51
|
Dawson NS, Zawieja DC, Wu MH, Granger HJ. Signaling pathways mediating VEGF165-induced calcium transients and membrane depolarization in human endothelial cells. FASEB J 2006; 20:991-3. [PMID: 16581961 DOI: 10.1096/fj.05-3923fje] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosolic calcium and membrane potential were monitored simultaneously in quiescent human umbilical vein endothelial cells (HUVEC) exposed to vascular endothelial growth factor (VEGF)165 using the fluorescent indicators indo-1 AM and DiSBAC2(3), respectively. Application of VEGF165 to cells elicits a rapid rise in cytosolic calcium followed by a slower decline toward control values. Peak calcium is associated with a slight membrane hyperpolarization; however, as calcium falls toward control, a strong depolarization develops and is sustained throughout a 10-min period of VEGF165 stimulation. Both the VEGF165-mediated rise in cytosolic calcium and membrane depolarization are eliminated by inhibitors of VEGFR-2, tyrosine kinase, src kinase and inositol-1,4,5 triphosphate-operated calcium channels. Calcium entry, which is initially facilitated by transient hyperpolarization, is restricted by a substantial, sustained depolarization that developed during the downstroke of the calcium spike. Inhibition of plasmalemmal calcium channels diminished the magnitude and duration of the calcium spike, suggesting that extracellular calcium influx, secondary to stores release, is a significant component of the calcium transient. Inhibition of chloride channels substantially reduced membrane depolarization. In addition, the depolarization is modulated by PI3 kinase in a ras-independent manner. In summary, intracellular calcium and membrane potential are influenced by several key signaling cascades of VEGFR-2 activation in HUVEC.
Collapse
Affiliation(s)
- Nancy S Dawson
- Cardiovascular Research Institute and Department of Medical Physiology, College of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
52
|
Kupittayanant P, Trafford AW, Díaz ME, Eisner DA. A mechanism distinct from the L-type Ca current or Na-Ca exchange contributes to Ca entry in rat ventricular myocytes. Cell Calcium 2006; 39:417-23. [PMID: 16563501 DOI: 10.1016/j.ceca.2006.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/21/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The aim of this paper was to characterize the pathways that allow Ca(2+) ions to enter the cell at rest. Under control conditions depolarization produced an increase of intracellular Ca concentration ([Ca(2+)](i)) that increased with depolarization up to about 0 mV and then declined. During prolonged depolarization the increase of [Ca(2+)](i) decayed. This increase of [Ca(2+)](i) was inhibited by nifedipine and the calculated rate of entry of Ca increased on depolarization and then declined with a similar time course to the inactivation of the L-type Ca current. We conclude that this component of change of [Ca(2+)](i) is due to the L-type Ca current. If intracellular Na was elevated then only part of the change of [Ca(2+)](i) was inhibited by nifedipine. The nifedipine-insensitive component increased monotonically with depolarization and showed no relaxation on prolonged depolarization. This component appears to result from Na-Ca exchange (NCX). When the L-type current and NCX were both inhibited (nifedipine and Na-free solution) then depolarization decreased and hyperpolarization increased [Ca(2+)](i). These changes of [Ca(2+)](i) were unaffected by modifiers of B-type Ca channels such as chlorpromazine and AlF(3) but were abolished by gadolinium ions. We conclude that, in addition to L-type Ca channels and NCX, there is another pathway for entry of Ca(2+) into the ventricular myocyte but this is distinct from the previously reported B-type channel.
Collapse
Affiliation(s)
- P Kupittayanant
- Unit of Cardiac Physiology, University of Manchester, 3.18 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | | | | | | |
Collapse
|
53
|
Arnaudeau S, Holzer N, König S, Bader CR, Bernheim L. Calcium sources used by post-natal human myoblasts during initial differentiation. J Cell Physiol 2006; 208:435-45. [PMID: 16688780 DOI: 10.1002/jcp.20679] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increases in cytoplasmic Ca(2+) are crucial for inducing the initial steps of myoblast differentiation that ultimately lead to fusion; yet the mechanisms that produce this elevated Ca(2+) have not been fully resolved. For example, it is still unclear whether the increase comes exclusively from membrane Ca(2+) influx or also from Ca(2+) release from internal stores. To address this, we investigated early differentiation of myoblast clones each derived from single post-natal human satellite cells. Initial differentiation was assayed by immunostaining myonuclei for the transcription factor MEF2. When Ca(2+) influx was eliminated by using low external Ca(2+) media, we found that approximately half the clones could still differentiate. Of the clones that required influx of external Ca(2+), most clones used T-type Ca(2+) channels, but others used store-operated channels as influx-generating mechanisms. On the other hand, clones that differentiated in low external Ca(2+) relied on Ca(2+) release from internal stores through IP(3) receptors. Interestingly, by following clones over time, we observed that some switched their preferred Ca(2+) source: clones that initially used calcium release from internal stores to differentiate later required Ca(2+) influx and inversely. In conclusion, we show that human myoblasts can use three alternative mechanisms to increase cytoplasmic Ca(2+) at the onset of the differentiation process: influx through T-types Ca(2+) channels, influx through store operated channels and release from internal stores through IP(3) receptors. In addition, we suggest that, probably because Ca(2+) elevation is essential during initial differentiation, myoblasts may be able to select between these alternate Ca(2+) pathways.
Collapse
Affiliation(s)
- Serge Arnaudeau
- Département de Neurosciences Fondamentales, Centre Médical Universitaire, Genève, Switzerland.
| | | | | | | | | |
Collapse
|
54
|
Dobrydneva Y, Abelt CJ, Dovel B, Thadigiri CM, Williams RL, Blackmore PF. 2-aminoethoxydiphenyl borate as a prototype drug for a group of structurally related calcium channel blockers in human platelets. Mol Pharmacol 2006; 69:247-56. [PMID: 16214957 DOI: 10.1124/mol.105.015701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have synthesized a series of 2-aminoethoxydiphenyl borate (2-APB, 2,2-diphenyl-1,3,2-oxazaborolidine) analogs and tested their ability to inhibit thrombin-induced Ca(2+) influx in human platelets. The analogs were either synthesized by adding various substituents to the oxazaborolidine ring (methyl, dimethyl, tert-butyl, phenyl, methyl phenyl, and pyridyl) or increasing the size of the oxazaborolidine ring to seven- and nine-membered rings. NMR analysis of the boron-containing analogs suggests that each of them exist as a ring structure through the formation of an N-->B coordinate bond (except for the hexyl analog). The possibility that these boron-containing compounds formed dimers was also considered. All compounds dose-dependently inhibited thrombin-induced Ca(2+) influx in human platelets, with the 2,2-diphenyl-1,3,2-oxazaborolidine-5-one derivative having the weakest activity at 100 microM, whereas the (S)-4-benzyl and (R)-4-benzyl derivatives of 2-APB were approximately 10 times more potent than the parent 2-APB. Two nonboron analogs (3-methyl and 3-tert-butyl 2,2-diphenyl-1,3-oxazolidine) were synthesized; they had approximately the same activity as 2-APB, and this implies that the presence of boron was not necessary for inhibitory activity. All of the compounds tested were also able to inhibit thrombin-induced calcium release. We concluded that extensive modifications of the oxazaborolidine ring in 2-APB can be made, and Ca(2+)-blocking activity was maintained.
Collapse
Affiliation(s)
- Yuliya Dobrydneva
- Department of Physiological Sciences, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501, USA
| | | | | | | | | | | |
Collapse
|
55
|
Bose DD, Thomas DW. 2-Aminoethoxydiphenyl borate (2-APB) stimulates a conformationally coupled calcium release pathway in the NG115-401L neuronal cell line. Neuropharmacology 2005; 50:532-9. [PMID: 16325870 DOI: 10.1016/j.neuropharm.2005.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/28/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
We report in this study a 2-aminoethoxydiphenyl borate (2-APB) activated Ca2+ pathway in NG115-401L (401L) neuronal cells bearing resemblance to hormonal and ryanodine receptor activated pathways. We observed that 2-APB, in contrast to much earlier work, did not inhibit store operated Ca2+ channel (SOC) function, but rather induced potent Ca2+ discharge responses that robustly activated SOC-mediated Ca2+ influx. Further, these studies intriguingly revealed that the 2-APB-induced Ca2+ release pathway likely couples conformationally to targets in the plasma membrane, as membrane permeabilization or actin perturbation abolished the ability of the compound to stimulate Ca2+ signals. These findings suggest that conformationally sensitive complexes form between endoplasmic reticulum and plasma membrane components that not only regulate Ca2+ influx, previously proposed as the conformational coupling hypothesis, but are also required to promote Ca2+ release from intracellular stores. These observations further characterize the 401L neuronal cell line as having unique characteristics that may prove useful in gaining insight into the nature of the coupling mechanism linking Ca2+ release to Ca2+ influx.
Collapse
Affiliation(s)
- Diptiman D Bose
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | |
Collapse
|
56
|
Ben-Amor N, Redondo PC, Bartegi A, Pariente JA, Salido GM, Rosado JA. A role for 5,6-epoxyeicosatrienoic acid in calcium entry by de novo conformational coupling in human platelets. J Physiol 2005; 570:309-23. [PMID: 16308346 PMCID: PMC1464301 DOI: 10.1113/jphysiol.2005.100800] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A major pathway for Ca(2+) entry in non-excitable cells is activated following depletion of intracellular Ca(2+) stores. A de novo conformational coupling between elements in the plasma membrane (PM) and Ca(2+) stores has been proposed as the most likely mechanism to activate this capacitative Ca(2+) entry (CCE) in several cell types, including platelets. Here we report that a cytochrome P450 metabolite, 5,6-EET, might be a component of the de novo conformational coupling in human platelets. In these cells, 5,6-EET induces divalent cation entry without having any detectable effect on Ca(2+) store depletion. 5,6-EET-induced Ca(2+) entry was sensitive to the CCE blockers 2-APB, lanthanum, SKF-96365 and nickel and impaired by incubation with anti-hTRPC1 antibody. Ca(2+) entry stimulated by low concentrations of thapsigargin, which selectively depletes the dense tubular system and induces EET production, was impaired by the cytochrome P450 inhibitor 17-ODYA, which has no effect on CCE mediated by depletion of the acidic stores using 2,5-di-(tert-butyl)-1,4-hydroquinone. We have found that 5,6-EET-induced Ca(2+) entry requires basal levels of H(2)O(2), which might maintain a redox state favourable for this event. Finally, our results indicate that 5,6-EET induces the activation of tyrosine kinase proteins and the reorganization of the actin cytoskeleton, which might provide a support for the transport of portions of the Ca(2+) store towards the PM to facilitate de novo coupling between IP(3)R type II and hTRPC1 detected by coimmunoprecipitation. We propose that the involvement of 5,6-EET in TG-induced coupling between IP(3)R type II and hTRPC1 and subsequently CCE is compatible with the de novo conformational coupling in human platelets.
Collapse
Affiliation(s)
- Nidhal Ben-Amor
- Unité de Recherche de Biochimie, Institute Superieur de Biotechnologie, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
57
|
Hurne AM, O'Brien JJ, Wingrove D, Cherednichenko G, Allen PD, Beam KG, Pessah IN. Ryanodine Receptor Type 1 (RyR1) Mutations C4958S and C4961S Reveal Excitation-coupled Calcium Entry (ECCE) Is Independent of Sarcoplasmic Reticulum Store Depletion. J Biol Chem 2005; 280:36994-7004. [PMID: 16120606 DOI: 10.1074/jbc.m506441200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bi-directional signaling between ryanodine receptor type 1 (RyR1) and dihydropyridine receptor (DHPR) in skeletal muscle serves as a prominent example of conformational coupling. Evidence for a physiological mechanism that upon depolarization of myotubes tightly couples three calcium channels, DHPR, RyR1, and a Ca(2+) entry channel with SOCC-like properties, has recently been presented. This form of conformational coupling, termed excitation-coupled calcium entry (ECCE) is triggered by the alpha(1s)-DHPR voltage sensor and is highly dependent on RyR1 conformation. In this report, we substitute RyR1 cysteines 4958 or 4961 within the TXCFICG motif, common to all ER/SR Ca(2+) channels, with serine. When expressed in skeletal myotubes, C4958S- and C4961S-RyR1 properly target and restore L-type current via the DHPR. However, these mutants do not respond to RyR activators and do not support skeletal type EC coupling. Nonetheless, depolarization of cells expressing C4958S- or C4961S-RyR1 triggers calcium entry via ECCE that resembles that for wild-type RyR1, except for substantially slowed inactivation and deactivation kinetics. ECCE in these cells is completely independent of store depletion, displays a cation selectivity of Ca(2+)>Sr(2+) approximately Ba(2+), and is fully inhibited by SKF-96365 or 2-APB. Mutation of other non-CXXC motif cysteines within the RyR1 transmembrane assembly (C3635S, C4876S, and C4882S) did not replicate the phenotype observed with C4958S- and C4961S-RyR1. This study demonstrates the essential role of Cys(4958) and Cys(4961) within an invariant CXXC motif for stabilizing conformations of RyR1 that influence both its function as a release channel and its interaction with ECCE channels.
Collapse
Affiliation(s)
- Alanna M Hurne
- Department of Molecular Biosciences, School of Veterinary Medicine and Center for Children's Environmental Health and Disease Prevention, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Jeng JH, Chan CP, Wu HL, Ho YS, Lee JJ, Liao CH, Chang YK, Chang HH, Chen YJ, Perng PJ, Chang MC. Protease-activated receptor-1-induced calcium signaling in gingival fibroblasts is mediated by sarcoplasmic reticulum calcium release and extracellular calcium influx. Cell Signal 2005; 16:731-40. [PMID: 15093614 DOI: 10.1016/j.cellsig.2003.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/27/2003] [Accepted: 11/27/2003] [Indexed: 10/26/2022]
Abstract
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.
Collapse
Affiliation(s)
- Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW. The mammalian TRPC cation channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:21-36. [PMID: 15590053 DOI: 10.1016/j.bbamcr.2004.08.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/27/2004] [Accepted: 08/28/2004] [Indexed: 01/27/2023]
Abstract
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels.
Collapse
Affiliation(s)
- Guillermo Vazquez
- The Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
60
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2004; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
61
|
Slice LW, Chiu T, Rozengurt E. Angiotensin II and epidermal growth factor induce cyclooxygenase-2 expression in intestinal epithelial cells through small GTPases using distinct signaling pathways. J Biol Chem 2004; 280:1582-93. [PMID: 15525649 DOI: 10.1074/jbc.m408172200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Colorectal carcinogenesis is a multistep process involving genetic mutations and alterations in rigorously controlled signaling pathways and gene expression that control intestinal epithelial cell proliferation, differentiation, and apoptosis. Cyclooxygenase-2 (COX-2) is aberrantly expressed in premalignant adenomatous polyps and colorectal carcinomas and is associated with increased epithelial cell proliferation, decreased apoptosis, and increased cell invasiveness. Currently, knowledge of the regulation of expression of COX-2 by endogenous cell-surface receptors is inadequate. Recently, in a non-transformed rat intestinal epithelial cell line (IEC-18), we showed induction of cell proliferation and DNA synthesis by angiotensin II (Ang II) via the endogenous Ang II type 1 receptor (Chiu, T., Santiskulvong, C., and Rozengurt, E. (2003) Am. J. Physiol. 285, G1-G11). We report that Ang II potently stimulated expression of COX-2 mRNA and protein as an immediate-early gene response through the Ang II type 1 receptor, correlating with an increase in prostaglandin I2 production. Ang II induced Cdc42 activation and filopodial formation. COX-2 expression was induced by epidermal growth factor (EGF), which activated Rac with lamellipodial formation. Inhibition of small GTPases by Clostridium difficile toxin B blocked COX-2 expression by Ang II and EGF. Inhibition of ERK activation by U0126 or PD98059 significantly decreased EGF-dependent COX-2 expression, but did not affect Ang II-dependent COX-2 expression. Conversely, inhibition of p38MAPK by SB202190 or PD169316 inhibited COX-2 expression by Ang II, but did not block COX-2 induction by EGF. Ang II caused Ca2+ mobilization. Inhibition of Ca2+ signaling by 2-aminobiphenyl borate blocked Ang II-dependent COX-2 expression. EGF did not induce Ca2+ mobilization, and 2-aminobiphenyl borate did not inhibit EGF-dependent COX-2 expression. Inhibition of COX-2 expression correlated with inhibition of prostaglandin I2 production. Luciferase promoter assays showed that Ang II-dependent transcriptional activation of the COX-2 promoter was dependent on activation of small GTPases and p38(MAPK) and on Ca2+ signaling via the cAMP-responsive element/activating transcription factor cis-acting element.
Collapse
Affiliation(s)
- Lee W Slice
- Department of Medicine, David Geffen School of Medicine at UCLA, the CURE: Digestive Diseases Research Center, the Jonnson Comprehensive Cancer Center, University of California, Los Angeles 90095-1786, USA.
| | | | | |
Collapse
|
62
|
Cherednichenko G, Hurne AM, Fessenden JD, Lee EH, Allen PD, Beam KG, Pessah IN. Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc Natl Acad Sci U S A 2004; 101:15793-8. [PMID: 15505226 PMCID: PMC524834 DOI: 10.1073/pnas.0403485101] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) occurs in diverse cell types in response to depletion of Ca(2+) within the endoplasmic/sarcoplasmic reticulum and functions both to refill these stores and to shape cytoplasmic Ca(2+) transients. Here we report that in addition to conventional SOCE, skeletal myotubes display a physiological mechanism that we term excitation-coupled Ca(2+) entry (ECCE). ECCE is rapidly initiated by membrane depolarization. Like excitation-contraction coupling, ECCE is absent in both dyspedic myotubes that lack the skeletal muscle-type ryanodine receptor 1 and dysgenic myotubes that lack the dihydropyridine receptor (DHPR), and is independent of the DHPR l-type Ca(2+) current. Unlike classic SOCE, ECCE does not depend on sarcoplasmic reticulum Ca(2+) release. Indeed, ECCE produces a large Ca(2+) entry in response to physiological stimuli that do not produce substantial store depletion and depends on interactions among three different Ca(2+) channels: the DHPR, ryanodine receptor 1, and a Ca(2+) entry channel with properties corresponding to those of store-operated Ca(2+) channels. ECCE may provide a fundamental means to rapidly maintain Ca(2+) stores and control important aspects of Ca(2+) signaling in both muscle and nonmuscle cells.
Collapse
Affiliation(s)
- Gennady Cherednichenko
- Department of Molecular Biosciences and Center for Children's Environmental Health and Disease Prevention, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Hanna WF, Kerr CL, Shaper JH, Wright WW. Lewis X-Containing Neoglycoproteins Mimic the Intrinsic Ability of Zona Pellucida Glycoprotein ZP3 to Induce the Acrosome Reaction in Capacitated Mouse Sperm1. Biol Reprod 2004; 71:778-89. [PMID: 15128591 DOI: 10.1095/biolreprod.103.023820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The binding of zona pellucida (ZP) glycoprotein ZP3 to mouse sperm surface receptors is mediated by protein-carbohydrate interactions. Subsequently, ZP3 induces sperm to undergo the acrosome reaction, an obligatory step in fertilization. We have previously identified Lewis X (Le(x); Gal beta 4[Fuc alpha 3]GlcNAc) as a potent inhibitor of in vitro sperm-ZP binding (Johnston et al. J Biol Chem 1998; 273:1888-1895). This glycan is recognized by approximately 70% of the ZP3 binding sites on capacitated, acrosome-intact mouse sperm, whereas Lewis A (Le(a); Gal beta 3[Fuc alpha 4]GlcNAc) is recognized by most of the remaining sites (Kerr et al. Biol Reprod 2004; 71:770-777). Herein, we test the hypothesis that Le(x)- and Le(a)-containing glycans, when clustered on a neoglycoprotein, bind ZP3 receptors on sperm and induce sperm to undergo the acrosome reaction via the same signaling pathways as ZP3. Results show that a Le(x)-containing neoglycoprotein induced the acrosome reaction in a dose-dependent and capacitation-dependent manner. A Le(a)-containing neoglycoprotein also induced sperm to undergo the acrosome reaction but was less potent than Le(x)-containing neoglycoproteins. In contrast, neoglycoproteins containing beta4-lactosamine (Gal beta 4GlcNAc), Lewis B (Fuc alpha 2Gal beta 3[Fuc alpha 4]GlcNAc), and sialyl-Le(x) glycans were inactive, as were four other neoglycoproteins with different nonfucosylated glycans. Consistent with these results, unconjugated Le(x)- and Le(a)-capped glycans were dose-dependent inhibitors, which at saturation, reduced the ZP-induced acrosome reaction by about 60% and 30%, respectively. Experiments utilizing pharmacological inhibitors suggest that induction of the acrosome reaction by solubilized ZP and Le(x)- and Le(a)-containing neoglycoproteins require the same calcium-dependent pathway. However, only the ZP-induced acrosome reaction requires a functional G(i) protein. Thus, Le(x)-containing neoglycoproteins bind to a major class of ZP3 receptors on capacitated sperm. A Le(a)-containing neoglycoprotein binds a second ZP3 receptor but is a less-potent inducer of the acrosome reaction.
Collapse
Affiliation(s)
- William F Hanna
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
64
|
Wier WG, Morgan KG. Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 2004; 150:91-139. [PMID: 12884052 DOI: 10.1007/s10254-003-0019-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our goal in this review is to provide a comprehensive, integrated view of the numerous signaling pathways that are activated by alpha(1)-adrenoceptors and control actin-myosin interactions (i.e., crossbridge cycling and force generation) in mammalian arterial smooth muscle. These signaling pathways may be categorized broadly as leading either to thick (myosin) filament regulation or to thin (actin) filament regulation. Thick filament regulation encompasses both "Ca(2+) activation" and "Ca(2+)-sensitization" as it involves both activation of myosin light chain kinase (MLCK) by Ca(2+)-calmodulin and regulation of myosin light chain phosphatase (MLCP) activity. With respect to Ca(2+) activation, adrenergically induced Ca(2+) transients in individual smooth muscle cells of intact arteries are now being shown by high resolution imaging to be sarcoplasmic reticulum-dependent asynchronous propagating Ca(2+) waves. These waves differ from the spatially uniform increases in [Ca(2+)] previously assumed. Similarly, imaging during adrenergic activation has revealed the dynamic translocation, to membranes and other subcellular sites, of protein kinases (e.g., Ca(2+)-activated protein kinases, PKCs) that are involved in regulation of MLCP and thus in "Ca(2+) sensitization" of contraction. Thin filament regulation includes the possible disinhibition of actin-myosin interactions by phosphorylation of CaD, possibly by mitogen-activated protein (MAP) kinases that are also translocated during adrenergic activation. An hypothesis for the mechanisms of adrenergic activation of small arteries is advanced. This involves asynchronous Ca(2+) waves in individual SMC, synchronous Ca(2+) oscillations (at high levels of adrenergic activation), Ca(2+) sparks, "Ca(2+)-sensitization" by PKC and Rho-associated kinase (ROK), and thin filament mechanisms.
Collapse
Affiliation(s)
- W G Wier
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
65
|
Fatherazi S, Belton CM, Cai S, Zarif S, Goodwin PC, Lamont RJ, Izutsu KT. Calcium receptor message, expression and function decrease in differentiating keratinocytes. Pflugers Arch 2004; 448:93-104. [PMID: 14770313 DOI: 10.1007/s00424-003-1223-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 11/14/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Calcium-sensing receptor (CaSR) expression and function were studied in proliferating and differentiating cultured human gingival keratinocytes (HGKs). CaSR mRNA and protein were present in proliferating HGKs cultured in 0.03 mM [Ca(2+)] and decreased in cells induced to differentiate by culturing in 1.2 mM [Ca(2+)] for 2 days. CaSR protein was also detected in gingival tissue. Exposure to 10 mM extracellular [Ca(2+)] activated two sequential whole-cell currents. The first was a small, transient calcium release activated calcium current I(CRAC)-like current with an inwardly rectifying I-V curve. The second current was larger with a linear I-V curve. Both currents were significantly decreased in differentiating cells. Neither neomycin nor gadolinium induced changes in whole cell currents nor in intracellular [Ca(2+)], but neomycin inhibited the late large current. Extracellular Ca(2+) increased intracellular [Ca(2+)] of proliferating HGKs in a dose-dependent fashion. Comparison of the time-courses of the whole-cell currents and the intracellular [Ca(2+)] responses indicated both induced currents supported a Ca(2+) influx. Extracellular [Mg(2+)] changes did not affect intracellular [Ca(2+)]. La(3+) and 2-APB inhibited the whole cell current and intracellular [Ca(2+)] changes. The results indicate that the CaSR signaling response likely plays a major role in initiating Ca(2+) induced differentiation responses in HGKs.
Collapse
Affiliation(s)
- Sahba Fatherazi
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Ma HT, Venkatachalam K, Rys-Sikora KE, He LP, Zheng F, Gill DL. Modification of phospholipase C-gamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. Biochem J 2004; 376:667-76. [PMID: 14558886 PMCID: PMC1223825 DOI: 10.1042/bj20031345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/08/2003] [Accepted: 10/15/2003] [Indexed: 01/29/2023]
Abstract
The mechanisms by which Ca(2+)-store-release channels and Ca(2+)-entry channels are coupled to receptor activation are poorly understood. Modification of Ca(2+) signals by 2-aminoethoxydiphenyl borate (2-APB), suggests the agent may target entry channels or the machinery controlling their activation. In DT40 B-cells and Jurkat T-cells, complete Ca(2+) store release was induced by 2-APB (EC(50) 10-20 microM). At 75 microM, 2-APB emptied stores completely in both lymphocyte lines, but had no such effect on other cells. In DT40 cells, 2-APB mimicked B-cell receptor (BCR) cross-linking, but no effect was observed in mutant DT40 lines devoid of inositol 1,4,5-trisphosphate (InsP(3)) receptors (InsP(3)Rs) or phospholipase C-gamma2 (PLC-gamma2). Like the BCR, 2-APB activated transfected TRPC3 (canonical transient receptor potential) channels, which acted as sensors for PLC-gamma2-generated diacylglycerol in DT40 cells. The action of 2-APB on InsP(3)Rs and TRPC3 channels was prevented by PLC-inhibition, and required PLC-gamma2 catalytic activity. However, unlike BCR activation, no increased InsP(3) level could be measured in response to 2-APB. Also, calyculin A-induced cytoskeletal reorganization prevented 2-APB-induced InsP(3)R and TRPC3-channel activation, but not that induced by the BCR. 2-APB still activated TRPC3 channels in DT40 cells with fully depleted Ca(2+) stores, indicating its action was not via Ca(2+) release. Significantly, 2-APB-induced InsP(3)R and TRPC3 activation was prevented in DT40 knockout cells devoid of the BCR- and PLC-gamma2-coupled adaptor/kinases, Syk, Lyn, Btk or BLNK. The results suggest that 2-APB activates Ca(2+) signals in lymphocytes by initiating and enhancing coupling between components of the BCR-PLC-gamma2 complex and both Ca(2+)-entry and Ca(2+)-release channels.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
67
|
Rosado JA, Redondo PC, Salido GM, Gómez-Arteta E, Sage SO, Pariente JA. Hydrogen Peroxide Generation Induces pp60 Activation in Human Platelets. J Biol Chem 2004; 279:1665-75. [PMID: 14581479 DOI: 10.1074/jbc.m307963200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species, such as H2O2, have been recognized as intracellular messengers involved in several cell functions. Here we report the activation of the tyrosine kinase pp60(src) by H2O2, a mechanism required for the activation of store-mediated Ca2+ entry (SMCE) in human platelets. Treatment of platelets with H2O2 resulted in a time- and concentration-dependent activation of pp60(src). Incubation with GF 109203X, a protein kinase C (PKC) inhibitor, prevented H2O2-induced pp60(src) activation. In contrast, dimethyl-BAPTA loading did not affect this response, suggesting that activation of pp60(src) by H2O2 is independent of increases in [Ca2+](i). Cytochalasin D, an inhibitor of actin polymerization, significantly reduced H2O2-induced pp60(src) activation. We found that platelet stimulation with thapsigargin (TG) plus ionomycin (Iono) or thrombin induced rapid H2O2 production, a mechanism independent of elevations in [Ca2+](i). Treatment of platelets with catalase attenuated TG plus Iono- and thrombin-induced activation of pp60(src). In addition, catalase as well as the pp60(src) inhibitor, PP1, reduced both the activation of SMCE and the coupling between the hTrp1 and the IP(3)R type II without having any effect on the maintenance of SMCE. Consistent with the role of PKC in the activation of pp60(src) by H2O2, the PKC inhibitors GF 109202X and Ro-31-8220 were found to reduced SMCE in platelets. This study suggests that platelet activation with TG plus Iono or thrombin is associated with H2O2 production, which acts as a second messenger by stimulating pp60(src) by a PKC-dependent pathway and is involved in the activation of SMCE in these cells.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres 10071, Spain.
| | | | | | | | | | | |
Collapse
|
68
|
Bleher R, Machado J. Paracellular pathway in the shell epithelium ofAnodonta cygnea. ACTA ACUST UNITED AC 2004; 301:419-27. [PMID: 15114649 DOI: 10.1002/jez.a.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrastructural study of cell-cell connections in the outer mantle epithelium (OME) on high-pressure-frozen specimens revealed zonula adherens, septate junctions and gap junctions in Anodonta cygnea. In order to evaluate the permeability of the paracellular pathway, the OME was incubated under gradients of lanthanum and calcium. After lanthanum incubation (4 mM) from the basal side, the septate junctions were penetrated completely by this tracer. When applied from the apical side, lanthanum deposits were located similarly over the entire length of the septate junctions up to the first dilatations of the intercellular space. Calcium deposits were also present in paracellular areas only when OME had been incubated simultaneously with calcium (6 mM) and lanthanum (4 mM) gradients. Lanthanum and calcium deposits were detected with ESI (Electron Spectroscopic Imaging) and identified with EELS (Electron Energy Loss Spectroscopy). On the other hand, electrophysiological observations showed a 48% reduction of conductance when the OME was bathed on both sides with solutions containing lanthanum (4 mM) and calcium (6 mM), compared to bathing with lanthanum-free solution (control). The conductance reduction was 52% when calcium was removed from the control solution. Supported by morphological and physiological evidence, it appears that, under in vivo conditions, calcium ions may diffuse paracellularly from the haemolymph towards the extrapallial fluid and vice-versa across the septate junctions in the OME of A. cygnea. Permeability of the septate junctions depended proportionally on the calcium concentration in fluids.
Collapse
Affiliation(s)
- Reiner Bleher
- Electron Microscopy Section, University of Ulm, Germany
| | | |
Collapse
|
69
|
Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2003; 286:L848-58. [PMID: 14672922 DOI: 10.1152/ajplung.00319.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries.
Collapse
Affiliation(s)
- Jian Wang
- Div. of Pulmonary & Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Cir., Baltimore, MD 21224, USA
| | | | | |
Collapse
|
70
|
Cordova D, Delpech VR, Sattelle DB, Rauh JJ. Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor. INVERTEBRATE NEUROSCIENCE : IN 2003; 5:19-28. [PMID: 12827518 DOI: 10.1007/s10158-003-0024-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2003] [Indexed: 10/26/2022]
Abstract
A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca(2+)](i)) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca(2+)](i) transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx.
Collapse
Affiliation(s)
- D Cordova
- Dupont Crop Protection Products, Stine Haskell Research Center, Elkton Road, Newark, Delaware 19714, USA.
| | | | | | | |
Collapse
|
71
|
Baryshnikov SG, Rogachevskaja OA, Kolesnikov SS. Calcium signaling mediated by P2Y receptors in mouse taste cells. J Neurophysiol 2003; 90:3283-94. [PMID: 12878712 DOI: 10.1152/jn.00312.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the taste bud. Recently, we found that ATP, a ubiquitous neurotransmitter/neuromodulator, mobilizes intracellular Ca2+ in taste cells by activating P2Y receptors. Here, P2Y receptor-cellular response coupling was characterized in detail using single cell ratio photometry and the inhibitory analysis. The sequence of underlying events was shown to include ATP-dependent activation of PLC, IP3 production, and IP3 receptor-mediated Ca2+ release followed by Ca2+ influx. Data obtained favor SOC channels rather than receptor-operated channels as a pathway for Ca2+ influx that accompanies Ca2+ release. Intracellular Ca2+ mobilized by ATP is apparently extruded by the plasma membrane Ca2+-ATPase, while a contribution of the Na+/Ca2+ exchange and other mechanisms of Ca2+ clearance is negligible. Cyclic AMP-dependent phosphorylation is likely to control a gain of the phosphoinositide cascade involved in ATP transduction. ATP-responsive taste cells are abundant in circumvallate, foliate, and fungiform papillae. Taken together, our observations point to a putative role for ATP as a neurotransmitter operative in the taste bud.
Collapse
Affiliation(s)
- Sergey G Baryshnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
72
|
Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K, Vanderbilt CA, Cobb MH. Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic beta cells. J Biol Chem 2003; 278:32517-25. [PMID: 12783880 DOI: 10.1074/jbc.m301174200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that ERK1/2 were activated by glucose and amino acids in pancreatic beta cells. Here we examine and compare signaling events that are necessary for ERK1/2 activation by glucose and other stimuli in beta cells. We find that agents that interrupt Ca2+ signaling by a variety of mechanisms interfere with glucose- and glucagon-like peptide (GLP-1)-stimulated ERK1/2 activity. In particular, calmodulin antagonists, FK506, and cyclosporin, immunosuppressants that inhibit the calcium-dependent phosphatase calcineurin, suppress ERK1/2 activation by both glucose and GLP-1. Ca2+ signaling from intracellular stores is also essential for ERK1/2 activation, because thapsigargin blocks ERK1/2 activation by glucose or GLP-1. The glucose-sensitive mechanism is distinct from that used by phorbol ester or insulin to stimulate ERK1/2 but shares common features with that used by GLP-1.
Collapse
Affiliation(s)
- Don Arnette
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
The alpha-latrotoxin mutant LTXN4C enhances spontaneous and evoked transmitter release in CA3 pyramidal neurons. J Neurosci 2003. [PMID: 12764091 DOI: 10.1523/jneurosci.23-10-04044.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-latrotoxin (LTX) stimulates vesicular exocytosis by at least two mechanisms that include (1) receptor binding-stimulation and (2) membrane pore formation. Here, we use the toxin mutant LTX(N4C) to selectively study the receptor-mediated actions of LTX. LTX(N4C) binds to both LTX receptors (latrophilin and neurexin) and greatly enhances the frequency of spontaneous and miniature EPSCs recorded from CA3 pyramidal neurons in hippocampal slice cultures. The effect of LTX(N4C) is reversible and is not attenuated by La3+ that is known to block LTX pores. On the other hand, LTX(N4C) action, which requires extracellular Ca2+, is inhibited by thapsigargin, a drug depleting intracellular Ca2+ stores, by 2-aminoethoxydiphenyl borate, a blocker of inositol(1,4,5)-trisphosphate-induced Ca2+ release, and by U73122, a phospholipase C inhibitor. Furthermore, measurements using a fluorescent Ca2+ indicator directly demonstrate that LTX(N4C) increases presynaptic, but not dendritic, free Ca2+ concentration; this Ca2+ rise is blocked by thapsigargin, suggesting, together with electrophysiological data, that the receptor-mediated action of LTX(N4C) involves mobilization of Ca2+ from intracellular stores. Finally, in contrast to wild-type LTX, which inhibits evoked synaptic transmission probably attributable to pore formation, LTX(N4C) actually potentiates synaptic currents elicited by electrical stimulation of afferent fibers. We suggest that the mutant LTX(N4C), lacking the ionophore-like activity of wild-type LTX, activates a presynaptic receptor and stimulates Ca2+ release from intracellular stores, leading to the enhancement of synaptic vesicle exocytosis.
Collapse
|
74
|
Thebault S, Roudbaraki M, Sydorenko V, Shuba Y, Lemonnier L, Slomianny C, Dewailly E, Bonnal JL, Mauroy B, Skryma R, Prevarskaya N. Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells. J Clin Invest 2003; 111:1691-701. [PMID: 12782672 PMCID: PMC156103 DOI: 10.1172/jci16293] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The prostate gland is a rich source of alpha1-adrenergic receptors (alpha1-ARs). alpha1-AR antagonists are commonly used in the treatment of benign prostatic hyperplasia symptoms, due to their action on smooth muscle cells. However, virtually nothing is known about the role of alpha1-ARs in epithelial cells. Here, by using two human prostate cancer epithelial (hPCE) cell models - primary cells from resection specimens (primary hPCE cells) and an LNCaP (lymph node carcinoma of the prostate) cell line - we identify an alpha1A subtype of adrenergic receptor (alpha1A-AR) and show its functional coupling to plasmalemmal cationic channels via direct diacylglycerol (DAG) gating. In both cell types, agonist-mediated stimulation of alpha1A-ARs and DAG analogues activated similar cationic membrane currents and Ca(2+) influx. These currents were sensitive to the alpha1A-AR antagonists, prazosin and WB4101, and to transient receptor potential (TRP) channel blockers, 2-aminophenyl borate and SK&F 96365. Chronic activation of alpha1A-ARs enhanced LNCaP cell proliferation, which could be antagonized by alpha1A-AR and TRP inhibitors. Collectively, our results suggest that alpha1-ARs play a role in promoting hPCE cell proliferation via TRP channels.
Collapse
Affiliation(s)
- Stephanie Thebault
- Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale (INSERM) EMI 0228, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The mammalian transient receptor potential (TRP) proteins consist of a superfamily of Ca2+-permeant non-selective cation channels with structural similarities to Drosophila TRP. The TRP superfamily can be divided into three major families, among them the "canonical TRP" family (TRPC). The seven protein products of the mammalian TRPC family of genes (designated TRPC1-7) share in common the activation through PLC-coupled receptors and have been proposed to encode components of native store-operated channels in different cell types. In addition, the three members of the TRPC3/6/7 subfamily of TRPC channels can be activated by diacylglycerol analogs, providing a possible mechanism of activation of these channels by PLC-coupled receptors. This review summarizes the current knowledge about the mechanism of activation of the TRPC3/6/7 subfamily, as well as the potential role of these proteins as components of native Ca2+-permeant channels.
Collapse
Affiliation(s)
- Mohamed Trebak
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
76
|
Sydorenko V, Shuba Y, Thebault S, Roudbaraki M, Lepage G, Prevarskaya N, Skryma R. Receptor-coupled, DAG-gated Ca2+-permeable cationic channels in LNCaP human prostate cancer epithelial cells. J Physiol 2003; 548:823-36. [PMID: 12724346 PMCID: PMC2342876 DOI: 10.1113/jphysiol.2002.036772] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the prostate gland is a rich source of alpha1-adreno- (alpha1-AR) and m1-cholino receptors (m1-AChR), the membrane processes associated with their activation in glandular epithelial cells is poorly understood. We used the whole-cell patch-clamp technique to show that the agonists of the respective receptors, phenylephrine (PHE) and carbachol (CCh), activate cationic membrane currents in lymph node carcinoma of the prostate (LNCaP) human prostate cancer epithelial cells, which are not dependent on the filling status of intracellular IP3-sensitive Ca2+ stores, but directly gated by diacylglycerol (DAG), as evidenced by the ability of its membrane permeable analogue, OAG, to mimic the effects of the agonists. The underlying cationic channels are characterized by the weak field-strength Eisenman IV permeability sequence for monovalent cations (PK(25) > PCs(4.6) > PLi(1.4) > PNa(1.0)), and the following permeability sequence for divalent cations: PCa(1.0) > PMg(0.74) > PBa(0.6) > PSr(0.36) > PMn(0.3). They are 4.3 times more permeable to Ca2+ than Na+ and more sensitive to the inhibitor 2-APB than SK&F 96365. RT-PCR analysis shows that DAG-gated members of the transient receptor potential (TRP) channel family, including TRPC1 and TRPC3, are present in LNCaP cells. We conclude that, in prostate cancer epithelial cells, alpha1-ARs and m1-AChRs are functionally coupled to Ca2+-permeable DAG-gated cationic channels, for which TRPC1 and TRPC3 are the most likely candidates.
Collapse
Affiliation(s)
- V Sydorenko
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Bâtiment SN3, USTL, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM. Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 2003; 278:11909-15. [PMID: 12547829 DOI: 10.1074/jbc.m210878200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.
Collapse
Affiliation(s)
- Tarik Smani
- Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
78
|
Shibukawa Y, Suzuki T. Ca2+ signaling mediated by IP3-dependent Ca2+ releasing and store-operated Ca2+ channels in rat odontoblasts. J Bone Miner Res 2003; 18:30-8. [PMID: 12510803 DOI: 10.1359/jbmr.2003.18.1.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the phospholipase-C (PLC) signaling system, Ca2+ is mobilized from intracellular Ca2+ stores by an action of inositol 1,4,5-trisphosphate (IP3). The depletion of IP3-sensitive Ca2+ stores activates a store-operated Ca2+ entry (SOCE). However, no direct evidence has been obtained about these signaling pathways in odontoblasts. In this study, we investigate the characteristics of the SOCE and IP3-mediated Ca2+ mobilizations in rat odontoblasts using fura-2 microfluorometry and a nystatin-perforated patch-clamp technique. In the absence of extracellular Ca2+ ([Ca2+]o), thapsigargin (TG) evoked a transient rise in intracellular Ca2+ concentration ([Ca2+]i). After TG treatment to deplete the store, the subsequent application of Ca2+ resulted in a rapid rise in [Ca2+]i caused by SOCE. In the absence of TG treatment, no SOCE was evoked. The Ca2+ influx was dependent on [Ca2+]o (KD = 1.29 mM) and was blocked by an IP3 receptor inhibitor, 2-aminoethoxydiphenyl borate (2-APB), as well as La3+ in a concentration-dependent manner (IC50 = 26 microM). In TG-treated cells, an elevation of [Ca2+]o from 0 to 2.5 mM elicited an inwardly rectifying current at hyperpolarizing potentials with a positive reversal potential. The currents were selective for Ca2+ over the other divalent cations (Ca2+ > Ba2+ > Sr2+ >> Mn2+). In the absence of [Ca2+]o, carbachol, bradykinin, and 2-methylthioadenosine 5'triphosphate activated Ca2+ release from the store; these were inhibited by 2-APB. These results indicate that odontoblasts possessed Ca2+ signaling pathways through the activation of store-operated Ca2+ channels by the depletion of intracellular Ca2+ stores and through the IP3-induced Ca2+ release activated by PLC-coupled receptors.
Collapse
|
79
|
Silverman-Gavrila LB, Lew RR. An IP3-activated Ca2+ channel regulates fungal tip growth. J Cell Sci 2002; 115:5013-25. [PMID: 12432087 DOI: 10.1242/jcs.00180] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyphal extension in fungi requires a tip-high Ca(2+) gradient, which is generated and maintained internally by inositol (1,4,5)-trisphosphate (IP(3))-induced Ca(2+) release from tip-localized vesicles and subapical Ca(2+) sequestration. Using the planar bilayer method we demonstrated the presence of two types of IP(3)-activated Ca(2+) channels in Neurospora crassa membranes with different conductances: one low (13 picosiemens), the other high (77 picosiemens). On sucrose density gradients the low conductance channel co-localized with endoplasmic reticulum and plasma membrane, and the high conductance channel co-localized with vacuolar membranes. We correlated the effect of inhibitors on channel activity with their effect on hyphal growth and Ca(2+) gradients. The inhibitor of IP(3)-induced Ca(2+) release, 2-aminoethoxidiphenylborate (2-APB), inhibits both channels, while heparin, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8) and dantrolene inhibit only the large conductance channel. Because 2-APB inhibits hyphal growth and dissipates the tip-high cytosolic [Ca(2+)] gradient, whereas heparin microinjection, TMB-8 and dantrolene treatments do not affect growth, we suggest that the small conductance channel generates the obligatory tip-high Ca(2+) gradient during hyphal growth. Since IP(3) production must be catalyzed by tip-localized phospholipase C, we show that a number of phospholipase C inhibitors [neomycin, 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]- 1H-pyrrole-2,5-dione (U-73122) (but not the inactive pyrrolidine U-73343), 3-nitrocoumarin] inhibit hyphal growth and affect, similarly to 2-APB, the location of vesicular Ca(2+) imaged by chlortetracycline staining.
Collapse
|
80
|
Wang Y, Deshpande M, Payne R. 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors. Cell Calcium 2002; 32:209-16. [PMID: 12379181 DOI: 10.1016/s0143416002001562] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable modulator that inhibits the activation of inositol (1,4,5) trisphosphate (InsP(3)) receptors, store operated channels (SOCs) and TRP channels in cells that utilize the phosphoinositide cascade for cellular signaling. In Limulus ventral photoreceptors, light-induced calcium release via the phosphoinositide cascade is thought to activate the photocurrent. Injection of either exogenous InsP(3) or calcium ions can therefore mimic excitation by light. One hundred micromolar 2-APB reversibly inhibited the photocurrent of ventral photoreceptors in a concentration-dependent manner, acting on at least two processes thought to mediate the visual cascade. 2-APB reversibly inhibited both light and InsP(3)-induced calcium release, consistent with its role as an inhibitor of the InsP(3) receptor. In addition, 2-APB reversibly inhibited the activation of depolarizing current flow through the plasma membrane caused by pulsed pressure injection of calcium ions into the light-sensitive lobe of the photoreceptor. We also found that 100 micro M 2-APB reversibly inhibited both transient and sustained voltage-activated potassium current during depolarizing steps. 2-APB has previously been shown to block phototransduction in Drosophila photoreceptors. The lack of specificity of the action of 2-APB in Limulus indicates that this blockade need not necessarily arise from inhibition of InsP(3)-induced calcium release.
Collapse
Affiliation(s)
- Y Wang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
81
|
Soulsby MD, Wojcikiewicz RJH. 2-Aminoethoxydiphenyl borate inhibits inositol 1,4,5-trisphosphate receptor function, ubiquitination and downregulation, but acts with variable characteristics in different cell types. Cell Calcium 2002; 32:175-81. [PMID: 12379177 DOI: 10.1016/s0143416002001525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Aminoethoxydiphenyl borate (2-APB) is a putative, membrane-permeable inhibitor of inositol 1,4,5-trisphosphate (InsP(3)) receptors, but it is the case that little is known about its action at the InsP(3) receptor level. Thus, we examined the effects of 2-APB on InsP(3) receptor-mediated effects in a range of cell types expressing different complements of InsP(3) receptor types. In experiments with permeabilized cells we found that 2-APB could inhibit InsP(3)-induced release of stored Ca(2+), but also that it released Ca(2+), and that the prevalence of these two effects varied between different cell types and did not correlate with the expression of a particular receptor type. These effects of 2-APB reflected an interaction distal to the ligand binding site of InsP(3) receptors, since InsP(3) binding was unaffected by 2-APB. In intact cells, we found only inhibitory effects of 2-APB on Ca(2+) mobilization, and that variation between cell types in the characteristics of this inhibition appeared to be due to differential entry of 2-APB. 2-APB also inhibited InsP(3) receptor ubiquitination and proteasomal degradation, which again was cell type dependent. In total, these data reveal a remarkable degree of variation between cell types in the effects of 2-APB, showing that its usefulness as a specific and universal inhibitor of InsP(3) receptors is limited. However, the ability of 2-APB to inhibit InsP(3) receptor ubiquitination and degradation indicates that 2-APB may block InsP(3)-induced conformational changes in the receptor, resulting in perturbation of multiple regulatory events.
Collapse
Affiliation(s)
- M D Soulsby
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210-2339, USA
| | | |
Collapse
|
82
|
Sabała P, Targos B, Caravelli A, Czajkowski R, Lim D, Gragnaniello G, Santella L, Barańska J. Role of the actin cytoskeleton in store-mediated calcium entry in glioma C6 cells. Biochem Biophys Res Commun 2002; 296:484-91. [PMID: 12163045 DOI: 10.1016/s0006-291x(02)00893-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.
Collapse
Affiliation(s)
- Pawelz Sabała
- Laboratory of Signal Transduction, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 2002; 16:1145-50. [PMID: 12153982 DOI: 10.1096/fj.02-0037rev] [Citation(s) in RCA: 583] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since its introduction to Ca2+ signaling in 1997, 2-aminoethoxydiphenyl borate (2-APB) has been used in many studies to probe for the involvement of inositol 1,4,5-trisphosphate receptors in the generation of Ca2+ signals. Due to reports of some nonspecific actions of 2-APB, and the fact that its principal antagonistic effect is on Ca2+ entry rather than Ca2+ release, this compound may not have the utility first suggested. However, 2-APB has thrown up some interesting results, particularly with respect to store-operated Ca2+ entry in nonexcitable cells. These data indicate that although it must be used with caution, 2-APB can be useful in probing certain aspects of Ca2+ signaling.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | | | | | | | |
Collapse
|