51
|
|
52
|
Guo J, Yan R, Xu G, Li W, Zheng C. Construction of the Vero cell culture system that can produce infectious HCV particles. Mol Biol Rep 2007; 36:111-20. [PMID: 17960493 DOI: 10.1007/s11033-007-9158-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
The hepatitis C virus is a major cause of chronic liver disease worldwide. Lack of culture system supporting virus production has been one of the major impediments in HCV research and vaccine development. Here, we use a HCV (1b) full-length cDNA clone that replicates and produces integrated and infectious virus particles in cultured Vero cells. Evidence shows that the replication of virus particles is robust, producing over 10(8) copies of positive RNA per milliliter of the culture cells within 48 h. Sucrose density gradient centrifugation of the cell lysate reveals that the HCV virions have a density of about 1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and can be neutralized by CD81- and E2-specific antibodies. This system establishes a powerful framework for studying the virus life cycle and developing vaccine research.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Wuhan University, Luojia Mountain, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
53
|
Martínez-Donato G, Capdesuñer Y, Acosta-Rivero N, Rodríguez A, Morales-Grillo J, Martínez E, González M, Alvarez-Obregon JC, Dueñas-Carrera S. Multimeric HCV E2 protein obtained from Pichia pastoris cells induces a strong immune response in mice. Mol Biotechnol 2007; 35:225-35. [PMID: 17652786 DOI: 10.1007/bf02686008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
Production of immunogenic hepatitis C virus (HCV) envelope proteins will assist in the future development of preventive or therapeutics applications. Only properly folded monomeric E2 protein is able to bind a putative cellular co-receptor CD81, but this interaction may modulate cell immune function. Recombinant E2 proteins, similar to the native form, but lacking undesirable immunoregulatory features, might be promising components of vaccine candidates against HCV. To obtain E2 suitable for structural as well as functional studies, a recombinant E2 variant (E2680) was produced in Pichia pastoris cells. E2680, comprising amino acids 384 to 680 of the HCV polyprotein, was secreted into the culture supernatant in the N-glycosilated form and was mainly composed of disulfide-linked multimers. Both monomeric and oligomeric forms of E2680 were recognized by conformational-sensitive MAb H53. In addition, antibodies in sera from 70% of HCVpositive patients were reactive against E2680. By immunizing E2680 in BALB/c mice, both a specific cellular immune response and anti-E2680 IgG antibody titers of 1:200,000 were induced. Our data suggest that recombinant E2680 could be useful to successfully induce strong anti-HCV immunity.
Collapse
Affiliation(s)
- Gillian Martínez-Donato
- Hepatitis C Department, Biomedical Research, Center for Genetic Engineering and Biotechnology, Ave. 31 e/ 158 y 190, Cubanacán, Playa, Apdo. 6162, Habana 10600, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 2007; 25:7773-84. [PMID: 17919789 DOI: 10.1016/j.vaccine.2007.08.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/14/2007] [Accepted: 08/26/2007] [Indexed: 01/01/2023]
Abstract
Neutralizing antibody responses elicited during infection generally confer protection from infection. Hepatitis C virus (HCV) encodes two glycoproteins E1 and E2 that are essential for virus entry and are the major target for neutralizing antibodies. To assess whether both glycoproteins are required for the generation of a neutralizing antibody response, rodents were immunized with a series of glycoproteins comprising full length and truncated versions. Guinea pigs immunized with HCV-1 genotype 1a E1E2p7, E1E2 or E2 generated high titer anti-glycoprotein antibody responses that neutralized the infectivity of HCVpp and HCVcc expressing gps of the same genotype as the immunizing antigen. Less potent neutralization of viruses bearing the genotype 2 strain J6 gps was observed. In contrast, immunized mice demonstrated reduced anti-gp antibody responses, consistent with their minimal neutralizing activity. Immunization with E2 alone was sufficient to induce a high titer response that neutralized HCV pseudoparticles (HCVpp) bearing diverse glycoproteins and cell culture grown HCV (HCVcc). The neutralization titer was reduced 3-fold by the presence of lipoproteins in human sera. Cross-competition of the guinea pig anti-E1E2 immune sera with a panel of epitope mapped anti-E2 monoclonal antibodies for binding E2 identified a series of epitopes within the N-terminal domain that may be immunogenic in the immunized rodents. These data demonstrate that recombinant E2 and E1E2 can induce polyclonal antibody responses with cross-reactive neutralizing activity, supporting the future development of prophylactic and therapeutic vaccines.
Collapse
|
55
|
Schlaphoff V, Klade CS, Jilma B, Jelovcan SB, Cornberg M, Tauber E, Manns MP, Wedemeyer H. Functional and phenotypic characterization of peptide-vaccine-induced HCV-specific CD8+ T cells in healthy individuals and chronic hepatitis C patients. Vaccine 2007; 25:6793-806. [PMID: 17686555 DOI: 10.1016/j.vaccine.2007.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 12/22/2022]
Abstract
Only very limited information on phenotype and function of vaccine-induced CD8+ T cells is available for humans. We investigated hepatitis C virus-specific CD8+ T cells after vaccination with the HCV peptide-vaccine IC41 which includes 5 MHC-class I and 3 MHC class-II-restricted epitopes. In healthy subjects, IC41 induced both HCV-specific central memory as well as effector CD8+ T cells which rapidly expanded upon antigen exposure in vitro. IFNgamma production was dependent on formulation of the synthetic peptides with the adjuvant poly-l-arginine. In chronic HCV patients, the frequency of HCV-specific CD8+ T cells increased after vaccination with a decline of CD45RA-positive effector memory cells in some but not all patients. Thus, this study suggests that HCV-specific memory cells can be induced by peptide vaccination and that a reversion of functional impaired phenotypes by therapeutic vaccination is possible in chronic HCV infection.
Collapse
Affiliation(s)
- Verena Schlaphoff
- Hannover Medical School, Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW Leptospirosis is among the most important zoonotic diseases worldwide. Completion of the genomic sequences of leptospires has facilitated advances in diagnosis and prevention of the disease, and yielded insight into its pathogenesis. This article reviews this research, emphasizing recent progress. RECENT FINDINGS Leptospirosis is caused by a group of highly invasive spiral bacteria (spirochetes) that can infect both people and animals. Spirochetes can survive in the environment and host, and therefore outer membrane and secretory proteins that interact with the host are of considerable interest in leptospire research. The genetic approach to studying pathogenesis is hindered by fastidious growth of pathogenic leptospires. Integrated genomic and proteomic approaches, however, have yielded enhanced understanding of the pathogenesis of leptospirosis. Furthermore, studies of innate immune response to the organism have enhanced our understanding of host susceptibility and resistance to infection. In-silico analysis and high-throughput cloning and expression have had major impacts on efforts to develop vaccine candidates and diagnostic reagents. SUMMARY In the future, we must effectively utilize the wealth of genetic information to combat the disease. More studies into genetics, immune mechanisms that may be exploited to prevent leptospirosis, and pathogenesis of the disease are necessary.
Collapse
Affiliation(s)
- Raghavan U M Palaniappan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
58
|
Elmowalid GA, Qiao M, Jeong SH, Borg BB, Baumert TF, Sapp RK, Hu Z, Murthy K, Liang TJ. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci U S A 2007; 104:8427-32. [PMID: 17485666 PMCID: PMC1895966 DOI: 10.1073/pnas.0702162104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Indexed: 12/18/2022] Open
Abstract
Recombinant hepatitis C virus (HCV)-like particles (HCV-LPs) containing HCV structural proteins (core, E1, and E2) produced in insect cells resemble the putative HCV virions and are capable of inducing strong and broad humoral and cellular immune responses in mice and baboons. Here, we present evidence on the immunogenicity and induction of protective immunity by HCV-LPs in chimpanzees. Chimpanzees (two in each group), were immunized with HCV-LPs or HCV-LPs plus AS01B adjuvant. After immunizations, all animals developed an HCV-specific immune response including IFN-gamma(+), IL-2(+), CD4(+), and CD8(+) T cell and proliferative lymphocyte responses against core, E1, and E2. Upon challenge with an infectious HCV inoculum, one chimpanzee developed transient viremia with low HCV RNA titers (10(3) to 10(4) copies per ml) in the third and fourth weeks after the challenge. The three other chimpanzees became infected with higher levels of viremia (10(4) to 10(5) copies per ml), but their viral levels became unquantifiable (<10(3) copies per ml) 10 weeks after the challenge. After the HCV challenge, all four chimpanzees demonstrated a significant increase in peripheral and intrahepatic T cell and proliferative responses against the HCV structural proteins. These T cell responses coincided with the fall in HCV RNA levels. Four naïve chimpanzees were infected with the same HCV inoculum, and three developed persistent infection with higher viremia in the range of 10(5) to 10(6) copies per ml. Our study suggests that HCV-LP immunization induces HCV-specific cellular immune responses that can control HCV challenge in the chimpanzee model.
Collapse
Affiliation(s)
- Gamal A. Elmowalid
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Ming Qiao
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Sook-Hyang Jeong
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Brian B. Borg
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Thomas F. Baumert
- Department of Virology and Immunology, University of Freiburg, 79085 Freiburg, Germany; and
| | - Ronda K. Sapp
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Zongyi Hu
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Krishna Murthy
- Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549
| | - T. Jake Liang
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| |
Collapse
|
59
|
Encke J, Radunz W, Eisenbach C, Geib J, Gehrke S, Pfaff E, Stremmel W. Development of a heterologous, multigenotype vaccine against hepatitis C virus infection. Eur J Clin Invest 2007; 37:396-406. [PMID: 17461986 DOI: 10.1111/j.1365-2362.2007.01802.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Unquestionably viral diversity and genetic heterogeneity in hepatitis C virus (HCV) infection and other viral diseases play an essential role in viral immune escape and the development of chronicity. Despite this knowledge most vaccine approaches against HCV have excluded this important issue. Moreover the feasibility of developing an effective HCV vaccine has been questioned, mainly because prophylactic immunity against HCV cannot be achieved in chimpanzees by either vaccination or previous HCV infection, and reinfection in men has been reported, most likely due to genetic shift and immune escape. To analyse and characterize a new technique of a 'multigenotype'- and/or 'library'-vaccine, we established an envelope 1 (E1) plasmid vaccine against HCV and characterized humoral and cellular immune responses after vaccination in a mouse model. MATERIAL AND METHODS Normally genetic information of one or two target proteins is cloned into a DNA-vaccine. In our approach we cloned a defined number of different genotypes and subtypes (defined vaccine, DV) or the genetic information from 20 patients (undefined) into a plasmid (library vaccine, LV). RESULTS As expected, immunized animals showed both stronger humoral (ELISA) and cellular (T-cell proliferation, ELISPOT) immune responses against genotype 1, since the stimulating antigen was genotype 1 derived. However, not all genotype 1 immunized animals recognized this viral antigen leading to the assumption that some epitopes lost their immunogenicity through a change in the amino acid sequence. Interestingly, some of the genotype 4 and 5 immunized mice sera were able to react against E1 protein. CONCLUSION Most of the assays showed immune reactivity against the DV or LV vaccine demonstrating the cross-reactive potential of such a vaccination approach. This cloning and immunization strategy based on the viral heterogeneity of the virus has in our view major implications for HCV, a virus with a broad viral genetic diversity, and may become in the future in the context of DNA- or viral-based vaccination strategies a possibility to overcome viral immune escape both in the prophylactic or therapeutic setting.
Collapse
Affiliation(s)
- J Encke
- University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
60
|
Li YP, Kang HN, Babiuk LA, Liu Q. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models. World J Gastroenterol 2006; 12:7126-35. [PMID: 17131474 PMCID: PMC4087773 DOI: 10.3748/wjg.v12.i44.7126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.
METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays.
RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.
CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.
Collapse
Affiliation(s)
- Yi-Ping Li
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | |
Collapse
|
61
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Worldwide more than 170 million people are chronically infected with the hepatitis C virus (HCV), which is a frequent cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Unlike infection with other hepatotropic viruses, only a small percentage of acute HCV infections are cleared, and most infected individuals develop lifelong HCV infection in the absence of efficient treatment. It is believed that both viral and host factors contribute to the inability of the host immune system to clear the initial infection and lead to the high propensity of chronic HCV infection.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 215, Worcester, MA 01605-2324, USA.
| | | |
Collapse
|
63
|
Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM, Major ME. CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 2006; 44:736-45. [PMID: 16941702 DOI: 10.1002/hep.21319] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C is a major cause of chronic liver disease, with 170 million individuals infected worldwide and no available vaccine. We analyzed the effects of an induced T-cell response in 3 chimpanzees, targeting nonstructural proteins in the absence of neutralizing antibodies. In all animals the specific T-cell response modified the outcome of infection, producing a 10- to 1,000-fold reduction in peak virus titers. The challenge of 2 immunized animals that had been previously exposed to hepatitis C virus resulted in subclinical infections. Immune responses in the third animal, naive prior to immunization, limited viral replication immediately, evidenced by a 30-fold reduction in virus titer by week 2, declining to a nonquantifiable level by week 6. After 10 weeks of immunological control, we observed a resurgence of virus, followed by progression to a persistent infection. Comparing virus evolution with T-cell recognition, we demonstrated that: (i) resurgence was concomitant with the emergence of new dominant viral populations bearing single amino acid changes in the NS3 and NS5A regions, (ii) these mutations resulted in a loss of CD4+ T-cell recognition, and (iii) subsequent to viral resurgence and immune escape a large fraction of NS3-specific T cells became impaired in their ability to secrete IFN-gamma and proliferate. In contrast, NS3-specific responses were sustained in the recovered/immunized animals presenting with subclinical infections. In conclusion, viral escape from CD4+ T cells can result in the eventual failure of an induced T-cell response that initially controls infection. Vaccines that can induce strong T-cell responses prior to challenge will not necessarily prevent persistent HCV infection.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- Carlo Ferrari
- Division of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Italy.
| |
Collapse
|
65
|
Leroux-Roels G. Development of prophylactic and therapeutic vaccines against hepatitis C virus. Expert Rev Vaccines 2006; 4:351-71. [PMID: 16026249 DOI: 10.1586/14760584.4.3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus was discovered 15 years ago as the agent responsible for most cases of transfusion-associated hepatitis non-A, non-B. At present, 180 million people worldwide are estimated to be infected with the virus, producing severe and progressive liver disease in millions and representing the most common reason for liver transplantation in adults. Although the spread of the virus can be halted by the application of primary prevention strategies, such as routine testing of blood donations, inactivation of blood products and systematic use of disposable needles and syringes, the development of a prophylactic vaccine could facilitate the control of this infection and protect those at high risk of being infected with hepatitis C virus. As the present therapy of chronic hepatitis C virus infections, consisting of a combined administration of pegylated interferon-alpha and ribavirin, is only successful in 50% of patients infected with genotype 1, and is costly and associated with serious side effects, there is an urgent need for better tolerated and more effective treatment modalities, and a therapeutic vaccine may be the solution. This review first provides an overview of the present knowledge regarding the interaction between the virus and immune system of the infected host, with special attention given to the possible mechanisms responsible for chronic evolution of the infection. The numerous candidate vaccines that have been developed in the past 10 years are discussed, including the studies in which their immunogenicity has been examined in rodents and chimpanzees. Finally, the only studies of therapeutic vaccines performed in humans to date are considered.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Centre for Vaccinology, Ghent University and Hospital, De Pintelaan 185, B-900 Ghent, Belgium.
| |
Collapse
|
66
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The major etiologies and risk factors for the development of HCC are well defined and some of the multiple steps involved in hepatocarcinogenesis have been elucidated in recent years. Despite these scientific advances and the implementation of measures for the early detection of HCC in patients at risk, patient survival has not improved during the last three decades. This is due to the advanced stage of the disease at the time of clinical presentation and limited therapeutic options. The therapeutic options fall into five main categories: surgical interventions including tumor resection and liver transplantation, percutaneous interventions including ethanol injection and radiofrequency thermal ablation, transarterial interventions including embolization and chemoembolization, radiation therapy and drugs as well as gene and immune therapies. These therapeutic strategies have been evaluated in part in randomized controlled clinical trials that are the basis for therapeutic recommendations. Though surgery, percutaneous and transarterial interventions are effective in patients with limited disease (1-3 lesions, <5 cm in diameter) and compensated underlying liver disease (cirrhosis Child A), at the time of diagnosis more than 80% patients present with multicentric HCC and advanced liver disease or comorbidities that restrict the therapeutic measures to best supportive care. In order to reduce the morbidity and mortality of HCC, early diagnosis and the development of novel systemic therapies for advanced disease, including drugs, gene and immune therapies as well as primary HCC prevention are of paramount importance. Furthermore, secondary HCC prevention after successful therapeutic interventions needs to be improved in order to make an impact on the survival of patients with HCC. New technologies, including gene expression profiling and proteomic analyses, should allow to further elucidate the molecular events underlying HCC development and to identify novel diagnostic markers as well as therapeutic and preventive targets.
Collapse
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| |
Collapse
|
67
|
Folgori A, Capone S, Ruggeri L, Meola A, Sporeno E, Ercole BB, Pezzanera M, Tafi R, Arcuri M, Fattori E, Lahm A, Luzzago A, Vitelli A, Colloca S, Cortese R, Nicosia A. A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat Med 2006; 12:190-7. [PMID: 16462801 DOI: 10.1038/nm1353] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 12/05/2005] [Indexed: 02/06/2023]
Abstract
Three percent of the world's population is chronically infected with the hepatitis C virus (HCV) and at risk of developing liver cancer. Effective cellular immune responses are deemed essential for spontaneous resolution of acute hepatitis C and long-term protection. Here we describe a new T-cell HCV genetic vaccine capable of protecting chimpanzees from acute hepatitis induced by challenge with heterologous virus. Suppression of acute viremia in vaccinated chimpanzees occurred as a result of massive expansion of peripheral and intrahepatic HCV-specific CD8(+) T lymphocytes that cross-reacted with vaccine and virus epitopes. These findings show that it is possible to elicit effective immunity against heterologous HCV strains by stimulating only the cellular arm of the immune system, and suggest a path for new immunotherapy against highly variable human pathogens like HCV, HIV or malaria, which can evade humoral responses.
Collapse
Affiliation(s)
- Antonella Folgori
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, via Pontina km30,600, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Encke J, Findeklee J, Geib J, Pfaff E, Stremmel W. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection. Clin Exp Immunol 2005; 142:362-9. [PMID: 16232225 PMCID: PMC1809503 DOI: 10.1111/j.1365-2249.2005.02919.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antigen uptake and presentation capacities enable DC to prime and activate T cells. Recently, several studies demonstrated a diminished DC function in hepatitis C virus (HCV) infected patients showing impaired abilities to stimulate allogenic T cells and to produce IFN-gamma in HCV infected patients. Moreover, DC of patients who have resolved HCV infection behave like DC from healthy donors responding to maturation stimuli, decrease antigen uptake, up-regulate expression of appropriate surface marker, and are potent stimulators of allogenic T cells. A number of studies have demonstrated in tumour models and models of infectious diseases strong induction of immune responses after DC vaccination. Because DC are essential for T-cell activation and since viral clearance in HCV infected patients is associated with a vigorous T-cell response, we propose a new type of HCV vaccine based on ex vivo stimulated and matured DC loaded with HCV specific antigens. This vaccine circumvents the impaired DC maturation and the down regulated DC function of HCV infected patients in vivo by giving the necessary maturation stimuli and the HCV antigens in a different setting and location ex vivo. Strong humoral and cellular immune responses were detected after HCV core DC vaccination. Furthermore, DC vaccination shows partial protection in a therapeutic and prophylactic model of HCV infection. In conclusion, mice immunized with HCV core pulsed DC generated a specific antiviral response in a mouse HCV challenge model. Our results indicate that HCV core pulsed DC may serve as a new modality for immunotherapy of HCV especially in chronically infected patients.
Collapse
Affiliation(s)
- J Encke
- Department of Internal Medicine IV, University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
69
|
Abstract
Advances during the past 20 years have led to a better understanding of the prevention, diagnosis, and treatment of acute and chronic hepatitis B (HBV) and hepatitis C (HCV) infections in the pediatric population. Universal vaccination and prenatal testing for HBV have decreased the incidence rate of acute HBV infections from more than 3/100,000 to 0.34/100,000 in all children. Diagnosis of chronic HBV is confirmed with positive serologic testing on two occasions at least 6 months apart. Current approved therapies with interferon alpha and lamivudine for children with chronic HBV infection have shown some efficacy, but results have been variable. In contrast, the lack of an effective HCV vaccine and the risk of mother-to-child transmission may increase the number of children with vertically acquired HCV that ultimately go on to develop liver fibrosis or cirrhosis. Diagnosis of HCV in the neonate should be postponed until after the child reaches 1 year of age because infants may have transient viremia. Treatment for HCV infected children has not been studied extensively. Peginterferon alpha-2a and Ribavirin are not currently approved for pediatric use; however, recent studies in children have shown potential benefit. More effective and less toxic therapies for young patients with HBV and HCV are needed, as are methods to interrupt perinatal transmission of HBV and HCV.
Collapse
Affiliation(s)
- May K Slowik
- Department of Pediatrics and Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
70
|
Youn JW, Park SH, Lavillette D, Cosset FL, Yang SH, Lee CG, Jin HT, Kim CM, Shata MTM, Lee DH, Pfahler W, Prince AM, Sung YC. Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee. Hepatology 2005; 42:1429-36. [PMID: 16317673 DOI: 10.1002/hep.20934] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune correlates of protection against hepatitis C virus (HCV) infection are not well understood. Here we investigated 2 naive and 6 immunized chimpanzees before and after intravenous challenge, 12 weeks after the last immunization, with 100 50% chimpanzee infectious doses (CID(50)) of heterologous genotype 1b HCV. Vaccination with recombinant DNA and adenovirus vaccines expressing HCV core, E1E2, and NS3-5 genes induced long-term HCV-specific antibody and T-cell responses and reduced peak viral load about 100 times compared with controls (5.91 +/- 0.38 vs. 3.81 +/- 0.71 logs, respectively). There was a statistically significant inverse correlation between peak viral loads and envelope glycoprotein 2 (E2)-specific antibody responses at the time of challenge. Interestingly, one vaccinee that had sterilizing immunity against slightly heterologous virus generated the highest level of E2-specific total and neutralizing antibody responses as well as strong NS3/NS5-specific T-cell proliferative responses. The other four vaccinees with low levels of E2-specific antibody had about 44-fold reduced peak viral loads but eventually developed persistent infections. In conclusion, vaccine-induced E2-specific antibody plays an important role in prevention from nonhomologous virus infection and may provide new insight into the development of an effective HCV vaccine.
Collapse
Affiliation(s)
- Jin-Won Youn
- National Research Laboratory of DNA Medicine, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Hepatitis C Virus (HCV) induces a chronic infection in 50%-80% of infected individuals, which can lead to cirrhosis and hepatocellular carcinoma. The inefficiency of the immune system in eliminating the virus is not well understood as humoral and cellular immune responses are induced. While a persistent infection is generally associated with a weak CD4+ and CD8+ T cell response during the acute phase, there is no good explanation as to why this response is strong enough in 20% of acutely infected people such that they spontaneously resolve the infection. However, the immune system partially controls the viral infection but due to a long-lasting inflammatory milieu, hepatic damage occurs. During the chronic phase of the infection, HCV does not seem to be cytopathic. This aspect is still controversial as the virus was linked to the development of cholestatic syndrome or acute lobular hepatitis after liver transplant in HCV infected patients. The development of new experimental systems such as HCV pseudoparticles, genomic replicon and transfected cell lines have improved our vision of the virus cycle as well as the understanding of the mechanism of persistence. However, a convincing explanation for the chronicity of the infection in the presence of a functional immune response is still missing and is an important area of research to understand HCV immune pathogenesis. Future research should dissect mechanisms that lead to quantitatively or qualitatively inadequate immune responses, the role of the high variability of the virus, the relevance of host's genetic factors and mechanisms of immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Christel Gremion
- Clinic for Rheumatology and Clinical Immunology/Allergology, University of Bern, CH-3010 Bern, Switzerland
| | | |
Collapse
|
72
|
Abstract
The recent discovery of natural immunity to the hepatitis C virus and vaccine efficacy in the chimpanzee challenge model has allowed optimism about the development of at least a partly effective vaccine against this heterogeneous pathogen that is responsible for much of the chronic liver disease around the world. The immune systems of some infected individuals can spontaneously clear the virus, whereas other people need treatment with antivirals that work partly by stimulating humoral and cellular immune responses. Therefore, therapeutic vaccine strategies are also being pursued to improve treatment outcome.
Collapse
Affiliation(s)
- Michael Houghton
- Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
73
|
Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL, Ball JK, Patel AH. Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 2005; 79:11095-104. [PMID: 16103160 PMCID: PMC1193588 DOI: 10.1128/jvi.79.17.11095-11104.2005] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/01/2005] [Indexed: 02/03/2023] Open
Abstract
Hepatitis C virus (HCV) remains a significant threat to the general health of the world's population, and there is a pressing need for the development of new treatments and preventative vaccines. Here, we describe the generation of retrovirus-based pseudoparticles (HCVpp) incorporating a panel of full-length E1E2 clones representative of the major genotypes 1 through 6, and their application to assess the reactivity and neutralizing capability of antisera and monoclonal antibodies raised against portions of the HCV E2 envelope protein. Rabbit antisera raised against either the first hypervariable region or ectodomain of E2 showed limited and strain specific neutralization. By contrast, the monoclonal antibody (MAb) AP33 demonstrated potent neutralization of infectivity against HCVpp carrying E1E2 representative of all genotypes tested. The concentration of AP33 required to achieve 50% inhibition of infection by HCVpp of diverse genotypes ranged from 0.6 to 32 mug/ml. The epitope recognized by MAb AP33 is linear and highly conserved across different genotypes of HCV. Thus, identification of a broadly neutralizing antibody that recognizes a linear epitope is likely to be of significant benefit to future vaccine and therapeutic antibody development.
Collapse
Affiliation(s)
- Ania Owsianka
- MRC Virology Unit, Institute of Virology, University of Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Sallie R. Replicative homeostasis II: influence of polymerase fidelity on RNA virus quasispecies biology: implications for immune recognition, viral autoimmunity and other "virus receptor" diseases. Virol J 2005; 2:70. [PMID: 16115320 PMCID: PMC1260030 DOI: 10.1186/1743-422x-2-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 08/22/2005] [Indexed: 01/12/2023] Open
Abstract
Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol) generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD)" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.
Collapse
|
75
|
Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5:215-29. [PMID: 15738952 DOI: 10.1038/nri1573] [Citation(s) in RCA: 1188] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than 500 million people worldwide are persistently infected with the hepatitis B virus (HBV) and/or hepatitis C virus (HCV) and are at risk of developing chronic liver disease, cirrhosis and hepatocellular carcinoma. Despite many common features in the pathogenesis of HBV- and HCV-related liver disease, these viruses markedly differ in their virological properties and in their immune escape and survival strategies. This review assesses recent advances in our understanding of viral hepatitis, contrasts mechanisms of virus-host interaction in acute hepatitis B and hepatitis C, and outlines areas for future studies.
Collapse
Affiliation(s)
- Barbara Rehermann
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9B16, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
76
|
Dahari H, Major M, Zhang X, Mihalik K, Rice CM, Perelson AS, Feinstone SM, Neumann AU. Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production. Gastroenterology 2005; 128:1056-66. [PMID: 15825086 DOI: 10.1053/j.gastro.2005.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Although hepatitis C virus kinetics and immune determinants during primary infection have been described, the virus-host interplay is not fully understood. We used mathematical modeling to elucidate and quantify virus-host dynamics. METHODS Ten chimpanzees were infected intrahepatically with H77-RNA (n = 3) or intravenously with infected serum. Blood samples were taken 1-3 times per week for 6 months. A new model was fitted to the observed HCV RNA and alanine aminotransferase (ALT) kinetics. RESULTS After infection, viral levels increased in a biphasic manner with a transient decline in between. This can be explained by a partial block (mean, 91%) of virion production, possibly due to an endogenous type I interferon response. After reaching maximum levels, a long viral plateau (mean, 6.1 log cp/mL) can be explained by blind homeostasis and lack of susceptible cells. Modest elevations in ALT levels (21-93 IU/L) were concurrently observed, indicating a shorter half-life of infected versus noninfected hepatocytes (mean ratio, 2.6). Following the ALT flare, viral titers rapidly declined to a lower (mean, 4.5 log cp/mL; n = 6) or undetectable level (n = 4). This decline is compatible with increased cell death (mean minimal estimate half-life, 28.7 days) and noncytolytic clearance (mean maximal estimate half-life, 24.1 days) of infected cells. CONCLUSIONS Our results quantify virus-host dynamics during primary HCV infection and suggest that endogenous type I interferon slows virus production in the early acute phase. Partial or effective virus control correlates with the half-life of infected cells regulated by both cytolytic and noncytolytic mechanisms.
Collapse
Affiliation(s)
- Harel Dahari
- Faculty of Life Science, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Brass V, Blum HE, Moradpour D. Recent developments in target identification against hepatitis C virus. Expert Opin Ther Targets 2005; 8:295-307. [PMID: 15268625 DOI: 10.1517/14728222.8.4.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C is a leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. Recent progress in the understanding of the molecular virology of hepatitis C has allowed the identification of novel antiviral targets. Moreover, in vitro and in vivo model systems have been developed that allow the systematic evaluation of new therapeutic strategies. Exciting results from proof-of-concept clinical studies have now been reported for a specific hepatitis C virus serine protease inhibitor. These and other novel antiviral strategies may complement existing therapeutic modalities in the future.
Collapse
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
78
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. The major etiologies and risk factors for HCC development are well defined and some of the multiple steps involved in hepatocarcinogenesis have been elucidated in recent years. Despite these scientific advances and the implementation of measures for early HCC detection in patients at risk, patient survival has not improved during the last three decades. This is due in part to the advanced stage of the disease at the time of clinical presentation, in part due to the limited therapeutic options. These fall into four main categories: (1) surgical interventions, including tumour resection and liver transplantation, (2) percutaneous interventions, including ethanol injection and radiofrequency thermal ablation, (3) transarterial interventions, including embolisation and chemoembolisation and (4) drugs as well as gene and immune therapies. These therapeutic strategies have been evaluated in part in randomised controlled clinical trials that are the basis for therapeutic recommendations. While surgery and percutaneous as well as transarterial interventions are effective in patients with limited disease (1-3 lesions, < 5 cm in diameter) and compensated underlying liver disease (cirrhosis Child A), at the time of diagnosis more than 80% patients present with multicentric HCC and advanced liver disease or comorbidities that restrict the therapeutic measures to best supportive care. In order to reduce morbidity and mortality from HCC, therefore, early diagnosis and the development of novel systemic therapies for advanced disease, including drugs, gene and immune therapies as well as primary HCC prevention are of paramount importance. Further, secondary HCC prevention after successful therapeutic interventions needs to be improved in order to make an impact on the survival of patients with HCC. New technologies, including gene expression profiling and proteomic analyses, should further elucidate the molecular events underlying HCC development and identify novel diagnostic markers as well as therapeutic and preventive targets.
Collapse
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| |
Collapse
|
79
|
Gehring S, Gregory SH, Kuzushita N, Wands JR. Type 1 interferon augments DNA-based vaccination against hepatitis C virus core protein. J Med Virol 2005; 75:249-57. [PMID: 15602727 DOI: 10.1002/jmv.20264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eradication of chronic hepatitis C virus (HCV) infection depends upon a broad-based cellular immune response. Genetic immunization stimulates such a response, but the resultant activity is generally weak. Type 1 interferons (IFNs), which are known for their direct anti-viral and anti-proliferative properties, possess vigorous immunomodulatory properties. The aim of this study was to assess the capacity of IFN-alpha to augment the cellular immune response to DNA vaccination against HCV core protein. Three types of IFN-alpha were investigated: the non-species-specific hybrid IFN A/D, human pegylated IFN-alpha, and a plasmid that expressed murine IFN-alpha. Low doses of hIFN-A/D and hPegIFN-alpha augmented three to fourfold the cellular immune response to DNA-based vaccination, determined in conventional CTL assays, as well as in an in vivo tumor challenge model. Importantly, augmentation occurred within a narrow concentration range; a further increase in IFN dosage suppressed the CTL response significantly. Humoral immunity showed a very similar pattern of augmentation. These findings demonstrate that the immunomodulatory properties of IFN-alpha can be exploited to augment DNA based immunization, but it is important to consider the effects of dose on both cellular and humoral immune response for optimal augmentation.
Collapse
Affiliation(s)
- Stephan Gehring
- The Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
80
|
Puig M, Major ME, Mihalik K, Feinstone SM. Immunization of chimpanzees with an envelope protein-based vaccine enhances specific humoral and cellular immune responses that delay hepatitis C virus infection. Vaccine 2004; 22:991-1000. [PMID: 15161076 DOI: 10.1016/j.vaccine.2003.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 08/15/2003] [Accepted: 09/03/2003] [Indexed: 12/16/2022]
Abstract
Two chimpanzees, one naïve (Ch1601) and one recovered from hepatitis C virus (HCV) acute infection (Ch1587), were vaccinated with recombinant envelope glycoproteins (E1E2) and then challenged with 100 CID50 of HCV. Results of the challenge were compared to infection in a non-vaccinated control animal. Immunization generated high antibody titers to E1E2 including antibody specifically directed to the hypervariable region 1 (HVR1) in addition to strong and specific HVR1 T-cell proliferative responses. Upon challenge with HCV, viremia was delayed 3 weeks in both vaccinated animals compared to the non-immunized (control) animal. Ch1601 HCV RNA titers were maintained below 5 x 10(4) copies/ml, and alanine aminotransferase levels were only minimally elevated. An increase in intrahepatic cytokine mRNA levels coincided with a fall in HCV RNA to non-quantifiable levels. Despite this apparent control of virus replication the animal became persistently infected. Ch1587 had a significantly shorter and milder viremia, compared to the re-infection of the non-vaccinated control animal. This data indicates that a strategy inducing a T-cell immune response combined with antibody responses to E1E2 would make a viable candidate for an HCV vaccine.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Division of Viral Products, CBER, FDA, Building 29A, Room 1D02, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
81
|
Jeong SH, Qiao M, Nascimbeni M, Hu Z, Rehermann B, Murthy K, Liang TJ. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol 2004; 78:6995-7003. [PMID: 15194776 PMCID: PMC421664 DOI: 10.1128/jvi.78.13.6995-7003.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported the production of hepatitis C virus-like particles (HCV-LP) using a recombinant baculovirus containing the cDNA of the HCV structural proteins (core, E1, and E2). These particles resemble the putative HCV virions and are capable of inducing strong and broad humoral and cellular immune responses in mice. Here we present evidence on the immunogenicity of HCV-LP and the effects of novel adjuvant systems in a nonhuman primate model, the baboon. Three groups of four baboons were immunized with HCV-LP, HCV-LP and adjuvant AS01B (monophosphoryl lipid A and QS21), or HCV-LP and the combination of AS01B and CpG oligodeoxynucleotides 10105. After four immunizations over an 8-month period, all animals developed HCV-specific humoral and cellular immune responses including antibodies to HCV structural proteins and gamma interferon(+) (IFN-gamma(+))CD4(+) and IFN-gamma(+)CD8(+) T-cell responses. The immunogenicity of HCV-LP was only marginally enhanced by the use of adjuvants. The overall HCV-specific immune responses were broad and long lasting. Our results suggest that HCV-LP is a potent immunogen to induce HCV-specific humoral and cellular immune responses in primates and may be a promising approach to develop novel preventive and therapeutic modalities.
Collapse
Affiliation(s)
- Sook-Hyang Jeong
- Liver Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Logvinoff C, Major ME, Oldach D, Heyward S, Talal A, Balfe P, Feinstone SM, Alter H, Rice CM, McKeating JA. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci U S A 2004; 101:10149-54. [PMID: 15220475 PMCID: PMC454180 DOI: 10.1073/pnas.0403519101] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Little is known about the role of Abs in determining the outcome of hepatitis C virus (HCV) infection. By using infectious retroviral pseudotypes bearing HCV glycoproteins, we measured neutralizing Ab (nAb) responses during acute and chronic HCV infection. In seven acutely infected health care workers, only two developed a nAb response that failed to associate with viral clearance. In contrast, the majority of chronically infected patients had nAbs. To determine the kinetics of strain-specific and crossreactive nAb emergence, we studied patient H, the source of the prototype genotype 1a H77 HCV strain. An early weak nAb response, specific for the autologous virus, was detected at seroconversion. However, neutralization of heterologous viruses was detected only between 33 and 111 weeks of infection. We also examined the development of nAbs in 10 chimpanzees infected with H77 clonal virus. No nAb responses were detected in three animals that cleared virus, whereas strain-specific nAbs were detected in six of the seven chronically infected animals after approximately 50 weeks of infection. The delayed appearance of high titer crossreactive nAbs in chronically infected patients suggests that selective mechanism(s) may operate to prevent the appearance of these Abs during acute infection. The long-term persistence of these nAbs in chronically infected patients may regulate viral replication.
Collapse
Affiliation(s)
- C Logvinoff
- Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Chimpanzees remain the only recognized animal model for the study of hepatitis C virus (HCV). Studies performed in chimpanzees played a critical role in the discovery of HCV and are continuing to play an essential role in defining the natural history of this important human pathogen. In the absence of a reproducible cell culture system, the infectivity titer of HCV challenge pools can be determined only in chimpanzees. Recent studies in chimpanzees have provided new insight into the nature of host immune responses-particularly the intrahepatic responses-following primary and secondary experimental HCV infections. The immunogenicity and efficacy of vaccine candidates against HCV can be tested only in chimpanzees. Finally, it would not have been possible to demonstrate the infectivity of infectious clones of HCV without chimpanzees. Chimpanzees became infected when RNA transcripts from molecular clones were inoculated directly into the liver. The infection generated by such transfection did not differ significantly from that observed in animals infected intravenously with wild-type HCV. The RNA inoculated into chimpanzees originated from a single sequence, and the animals therefore had a monoclonal HCV infection. Monoclonal infection simplifies studies of HCV, because virus interaction with the host is not confounded by the quasispecies invariably present in a natural infection. It furthermore permits true homologous challenge in studies of protective immunity and in testing the efficacy of vaccine candidates. Finally, this in vivo transfection system has made it possible to test for the first time the importance of genetic elements for HCV infectivity.
Collapse
Affiliation(s)
- Jens Bukh
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
84
|
Rollier C, Depla E, Drexhage JAR, Verschoor EJ, Verstrepen BE, Fatmi A, Brinster C, Fournillier A, Whelan JA, Whelan M, Jacobs D, Maertens G, Inchauspé G, Heeney JL. Control of heterologous hepatitis C virus infection in chimpanzees is associated with the quality of vaccine-induced peripheral T-helper immune response. J Virol 2004; 78:187-96. [PMID: 14671100 PMCID: PMC303385 DOI: 10.1128/jvi.78.1.187-196.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prophylactic hepatitis C virus (HCV) vaccine trials with human volunteers are pending. There is an important need for immunological end points which correlate with vaccine efficacy and which do not involve invasive procedures, such as liver biopsies. By using a multicomponent DNA priming-protein boosting vaccine strategy, naïve chimpanzees were immunized against HCV structural proteins (core, E1, and E2) as well as a nonstructural (NS3) protein. Following immunization, exposure to the heterologous HCV 1b J4 subtype resulted in a peak of plasma viremia which was lower in both immunized animals. Compared to the naïve infection control and nine additional historical controls which became chronic, vaccinee 2 (Vac2) rapidly resolved the infection, while the other (Vac1) clearly controlled HCV infection. Immunization induced antibodies, peptide-specific gamma interferon (IFN-gamma), protein-specific lymphoproliferative responses, IFN-gamma, interleukin-2 (IL-2), and IL-4 T-helper responses in both vaccinees. However, the specificities were markedly different: Vac2 developed responses which were lower in magnitude than those of Vac1 but which were biased towards Th1-type cytokine responses for E1 and NS3. This proof-of-principle study in chimpanzees revealed that immunization with a combination of nonstructural and structural antigens elicited T-cell responses associated with an alteration of the course of infection. Our findings provide data to support the concept that the quality of the response to conserved epitopes and the specific nature of the peripheral T-helper immune response are likely pivotal factors influencing the control and clearance of HCV infection.
Collapse
Affiliation(s)
- C Rollier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Current treatment modalities available for hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are not efficient. The enormous disease burden caused by these two infections makes the development of novel therapies critical. For HCV, the development of an effective vaccine is urgent in view of the escalating number of infected individuals. Molecular therapies for HBV and HCV infection can be directed at reducing viral load by interfering with the life cycle of the viruses or at generating immune response against viral epitopes. The antiviral approaches consist of the delivery or expression of antisense RNAs, ribozymes or dominant negative proteins. Viral biology can be interrupted by attacking various potential targets within the two viruses. DNA-based vaccination strategies are being explored for both prevention and treatment of these diseases. Both non-viral and recombinant viral vectors are being developed for safe, effective and long-term gene transfer to the liver. Although no "ideal" vector is available at this time, the ingenuity of numerous investigators is leading to the improvement of the vector systems, promising successful application of gene therapy to the prevention and treatment of viral hepatitis in the foreseeable future.
Collapse
Affiliation(s)
- Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Peter Karayiannis
- Department of Medicine A, Faculty of Medicine, Division of Medicine, St Mary's Campus, Imperial College, London W2 1NY, UK.
| | | | | |
Collapse
|
87
|
Park SH, Yang SH, Lee CG, Youn JW, Chang J, Sung YC. Efficient induction of T helper 1 CD4+ T-cell responses to hepatitis C virus core and E2 by a DNA prime-adenovirus boost. Vaccine 2003; 21:4555-64. [PMID: 14575768 DOI: 10.1016/s0264-410x(03)00499-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is an important causative agent of liver disease, but currently there is no available prophylactic vaccine against HCV infection. Here, we investigated the HCV E2- and core-specific T-cell responses induced by DNA (D) and/or recombinant adenovirus (A) vaccines. In single (D versus A) or double immunizations (D-D versus A-A), the recombinant adenovirus vaccines induced higher levels of IFN-gamma secreting T-cell response and cytotoxic T lymphocytes (CTL) response than the DNA vaccines. However, a heterologous (D-A) regimen elicited the highest level of T helper 1 (Th1) CD4(+) T-cell responses. Furthermore, three E2-specific CTL epitopes were mapped using a peptide pool spanning the E2 protein sequence (a.a. 384-713) in BALB/c mice, and one of these (E2 405-414: SGPSQKIQLV) was shown to be immunodominant. Interestingly, no significant differences were found in the repertoire of E2-specific T-cell responses or in the immunodominance hierarchy of the three epitopes induced by D-D, D-A, A-A, and A-D, indicating that the breadth and hierarchy of T-cell responses is independent of these different vaccination regimens. In conclusion, the heterologous DNA prime-recombinant adenovirus boost regimen described offers an efficient promising strategy for the development of an effective T-cell-based HCV vaccine.
Collapse
Affiliation(s)
- Su-Hyung Park
- National Research Laboratory of DNA Medicine, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
The innate immune system has a role not only in protecting the host during the initial period of virus infection, but also in shaping the nature of the adaptive immune response. In this review, we follow the kinetics of the virologic and immunologic events occurring from the time of hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. We primarily discuss how the early events after infection might influence the development of the adaptive immune response in these 2 important viral infections and how new strategies for more efficient preventive and therapeutic vaccines can be derived from this knowledge.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Institute of Hepatology, University College London, Royal Free and University College of London Medical School, London, UK.
| | | |
Collapse
|
89
|
Feng ZH, Wang QC, Zhou YX, Hao CQ, Nie QH. Construction and expression of chrimeid plasmid pHCV-IgFc. Shijie Huaren Xiaohua Zazhi 2003; 11:697-700. [DOI: 10.11569/wcjd.v11.i6.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To construct a recombinant cherimal plasmid of HCV-Fc that can express HCV core protein and IgG Fc.
METHODS The HCV core gene derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) was inserted into the backward position of cytomegalovirus (CMV) immediate early promotor element of Fc plasmid (pIgFc), then the recombinant plasmid pHCV-IgFc was obtained.
RESULTS The insert DNA of pHCV-IgFc was HCV core and Fc gene conformed by endonuclease, PCR and sequencing. HCV core gene and Fc gene expressed transiently with Lipofectamine 2000 coated in human hepatoblastoma 7721 cells, which was conformed by immunofluorescence.
CONCLUSION Recombinant cherimal plasmid vector pHCV-IgFc can express HCV core and Fc gene transiently in 7721 cells. It may be useful in transfection of dendritic cells and development into dendritic cell vaccince.
Collapse
Affiliation(s)
- Zhi-Hua Feng
- Quan-Chu Wang, Yong-Xing Zhou, Chun-Qiu Hao, Qing-He Nie, The Center of Diagnosis and Treatment of Infection Diseases of PLA, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shan'xi Province, China
| | | | | | | | | |
Collapse
|
90
|
Abstract
Despite the availability of hepatitis A vaccines that might provide protection for decades, hepatitis B vaccines that provides protection for at least 15 years and the recent introduction of a combined hepatitis A and B vaccine, these infections continue to spread in both the developed and developing world. Hepatitis A vaccine coverage has been limited to high-risk groups: such a selective immunisation policy is unlikely to have a major impact. If adequate immunogenicity in infants is confirmed, dosing schedules can be improved and the costs of vaccination reduced, universal paediatric immunisation with combined hepatitis A and B products is likely to result in the eventual eradication of these infections. In the interim, novel hepatitis A vaccines are being investigated and additional studies on hepatitis A vaccine immunogenicity in infants are in progress. Worldwide use of hepatitis B vaccines for the newborn, young children and high-risk groups should control this infection and obviate the need for a vaccine against hepatitis D. Newer hepatitis B vaccines that may reduce the likelihood of non-responsiveness and have immunotherapeutic value are under study. A recombinant hepatitis E vaccine for use in endemic regions is currently in clinical trials. The development of an effective hepatitis C vaccine has been agonisingly slow and many impediments have been recognised. These include the lack of a susceptible small animal, a high degree of hepatitis C virus (HCV) genomic diversity and failure to produce high quantities of HCV in tissue culture. The development of a novel HCV replicon system may be a major breakthrough. Nonetheless, it may still be exceedingly difficult to produce a vaccine that uniformly provides sterilising immunity; the possibility of developing a hepatitis C vaccine that can prevent chronic infection is an exciting concept that requires further investigation. Advances in recombinant technology, the use of novel genetic (DNA-based) vaccines, expression of hepatitis antigens in plants and improved adjuvants also hold considerable promise.
Collapse
Affiliation(s)
- Raymond S Koff
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
91
|
Matsui M, Moriya O, Abdel-Aziz N, Matsuura Y, Miyamura T, Akatsuka T. Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 2002; 21:211-20. [PMID: 12450696 DOI: 10.1016/s0264-410x(02)00460-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the potential of dendritic cells (DCs) in priming hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTLs) in mice. Recombinant adenovirus expressing HCV core (Adex1SR3ST) was employed to express core in DCs. Core-specific CTLs are effectively elicited by injecting Adex1SR3ST-transduced DCs, whereas injection of Adex1SR3ST does not result in effective priming. Further, Adex1SR3ST-transduced DCs more efficiently prime core-specific CTLs than Adex1SR3ST-transduced macrophages, or DCs treated with an anthrax toxin fusion protein reported previously. Upon challenge with recombinant HCV-core-expressing vaccinia virus, vaccinia titers are significantly reduced in mice immunized with Adex1SR3ST-transduced DCs. Thus, adenovirus-transduced DCs may be a promising candidate for a CTL-based vaccine against HCV.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, Saitama 350-0495, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Ezelle HJ, Markovic D, Barber GN. Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector. J Virol 2002; 76:12325-34. [PMID: 12414973 PMCID: PMC136870 DOI: 10.1128/jvi.76.23.12325-12334.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV), a major etiologic agent of hepatocellular carcinoma, presently infects approximately 400 million people worldwide, making the development of protective measures against HCV infection a key objective. Here we have generated a recombinant vesicular stomatitis virus (VSV), which expresses the HCV structural proteins, by inserting the contiguous Core, E1, and E2 coding region of HCV into the VSV genome. Recombinant VSV expressing HCV Core, E1, and E2 (VSV-HCV-C/E1/E2) grew to high titers in vitro and efficiently expressed the incorporated HCV gene product, which became fully processed into the individual HCV structural proteins. Biochemical and biophysical analysis indicated that the HCV Core, E1, and E2 proteins assembled to form HCV-like particles (HCV-LPs) possessing properties similar to the ultrastructural properties of HCV virions. Mice immunized with VSV-HCV-C/E1/E2 generated cell-mediated immune responses to all of the HCV structural proteins, and humoral responses, particularly to E2, were also readily evident. Our data collectively indicate that engineered VSVs expressing HCV Core, E1, and E2 and/or HCV-LPs represent useful tools in vaccine and immunotherapeutic strategies designed to address HCV infection.
Collapse
Affiliation(s)
- Heather J Ezelle
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
93
|
Thimme R, Bukh J, Spangenberg HC, Wieland S, Pemberton J, Steiger C, Govindarajan S, Purcell RH, Chisari FV. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci U S A 2002; 99:15661-8. [PMID: 12441397 PMCID: PMC137773 DOI: 10.1073/pnas.202608299] [Citation(s) in RCA: 470] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To define the early events that determine the outcome of acute hepatitis C virus (HCV) infection, we compared the course of viremia with the peripheral and intrahepatic T cell response and intrahepatic cytokine profile in six acutely infected chimpanzees. Three different outcomes were observed after peak viral titers were reached: sustained viral clearance, transient viral clearance followed by chronic infection, and chronic infection that persisted at initial peak titers. The results indicate that HCV spread outpaces the T cell response and that HCV rapidly induces but is not controlled by IFN-alphabeta; that viral clearance follows the entry and accumulation of HCV-specific IFN-gamma-producing T cells in the liver; and that it may not require the destruction of infected cells.
Collapse
Affiliation(s)
- Robert Thimme
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci U S A 2002. [PMID: 12441397 DOI: 10.1073/pnas.202608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To define the early events that determine the outcome of acute hepatitis C virus (HCV) infection, we compared the course of viremia with the peripheral and intrahepatic T cell response and intrahepatic cytokine profile in six acutely infected chimpanzees. Three different outcomes were observed after peak viral titers were reached: sustained viral clearance, transient viral clearance followed by chronic infection, and chronic infection that persisted at initial peak titers. The results indicate that HCV spread outpaces the T cell response and that HCV rapidly induces but is not controlled by IFN-alphabeta; that viral clearance follows the entry and accumulation of HCV-specific IFN-gamma-producing T cells in the liver; and that it may not require the destruction of infected cells.
Collapse
|
95
|
Abstract
The hepatitis C virus (HCV) is a small enveloped RNA virus belonging to the family flaviviridae and genus hepacivirus. The HCV RNA genome is 9,600 nucleotides in length and encodes a single polyprotein that is post-translationally cleaved into 10 polypeptides including t3 structural (C, E1, and E2) and multiple nonstructural proteins ([NS] NS2 to NS5). The NS proteins include enzymes necessary for protein processing (proteases) and viral replication (RNA polymerase). The virus replicates at a high rate in the liver and has marked sequence heterogeneity. There are 6 genotypes and more than 90 subtypes of HCV, the most common in the United States being 1a and 1b (approximately 75%), 2a and 2b (approximately 15%), and 3 (approximately 7%). Acute hepatitis C is marked by appearance of HCV RNA in serum within 1 to 2 weeks of exposure followed by serum alanine aminotransferase (ALT) elevations, and then symptoms and jaundice. Antibody to HCV (anti-HCV) tends to arise late. In acute resolving hepatitis, HCV RNA is cleared and serum ALT levels fall to normal. However, 55% to 85% of patients do not clear virus, but develop chronic hepatitis C. Chronic hepatitis C is often asymptomatic, but is usually associated with persistent or fluctuating elevations in ALT levels. The chronic sequelae of hepatitis C include progressive hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. Extra-hepatic manifestations include sicca syndrome, cryoglobulinemia, glomerulonephritis, and porphyria cutanea tarda. Knowledge of the course and outcome of hepatitis C is important in developing approaches to management and therapy.
Collapse
Affiliation(s)
- Jay H Hoofnagle
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
96
|
Abstract
The hepatitis C virus (HCV) is a small enveloped RNA virus belonging to the family flaviviridae and genus hepacivirus. The HCV RNA genome is 9,600 nucleotides in length and encodes a single polyprotein that is post-translationally cleaved into 10 polypeptides including t3 structural (C, E1, and E2) and multiple nonstructural proteins ([NS] NS2 to NS5). The NS proteins include enzymes necessary for protein processing (proteases) and viral replication (RNA polymerase). The virus replicates at a high rate in the liver and has marked sequence heterogeneity. There are 6 genotypes and more than 90 subtypes of HCV, the most common in the United States being 1a and 1b (approximately 75%), 2a and 2b (approximately 15%), and 3 (approximately 7%). Acute hepatitis C is marked by appearance of HCV RNA in serum within 1 to 2 weeks of exposure followed by serum alanine aminotransferase (ALT) elevations, and then symptoms and jaundice. Antibody to HCV (anti-HCV) tends to arise late. In acute resolving hepatitis, HCV RNA is cleared and serum ALT levels fall to normal. However, 55% to 85% of patients do not clear virus, but develop chronic hepatitis C. Chronic hepatitis C is often asymptomatic, but is usually associated with persistent or fluctuating elevations in ALT levels. The chronic sequelae of hepatitis C include progressive hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. Extra-hepatic manifestations include sicca syndrome, cryoglobulinemia, glomerulonephritis, and porphyria cutanea tarda. Knowledge of the course and outcome of hepatitis C is important in developing approaches to management and therapy.
Collapse
Affiliation(s)
- Jay H Hoofnagle
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
97
|
Affiliation(s)
- Xavier Forns
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Villaroel 170, Barcelona 08036, Spain.
| | | | | |
Collapse
|
98
|
Beckebaum S, Cicinnati VR, Gerken G. DNA-based immunotherapy: potential for treatment of chronic viral hepatitis? Rev Med Virol 2002; 12:297-319. [PMID: 12211043 DOI: 10.1002/rmv.359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent HBV and HCV infection represent major causes of chronic liver disease with a high risk of progression to liver cirrhosis and hepatocellular carcinoma (HCC). Conventional protein-based vaccines are highly efficacious in preventing HBV infection; whereas in therapeutic settings with chronically infected patients, results have been disappointing. Prophylactic vaccination against HCV infection has not yet been achieved due to many impediments including frequent spontaneous mutations of the virus with escape from immune system control. Using animal models it has been demonstrated that DNA-based immunisation strategies may overcome this problem because of their potential to induce immunity against multiple viral epitopes. DNA-based vaccines mimic the effect of live attenuated viral vaccines, eliciting cell mediated immunity in addition to inducing humoral responses. Efficacy may further be improved by addition of DNA encoding immunomodulatory cytokines and more recently, direct genetic modulation of antigen-presenting cells, such as dendritic cells (DC), has been shown to increase antigen-specific immune responses. This review focuses on immunological aspects of chronic HBV and HCV infection and on the potential of DNA- and DC-based vaccines for the treatment of chronic viral hepatitis.
Collapse
Affiliation(s)
- Susanne Beckebaum
- Department of Gastroenterology and Hepatology, University of Essen, Germany
| | | | | |
Collapse
|
99
|
Esumi M, Zhou YH, Tanoue T, Tomoguri T, Hayasaka I. In vivo and in vitro evidence that cross-reactive antibodies to C-terminus of hypervariable region 1 do not neutralize heterologous hepatitis C virus. Vaccine 2002; 20:3095-103. [PMID: 12163260 DOI: 10.1016/s0264-410x(02)00271-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) may contain neutralizing epitopes. A chimpanzee in whom cross-reactive anti-HVR1 antibodies had been induced by immunization was challenged with heterologous HCV for clarifying whether cross-reactive anti-HVR1 antibodies can neutralize heterologous HCV. Acute hepatitis C occurred in this chimpanzee after the challenge. Rechallenge with mixtures of the highest titer cross-reactive immune serum and heterologous HCV, after the chimpanzee had cleared the viremia, again resulted in HCV infection. Virus capture assay and inhibition of virus adsorption to susceptible cells, by the immune sera from the chimpanzee and highly cross-reactive monoclonal antibodies (mAbs) against the C-terminus of HVR1 of the challenge virus, showed that cross-reactive anti-HVR1 had no cross-neutralizing activity. The data imply that the HVR1 component is insufficient to develop an effective HCV vaccine.
Collapse
Affiliation(s)
- Mariko Esumi
- Department of Pathology, Nihon University School of Medicine, 30-1 Ooyaguchikami-machi, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | | | |
Collapse
|
100
|
Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. DNA immunization with fusion genes encoding different regions of hepatitis C virus E2 fused to the gene for hepatitis B surface antigen elicits immune responses to both HCV and HBV. World J Gastroenterol 2002; 8:505-10. [PMID: 12046080 PMCID: PMC4656431 DOI: 10.3748/wjg.v8.i3.505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 12/23/2001] [Accepted: 01/23/2002] [Indexed: 02/06/2023] Open
Abstract
AIM Both Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are major causative agents of transfusion-associated and community-acquired hepatitis worldwide. Development of a HCV vaccine as well as more effective HBV vaccines is an urgent task. DNA immunization provides a promising approach to elicit protective humoral and cellular immune responses against viral infection. The aim of this study is to achieve immune responses against both HCV and HBV by DNA immunization with fusion constructs comprising various HCV E2 gene fragments fused to HBsAg gene of HBV. METHODS C57BL/6 mice were immunized with plasmid DNA expressing five fragments of HCV E2 fused to the gene for HBsAg respectively. After one primary and one boosting immunizations, antibodies against HCV E2 and HBsAg were tested and subtyped in ELISA. Splenic cytokine expression of IFN-gamma and IL-10 was analyzed using an RT-PCR assay. Post-immune mouse antisera also were tested for their ability to capture HCV viruses in the serum of a hepatitis C patient in vitro. RESULTS After immunization, antibodies against both HBsAg and HCV E2 were detected in mouse sera, with IgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-gamma was detected in cultured splenic cells. Mouse antisera against three of the five fusion constructs were able to capture HCV viruses in an in vitro assay. CONCLUSION The results indicate that these fusion constructs could efficiently elicit humoral and Th1 dominant cellular immune responses against both HBV S and HCV E2 antigens in DNA-immunized mice. They thus could serve as candidates for a bivalent vaccine against HBV and HCV infection. In addition, the capacity of mouse antisera against three of the five fusion constructs to capture HCV viruses in vitro suggested that neutralizing epitopes may be present in other regions of E2 besides the hypervariable region 1.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|