51
|
Erkens R, Esteban Y, Towe C, Schulert G, Vastert S. Pathogenesis and Treatment of Refractory Disease Courses in Systemic Juvenile Idiopathic Arthritis: Refractory Arthritis, Recurrent Macrophage Activation Syndrome and Chronic Lung Disease. Rheum Dis Clin North Am 2021; 47:585-606. [PMID: 34635293 DOI: 10.1016/j.rdc.2021.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic juvenile idiopathic arthritis is a distinct and heterogeneous disease presently classified under the umbrella of juvenile idiopathic arthritis, with some patients following a monophasic remitting course, whereas others have persistent disease with chronic organ- and life-threatening complications. Although biologic therapies have revolutionized treatment, recent follow-up studies report significant numbers of children with persistently active disease on long term follow-up. This review focuses on refractory disease courses, specifically refractory arthritis, systemic juvenile idiopathic arthritis with recurrent, or longstanding signs of macrophage activation syndrome, and systemic juvenile idiopathic arthritis associated with suspected, probable, or definite lung disease.
Collapse
Affiliation(s)
- Remco Erkens
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands
| | - Ysabella Esteban
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sebastiaan Vastert
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands.
| |
Collapse
|
52
|
Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung Homeostasis and Diseases. Front Immunol 2021; 12:753940. [PMID: 34630433 PMCID: PMC8500393 DOI: 10.3389/fimmu.2021.753940] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases.
Collapse
Affiliation(s)
- Fei Hou
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences·Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
53
|
Chiş AF, Man MA, Chiş BA, Pop CM. Alveolar proteinosis - an underdiagnosed condition in young people. Med Pharm Rep 2021; 94:S40-S42. [PMID: 34527908 DOI: 10.15386/mpr-2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by an abnormal intra-alveolar accumulation of surfactant derived lipoproteinaceous compounds, leading to dyspnea and, in severe cases, to respiratory failure. The most common form of PAP is the auto-immune one. Secondary PAP has been recognized in myeloid leukemia, non-hematological neoplasms, lung infections or environmental exposure to noxious particles. Mutations in several genes (such as MARS, SFTPB, TTF1) are responsible for the alteration of surfactant production. Diagnosis tools include high-resolution computed tomography, bronchoalveolar lavage. Although over the past 20 years the pathophysiology of PAP has become more clear, the therapeutic strategies still need improvement. A national programme for patients with PAP might be useful in Romania.
Collapse
Affiliation(s)
- Ana Florica Chiş
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania.,"Leon Daniello" Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| | - Milena Adina Man
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania.,"Leon Daniello" Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| | - Bogdan Augustin Chiş
- 2 Dept of Internal medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Monica Pop
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania.,"Leon Daniello" Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| |
Collapse
|
54
|
Iftikhar H, Nair GB, Kumar A. Update on Diagnosis and Treatment of Adult Pulmonary Alveolar Proteinosis. Ther Clin Risk Manag 2021; 17:701-710. [PMID: 34408422 PMCID: PMC8364424 DOI: 10.2147/tcrm.s193884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary surfactant homeostasis disorder resulting in buildup of lipo-proteinaceous material within the alveoli. PAP is classified as primary (autoimmune and hereditary), secondary, congenital and unclassifiable type based on the underlying pathogenesis. PAP has an insidious onset and can, in some cases, progress to severe respiratory failure. Diagnosis is often secured with bronchoalveolar lavage in the setting of classic imaging findings. Recent insights into genetic alterations and autoimmune mechanisms have provided newer diagnostics and treatment options. In this review, we discuss the etiopathogenesis, diagnosis and treatment options available and emerging for PAP.
Collapse
Affiliation(s)
- Hira Iftikhar
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Girish B Nair
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Anupam Kumar
- Division of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
55
|
Almutairi F, Tucker SL, Sarr D, Rada B. PI3K/ NF-κB-dependent TNF-α and HDAC activities facilitate LPS-induced RGS10 suppression in pulmonary macrophages. Cell Signal 2021; 86:110099. [PMID: 34339853 PMCID: PMC8406451 DOI: 10.1016/j.cellsig.2021.110099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Regulator of G-protein signaling 10 (RGS10) is a member of the superfamily of RGS proteins that canonically act as GTPase activating proteins (GAPs). RGS proteins accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. Beyond its GAP function, RGS10 has emerged as an anti-inflammatory protein by inhibiting LPS-mediated NF-κB activation and expression of inflammatory cytokines, in particular TNF-α. Although RGS10 is abundantly expressed in resting macrophages, previous studies have shown that RGS10 expression is suppressed in macrophages following Toll-like receptor 4 (TLR4) activation by LPS. However, the molecular mechanism by which LPS induces Rgs10 silencing has not been clearly defined. The goal of the current study was to determine whether LPS silences Rgs10 expression through an NF-κB-mediated proinflammatory mechanism in pulmonary macrophages, a unique type of innate immune cells. We demonstrate that Rgs10 transcript and RGS10 protein levels are suppressed upon LPS treatment in the murine MH-S alveolar macrophage cell line. We show that pharmacological inhibition of PI3K/ NF-κB/p300 (NF-κB co-activator)/TNF-α signaling cascade and the activities of HDAC (1-3) enzymes block LPS-induced silencing of Rgs10 in MH-S cells as well as microglial BV2 cells and BMDMs. Further, loss of RGS10 generated by using CRISPR/Cas9 amplifies NF-κB phosphorylation and inflammatory gene expression following LPS treatment in MH-S cells. Together, our findings strongly provide critical insight into the molecular mechanism underlying RGS10 suppression by LPS in pulmonary macrophages.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
56
|
Vahdatpour C, Khasawneh M, Zayed Y, Ataya A. Emerging Medical Therapies for Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2021; 203:1566-1568. [PMID: 33891826 DOI: 10.1164/rccm.202011-4260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cyrus Vahdatpour
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Majd Khasawneh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Yazan Zayed
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
57
|
Grutters LA, Smith EC, Casteleijn CW, van Dongen EP, Ruven HJ, van der Vis JJ, Veltkamp M. Increased Efficacy of Whole Lung Lavage Treatment in Alveolar Proteinosis Using a New Modified Lavage Technique. J Bronchology Interv Pulmonol 2021; 28:215-220. [PMID: 34151899 PMCID: PMC8219085 DOI: 10.1097/lbr.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis is an ultra-rare pulmonary disease. Whole lung lavage (WLL) is considered the gold standard therapy. We report a protocol for a new modified lavage technique (nMLT) in which controlled repetitive manual hyperinflation (MH) and intermittent chest percussion are used to enhance WLL efficacy. METHODS We included all subjects with autoimmune pulmonary alveolar proteinosis treated with nMLT between 2013 and 2018. nMLT consisted of repetitive MH with intermittent chest percussion every third wash. We reported: instilled volume, protein concentration, and optical density using spectrophotometry. Pulmonary function (FVC %predicted and DLCO %predicted) at start of nMLT was recorded. Data are displayed as mean (±SD), median [interquartile range], or number (%). Comparisons within individuals were made using Students t test. RESULTS We included 11 subjects (64% male) in whom a total of 67 nMLTs were performed. One nMLT consisted of 15 [12-18] washes. Protein removal was 9.80 [7.52-12.66] g per nMLT. After the first, second, and third cycle of 3 washes, 56% [49% to 61%], 81% [77% to 84%], and 91% [88% to 94%] of the final protein yield was removed, respectively. Optical density was measured 116 times and increased from 1.13 (±0.52) to 1.31 (±0.52) after MH (P<0.001). CONCLUSION Efficacy of WLL seems to be enhanced by applying MH every 3 washes. Our technique of WLL with nMLT could be used to increase the amount of protein recruited while instilling the lung with the smallest volume of fluid as possible.
Collapse
Affiliation(s)
| | | | | | | | - Henk J. Ruven
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein
| | - Joanne J. van der Vis
- ILD Center of Excellence, Departments of Pulmonary Diseases
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein
| | - Marcel Veltkamp
- ILD Center of Excellence, Departments of Pulmonary Diseases
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
58
|
Tarhini AA, Joshi I, Garner F. Sargramostim and immune checkpoint inhibitors: combinatorial therapeutic studies in metastatic melanoma. Immunotherapy 2021; 13:1011-1029. [PMID: 34157863 DOI: 10.2217/imt-2021-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of immune checkpoint inhibitors in patients with metastatic melanoma generates clinical benefit, including improved survival. Yet disease resistance and immune-related adverse events persist as unmet needs. Sargramostim, a yeast-derived recombinant human GM-CSF, has shown clinical activity against diverse solid tumors, including metastatic melanoma. Here we review the use of sargramostim for treatment of advanced melanoma. Potential sargramostim applications in melanoma draw on the unique ability of GM-CSF to link innate and adaptive immune responses. We review preclinical and translational data describing the mechanism of action of sargramostim and synergy with immune checkpoint inhibitors to enhance efficacy and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Cutaneous Oncology & Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Ila Joshi
- Pre-Clinical & Translational Research & Development, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| | - Fiona Garner
- Immuno-Oncology Clinical Development & Translational Medicine, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| |
Collapse
|
59
|
Le Gal A, Chabrol A, Brun AL, Fraboulet S, Couderc LJ, Salvator H. Autoimmune Pulmonary Alveolar Proteinosis: Evidence of the pathogenicity of GM-CSF antibodies. Am J Respir Crit Care Med 2021; 204:e134-e135. [PMID: 34129433 DOI: 10.1164/rccm.202101-0073im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | | | | | - Hélène Salvator
- Hopital Foch, 37918, Respiratory Diseases, Suresnes, France;
| |
Collapse
|
60
|
Kaenmuang P, Navasakulpong A. Efficacy of whole lung lavage in pulmonary alveolar proteinosis: a 20-year experience at a reference center in Thailand. J Thorac Dis 2021; 13:3539-3548. [PMID: 34277049 PMCID: PMC8264701 DOI: 10.21037/jtd-20-3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/14/2021] [Indexed: 11/21/2022]
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a rare lung syndrome. The current standard treatment is whole lung lavage (WLL). We reviewed PAP cases treated with WLL during a 243-month period. The primary objective was to describe the efficacy of WLL. We compared chest imaging resolution and pulmonary function tests (PaO2 and DLCO) before the first and after the last WLL. The secondary objectives were to compare mMRC dyspnea scores, other lung function parameters, and complications of WLL. Methods We retrospectively reviewed PAP patients from 1 January 2000 to 31 March 2020. Demographic data, pulmonary function tests, and the efficacy of WLL were collected from the electronic medical database and analyzed by descriptive analysis. Differences in data used the student t-test to compare parameters pre- and post-WLL. Results A total of 19 PAP patients and 50 WLL procedures were included. Eleven patients (57.9%) were females and the mean age was 51.5±11.7 years. Dyspnea (100%) and cough (94.7%) were the two leading symptoms. The most common indication for WLL was progressive dyspnea. There were significant improvements in SpO2 from 86% to 94% (P<0.001), PaO2 from 49.3 to 66.1 (P<0.001), DLCO from 31.8% to 52.5% predicted (P=0.013), and the mMRC dyspnea score from 3 to 2 (P<0.001) without major complications. Conclusions WLL is an effective standard treatment for PAP cases. It is safe and can be used as a primary treatment in case of inhaled anti GM-CSF is not available.
Collapse
Affiliation(s)
- Punchalee Kaenmuang
- Division of Respiratory and Respiratory Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkhla University, Hat Yai, Thailand
| | - Asma Navasakulpong
- Division of Respiratory and Respiratory Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkhla University, Hat Yai, Thailand
| |
Collapse
|
61
|
Jasper AE, Sapey E, Thickett DR, Scott A. Understanding potential mechanisms of harm: the drivers of electronic cigarette-induced changes in alveolar macrophages, neutrophils, and lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L336-L348. [PMID: 34009037 DOI: 10.1152/ajplung.00081.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electronic (e-) cigarettes are growing in popularity despite uncertainties regarding their long-term health implications. The link between cigarette smoking and initiation of chronic lung disease took decades to unpick so in vitro studies mimicking e-cigarette exposure aim to detect early indicators of harm. In response to e-cigarette exposure, alveolar macrophages adopt a proinflammatory phenotype of increased secretion of proinflammatory cytokines, reduction in phagocytosis, and efferocytosis and reactive oxygen species generation. These effects are largely driven by free radical exposure, changes in PI3K/Akt signaling pathways, nicotine-induced reduction in phagocytosis receptors, and impaired lipid homeostasis leading to a foam-like lipid-laden phenotype. Neutrophils exhibit disrupted chemotaxis and transmigration to chemokines, reduced phagocytosis and bacterial killing, and an increase in protease secretion without corresponding antiproteases in response to e-cigarette exposure. This is driven by an altered ability to respond and to polarize toward chemoattractants, an activation of the p38 MAPK signaling pathway and inability to assemble NADPH oxidase. E-cigarettes induce lung epithelial cells to display decreased ciliary beat frequency and ion channel conductance as well as changes in chemokine secretion and surface protein expression. Changes in gene expression, mitochondrial function, and signaling pathways have been demonstrated in lung epithelial cells to explain these changes. Many functional outputs of alveolar macrophages, neutrophils, and lung epithelial cells have not been fully explored in the context of e-cigarette exposure and the underlying driving mechanisms are poorly understood. This review discusses current evidence surrounding the effects of e-cigarettes on alveolar macrophages, neutrophils, and lung epithelial cells with particular focus on the cellular mechanisms of change.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R Thickett
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
62
|
Diagnostic yield and safety of bronchofiberscopy for pulmonary alveolar proteinosis. Respir Investig 2021; 59:757-765. [PMID: 33967014 DOI: 10.1016/j.resinv.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a diffuse lung disease characterized by the abnormal accumulation of surfactant-like material within the alveolar spaces and distal bronchioles. If high-resolution computed tomography (HRCT) indicates the presence of PAP, a definitive diagnosis of PAP is established when consistent pathological findings are obtained. Herein, we retrospectively studied the yield and safety of bronchofiberscopy in the diagnosis of PAP. METHODS One hundred and fifty consecutive patients with PAP were prospectively registered in the PAP cohort database of the National Hospital Organization Kinki-Chuo Chest Medical Center between January 1991 and December 2018. We examined 86 patients who underwent bronchofiberscopy with bronchoalveolar lavage (BAL) and transbronchial lung forceps biopsy (TBLB). RESULTS The patients included 56 men and 30 women, with a median age of 57 years. All patients had autoimmune PAP, and the median level of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies was 42.8 μg/mL. The diagnostic yield was 90.7% (78/86) with BAL and 81.4% (70/86) with TBLB. The combination of BAL and TBLB increased the yield to 98.8%. Age, disease severity score, and frequency of traction bronchiectasis on HRCT were significantly different between the TBLB-positive and TBLB-negative groups. No patient developed serious complications due to bronchofiberscopy; TBLB-related complications included pneumothorax (3.5%) and minimal bleeding (7.0%). CONCLUSIONS Bronchofiberscopy, in combination with BAL and TBLB, is an effective and safe method for the diagnosis of PAP, with a yield of 98.8%.
Collapse
|
63
|
Braconi D, Bernardini G, Spiga O, Santucci A. Leveraging proteomics in orphan disease research: pitfalls and potential. Expert Rev Proteomics 2021; 18:315-327. [PMID: 33861161 DOI: 10.1080/14789450.2021.1918549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The term 'orphan diseases' includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions.Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential.Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim.Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.
Collapse
Affiliation(s)
- Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
64
|
Walsh L, McCarthy C, Henry M. Autoimmune pulmonary alveolar proteinosis and idiopathic pulmonary haemosiderosis: a dual pathology. BMJ Case Rep 2021; 14:e241048. [PMID: 33811096 PMCID: PMC8023637 DOI: 10.1136/bcr-2020-241048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary condition which leads to excessive accumulation of proteinaceous material within the alveoli. Idiopathic pulmonary haemosiderosis (IPH) is another orphan lung disease and results in recurrent alveolar haemorrhage. This case study describes a case of these two rare pathologies occurring together. A man in his 50s presented with a 6-week history of haemoptysis and worsening dyspnoea. A CT scan of the thorax showed multifocal, bilateral ground glass opacification with a wide differential diagnosis. Full autoantibody screen including myositis panel and coeliac screen were negative. Bronchoscopy with bronchoalveolar lavage and tissue from a transbronchial lung cryobiopsy were non-diagnostic. Tissue from a video-assisted thoracoscopic surgery biopsy confirmed a diagnosis of PAP with IPH as a second separate pathology. The association of IPH and PAP has not previously been described. We discuss these conditions and postulate how and if they may be related.
Collapse
Affiliation(s)
- Laura Walsh
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
| | - Michael Henry
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| |
Collapse
|
65
|
Oudah M, Slack D. Mild dyspnea presenting as 'crazy-paving' on chest computed tomography. J Community Hosp Intern Med Perspect 2021; 11:273-276. [PMID: 33889337 PMCID: PMC8043521 DOI: 10.1080/20009666.2020.1860443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary alveolar proteinoisis (PAP) is a rare disease characterized by accumulation of proteinaceous material in the alveolar spaces. Here, we report a case of mild dyspnea with incidental ‘crazy-paving’ pattern on chest computed tomography (CT). Further evaluation and bronchoscopy found to have PAP.
Collapse
Affiliation(s)
- M Oudah
- Department of Internal Medicine, Greater Baltimore Medical Center, Towson, Maryland, USA
| | - D Slack
- Department of Pulmonology and Critical Care Medicine, Greater Baltimore Medical Center, Towson, Maryland, USA
| |
Collapse
|
66
|
Guarnera A, Podda P, Santini E, Paolantonio P, Laghi A. Differential diagnoses of COVID-19 pneumonia: the current challenge for the radiologist-a pictorial essay. Insights Imaging 2021; 12:34. [PMID: 33704615 PMCID: PMC7948690 DOI: 10.1186/s13244-021-00967-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND COVID-19 pneumonia represents the most severe pandemic of the twenty-first century and has crucial clinical, social and economical implications. The scientific community has focused attention and resources on clinical and radiological features of COVID-19 pneumonia. Few papers analysing the vast spectrum of differential diagnoses have been published. MAIN BODY Complexity of differential diagnosis lays in the evidence of similar radiological findings as ground-glass opacities, crazy paving pattern and consolidations in COVID-19 pneumonia and a multitude of other lung diseases. Differential diagnosis is and will be extremely important during and after the pandemic peak, when there are fewer COVID-19 pneumonia cases. The aim of our pictorial essay is to schematically present COVID-19 pneumonia most frequent differential diagnoses to help the radiologist face the current COVID-19 pneumonia challenge. CONCLUSIONS Clinical data, laboratory tests and imaging are pillars of a trident, which allows to reach a correct diagnosis in order to grant an excellent allocation of human and economical resources. The radiologist has a pivotal role in the early diagnosis of COVID-19 pneumonia because he may raise suspicion of the pathology and help to avoid COVID-19 virus spread.
Collapse
Affiliation(s)
- Alessia Guarnera
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.
| | - Pierfrancesco Podda
- Department of Radiology, San Giovanni Addolorata Hospital, Via Dell'Amba Aradam 9, 00184, Rome, Italy
| | - Elena Santini
- Department of Radiology, San Giovanni Addolorata Hospital, Via Dell'Amba Aradam 9, 00184, Rome, Italy
| | - Pasquale Paolantonio
- Department of Radiology, San Giovanni Addolorata Hospital, Via Dell'Amba Aradam 9, 00184, Rome, Italy
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| |
Collapse
|
67
|
Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies Targeting Intracellular and Extracellular Proteins in Autoimmunity. Front Immunol 2021; 12:548469. [PMID: 33763057 PMCID: PMC7982651 DOI: 10.3389/fimmu.2021.548469] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Detecting autoantibodies provides foundational information for the diagnosis of most autoimmune diseases. An important pathophysiological distinction is whether autoantibodies are directed against extracellular or intracellular proteins. Autoantibodies targeting extracellular domains of proteins, such as membrane receptors, channels or secreted molecules are often directly pathogenic, whereby autoantibody binding to the autoantigen disrupts the normal function of a critical protein or pathway, and/or triggers antibody-dependent cell surface complement killing. By comparison, autoantibodies directed against intracellular proteins are recognized as useful diagnostic biomarkers of abnormal autoimmune activity, but the link between antigenicity and pathogenicity is less straightforward. Because intracellular autoantigens are generally inaccessible to autoantibody binding, for the most part, they do not directly contribute to pathogenesis. In a few diseases, autoantibodies to intracellular targets cause damage indirectly by immune complex formation, immune activation, and other processes. In this review, the general features of and differences between autoimmune diseases segregated on the basis of intracellular or extracellular autoantigens are explored using over twenty examples. Expression profiles of autoantigens in relation to the tissues targeted by autoimmune disease and the temporal appearance of autoantibodies before clinical diagnosis often correlate with whether the respective autoantibodies mostly recognize either intracellular or extracellular autoantigens. In addition, current therapeutic strategies are discussed from this vantage point. One drug, rituximab, depletes CD20+ B-cells and is highly effective for autoimmune disorders associated with autoantibodies against extracellular autoantigens. In contrast, diseases associated with autoantibodies directed predominately against intracellular autoantigens show much more complex immune cell involvement, such as T-cell mediated tissue damage, and require different strategies for optimal therapeutic benefit. Understanding the clinical ramifications of autoimmunity derived by autoantibodies against either intracellular or extracellular autoantigens, or a spectrum of both, has practical implications for guiding drug development, generating monitoring tools, stratification of patient interventions, and designing trials based on predictive autoantibody profiles for autoimmune diseases.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jason M Keller
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
68
|
Hirose M, Arai T, Sugimoto C, Takimoto T, Sugawara R, Minomo S, Shintani S, Takeuchi N, Katayama K, Inoue Y, Kagawa T, Kasai T, Akira M, Inoue Y. B cell-activating factors in autoimmune pulmonary alveolar proteinosis. Orphanet J Rare Dis 2021; 16:115. [PMID: 33653382 PMCID: PMC7923513 DOI: 10.1186/s13023-021-01755-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background Autoimmune pulmonary alveolar proteinosis (APAP) results from the suppression of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling by a neutralizing autoantibody against GM-CSF. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are involved in immunoglobulin G production and are overproduced in various autoimmune disorders. We hypothesized that BAFF and/or APRIL levels would be elevated in serum and bronchoalveolar lavage fluid (BALF) and serum and BALF levels of BAFF and APRIL respond to the treatments (whole lung lavage (WLL) or inhalation of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF)) in patients with APAP. Subjects and methods
BAFF and APRIL levels in serum and BALF from 110 patients with APAP were measured at baseline and during and after treatment, using an enzyme-linked immunosorbent assay kit. We enrolled 34 healthy volunteers as serum cytokine controls, and 13 disease controls for BALF. Associations of BAFF and APRIL levels with clinical measures were assessed to clarify their clinical roles. Results In patients with APAP, serum BAFF and APRIL levels were significantly increased relative to healthy volunteers (p < 0.0001 and p < 0.05, respectively), and BALF BAFF and APRIL levels were significantly increased versus disease controls (p < 0.0001 and p < 0.01, respectively). Serum BAFF levels (but not APRIL levels) were significantly correlated with Krebs von den Lungen-6 (KL-6), surfactant protein (SP)-D, SP-A, and lactate dehydrogenase (p < 0.0001). There was no significant correlation between serum BAFF or APRIL levels and anti-GM-CSF autoantibody. BAFF and APRIL were negatively correlated with single-breath diffusion capacity for carbon monoxide (DLco) (p = 0.004) and forced vital capacity (p = 0.04), respectively. BAFF (but not APRIL) in BALF was negatively correlated with vital capacity (p = 0.04) and DLco (p = 0.006). There were significant correlations between disease severity and BAFF levels in serum (p = 0.04) and BALF (p = 0.007). Serum levels of anti-GM-CSF autoantibody, BAFF, and APRIL were not significantly affected by WLL or inhalation of recombinant human GM-CSF. Conclusions BAFF and APRIL levels of sera and BALF in APAP were significantly increased compared with healthy volunteer and disease control, and the BAFF and APRIL pathway might have important specific roles in pathogenesis of APAP. Our data suggest a new perspective of future treatment for APAP.
Collapse
Affiliation(s)
- Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Chikatoshi Sugimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Reiko Sugawara
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Shojiro Minomo
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Sayoko Shintani
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Kanako Katayama
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yasushi Inoue
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Tomoko Kagawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takahiko Kasai
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Masanori Akira
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan.
| |
Collapse
|
69
|
Chen C, Huang XL, Gao DQ, Li YW, Qian SX. Chronic myelomonocytic leukemia-associated pulmonary alveolar proteinosis: A case report and review of literature. World J Clin Cases 2021; 9:1156-1167. [PMID: 33644180 PMCID: PMC7896663 DOI: 10.12998/wjcc.v9.i5.1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a rare condition that can cause progressive symptoms including dyspnea, cough and respiratory insufficiency. Secondary PAP is generally associated with hematological malignancies including chronic myelomonocytic leukemia (CMML). To the best of our knowledge, this is the first reported case of PAP occurring secondary to CMML.
CASE SUMMARY We report the case of a 63-year-old male who presented with a recurrent cough and gradually progressive dyspnea in the absence of fever. Based upon clinical symptoms, computed tomography findings, bone marrow aspiration, flow cytometry studies and cytogenetic analyses, the patient was diagnosed with PAP secondary to CMML. He underwent whole lung lavage in March 2016 to alleviate his dyspnea, after which he began combined chemotherapeutic treatment with decitabine and cytarabine. The patient died in January 2020 as a consequence of severe pulmonary infection.
CONCLUSION This case offers insight regarding the mechanistic basis for PAP secondary to CMML and highlights potential risk factors.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Xi-Lian Huang
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Da-Quan Gao
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Yi-Wei Li
- Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Shen-Xian Qian
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
70
|
Sakaue S, Yamaguchi E, Inoue Y, Takahashi M, Hirata J, Suzuki K, Ito S, Arai T, Hirose M, Tanino Y, Nikaido T, Ichiwata T, Ohkouchi S, Hirano T, Takada T, Miyawaki S, Dofuku S, Maeda Y, Nii T, Kishikawa T, Ogawa K, Masuda T, Yamamoto K, Sonehara K, Tazawa R, Morimoto K, Takaki M, Konno S, Suzuki M, Tomii K, Nakagawa A, Handa T, Tanizawa K, Ishii H, Ishida M, Kato T, Takeda N, Yokomura K, Matsui T, Watanabe M, Inoue H, Imaizumi K, Goto Y, Kida H, Fujisawa T, Suda T, Yamada T, Satake Y, Ibata H, Hizawa N, Mochizuki H, Kumanogoh A, Matsuda F, Nakata K, Hirota T, Tamari M, Okada Y. Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nat Commun 2021; 12:1032. [PMID: 33589587 PMCID: PMC7884840 DOI: 10.1038/s41467-021-21011-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a devastating lung disease caused by abnormal surfactant homeostasis, with a prevalence of 6-7 cases per million population worldwide. While mutations causing hereditary PAP have been reported, the genetic basis contributing to autoimmune PAP (aPAP) has not been thoroughly investigated. Here, we conducted a genome-wide association study of aPAP in 198 patients and 395 control participants of Japanese ancestry. The common genetic variant, rs138024423 at 6p21, in the major-histocompatibility-complex (MHC) region was significantly associated with disease risk (Odds ratio [OR] = 5.2; P = 2.4 × 10-12). HLA fine-mapping revealed that the common HLA class II allele, HLA-DRB1*08:03, strongly drove this signal (OR = 4.8; P = 4.8 × 10-12), followed by an additional independent risk allele at HLA-DPβ1 amino acid position 8 (OR = 0.28; P = 3.4 × 10-7). HLA-DRB1*08:03 was also associated with an increased level of anti-GM-CSF antibody, a key driver of the disease (β = 0.32; P = 0.035). Our study demonstrated a heritable component of aPAP, suggesting an underlying genetic predisposition toward an abnormal antibody production.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Center for Data Sciences, Harvard Medical School, Boston, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Etsuro Yamaguchi
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Pharmaceutical Discovery Research Laboratories, TEIJIN PHARMA LIMITED, Hino, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Ito
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Toshio Ichiwata
- Department Respiratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shinya Ohkouchi
- Occupational Health, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Taizou Hirano
- Respiratory Medicine, School of Medicine, Tohoku University, Miyagi, Japan
| | - Toshinori Takada
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Ogawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Masuda
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryushi Tazawa
- Student Support and Health Administration Organization, Tokyo Medical and Dental University, Tokyo, Japan
| | - Konosuke Morimoto
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masahiro Takaki
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki University, Nagasaki, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University, Mitaka, Japan
| | - Manabu Ishida
- Department of Respiratory Medicine, Kyorin University, Mitaka, Japan
| | - Toshiyuki Kato
- Department of Respiratory Medicine and Allergology, Kariya Toyota General Hospital, Kariya, Japan
| | - Naoya Takeda
- Department of Respiratory Medicine and Allergology, Kariya Toyota General Hospital, Kariya, Japan
| | - Koshi Yokomura
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takashi Matsui
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masaki Watanabe
- Department of Pulmonary Medicine, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Yamada
- Department of Respiratory Medicine, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Yasuomi Satake
- Department of Respiratory Medicine, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Hidenori Ibata
- Department of Respiratory Medicine, National Hospital Organization Mie Chuo Medical Center, Tsu, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koh Nakata
- Division of Advanced Medical Development, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, the Jikei University School of Medicine, Research Center for Medical Science, Tokyo, Japan
| | - Mayumi Tamari
- Division of Molecular Genetics, the Jikei University School of Medicine, Research Center for Medical Science, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory of Statistical Immunology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
| |
Collapse
|
71
|
Does tissue imprinting restrict macrophage plasticity? Nat Immunol 2021; 22:118-127. [PMID: 33462453 DOI: 10.1038/s41590-020-00849-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023]
Abstract
Macrophages have long been considered as particularly plastic cells. However, recent work combining fate mapping, single-cell transcriptomics and epigenetics has undermined the macrophage plasticity dogma. Here, we discuss recent studies that have carefully dissected the response of individual macrophage subsets to pulmonary insults and call for an adjustment of the macrophage plasticity concept. We hypothesize that prolonged tissue residency shuts down much of the plasticity of macrophages and propose that the restricted plasticity of resident macrophages has been favored by evolution to safeguard tissue homeostasis. Recruited monocytes are more plastic and their differentiation into resident macrophages during inflammation can result in a dual imprinting from both the ongoing inflammation and the macrophage niche. This results in inflammation-imprinted resident macrophages, and we speculate that rewired niche circuits could maintain this inflammatory state. We believe that this revisited plasticity model offers opportunities to reset the macrophage pool after a severe inflammatory episode.
Collapse
|
72
|
Schulte V, Sipol A, Burdach S, Rieger-Fackeldey E. The Truncated Splice Variant of the Granulocyte-Macrophage-Colony-Stimulating Factor Receptor β- Chain in Peripheral Blood Serves as Severity Biomarker of Respiratory Failure in Newborns. Neonatology 2021; 118:187-193. [PMID: 33784678 DOI: 10.1159/000513356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. βC is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. βIT is a physiological, truncated isoform of βC and is known to act as physiological inhibitor of βC. OBJECTIVE The aim of this study was to determine the ratio of βIT and βC in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. METHODS We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). βIT and βC expression were determined in peripheral blood cells by real-time PCR. βIT expression, defined as the ratio of βIT and βC, was correlated with the respiratory score. RESULTS βIT expression was found in all 59 recruited newborns with a trend toward higher βIT in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; p = 0.066). Seriously ill newborns (score 3) had significantly higher βIT than healthy newborns ([score 0], p = 0.010). Healthy preterm infants had significantly higher βIT expression than healthy term infants (p = 0.019). CONCLUSIONS βIT is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that βIT may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of βC and, therefore, maintaining surfactant in respiratory ill newborns.
Collapse
Affiliation(s)
- Verena Schulte
- Department of Pediatrics, Division of Neonatology, Klinikum rechts der Isar, Technical University of Munich School of Medicine, Munich, Germany.,Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School of Medicine, Munich, Germany
| | - Alexandra Sipol
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School of Medicine, Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics, Division of Neonatology, Klinikum rechts der Isar, Technical University of Munich School of Medicine, Munich, Germany.,Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School of Medicine, Munich, Germany
| | - Esther Rieger-Fackeldey
- Department of Pediatrics, Division of Neonatology, Klinikum rechts der Isar, Technical University of Munich School of Medicine, Munich, Germany
| |
Collapse
|
73
|
Hadchouel A, Drummond D, Abou Taam R, Lebourgeois M, Delacourt C, de Blic J. Alveolar proteinosis of genetic origins. Eur Respir Rev 2020; 29:29/158/190187. [PMID: 33115790 DOI: 10.1183/16000617.0187-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare form of chronic interstitial lung disease, characterised by the intra-alveolar accumulation of lipoproteinaceous material. Numerous conditions can lead to its development. Whereas the autoimmune type is the main cause in adults, genetic defects account for a large part of cases in infants and children. Even if associated extra-respiratory signs may guide the clinician during diagnostic work-up, next-generation sequencing panels represent an efficient diagnostic tool. Exome sequencing also allowed the discovery of new variants and genes involved in PAP. The aim of this article is to summarise our current knowledge of genetic causes of PAP.
Collapse
Affiliation(s)
- Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France .,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - David Drummond
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Rola Abou Taam
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Muriel Lebourgeois
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France.,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - Jacques de Blic
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| |
Collapse
|
74
|
Tashiro T, Tomita Y, Inaba M, Hayashi K, Hirata N, Sakagami T. Severe pulmonary alveolar proteinosis with respiratory failure treated by intrapulmonary percussive ventilation. Respirol Case Rep 2020; 8:e00676. [PMID: 33173585 PMCID: PMC7641663 DOI: 10.1002/rcr2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by abnormal accumulation of surfactant in the alveoli. Whole lung lavage (WLL) is the standard treatment for severe autoimmune PAP (aPAP); however, it is highly invasive. Intrapulmonary percussive ventilation (IPV) is a non-invasive technique that delivers small bursts of high-flow respiratory gas into the lung and mobilizes secretions. As IPV is beneficial for chronic respiratory diseases such as cystic fibrosis and bronchiectasis to reduce sputum, it was hypothesized that IPV will ameliorate aPAP by mobilizing and removing accumulated surfactant and foamy macrophages. Here, we report the case of a 52-year-old female with severe aPAP and progressive respiratory failure. She received intermittent IPV therapy for six months and thereby showed improvement in assessments of chest computed tomography (CT), lung function, and oxygenation. We suggest that IPV should be used as an alternative therapy for patients with aPAP and respiratory failure.
Collapse
Affiliation(s)
- Takahiro Tashiro
- Department of Respiratory MedicineKumamoto Chuo HospitalKumamotoJapan
| | - Yusuke Tomita
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Megumi Inaba
- Department of Respiratory MedicineKumamoto Chuo HospitalKumamotoJapan
| | - Kumiko Hayashi
- Department of Clinical Engineering ServicesKumamoto Chuo HospitalKumamotoJapan
| | - Naomi Hirata
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
75
|
Lenz D, Stahl M, Seidl E, Schöndorf D, Brennenstuhl H, Gesenhues F, Heinzmann T, Longerich T, Mendes MI, Prokisch H, Salomons GS, Schön C, Smith DEC, Sommerburg O, Wagner M, Westhoff JH, Reiter K, Staufner C, Griese M. Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic MARS1 variants. Pediatr Pulmonol 2020; 55:3057-3066. [PMID: 32833345 DOI: 10.1002/ppul.25031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a heterogeneous condition with more than 100 different underlying disorders that need to be differentiated to target therapeutic options, which are generally limited. METHODS The clinical course of two brothers with pathogenic variants in the methionyl-tRNA synthetase (MARS)1 gene was compared to previously published patients. Functional studies in patient-derived fibroblasts were performed and therapeutic options evaluated. RESULTS The younger brother was diagnosed with PAP at the age of 1 year. Exome sequencing revealed the homozygous MARS1 variant p.(Arg598Cys), leading to interstitial lung and liver disease (ILLD). At 2 years of age, following surgery hypoglycemia was detected, the pulmonary condition deteriorated, and the patient developed multiorgan failure. Six therapeutic whole lung lavages (WLL) were necessary to improve respiratory insufficiency. Methionine supplementation was started and a high protein diet ensured, leading to complete respiratory recovery. The older brother, homozygous for the same MARS1 variant, had a long-known distinct eating preference of methionine-rich food and showed a less severe clinical phenotype. Decreased aminoacylation activity confirmed the pathogenicity of p.(Arg598Cys) in vitro. In agreement with our review of currently published ILLD patients, the presence of hepatopathy, developmental delay, muscular hypotonia, and anemia support the multisystemic character of the disease. CONCLUSIONS Catabolic events can provoke a severe deterioration of the pulmonary situation in ILLD with a need for repetitive WLL. Although the precise role of oral methionine supplementation and high protein intake are unknown, we observed an apparent treatment benefit, which needs to be evaluated systematically in controlled trials.
Collapse
Affiliation(s)
- Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Seidl
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Dominik Schöndorf
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gesenhues
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Tina Heinzmann
- Department of Neonatology, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carola Schön
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olaf Sommerburg
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Reiter
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
76
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
77
|
Trapnell BC, Inoue Y, Bonella F, Morgan C, Jouneau S, Bendstrup E, Campo I, Papiris SA, Yamaguchi E, Cetinkaya E, Ilkovich MM, Kramer MR, Veltkamp M, Kreuter M, Baba T, Ganslandt C, Tarnow I, Waterer G, Jouhikainen T. Inhaled Molgramostim Therapy in Autoimmune Pulmonary Alveolar Proteinosis. N Engl J Med 2020; 383:1635-1644. [PMID: 32897035 PMCID: PMC8083051 DOI: 10.1056/nejmoa1913590] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare disease characterized by progressive surfactant accumulation and hypoxemia. It is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, which pulmonary alveolar macrophages require to clear surfactant. Recently, inhaled GM-CSF was shown to improve the partial pressure of arterial oxygen in patients with aPAP. METHODS In a double-blind, placebo-controlled, three-group trial, we randomly assigned patients with aPAP to receive the recombinant GM-CSF molgramostim (300 μg once daily by inhalation), either continuously or intermittently (every other week), or matching placebo. The 24-week intervention period was followed by an open-label treatment-extension period. The primary end point was the change from baseline in the alveolar-arterial difference in oxygen concentration (A-aDo2) at week 24. RESULTS In total, 138 patients underwent randomization; 46 were assigned to receive continuous molgramostim, 45 to receive intermittent molgramostim, and 47 to receive placebo. Invalid A-aDo2 data for 4 patients (1 in each molgramostim group and 2 in the placebo group) who received nasal oxygen therapy during arterial blood gas measurement were replaced by means of imputation. For the primary end point - the change from baseline in the A-aDo2 at week 24 - improvement was greater among patients receiving continuous molgramostim than among those receiving placebo (-12.8 mm Hg vs. -6.6 mm Hg; estimated treatment difference, -6.2 mm Hg; P = 0.03 by comparison of least-squares means). Patients receiving continuous molgramostim also had greater improvement than those receiving placebo for secondary end points, including the change from baseline in the St. George's Respiratory Questionnaire total score at week 24 (-12.4 points vs. -5.1 points; estimated treatment difference, -7.4 points; P = 0.01 by comparison of least-squares means). For multiple end points, improvement was greater with continuous molgramostim than with intermittent molgramostim. The percentages of patients with adverse events and serious adverse events were similar in the three groups, except for the percentage of patients with chest pain, which was higher in the continuous-molgramostim group. CONCLUSIONS In patients with aPAP, daily administration of inhaled molgramostim resulted in greater improvements in pulmonary gas transfer and functional health status than placebo, with similar rates of adverse events. (Funded by Savara Pharmaceuticals; IMPALA ClinicalTrials.gov number, NCT02702180.).
Collapse
Affiliation(s)
- Bruce C Trapnell
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Yoshikazu Inoue
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Francesco Bonella
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Cliff Morgan
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Stéphane Jouneau
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Elisabeth Bendstrup
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Ilaria Campo
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Spyros A Papiris
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Etsuro Yamaguchi
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Erdogan Cetinkaya
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Mikhail M Ilkovich
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Mordechai R Kramer
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Marcel Veltkamp
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Michael Kreuter
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Tomohisa Baba
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Cecilia Ganslandt
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Inge Tarnow
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Grant Waterer
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | - Taneli Jouhikainen
- From the Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati (B.C.T.); National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka (Y.I.), Aichi Medical University Hospital, Nagakute, Aichi (E.Y.), and Kanagawa Cardiovascular and Respiratory Center, Yokohama (T.B.) - all in Japan; Outpatients Clinic for Interstitial and Rare Lung Disease, Ruhrlandklinik University Hospital, Essen (F.B.), and Center for Interstitial and Rare Lung Diseases, Pulmonology, Thoraxklinik, Heidelberg University Hospital, and German Center for Lung Research, Heidelberg (M.K.) - all in Germany; the Departments of Critical Care and Respiratory Medicine, Royal Brompton Hospital, London (C.M.); Respiratory Diseases Department, Pontchaillou Hospital, IRSET UMR 1085, Rennes 1 University, Rennes, France (S.J.); the Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus (E.B.), and Savara, Horsholm (C.G., I.T.) - both in Denmark; the Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (I.C.); the 2nd Pulmonary Medicine Department, General University Hospital "Attikon," Medical School, National and Kapodistrian University of Athens, Athens (S.A.P.); University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Istanbul (E.C.); Pulmonary Clinic of St. Petersburg Pavlov State Medical University, St. Petersburg, Russia (M.M.I.); Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Petah Tikva, Israel (M.R.K.); ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands (M.V.); the University of Western Australia, Royal Perth Hospital, Perth, Australia (G.W.); and Savara, Austin, TX (T.J.)
| | | |
Collapse
|
78
|
Arai T, Kasai T, Shimizu K, Kawahara K, Katayama K, Sugimoto C, Hirose M, Okamoto H, Tachibana K, Akira M, Inoue Y. Autoimmune Pulmonary Alveolar Proteinosis Complicated with Sarcoidosis: the Clinical Course and Serum Levels of Anti-granulocyte-macrophage colony-stimulating Factor Autoantibody. Intern Med 2020; 59:2539-2546. [PMID: 32611952 PMCID: PMC7662056 DOI: 10.2169/internalmedicine.3853-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (APAP) is caused by macrophage dysfunction due to anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody. We experienced 2 cases of APAP complicated with sarcoidosis in a 42-year-old woman and a 51-year-old man (age at the sarcoidosis diagnosis). APAP preceded sarcoidosis in the woman, and both diseases were diagnosed simultaneously in the man. Sarcoidosis lesions were observed in the lung, skin, and eyes, and the pathological findings of APAP were not marked at the diagnosis of sarcoidosis in either case. Low-grade positive serum anti-GM-CSF autoantibody was suspected to be correlated with the occurrence of sarcoidosis and resolution of APAP.
Collapse
Affiliation(s)
- Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Takahiko Kasai
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Kazunori Shimizu
- Department of Pulmonary Critical Care Medicine, Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Japan
| | - Kunimitsu Kawahara
- Department of Pathology, Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Japan
| | - Kanako Katayama
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | | | - Kazunobu Tachibana
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Masanori Akira
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| |
Collapse
|
79
|
Wälscher J, Wessendorf TE, Rocha M, Darwiche K, Taube C, Bonella F. Ganzlungenlavage bei pulmonaler Alveolarproteinose – Schritt für Schritt. Pneumologie 2020; 74:660-664. [DOI: 10.1055/a-0978-9137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
80
|
Katayama K, Hirose M, Arai T, Hatsuda K, Tachibana K, Sugawara R, Sugimoto C, Kasai T, Akira M, Inoue Y. Clinical significance of serum anti-granulocyte-macrophage colony-stimulating factor autoantibodies in patients with sarcoidosis and hypersensitivity pneumonitis. Orphanet J Rare Dis 2020; 15:272. [PMID: 32993757 PMCID: PMC7525969 DOI: 10.1186/s13023-020-01546-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Anti-granulocyte–macrophage colony-stimulating factor autoantibody (GMAb) has been recognized as a diagnostic biomarker for autoimmune pulmonary alveolar proteinosis (aPAP). The aims of this study were to know the incidence of increased level of serum GMAb in granulomatous lung diseases (sarcoidosis and hypersensitivity pneumonitis [HP]) and to clarify the role of GMAb. Consecutive individuals diagnosed with sarcoidosis (n = 92) and HP (n = 45) at National Hospital Organization Kinki-Chuo Chest Medical Center were retrospectively analyzed. We measured serum GMAb levels at the diagnosis. Cut-off values of GMAb discriminating aPAP (n = 110) from healthy controls (n = 31) were determined by receiver operating characteristic (ROC) curve analysis. We compared the clinical features of sarcoidosis and HP patients with GMAb levels above the cut-off value (“Elevated-GMAb”) with those of patients whose GMAb levels below the cut-off value (“Low-GMAb”). Radiological and pathological findings in elevated-GMAb patients were re-evaluated to elucidate the role of GMAb in granulomatous lung diseases. Results Analysis of ROC indicated a sensitivity and specificity of 100% at GMAb level of 3.33 μg/mL for discriminating aPAP from healthy controls (area under curve = 1.000, p < 0.0001). The percentages of elevated-GMAb sarcoidosis and HP patients were 5.4% (n = 5) and 11.1% (n = 5), respectively. The number of comorbid sarcoidosis and HP patients with aPAP was two and one, respectively. Elevated-GMAb sarcoidosis patients presented with significantly higher serum levels of Krebs von den Lungen (KL)-6, surfactant protein-D (SP-D), lactate dehydrogenase, and the requirement of systemic corticosteroid therapy. Elevated-GMAb HP patients demonstrated older age, higher serum KL-6, SP-D, carcinoembryonic antigen, and cytokeratin fragment 21-1 levels, and a higher percentage of lymphocytes in bronchoalveolar lavage than low-GMAb patients. A subset of patients presented with radiological and pathological findings characteristic of aPAP. Conclusions We demonstrated the percentage of elevated-GMAb sarcoidosis and HP patients who presented with several features suggestive of aPAP. Elevated-GMAb sarcoidosis and HP patients without definitive aPAP diagnosis may have subclinical or early-stage aPAP and may not necessarily indicate false positives. Upon diagnosis of sarcoidosis or HP, measurement of GMAb may be useful in detecting possible comorbidity of subclinical or early-onset aPAP.
Collapse
Affiliation(s)
- Kanako Katayama
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Kazuyoshi Hatsuda
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Kazunobu Tachibana
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Reiko Sugawara
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Takahiko Kasai
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Masanori Akira
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan.
| |
Collapse
|
81
|
Santos GF, Portela J, Argyropoulou D, Varudo R, Pimenta I, Oliveira A, Lança S, Fernandes A. Alveolar proteinosis due to toxic inhalation at workplace. Respir Med Case Rep 2020; 31:101199. [PMID: 32868988 PMCID: PMC7449138 DOI: 10.1016/j.rmcr.2020.101199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/15/2023] Open
Abstract
We report a clinical case of a 39-year old male, without any known previous medical condition but with occupational exposure to paints and dust cement, who presented an autoimmune pulmonary alveolar proteinosis (PAP) triggered by exposure to toxic inhalation at his workplace. PAP is a rare lung disease characterized by intra-alveolar abnormal accumulation of surfactant. The presence of a crazy-paving pattern in high-resolution computed tomography scan brings the suspicion of PAP although histopathology results of bronchoalveolar lavage are always required for its final diagnosis. The autoimmune form of PAP due to toxic inhalation, such as the one here described, is rare and it is usually difficult to establish a causal relationship.
Collapse
Affiliation(s)
- Gabriela F Santos
- Pneumonology Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - João Portela
- Pneumonology Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Despoina Argyropoulou
- Pathology Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Rita Varudo
- Intensive Care Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Inês Pimenta
- Intensive Care Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Ana Oliveira
- Pathology Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Sara Lança
- Intensive Care Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| | - Antero Fernandes
- Intensive Care Department, Hospital Garcia de Orta, Av. Torrado da Silva, 2805-267, Almada, Portugal
| |
Collapse
|
82
|
Sugiura H, Nishimori H, Nishii K, Toji T, Fujii K, Fujii N, Matsuoka KI, Nakata K, Kiura K, Maeda Y. Secondary Pulmonary Alveolar Proteinosis Associated with Primary Myelofibrosis and Ruxolitinib Treatment: An Autopsy Case. Intern Med 2020; 59:2023-2028. [PMID: 32448830 PMCID: PMC7492123 DOI: 10.2169/internalmedicine.4082-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is an uncommon lung disorder characterized by the excessive accumulation of surfactant-derived lipoproteins in the pulmonary alveoli and terminal bronchiole. Secondary PAP associated with primary myelofibrosis (PMF) is extremely rare, and to our knowledge, no autopsy case has been reported. We herein report an autopsy case of secondary PAP occurring in a patient with PMF who was treated with the Janus kinase 1/2 inhibitor ruxolitinib. We confirmed a diagnosis of PAP with complications based on the pathological findings at the autopsy. Notably, this case might suggest an association between ruxolitinib treatment and PAP occurrence.
Collapse
Affiliation(s)
- Hiroyuki Sugiura
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hisakazu Nishimori
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Tomohiro Toji
- Department of Pathology, Okayama University Hospital, Japan
| | - Keiko Fujii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Nobuharu Fujii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Koh Nakata
- Department of Bioscience Medical Research Center, Niigata University Medical & Dental Hospital, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
83
|
Abstract
Pulmonary alveolar proteinosis (PAP) is a respiratory pathology characterized by the accumulation and increase of surfactant-derived material in the lungs. In clinical practice, PAP may present as the primary form, which includes autoimmune and hereditary PAP, or as the secondary form. Diffuse alveolar radiopacities on chest x-ray and the crazy-paving pattern on high-resolution computed tomography are important, although not specific findings for PAP. Bronchoalveolar lavage biopsy is a diagnostic method, and whole-lung lavage remains the criterion standard for the treatment of PAP. Evidence is required regarding treatment with exogenous anti-granulocyte/macrophage colony-stimulating factor.Here, we present a 13-year-old male patient with hereditary PAP and a 15-year-old female patient with autoimmune PAP who presented with complaints of easy fatigability and weakness to emphasize the importance of keeping in mind PAP as a differential diagnosis in patients with respiratory failure findings.
Collapse
|
84
|
Abstract
GM-CSF drives the differentiation of granulocytes and monocyte/macrophages from hematopoietic stem cell progenitors. It is required for differentiating monocytes into dendritic cells (DC). Although approved for recovery of granulocytes/monocytes in patients receiving chemotherapy, G-CSF is preferred. Enthusiasm for GM-CSF monotherapy as a melanoma treatment was dampened by two large randomized trials. Although GM-CSF has been injected into tumors for many years, the efficacy of this has not been tested. There is a strong rationale for GM-CSF as a vaccine adjuvant, but it appears of benefit only for strategies that directly involve DCs, such as intratumor talimogene laherparepvec and vaccines in which DCs are loaded with antigen ex vivo and injected admixed with GM-CSF.
Collapse
Affiliation(s)
- Robert O Dillman
- Chief Medical Officer, AIVITA Biomedical, Inc. Irvine, CA 92612, USA.,Clinical Professor Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
85
|
Tian X, Yang Y, Chen L, Sui X, Xu W, Li X, Guo X, Liu L, Situ Y, Wang J, Zhao Y, Meng S, Song W, Xiao Y, Xu KF. Inhaled granulocyte-macrophage colony stimulating factor for mild-to-moderate autoimmune pulmonary alveolar proteinosis - a six month phase II randomized study with 24 months of follow-up. Orphanet J Rare Dis 2020; 15:174. [PMID: 32615994 PMCID: PMC7330972 DOI: 10.1186/s13023-020-01450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Background Treatment of autoimmune pulmonary alveolar proteinosis (aPAP) by inhaled granulocyte-macrophage colony stimulating factor (GM-CSF) is considered safe and effective. Evidence of benefit from GM-CSG inhalation for mild to moderate aPAP patients is limited. Methods In this multicenter, randomized, open-labeled clinical trial, 36 aPAP patients with mild to moderate disease severity were randomized into either the GM-CSF treatment group or control group. Inhaled GM-CSF was prescribed for 6 months, and patients received follow-up for another 18 months without treatment. Physiological features of the patients were analyzed. Results There were 36 patients (19 in the treatment group, 17 in the control group) included. There were no significant differences in the primary endpoints as measured by the change of alveolar arterial oxygen gradient (A-aDO2) from the baseline values to the values obtained during treatment or during the following 18-month non-treatment observation period [control group vs. treatment group: 0.51 ± 12.09 mmHg vs. -0.35 ± 13.76 mmHg, p = 0.848 (3 month); 1.85 ± 11.21 mmHg vs. 7.31 ± 8.81 mmHg, p = 0.146 (6 months); 6.05 ± 11.14 mmHg vs. 6.61 ± 10.64 mmHg, p = 0.899 (24 months)]). Percentage of diffusion capacity predicted (DLCO%) and percentage of total lung capacity predicted (TLC%), however, were significantly improved in the treatment group by the end of the study (P = 0.010 and 0.027). St. George Respiratory questionnaire (SGRQ) scores were better after 6 months treatment with GM-CSF compared to the control group, and the benefits of treatment were maintained throughout the observation period. No severe side effects were observed during the study. Conclusion Six months of inhaled GM-CSF treatment had no effect on the alveolar–arterial oxygen gradient in patients with mild to moderate pulmonary alveolar proteinosis. There were changes in some clinical or laboratory measures, but no clinically important changes were noted at the end of study. (Clinical Trial Registry: NCT02243228, Registered on September 17, 2014, https://www.clinicaltrials.gov/ct2/show/NCT02243228?term=NCT02243228&draw=2&rank=1)
Collapse
Affiliation(s)
- Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanli Yang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lulu Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenshuai Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobei Guo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Emergency Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lingshan Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yusen Situ
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jun Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Zhao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuzhen Meng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yonglong Xiao
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China.
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
86
|
Hawley MH, Moschovis PP, Lu M, Kinane TB, Yonker LM. The future is here: Integrating genetics into the pediatric pulmonary clinic. Pediatr Pulmonol 2020; 55:1810-1818. [PMID: 32533912 PMCID: PMC7384239 DOI: 10.1002/ppul.24723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
Recognition of underlying genetic etiologies of disease is increasing at an exponential rate, likely due to greater access to and lower cost of genetic testing. Monogenic causes of disease, or conditions resulting from a mutation or mutations in a single gene, are now well recognized in every subspecialty, including pediatric pulmonary medicine; thus, it is important to consider genetic conditions when evaluating children with respiratory disease. In the pediatric pulmonary clinic, genetic testing should be considered when multiple family members present with similar or related clinical features and when individuals have unusual clinical presentations, such as early-onset disease or complex, syndromic features. This review provides a practical guide for genetic diagnosis in the pediatric pulmonary setting, including a review of genetic concepts, considerations for test selection and results in interpretation, as well as an overview of genetic differential diagnoses for common pediatric pulmonary phenotypes. Genetic conditions that commonly present to the pediatric pulmonary clinic are reviewed in a companion article by Yonker et al.
Collapse
Affiliation(s)
- Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Peter P Moschovis
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Mengdi Lu
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
87
|
Divithotawela C, Apte SH, Tan ME, De Silva TA, Chambers DC. Pulmonary alveolar proteinosis after lung transplantation. Respirol Case Rep 2020; 8:e00566. [PMID: 32377344 PMCID: PMC7199162 DOI: 10.1002/rcr2.566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 11/11/2022] Open
Abstract
We report the case of a 69-year-old man five-month post double lung transplant for idiopathic pulmonary fibrosis (IPF) who presented with progressive breathlessness, loss of lung function, and diffuse ground glass shadowing on the chest computed tomography. Transbronchial lung biopsy revealed foamy macrophages, hyperplasia of type II pneumocytes, and eosinophilic material in the alveolar space. Video thoracic lung biopsy was performed, and histology confirmed pulmonary alveolar proteinosis. Anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies were negative. Bilateral sequential whole lung lavage (WLL) was performed. Lavage fluid recovered during WLL was notably dark brown in colour and upon analysis was shown to contain heavily oxidized protein (lipofuscin), giant lipofuscin-engorged macrophages, and a highly pro-inflammatory gene expression profile. Following WLL, the patient's symptoms, lung function, and radiology appearance improved. His repeat bronchoalveolar lavage (BAL) fluid analysis showed reduced lipofuscin and normalized macrophage size and gene expression.
Collapse
Affiliation(s)
| | - Simon H. Apte
- QLD Lung Transplant ServiceThe Prince Charles HospitalBrisbaneQLDAustralia
- School of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Maxine E. Tan
- QLD Lung Transplant ServiceThe Prince Charles HospitalBrisbaneQLDAustralia
- School of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Tharushi A. De Silva
- QLD Lung Transplant ServiceThe Prince Charles HospitalBrisbaneQLDAustralia
- School of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Daniel C. Chambers
- QLD Lung Transplant ServiceThe Prince Charles HospitalBrisbaneQLDAustralia
- School of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
88
|
Yonker LM, Hawley MH, Moschovis PP, Lu M, Kinane TB. Recognizing genetic disease: A key aspect of pediatric pulmonary care. Pediatr Pulmonol 2020; 55:1794-1809. [PMID: 32533909 PMCID: PMC7384240 DOI: 10.1002/ppul.24706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Advancement in technology has improved recognition of genetic etiologies of disease, which has impacted diagnosis and management of rare disease patients in the pediatric pulmonary clinic. This review provides an overview of genetic conditions that are likely to present with pulmonary features and require extensive care by the pediatric pulmonologist. Increased familiarity with these conditions allows for improved care of these patients by reducing time to diagnosis, tailoring management, and prompting further investigation into these disorders.
Collapse
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Peter P Moschovis
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Mengdi Lu
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
89
|
De Luca G, Cavalli G, Campochiaro C, Della-Torre E, Angelillo P, Tomelleri A, Boffini N, Tentori S, Mette F, Farina N, Rovere-Querini P, Ruggeri A, D'Aliberti T, Scarpellini P, Landoni G, De Cobelli F, Paolini JF, Zangrillo A, Tresoldi M, Trapnell BC, Ciceri F, Dagna L. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. LANCET RHEUMATOLOGY 2020; 2:e465-e473. [PMID: 32835256 PMCID: PMC7430344 DOI: 10.1016/s2665-9913(20)30170-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Mortality in patients with COVID-19 pneumonia and systemic hyperinflammation is high. We aimed to examine whether mavrilimumab, an anti-granulocyte–macrophage colony-stimulating factor receptor-α monoclonal antibody, added to standard management, improves clinical outcomes in patients with COVID-19 pneumonia and systemic hyperinflammation. Methods This single-centre prospective cohort study included patients aged 18 years or older who were admitted to San Raffaele Hospital (Milan, Italy) with severe COVID-19 pneumonia, hypoxia, and systemic hyperinflammation. Patients received a single intravenous dose (6 mg/kg) of mavrilimumab added to standard care given by the hospital at the time. The control group consisted of contemporaneous patients with similar baseline characteristics who received standard care at the same hospital. The main outcome was time to clinical improvement (defined as improvement of two or more points on the seven-point ordinal scale of clinical status). Other outcomes included proportion of patients achieving clinical improvement, survival, mechanical ventilation-free survival, and time to fever resolution. Adverse events were monitored daily. Findings Between March 17 and April 15, 2020, 13 non-mechanically ventilated patients (median age 57 years [IQR 52–58], 12 [92%] men) received mavrilimumab and 26 patients (median age 60 [IQR 53–67], 17 [65%] men) in the control group received standard care. During the 28-day follow-up, no patients in the mavrilimumab group died, and seven (27%) patients in the control group died (p=0·086). At day 28, all patients in the mavrilimumab group and 17 (65%) patients in the control group showed clinical improvement (p=0·030), with earlier improvement in the mavrilimumab than in the control group (mean time to improvement 8 days [IQR 5 to 11] vs 19 days [11 to >28], p=0·0001). By day 28, one (8%) patient in the mavrilimumab group progressed to mechanical ventilation compared with nine (35%) patients in the control group who progressed to mechanical ventilation or died (p=0·14). By day 14, fever resolved in ten (91%) of 11 febrile patients in the mavrilimumab group, compared with 11 (61%) of 18 febrile patients in the control group (p=0·18); fever resolution was faster in mavrilimumab recipients versus controls (median time to resolution 1 day [IQR 1 to 2] vs 7 days [3 to >14], p=0·0093). Mavrilimumab was well tolerated, with no infusion reactions. Three (12%) patients in the control group developed infectious complications. Interpretation Mavrilimumab treatment was associated with improved clinical outcomes compared with standard care in non-mechanically ventilated patients with severe COVID-19 pneumonia and systemic hyperinflammation. Treatment was well tolerated. Confirmation of efficacy requires controlled testing. Funding IRCCS San Raffaele Scientific Institute.
Collapse
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Piera Angelillo
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Boffini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Tentori
- Internal Medicine and Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Mette
- Emergency Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- Internal Medicine, Diabetes and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa D'Aliberti
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Scarpellini
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Tresoldi
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
90
|
Madison MC, Landers CT, Gu BH, Chang CY, Tung HY, You R, Hong MJ, Baghaei N, Song LZ, Porter P, Putluri N, Salas R, Gilbert BE, Levental I, Campen MJ, Corry DB, Kheradmand F. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest 2020; 129:4290-4304. [PMID: 31483291 DOI: 10.1172/jci128531] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Electronic nicotine delivery systems (ENDS) or e-cigarettes have emerged as a popular recreational tool among adolescents and adults. Although the use of ENDS is often promoted as a safer alternative to conventional cigarettes, few comprehensive studies have assessed the long-term effects of vaporized nicotine and its associated solvents, propylene glycol (PG) and vegetable glycerin (VG). Here, we show that compared with smoke exposure, mice receiving ENDS vapor for 4 months failed to develop pulmonary inflammation or emphysema. However, ENDS exposure, independent of nicotine, altered lung lipid homeostasis in alveolar macrophages and epithelial cells. Comprehensive lipidomic and structural analyses of the lungs revealed aberrant phospholipids in alveolar macrophages and increased surfactant-associated phospholipids in the airway. In addition to ENDS-induced lipid deposition, chronic ENDS vapor exposure downregulated innate immunity against viral pathogens in resident macrophages. Moreover, independent of nicotine, ENDS-exposed mice infected with influenza demonstrated enhanced lung inflammation and tissue damage. Together, our findings reveal that chronic e-cigarette vapor aberrantly alters the physiology of lung epithelial cells and resident immune cells and promotes poor response to infectious challenge. Notably, alterations in lipid homeostasis and immune impairment are independent of nicotine, thereby warranting more extensive investigations of the vehicle solvents used in e-cigarettes.
Collapse
Affiliation(s)
- Matthew C Madison
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | - Cameron T Landers
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | | | - Cheng-Yen Chang
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | | | - Ran You
- Department of Pathology and Immunology
| | - Monica J Hong
- Department of Medicine.,Department of Pathology and Immunology
| | | | | | | | | | | | - Brian E Gilbert
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ilya Levental
- Department of Integrative Biology and Molecular Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - David B Corry
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine.,Department of Pathology and Immunology.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine.,Department of Pathology and Immunology.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
91
|
Lawi D, Dubruc E, Gonzalez M, Aubert JD, Soccal PM, Janssens JP. Secondary pulmonary alveolar proteinosis treated by lung transplant: A case report. Respir Med Case Rep 2020; 30:101108. [PMID: 32528843 PMCID: PMC7276430 DOI: 10.1016/j.rmcr.2020.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a pulmonary disease characterized by disruption of surfactant homeostasis resulting in its accumulation in the alveoli. PAP is classically classified into three categories (Table 1): 1/primary (or autoimmune) with antibodies targeting the GM-CSF pathway, 2/secondary to another disease, typically a hematologic malignancy, and 3/genetic. CASE-REPORT A 30 year-old woman received an allogenic hematopoietic stem cell transplantation (HSCT) after treatment for acute myeloid leukemia (AML). Within the first 6 months post HSCT, she developed an ocular, oral, digestive and hepatic graft-versus-host disease associated with a mixed ventilatory defect with a very severe obstructive syndrome and a severe CO diffusion impairment. High resolution computed tomography showed a classical "crazy paving" pattern. Aspect and differential cell count of BAL were normal. All microbiological samples remained culture negative. Histo-pathological analysis of transbronchial biopsies was unremarkable. Because of the severity of the respiratory insufficiency, open-lung biopsy (OBL) could not be performed. Despite multiple immunosuppressive therapies, lung function deteriorated rapidly; the patient also developed an excavated fungal lesion unresponsive to treatment. She underwent a bilateral lung transplant 48 months after HSCT. Histo-pathological analysis of explanted lungs showed obliterative bronchiolitis (OB), diffuse PAP and invasive cavitary pulmonary aspergillosis. CONCLUSIONS This case illustrates the simultaneous occurrence of OB, PAP and a fungal infection in a 30-year old female patient who underwent HSCT for acute myeloid leukemia (AML). To our knowledge this is the only documented case of PAP associated with OB treated by lung transplantation.
Collapse
Key Words
- AML, Acute myeloid leukemia
- BAL, Bronchoalveolar lavage
- BLT, Bilateral Lung Transplant
- GVHd, Graft-versus-host disease
- HRCT, High Resolution Computed Tomography
- HSCT, Hematopoietic Stem Cell Transplantation
- Invasive pulmonary aspergillosis
- Lung transplantation
- OB, Obliterative Bronchiolitis
- OLB, Open-lung biopsy
- Obliterative bronchiolitis
- PAP, Pulmonary Alveolar Proteinosis
- PFT, Pulmonary Function Tests
- Secondary pulmonary alveolar proteinosis
- TBB, Transbronchial Biopsy
Collapse
Affiliation(s)
- David Lawi
- Division of Pulmonology, Geneva University Hospitals, 1211, Geneva, Switzerland
| | - Estelle Dubruc
- Division of Pathology, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - John-David Aubert
- Division of Pulmonology, Lausanne University Hospital, 1011, Lausanne, Switzerland.,Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paola M Soccal
- Division of Pulmonology, Geneva University Hospitals, 1211, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Jean-Paul Janssens
- Division of Pulmonology, Geneva University Hospitals, 1211, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
92
|
Nakamura M, Okamoto M, Fujimoto K, Shimizu S, Tominaga M, Tsuneyoshi S, Zaizen Y, Nouno T, Sakamoto S, Kawayama T, Hoshino T. A Case of Autoimmune Pulmonary Alveolar Proteinosis with Pulmonary Fibrosis and Asbestosis-Like Features. Kurume Med J 2020; 66:59-63. [PMID: 32336733 DOI: 10.2739/kurumemedj.ms661005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A 78-year-old man who had worked in the building industry visited our hospital because of groundglass opacity with smoothly thickened, intralobular interstitial lines and interlobular septal lines on chest high-resolution computed tomography (HRCT). HRCT image also showed a focal area of reticulation and pleural thickening. Lung specimens obtained by surgical lung biopsy showed accumulations of intra-alveolar periodic acid-Schiffpositive materials, usual interstitial pneumonia (UIP)-like subpleural lung fibrosis and asbestos bodies (1 body/cm2 in high-power field, ×400). Serum granulocyte-macrophage colony stimulating factor autoantibody was positive. The patient was diagnosed as having autoimmune pulmonary alveolar proteinosis (PAP) and needed differential diagnosis from secondary PAP caused from pulmonary asbestosis and UIP. Careful observation of the manifestations of pulmonary asbestosis and the progression of fibrosis using HRCT will be necessary in this patient.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Masaki Okamoto
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Kiminori Fujimoto
- Department of Radiology and Center for Diagnostic Imaging, Kurume University School of Medicine
| | - Shigeki Shimizu
- Department of Pathology, Kindai University Faculty of Medicine
| | - Masaki Tominaga
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Shingo Tsuneyoshi
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Takashi Nouno
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Satoshi Sakamoto
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Tomotaka Kawayama
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
93
|
Troy LK, Hetzel J. Lung cryobiopsy and interstitial lung disease: What is its role in the era of multidisciplinary meetings and antifibrotics? Respirology 2020; 25:987-996. [PMID: 32307854 DOI: 10.1111/resp.13822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
Diagnosing ILD can be complex, and despite detailed evaluation and HRCT imaging, many patients require lung biopsy to help classify their disease. SLB has served as the reference standard for histopathology in ILD, since initial classification schemes were created more than 50 years ago. Frequently, patients are too unwell to undertake SLB and remain unclassifiable, despite the input of expert MDD. This can limit access to therapy and establishment of prognosis. TBLC is an emerging procedure for sampling lung tissue with promising results in research and clinical settings. Although diagnostic yield is not as high as SLB, the risk profile looks to be more acceptable and the accuracy appears to be good. There is increasing evidence for the utility of cryobiopsy in ILD diagnosis, particularly within the MDD. Cryobiopsy serves as an important adjunct for the diagnosis of ILD, enhancing the diagnostic confidence of treating clinicians.
Collapse
Affiliation(s)
- Lauren K Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Juergen Hetzel
- Department of Oncology and Pulmonology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
94
|
Hashimoto A, Takeuchi S, Kajita R, Yamagata A, Kakui R, Tanaka T, Nakata K. Proteogenomic analysis of granulocyte macrophage colony- stimulating factor autoantibodies in the blood of a patient with autoimmune pulmonary alveolar proteinosis. Sci Rep 2020; 10:4923. [PMID: 32188922 PMCID: PMC7080758 DOI: 10.1038/s41598-020-61934-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Recently, attempts to reveal the structures of autoantibodies comprehensively using improved proteogenomics technology, have become popular. This technology identifies peptides in highly purified antibodies by using an Orbitrap device to compare spectra from liquid chromatography-tandem mass spectrometry against a cDNA database obtained through next-generation sequencing. In this study, we first analyzed granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies in a patient with autoimmune pulmonary alveolar proteinosis, using the trapped ion mobility spectrometry coupled with quadrupole time-of-flight (TIMS-TOF) instrument. The TIMS-TOF instrument identified peptides that partially matched sequences in up to 156 out of 162 cDNA clones. Complementarity-determining region 3 (CDR3) was fully and partially detected in nine and 132 clones, respectively. Moreover, we confirmed one unique framework region 4 (FR4) and at least three unique across CDR3 to FR4 peptides via de novo peptide sequencing. This new technology may thus permit the comprehensive identification of autoantibody structure.
Collapse
Affiliation(s)
| | - Shiho Takeuchi
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | - Takahiro Tanaka
- Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Niigata University Medical & Dental Hospital, Niigata, Japan.
| |
Collapse
|
95
|
Ayumu T, Etsuro Y, Toshiyuki Y, Kenshi K, Ayako M, Masaki N, Hiroyuki T, Norihito Y, Akihito K. A case of autoimmune pulmonary alveolar proteinosis with fluctuating lung shadows in parallel with cigarette smoke burden. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2020; 34:257-259. [PMID: 32476854 PMCID: PMC7170098 DOI: 10.36141/svdld.v34i3.5815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/19/2016] [Indexed: 12/03/2022]
Abstract
The association between the development of pulmonary alveolar proteinosis (PAP) and dust inhalation has been established; however, the link between PAP and smoking is less clear. A 46-year-old man with mild bronchial asthma and a 52-pack-year smoking history was diagnosed with autoimmune PAP (APAP) based on computed tomography (CT) shadows, pathologic findings of the lung, and a high serum level of anti-granulocyte macrophage colony-stimulating factor (GM-CSF) IgG autoantibody. Smoking was stopped and he was treated three times with unilateral whole lung lavage (WLL). However, his respiratory failure did not improve because of incomplete WLL due to bronchospasm and decreased compliance of the ventilated lung during WLL. A fourth WLL was planned, but was cancelled because his respiratory status and lung shadows on CT scan unexpectedly improved immediately before WLL. During the follow-up period without smoking, the lung shadows resolved almost completely. However, the abnormalities relapsed after he resumed smoking and then modestly improved after changing to cigarettes containing less tar. Serum levels of anti-GM-CSF IgG were not compatible with the lung shadows. These observations in this patient suggested a link between smoking and APAP. Since variable smoking rates in patients with APAP have been reported in epidemiologic studies, a definite conclusion requires precise case-control studies in the future. (Sarcoidosis Vasc Diffuse Lung Dis 2017; 34: 257-259)
Collapse
Affiliation(s)
- Takahashi Ayumu
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Yamaguchi Etsuro
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Yonezawa Toshiyuki
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Kosaka Kenshi
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Matsubara Ayako
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Nishimura Masaki
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Tanaka Hiroyuki
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Yokoe Norihito
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| | - Kubo Akihito
- Division of Respiratory Medicine and Allergology, Department of Medicine, Aichi Medical University School of Medicine
| |
Collapse
|
96
|
Blanc PD, Annesi-Maesano I, Balmes JR, Cummings KJ, Fishwick D, Miedinger D, Murgia N, Naidoo RN, Reynolds CJ, Sigsgaard T, Torén K, Vinnikov D, Redlich CA. The Occupational Burden of Nonmalignant Respiratory Diseases. An Official American Thoracic Society and European Respiratory Society Statement. Am J Respir Crit Care Med 2020; 199:1312-1334. [PMID: 31149852 PMCID: PMC6543721 DOI: 10.1164/rccm.201904-0717st] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rationale: Workplace inhalational hazards remain common worldwide, even though they are ameliorable. Previous American Thoracic Society documents have assessed the contribution of workplace exposures to asthma and chronic obstructive pulmonary disease on a population level, but not to other chronic respiratory diseases. The goal of this document is to report an in-depth literature review and data synthesis of the occupational contribution to the burden of the major nonmalignant respiratory diseases, including airway diseases; interstitial fibrosis; hypersensitivity pneumonitis; other noninfectious granulomatous lung diseases, including sarcoidosis; and selected respiratory infections. Methods: Relevant literature was identified for each respiratory condition. The occupational population attributable fraction (PAF) was estimated for those conditions for which there were sufficient population-based studies to allow pooled estimates. For the other conditions, the occupational burden of disease was estimated on the basis of attribution in case series, incidence rate ratios, or attributable fraction within an exposed group. Results: Workplace exposures contribute substantially to the burden of multiple chronic respiratory diseases, including asthma (PAF, 16%); chronic obstructive pulmonary disease (PAF, 14%); chronic bronchitis (PAF, 13%); idiopathic pulmonary fibrosis (PAF, 26%); hypersensitivity pneumonitis (occupational burden, 19%); other granulomatous diseases, including sarcoidosis (occupational burden, 30%); pulmonary alveolar proteinosis (occupational burden, 29%); tuberculosis (occupational burden, 2.3% in silica-exposed workers and 1% in healthcare workers); and community-acquired pneumonia in working-age adults (PAF, 10%). Conclusions: Workplace exposures contribute to the burden of disease across a range of nonmalignant lung conditions in adults (in addition to the 100% burden for the classic occupational pneumoconioses). This burden has important clinical, research, and policy implications. There is a pressing need to improve clinical recognition and public health awareness of the contribution of occupational factors across a range of nonmalignant respiratory diseases.
Collapse
|
97
|
Yoon HY, Kim JH, Kim YJ, Song JW. Pulmonary alveolar proteinosis in Korea: analysis of prevalence and incidence via a nationwide population-based study. BMC Pulm Med 2020; 20:34. [PMID: 32028922 PMCID: PMC7006195 DOI: 10.1186/s12890-020-1074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/03/2020] [Indexed: 04/17/2023] Open
Abstract
Background Pulmonary alveolar proteinosis (PAP) is a very rare lung disease and its prevalence and incidence remain unclear. The prevalence and incidence of PAP were investigated by using nationwide claims data from the Korean Health Insurance Review and Assessment service. Methods Data were extracted for adults who visited any secondary or tertiary medical institute between 2010 and 2016 with the PAP-related Korean Classification of Disease, 7th edition code J84.0 and the Rare Intractable Disease exempted calculation code V222. To robust case definition, a narrow case definition was made when all following factors were met: 1) more than two PAP-coded visits within 1 year of the first claim, and 2) more than one claim for both chest computed tomography and diagnostic procedures (bronchoscopy or surgical lung biopsy) within 90 days before or after the first claim. Results A total of 182 patients (narrow, n = 82) with PAP-related codes were identified from 2010 to 2016 and 89 new patients (narrow, n = 66) visited medical institutes between 2012 and 2015. The prevalence of PAP was 4.44 (narrow: 2.27) per 106 population, with a peak age of 60–69 years. The incidence of PAP was 0.56 (narrow: 0.41) per 106 population at risk, with a peak age of 50–59 years. Among incident cases, the male-to-female ratio was 1.52 and about two-thirds had comorbidities, dyslipidaemia being the most common. Conclusions The prevalence and incidence of PAP in Korea are low, similar to those in other countries; however, Korean patients with PAP are characterized by older diagnostic age and a lower male-to-female ratio.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Woman's University, 25 Magokdong-ro 2-gil Gangseo-gu, Seoul, 07804, Republic of Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Ji Hyeon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
98
|
Nakata K, Sugi T, Kuroda K, Yoshizawa K, Takada T, Tazawa R, Ueda T, Aoki A, Abe M, Tatsumi K, Eda R, Kondoh S, Morimoto K, Tanaka T, Yamaguchi E, Takahashi A, Oda M, Ishii H, Izumi S, Sugiyama H, Nakagawa A, Tomii K, Suzuki M, Konno S, Ohkouchi S, Hirano T, Handa T, Hirai T, Inoue Y, Arai T, Asakawa K, Sakagami T, Tanaka T, Mikami A, Kitamura N. Validation of a new serum granulocyte-macrophage colony-stimulating factor autoantibody testing kit. ERJ Open Res 2020; 6:00259-2019. [PMID: 32010720 PMCID: PMC6983497 DOI: 10.1183/23120541.00259-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/27/2019] [Indexed: 11/05/2022] Open
Abstract
Very recently, a modest but significant efficacy of granulocyte-macrophage colony-stimulating factor (GM-CSF) inhalation therapy for the treatment of mild to moderate autoimmune pulmonary alveolar proteinosis (aPAP) has been reported. As the ability to measure the level of GM-CSF autoantibody (GMAb) in the serum is required to decide the indication for this therapy, we developed a high-performance GMAb testing kit for clinical use. As the kit succeeded in reducing nonspecific IgG binding to the ELISA plate, the predictive performance shown in the training study to discriminate aPAP patients from healthy subjects was perfect, providing a cut-off value of 1.65 U·mL-1 in 78 patients with aPAP and 90 healthy subjects in an operator-blinded manner using logistic regression analysis. As in the validation study, serum samples from another 213 patients with aPAP were also blinded and evaluated in an operator-blinded manner against external 207 samples from patients with other types of PAP and patients exhibiting various ground-glass opacities on chest high-resolution computed tomography that require discrimination from PAP. The logistic regression analysis of these validation data sets revealed values of 97.6% and 100% for specificity and sensitivity, respectively. Thus, this new GMAb testing kit is reliable for the diagnosis of aPAP and differential diagnosis of other lung diseases.
Collapse
Affiliation(s)
- Koh Nakata
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tatsuki Sugi
- IVD Development Unit, Ina Laboratory, Medical and Biological Laboratories, Ltd, Nagoya, Japan
| | - Keiko Kuroda
- IVD Development Unit, Ina Laboratory, Medical and Biological Laboratories, Ltd, Nagoya, Japan
| | - Kazutaka Yoshizawa
- Dept of Respiratory and Infectious Disease, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Toshinori Takada
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Japan
| | - Ryushi Tazawa
- Health Administration Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Ueda
- Office of New Drug IV, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Ami Aoki
- Dept of Respiratory and Infectious Disease, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Mitsuhiro Abe
- Dept of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Dept of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Eda
- Kurashiki Municipal Hospital, Kurashiki, Japan
| | | | - Konosuke Morimoto
- Dept of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takeshi Tanaka
- Dept of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Etsuro Yamaguchi
- Division of Respiratory Medicine and Allergology, Dept of Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Ayumu Takahashi
- Division of Respiratory Medicine and Allergology, Dept of Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Miku Oda
- Dept of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Haruyuki Ishii
- Dept of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Shinyu Izumi
- Dept of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhito Sugiyama
- Dept of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Keisuke Tomii
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaru Suzuki
- Dept of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Dept of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Ohkouchi
- Dept of Respiratory Medicine and Dept of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taizou Hirano
- Dept of Respiratory Medicine and Dept of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Handa
- Dept of Advanced Medicine for Respiratory Failure and Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Dept of Advanced Medicine for Respiratory Failure and Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Toru Arai
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Katsuaki Asakawa
- Dept of Respiratory and Infectious Disease, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takuro Sakagami
- Dept of Respiratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Takahiro Tanaka
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ayako Mikami
- Dept of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobutaka Kitamura
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| |
Collapse
|
99
|
McCarthy C, Bartholmai BJ, Woods JC, McCormack FX, Trapnell BC. Automated Parenchymal Pattern Analysis of Treatment Responses in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2020; 199:1151-1152. [PMID: 30822107 DOI: 10.1164/rccm.201810-1918im] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cormac McCarthy
- 1 Translational Pulmonary Science Center and.,2 Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Jason C Woods
- 5 Division of Pulmonary Medicine, Department of Radiology, Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Francis X McCormack
- 1 Translational Pulmonary Science Center and.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C Trapnell
- 1 Translational Pulmonary Science Center and.,2 Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
100
|
Meka SG, Mohr M, Nair GB, Salman BA. Autoimmune pulmonary alveolar proteinosis mimicking Mycoplasma pneumonia in an adolescent. Respir Med Case Rep 2020; 30:101100. [PMID: 32518746 PMCID: PMC7270595 DOI: 10.1016/j.rmcr.2020.101100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare disease of abnormal surfactant production and accumulation. It is typically divided into three main categories: autoimmune, secondary and genetic. The genetic type is more common in children and adolescents, while the autoimmune type is most commonly seen in adults. Here we present an unusual case of autoimmune PAP presenting in an adolescent by mimicking findings of Mycoplasma pneumonia. Although both PAP and Mycoplasma pneumonia may reveal the same findings of the “crazy paving pattern” on computed tomography imaging, it is imperative to distinguish the two as treatment options are dissimilar. Consider pulmonary alveolar proteinosis in adolescents with “crazy paving” pattern on imaging. Delayed diagnosis due to infectious mimickers is common in the young age group. Autoimmune pulmonary alveolar proteinosis requires timely diagnosis.
Collapse
Affiliation(s)
- Shaiva Ginoya Meka
- Beaumont Pulmonary and Sleep Medicine Associates, 3535 West 13 Mile Road, Medical Office Building, Suite 344, Royal Oak, MI, 48073, USA
- Corresponding author.
| | - Madison Mohr
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI, 48309, USA
| | - Girish Balachandran Nair
- Beaumont Pulmonary and Sleep Medicine Associates, 3535 West 13 Mile Road, Medical Office Building, Suite 344, Royal Oak, MI, 48073, USA
| | | |
Collapse
|