 10.32074/1591-951x-270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The 2019 WHO classification of digestive system tumors significantly reformed the classificatory definition of serrated lesions of the colorectal mucosa and added new essential diagnostic criteria for both conventional adenomas and hereditary gastrointestinal polyposis syndromes. Histopathological examination of colorectal adenocarcinoma precursors lesions represents an important segment of daily clinical practice in a pathology department and is essential for the implementation of current colorectal adenocarcinoma secondary prevention strategies. This overview will focus on a schematic histopathological and molecular classification of precursor lesions arising within colorectal mucosa.
Collapse
Affiliation(s)
- Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Luca Mastracci
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, Genova, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcello Lo Mele
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | - Claudia Mescoli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori, IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
85
|
Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig Liver Dis 2021; 53:558-565. [PMID: 33541800 DOI: 10.1016/j.dld.2021.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The risk of colorectal cancer (CRC) is higher in patients with inflammatory bowel disease (IBD). Population-based data from patients with ulcerative colitis (UC) estimate that the risk of CRC is approximately 2- to 3-fold that of the general population; patients with Crohn's disease appear to have a similar increased risk. However, the true extent of colitis-associated cancer (CAC) in undertreated IBD is unclear. Data suggest that the size (i.e., severity and extent) and persistence of the inflammatory process is largely responsible for the development of CRC in IBD. As patients with IBD and CRC have a worse prognosis than those without a history of IBD, the impact of current therapies for IBD on CAC is of importance. Chronic inflammation of the gut has been shown to increase the risk of developing CAC in both UC and CD. Therefore, control of inflammation is pivotal to the prevention of CAC. This review presents an overview of the current knowledge of CAC in IBD patients, focusing on the role of inflammation in the pathogenesis of CAC and the potential for IBD drugs to interfere with the process of carcinogenesis by reducing the inflammatory process or by modulating pathways directly involved in carcinogenesis.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, Gastroenterology Unit, University of Cagliari, Cittadella Universitaria di Monserrato - Asse Didattico I, SS 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
86
|
Iwaya M, Hayashi H, Nakajima T, Matsuda K, Kinugawa Y, Tobe Y, Tateishi Y, Iwaya Y, Uehara T, Ota H. Colitis-associated colorectal adenocarcinomas frequently express claudin 18 isoform 2: implications for claudin 18.2 monoclonal antibody therapy. Histopathology 2021; 79:227-237. [PMID: 33590909 DOI: 10.1111/his.14358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
AIMS Claudin 18 (CLDN18) is a member of the claudin family of cell surface proteins, which are widely expressed in epithelial cells and play a role in cell-cell adhesion. CLDN18 isoform 2 (CLDN18.2) is specifically expressed in gastric epithelial cells, and is frequently expressed at high levels in gastric adenocarcinoma. On the basis of this, zolbetuximab, a targeted monoclonal antibody, has been developed for patients with CLDN18.2-positive gastro-oesophageal adenocarcinoma. Colitis-associated colorectal adenocarcinomas (CACs) tend to lose intestinal markers and show aberrant gastric mucin expression. Furthermore, clinical trials of human epidermal growth factor receptor 2 (HER2) inhibitor therapy for colorectal carcinoma are ongoing. However, the expression profile of CLDN18.2 and HER2 has not been described in a series of human CACs. METHODS AND RESULTS We performed immunohistochemistry for CLDN18 and HER2 on 56 consecutive CACs from 55 inflammatory bowel disease patients, and compared the expression profile with that of a control group of 56 sporadic colorectal adenocarcinomas (CRCs). CLDN18.1 expression and CLDN18.2 expression were validated by reverse transcription polymerase chain reaction (PCR) in paraffin-embedded CRC tissues. CLDN18 was positive in 27% (15/56) of CACs and in 5% (3/56) of sporadic CRCs (P = 0.004), and CLDN18-positive CACs were more likely to have lymph node metastasis than CLDN18-negative CACs (67% versus 36%; P = 0.017). CLDN18 expression was significantly associated with MUC5AC expression (P < 0.001) and loss of special AT-rich sequence-binding protein 2 expression (P = 0.005) in CACs. CLDN18.2 was expressed in CRCs that were immunoreactive for CLDN18. Only 4% of CACs were immunoreactive for HER2, and no differences were identified in sporadic CRCs. CONCLUSIONS These findings suggest that certain CAC cases may be candidates for targeted zolbetuximab therapy.
Collapse
Affiliation(s)
- Mai Iwaya
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Kazuyuki Matsuda
- Department of Clinical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yosuke Tobe
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yoko Tateishi
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yugo Iwaya
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Clinical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
87
|
Matsumoto K, Urabe Y, Oka S, Inagaki K, Tanaka H, Yuge R, Hayashi R, Kitadai Y, Arihiro K, Shimamoto F, Tanaka S, Chayama K. Genomic Landscape of Early-stage Colorectal Neoplasia Developing From the Ulcerative Colitis Mucosa in the Japanese Population. Inflamm Bowel Dis 2021; 27:686-696. [PMID: 33089869 DOI: 10.1093/ibd/izaa268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Colorectal neoplasias (CRN)s developing from the ulcerative colitis (UC) mucosa include both colitic and sporadic neoplasias. Although several genomic analyses of advanced colitis-associated cancer are available, such studies do not distinguish between colitic and sporadic cases, and the early-stage genomic alterations involved in the onset of colitic cancer remain unclear. To address this, we performed a genomic analysis of early-stage CRN developing from the UC mucosa (CRNUC). METHODS We extracted DNA from 36 early-stage CRNUCs (T1 cancer, 10; dysplasia, 26) from 32 UC patients and performed targeted sequencing of 43 genes commonly associated with colitis-associated cancer and compared the results with sequencing data from the Japanese invasive colitis-associated cancer. RESULTS The most frequently mutated gene in the CRNUC cohort was APC (mutated in 47.2% of the cases), followed by TP53 (44.4%), KRAS (27.8%), and PRKDC (27.8%). None of the TP53 mutations occurred at any of the hotspot codons. Although the TP53 mutations in The Cancer Genome Atlas of Colorectal Cancer were dispersed throughout the gene, those detected here in CRNUC cases were concentrated in the amino terminal part of the DNA-binding domain. Interestingly, the mutations in KRAS and TP53 were mutually exclusive in CRNUC, and CRNUCs with KRAS mutations had histologically serrated lesions in the gland duct. Mayo endoscopic subscore was higher in TP53-mutated CRNUCs and lower in KRAS-mutated CRNUCs. CONCLUSIONS Our findings suggest that early-stage CRNUC can be classified into 2 groups: those developing through the carcinogenic pathway via TP53 mutations and those developing through the carcinogenic pathway via KRAS mutations.
Collapse
Affiliation(s)
| | - Yuji Urabe
- Division of Regeneration and Medicine Center for Translational and Clinical Research
| | - Shiro Oka
- Department of Gastroenterology and Metabolism
| | | | | | - Ryo Yuge
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
88
|
Bocchetti M, Ferraro MG, Ricciardiello F, Ottaiano A, Luce A, Cossu AM, Scrima M, Leung WY, Abate M, Stiuso P, Caraglia M, Zappavigna S, Yau TO. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22083967. [PMID: 33921348 PMCID: PMC8068787 DOI: 10.3390/ijms22083967] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.
Collapse
Affiliation(s)
- Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, via D. Montesano 49, 80131 Naples, Italy;
| | | | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Wing-Yan Leung
- Division of Haematology, Department of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Correspondence: (S.Z.); (T.O.Y.)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (S.Z.); (T.O.Y.)
| |
Collapse
|
89
|
Kim JE, Choi J, Sung CO, Hong YS, Kim SY, Lee H, Kim TW, Kim JI. High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp Mol Med 2021; 53:446-456. [PMID: 33753878 PMCID: PMC8080557 DOI: 10.1038/s12276-021-00583-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
The global incidence of early-onset colorectal cancer (EO-CRC) is rapidly rising. However, the reason for this rise in incidence as well as the genomic characteristics of EO-CRC remain largely unknown. We performed whole-exome sequencing in 47 cases of EO-CRC and targeted deep sequencing in 833 cases of CRC. Mutational profiles of EO-CRC were compared with previously published large-scale studies. EO-CRC and The Cancer Genome Atlas (TCGA) data were further investigated according to copy number profiles and mutation timing. We classified colorectal cancer into three subgroups: the hypermutated group consisted of mutations in POLE and mismatch repair genes; the whole-genome doubling group had early functional loss of TP53 that led to whole-genome doubling and focal oncogene amplification; the genome-stable group had mutations in APC and KRAS, similar to conventional colon cancer. Among non-hypermutated samples, whole-genome doubling was more prevalent in early-onset than in late-onset disease (54% vs 38%, Fisher's exact P = 0.04). More than half of non-hypermutated EO-CRC cases involved early TP53 mutation and whole-genome doubling, which led to notable differences in mutation frequencies between age groups. Alternative carcinogenesis involving genomic instability via loss of TP53 may be related to the rise in EO-CRC.
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunjung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
90
|
Zerlotin R, Arconzo M, Piccinin E, Moschetta A. Another One Bites the Gut: Nuclear Receptor LRH-1 in Intestinal Regeneration and Cancer. Cancers (Basel) 2021; 13:cancers13040896. [PMID: 33672730 PMCID: PMC7924345 DOI: 10.3390/cancers13040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
The process of self-renewal in normal intestinal epithelium is characterized by a fine balance between proliferation, differentiation, migration, and cell death. When even one of these aspects escapes the normal control, cellular proliferation and differentiation are impaired, with consequent onset of tumorigenesis. In humans, colorectal cancer (CRC) is the main pathological manifestation of this derangement. Nowadays, CRC is the world's fourth most deadly cancer with a limited survival after treatment. Several conditions can predispose to CRC development, including dietary habits and pre-existing inflammatory bowel diseases. Given their extraordinary ability to interact with DNA, it is widely known that nuclear receptors play a key role in the regulation of intestinal epithelium, orchestrating the expression of a series of genes involved in developmental and homeostatic pathways. In particular, the nuclear receptor Liver Receptor Homolog-1 (LRH-1), highly expressed in the stem cells localized in the crypts, promotes intestine cell proliferation and renewal in both direct and indirect DNA-binding manner. Furthermore, LRH-1 is extensively correlated with diverse intestinal inflammatory pathways. These evidence shed a light in the dynamic intestinal microenvironment in which increased regenerative epithelial cell turnover, mutagenic insults, and chronic DNA damages triggered by factors within an inflammatory cell-rich microenvironment act synergistically to favor cancer onset and progression.
Collapse
Affiliation(s)
- Roberta Zerlotin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-559-3262
| |
Collapse
|
91
|
Mäki-Nevala S, Ukwattage S, Olkinuora A, Almusa H, Ahtiainen M, Ristimäki A, Seppälä T, Lepistö A, Mecklin JP, Peltomäki P. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer. Int J Cancer 2021; 148:2997-3007. [PMID: 33521965 DOI: 10.1002/ijc.33492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.
Collapse
Affiliation(s)
- Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sanjeevi Ukwattage
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Sport and Health Sciences, University of Jyväskylä and Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
92
|
Iwaya M, Ota H, Nakajima T, Uehara T, Riddell R, Conner J. Most colitis associated carcinomas lack expression of LGR5: a preliminary study with implications for unique pathways of carcinogenesis compared to sporadic colorectal carcinoma. BMC Cancer 2021; 21:119. [PMID: 33541282 PMCID: PMC7863293 DOI: 10.1186/s12885-021-07835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a component of the Wnt receptor complex, is thought to lineage label gastric and intestinal stem cells. LGR5 expression is increased in colorectal carcinoma (CRC) compared to normal tissue. Colitis associated colorectal adenocarcinoma (CAC) often shows distinct morphologic and molecular phenotypes compared to sporadic cases. However, the expression profile of LGR5, and by extension the potential role of an intestinal stem cell phenotype, has not been well described in a series of human CAC. Method RNA in situ hybridization (ISH) for LGR5 expression on 30 CACs (12 cases with conventional morphology and 18 cases with non-conventional type morphology) from 29 inflammatory bowel disease (IBD) patients was performed and compared the expression profile to a control group of 10 sporadic CRCs. Immunohistochemistry for beta-catenin and SATB2 was performed on the 30 CACs. Result LGR5 was positive in 30% (9/30) of CAC cases and 90% (9/10) of sporadic CRCs (p = 0.002). A large majority (89%) of LGR5 positive CACs were of the conventional histologic type, and conventional type CAC showed a significantly higher LGR5 score (median 3.0; interquartile range 1.75–3.25) than non-conventional type CAC (median 1.5; interquartile range 1.00–2.00) (p = 0.034). CAC with conventional morphology did have a lower level of LGR5 expression than sporadic CRC. Sporadic CRCs showed a significantly higher LGR5 level score than non-conventional type CACs (p < 0.001). Nuclear translocation of beta-catenin was strongly associated with LGR5 expression (p = 0.003), however no significant association was identified between SATB2 expression and LGR5 expression status in CACs. Conclusion These findings suggest that the wider spectrum of tumor morphology in CAC may be associated with absence of a LGR5-expressing intestinal stem cell phenotype.
Collapse
Affiliation(s)
- Mai Iwaya
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Hiroyoshi Ota
- Department of Clinical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Robert Riddell
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - James Conner
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
93
|
He Y, Chen L, Chen K, Sun Y. Immunohistochemical analysis of HNF4A and β-catenin expression to predict low-grade dysplasia in the colitis-neoplastic sequence. Acta Biochim Biophys Sin (Shanghai) 2021; 53:94-101. [PMID: 33300557 DOI: 10.1093/abbs/gmaa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Animal studies indicated that P1 promoter-driven hepatocyte nuclear factor 4 alpha (HFN4A) prevents carcinogenesis in colitis. But the function of total HNF4A protein has not been fully investigated, and it was assumed to be involved in the colitis-neoplastic sequence. The aim of this study was to determine the clinical value of total P1-/P2-driven HNF4A combined with β-catenin in the colitis-neoplastic sequence. A total of 69 samples, including 4 normal colon tissues, 16 sporadic colorectal cancer (CRC) tissues, 35 inflammatory bowel disease (IBD) tissues, and 14 IBD-associated low-grade dysplasia tissues, were collected to assess P1-/P2-driven HNF4A and β-catenin expressions by immunohistochemical assay. In addition, a colonic epithelial cell line Caco2 with stable P1-/P2-driven HNF4A knockdown was constructed. β-Catenin expression and skeleton structure were determined in the transfected cells by western blot analysis and immunofluorescence assay respectively. Increased expression of nuclear P1-/P2-driven HNF4A was observed in the colitis-associated colorectal neoplasm and sporadic CRC samples, compared with that in colitis samples. The parallel alterations between cytoplasmic β-catenin and nuclear P1-/P2-driven HNF4A were also verified. Silencing of P1-/P2-driven HNF4A expression in Caco2 cells decreased β-catenin expression and F-actin formation. Our results confirmed the elevated expressions of nuclear P1-/P2-driven HNF4A and cytoplasmic β-catenin in the colitis-neoplastic sequence, and both of them may be used as potential biomarkers to predict low-grade dysplasia.
Collapse
Affiliation(s)
- Yiping He
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China
| |
Collapse
|
94
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
95
|
Mackiewicz T, Sowa A, Fichna J. Biomarkers for Early Detection of Colitis-associated Colorectal Cancer - Current Concepts, Future Trends. Curr Drug Targets 2021; 22:137-145. [PMID: 32077822 DOI: 10.2174/1389450121666200220123844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Colitis-associated colorectal cancer (CAC) remains a critical complication of ulcerative colitis (UC) with a mortality of approximately 15%, which makes early CAC diagnosis crucial. The current standard of surveillance, with repetitive colonoscopies and histological testing of biopsied mucosa samples, is burdensome and expensive, and therefore less invasive methods and reliable biomarkers are needed. Significant progress has been made, thanks to continuous extensive research in this field, however, no clinically relevant biomarker has been established so far. This review of the current literature presents the genetic and molecular differences between CAC and sporadic colorectal cancer and covers progress made in the early detection of CAC carcinogenesis. It focuses on biomarkers under development, which can easily be tested in samples of body fluids or breath and, once made clinically available, will help to differentiate between progressors (UC patients who will develop dysplasia) from non-progressors and enable early intervention to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Tomasz Mackiewicz
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Jakub Fichna
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
96
|
Mudd TW, Lu C, Klement JD, Liu K. MS4A1 expression and function in T cells in the colorectal cancer tumor microenvironment. Cell Immunol 2020; 360:104260. [PMID: 33352466 DOI: 10.1016/j.cellimm.2020.104260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
The majority of human colorectal cancer remains resistant to immune checkpoint inhibitor (ICI) immunotherapy, but the underlying mechanism is incompletely understood. We report here that MS4A1, the gene encoding B cell surface marker CD20, is significantly downregulated in human colorectal carcinoma. Furthermore, MS4A1 expression level in colorectal carcinoma is positively correlated with patient survival. Analysis of scRNA-Seq dataset from public database revealed that MS4A1 is also expressed in subsets of T cells. A CD8+CD20+ subset of T cells exists in the neighboring non-neoplastic colon but disappears in tumor in human colorectal carcinoma. Furthermore, analysis of a published nivolumab treatment dataset indicated that nivolumab-bound T cells from human patients during anti-PD-1 immunotherapy exhibit significantly higher MS4A1 expression. Our findings indicate that CD8+CD20+ T subset functions in host cancer immunosurveillance and tumor microenvironment suppresses this T subset through a PD-L1-dependent mechanism.
Collapse
Affiliation(s)
- T William Mudd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
97
|
Yang Q, Ouyang J, Sun F, Yang J. Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Front Immunol 2020; 11:590685. [PMID: 33363537 PMCID: PMC7752775 DOI: 10.3389/fimmu.2020.590685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Converging evidences showed that people with diabetes mellitus (DM) have significantly higher risk for different cancers, of which the exact mechanism underlying the association has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of the intestinal microbiota, are an essential source for energy supply in gut epithelial cells. They have been reported to improve intestinal barrier integrity, prevent microbial translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-producing bacteria as well as SCFAs production in the intestine are commonly seen in metabolic disorders including DM and obesity. Moreover, inflammation can contribute to tumor initiation and progression through multiple pathways, such as enhancing DNA damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear factor-kappa B (NF-κB) signaling pathways. Based on these facts, we hypothesize that lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals, enhance microbial translocation, and increase the inflammatory responses, inducing tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to take early precautions to reduce the risk of cancer in patients with DM.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
98
|
Levi-Galibov O, Lavon H, Wassermann-Dozorets R, Pevsner-Fischer M, Mayer S, Wershof E, Stein Y, Brown LE, Zhang W, Friedman G, Nevo R, Golani O, Katz LH, Yaeger R, Laish I, Porco JA, Sahai E, Shouval DS, Kelsen D, Scherz-Shouval R. Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun 2020; 11:6245. [PMID: 33288768 PMCID: PMC7721883 DOI: 10.1038/s41467-020-20054-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
Collapse
Affiliation(s)
- Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Wenhan Zhang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior H Katz
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Jerusalem, Israel
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ido Laish
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Dror S Shouval
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
99
|
Kinugasa H, Hiraoka S, Nouso K, Yamamoto S, Hirai M, Terasawa H, Yasutomi E, Oka S, Ohmori M, Yamasaki Y, Inokuchi T, Takahara M, Harada K, Tanaka T, Okada H. Liquid biopsy for patients with IBD-associated neoplasia. BMC Cancer 2020; 20:1188. [PMID: 33272240 PMCID: PMC7712625 DOI: 10.1186/s12885-020-07699-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background It is often difficult to diagnose inflammatory bowel disease (IBD)-associated neoplasia endoscopically due to background inflammation. In addition, due to the absence of sensitive tumor biomarkers, countermeasures against IBD-associated neoplasia are crucial. The purpose of this study is to develop a new diagnostic method through the application of liquid biopsy. Methods Ten patients with IBD-associated cancers and high-grade dysplasia (HGD) with preserved tumor tissue and blood were included. Tumor and non-tumor tissues were analyzed for 48 cancer-related genes using next-generation sequencing. Simultaneously, circulating tumor DNA (ctDNA) was analyzed for mutations in the target genes using digital PCR. Results Out of 10 patients, seven had IBD-related cancer and three had IBD-related HGD. Two patients had carcinoma in situ; moreover, three had stageII and two had stage III. To avoid false positives, the mutation rate cutoff was set at 5% based on the control results; seven of 10 (70%) tumor tissue samples were mutation-positive. Mutation frequencies for each gene were as follows: TP53 (20.9%; R136H), TP53 (25.0%; C110W), TP53 (8.5%; H140Q), TP53 (31.1%; R150W), TP53 (12.8%; R141H), KRAS (40.0%; G12V), and PIK3CA (34.1%; R 88Q). The same mutations were detected in the blood of these seven patients. However, no mutations were detected in the blood of the remaining three patients with no tumor tissue mutations. The concordance rate between tumor tissue DNA and blood ctDNA was 100%. Conclusion Blood liquid biopsy has the potential to be a new method for non-invasive diagnosis of IBD-associated neoplasia. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07699-z.
Collapse
Affiliation(s)
- Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mami Hirai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Terasawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Eriko Yasutomi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shohei Oka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masayasu Ohmori
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keita Harada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
100
|
Ge CY, Wei LY, Tian Y, Wang HH. A Seven-NF-κB-Related Gene Signature May Distinguish Patients with Ulcerative Colitis-Associated Colorectal Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:707-718. [PMID: 33299340 PMCID: PMC7719442 DOI: 10.2147/pgpm.s274258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023]
Abstract
Purpose Ulcerative colitis (UC) patients have an increased risk of colorectal cancer (CRC), and compared with sporadic CRC, ulcerative colitis-associated colorectal cancer (CAC) is more aggressive with a worse prognosis. This study aimed to identify a gene signature to predict the risk of CAC for patients with UC in remission. Patients and Methods Series of quiescent UC-related transcriptome data obtained from the Gene Expression Omnibus (GEO) data set were divided into a training set and a validation set. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and \Weighted Correlation Network Analysis (WGCNA) combined with protein-protein interaction (PPI) analysis were used to identify the pathways and gene signatures related to tumorigenesis among quiescent UC patients. A generalized linear model (GLM) of Poisson regression based on the training set was applied to estimate the diagnostic power of the gene signature in our validation set. Results The tumor necrosis factor (TNF) signaling via NF-κB pathway was significantly augmented with the highest normalized enrichment score (NES). The genes in the brown module from WGCNA have shown a significant correlation with CAC (Pearson coefficient = 0.83, p = 6e-06). A subset of NF-κB related genes (FOS, CCL4, CXCL1, MYC, CEBPB, ATF3, and JUNB) were identified with a relatively higher expression level in CAC samples. The diagnostic value of this 7-gene biomarker was estimated by the receiver operating characteristic (ROC) curve with an area under the ROC curve (AUC) at 0.82 (p<0.0001, 95% CI: 0.7098-0.9400) in the validation cohort. Conclusion In summary, the increased expression of this seven-NF-κB-related gene signature may act as a powerful index for tumorigenesis prediction among patients with UC in remission.
Collapse
Affiliation(s)
- Chao-Yi Ge
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Li-Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Yu Tian
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua-Hong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|