51
|
Strieth-Kalthoff F, Hao H, Rathore V, Derasp J, Gaudin T, Angello NH, Seifrid M, Trushina E, Guy M, Liu J, Tang X, Mamada M, Wang W, Tsagaantsooj T, Lavigne C, Pollice R, Wu TC, Hotta K, Bodo L, Li S, Haddadnia M, Wołos A, Roszak R, Ser CT, Bozal-Ginesta C, Hickman RJ, Vestfrid J, Aguilar-Granda A, Klimareva EL, Sigerson RC, Hou W, Gahler D, Lach S, Warzybok A, Borodin O, Rohrbach S, Sanchez-Lengeling B, Adachi C, Grzybowski BA, Cronin L, Hein JE, Burke MD, Aspuru-Guzik A. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. Science 2024; 384:eadk9227. [PMID: 38753786 DOI: 10.1126/science.adk9227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.
Collapse
Affiliation(s)
- Felix Strieth-Kalthoff
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Han Hao
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Vandana Rathore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua Derasp
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Théophile Gaudin
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Angello
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Seifrid
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | | | - Mason Guy
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Junliang Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Xun Tang
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Wesley Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tuul Tsagaantsooj
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Cyrille Lavigne
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Robert Pollice
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Tony C Wu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kazuhiro Hotta
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Mitsubishi Chemical Corporation Science & Innovation Center, Kanagawa, Japan
| | - Leticia Bodo
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Shangyu Li
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mohammad Haddadnia
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Agnieszka Wołos
- Allchemy Inc., Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Roszak
- Allchemy Inc., Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Cher Tian Ser
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Carlota Bozal-Ginesta
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Catalonia Institute for Energy Research, Barcelona, Spain
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jenya Vestfrid
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Andrés Aguilar-Granda
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | | | - Wenduan Hou
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Daniel Gahler
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Slawomir Lach
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Adrian Warzybok
- School of Chemistry, University of Glasgow, Glasgow, UK
- Department of Chemical Physics, Jagiellonian University, Krakow, Poland
| | - Oleg Borodin
- School of Chemistry, University of Glasgow, Glasgow, UK
| | | | | | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan Institute of Science and Technology, Ulsan, Republic of Korea
| | - Leroy Cronin
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Jason E Hein
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Martin D Burke
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
52
|
Urban L, Laqua H, Thompson TH, Ochsenfeld C. Efficient Exploitation of Numerical Quadrature with Distance-Dependent Integral Screening in Explicitly Correlated F12 Theory: Linear Scaling Evaluation of the Most Expensive RI-MP2-F12 Term. J Chem Theory Comput 2024; 20:3706-3718. [PMID: 38626443 PMCID: PMC11099969 DOI: 10.1021/acs.jctc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
We present a linear scaling atomic orbital based algorithm for the computation of the most expensive exchange-type RI-MP2-F12 term by employing numerical quadrature in combination with CABS-RI to avoid six-center-three-electron integrals. Furthermore, a robust distance-dependent integral screening scheme, based on integral partition bounds [Thompson, T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101], is used to drastically reduce the number of the required three-center-one-electron integrals substantially. The accuracy of our numerical quadrature/CABS-RI approach and the corresponding integral screening is thoroughly assessed for interaction and isomerization energies across a variety of numerical integration grids. Our method outperforms the standard density fitting/CABS-RI approach with errors below 1 μEh even for small grid sizes and moderate screening thresholds. The choice of the grid size and screening threshold allows us to tailor our ansatz to a desired accuracy and computational efficiency. We showcase the approach's effectiveness for the chemically relevant system valinomycin, employing a triple-ζ F12 basis set combination (C54H90N6O18, 5757 AO basis functions, 10,266 CABS basis functions, 735,783 grid points). In this context, our ansatz achieves higher accuracy combined with a 135× speedup compared to the classical density fitting based variant, requiring notably less computation time than the corresponding RI-MP2 calculation. Additionally, we demonstrate near-linear scaling through calculations on linear alkanes. We achieved an 817-fold acceleration for C80H162 and an extrapolated 28,765-fold acceleration for C200H402, resulting in a substantially reduced computational time for the latter─from 229 days to just 11.5 min. Our ansatz may also be adapted to the remaining MP2-F12 terms, which will be the subject of future work.
Collapse
Affiliation(s)
- Lars Urban
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Henryk Laqua
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Travis H. Thompson
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
53
|
Scherz F, Bauer M, Domenianni LI, Hoyer C, Schmidt J, Sarkar B, Vöhringer P, Krewald V. Ultrafast photogeneration of a metal-organic nitrene from 1,1'-diazidoferrocene. Chem Sci 2024; 15:6707-6715. [PMID: 38725494 PMCID: PMC11077559 DOI: 10.1039/d4sc00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Ferrocene and its derivatives have fascinated chemists for more than 70 years, not least due to the analogies with the properties of benzene. Despite these similarities, the obvious difference between benzene and ferrocene is the presence of an iron ion and hence the availability of d-orbitals for properties and reactivity. Phenylnitrene with its rich photochemistry can be considered an analogue of nitrenoferrocene. As with most organic and inorganic nitrenes, nitrenoferrocene can be obtained by irradiating the azide precursor. We study the photophysical and photochemical processes of dinitrogen release from 1,1'-diazidoferrocene to form 1-azido-1'-nitrenoferrocene with UV-pump-mid-IR-probe transient absorption spectroscopy and time-dependent density functional theory calculations including spin-orbit coupling. An intermediate with a bent azide moiety is identified that is pre-organised for dinitrogen release via a low-lying transition state. The photochemical decay paths on the singlet and triplet surfaces including the importance of spin-orbit coupling are discussed. We compare our findings with the processes discussed for photochemical dinitrogen activation and highlight implications for the photochemistry of azides more generally.
Collapse
Affiliation(s)
- Frederik Scherz
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Str. 4 64287 Darmstadt Germany
| | - Markus Bauer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Luis I Domenianni
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Carolin Hoyer
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Jonas Schmidt
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Biprajit Sarkar
- Institute of Inorganic Chemistry, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Peter Vöhringer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstraße 12 53115 Bonn Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
54
|
Tomczyk I, Kalek M. Electrochemical Dearomatizing Methoxylation of Phenols and Naphthols: Synthetic and Computational Studies. Chemistry 2024; 30:e202303916. [PMID: 38315289 DOI: 10.1002/chem.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The electrochemical oxidative dearomatizing methoxylation of phenols and naphthols was developed. It provides an alternative route for the preparation of methoxycyclohexadienones, important and versatile synthetic intermediates, that eliminates the need for stoichiometric high-energy chemical oxidants and generates hydrogen as a sole by-product. The reaction proceeds in a simple constant current mode, in an undivided cell, and it employs standardized instrumentation. A collection of methoxycyclohexadienones derived from various 2,4,6-tri-substituted phenols and 1-substituted-2-naphthols was obtained in moderate to excellent yields. These include a complex derivative of estrone, as well as methoxylated dearomatized 1,1'-bi-2-naphthols (BINOLs). The mechanism of the reaction was subject to profound investigations using density functional theory calculations. In particular, the reactivity of two key intermediates, phenoxyl radical and phenoxenium ion, was carefully examined. The obtained results shed light on the pathway leading to the desired product and rationalize experimentally observed selectivities regarding a side benzylic methoxylation and the preference for the functionalization at the para over the ortho position. They also uncover the structure-selectivity relationship, inversely correlating the steric bulk of the substrate with its propensity to undergo the side-reaction. Moreover, the loss of stereochemical information from enantiopure BINOL substrates during the reaction is rationalized by the computations.
Collapse
Affiliation(s)
- Ireneusz Tomczyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| |
Collapse
|
55
|
Wang RP, Liu W, Wang X, Shan G, Liu T, Xu F, Dai H, Qi C, Feng HT, Tang BZ. Supramolecular Assembly Based on Calix(4)arene and Aggregation-Induced Emission Photosensitizer for Phototherapy of Drug-Resistant Bacteria and Skin Flap Transplantation. Adv Healthc Mater 2024; 13:e2303336. [PMID: 38211556 DOI: 10.1002/adhm.202303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.
Collapse
Affiliation(s)
- Rui-Peng Wang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, Changsha, 410013, China
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 413000, China
| | - Xiaoxuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tuozhou Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 413000, China
| | - Fengrui Xu
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
56
|
Shafei R, Strobel PJ, Schmidt PJ, Maganas D, Schnick W, Neese F. A theoretical spectroscopy study of the photoluminescence properties of narrow band Eu 2+-doped phosphors containing multiple candidate doping centers. Prediction of an unprecedented narrow band red phosphor. Phys Chem Chem Phys 2024; 26:6277-6291. [PMID: 38305760 DOI: 10.1039/d3cp06039j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We have previously presented a computational protocol that is based on an embedded cluster model and operates in the framework of TD-DFT in conjunction with the excited state dynamics (ESD) approach. The protocol is able to predict the experimental absorption and emission spectral shapes of Eu2+-doped phosphors. In this work, the applicability domain of the above protocol is expanded to Eu2+-doped phosphors bearing multiple candidate Eu doping centers. It will be demonstrated that this protocol provides full control of the parameter space that describes the emission process. The stability of Eu doping at various centers is explored through local energy decomposition (LED) analysis of DLPNO-CCSD(T) energies. This enables further development of the understanding of the electronic structure of the targeted phosphors, the diverse interactions between Eu and the local environment, and their impact on Eu doping probability, and control of the emission properties. Hence, it can be employed to systematically improve deficiencies of existing phosphor materials, defined by the presence of various intensity emission bands at undesired frequencies, towards classes of candidate Eu2+-doped phosphors with desired narrow band red emission. For this purpose, the chosen study set consists of three UCr4C4-based narrow-band phosphors, namely the known alkali lithosilicates RbNa[Li3SiO4]2:Eu2+ (RNLSO2), RbNa3[Li3SiO4]4:Eu2+ (RNLSO) and their isotypic nitridolithoaluminate phosphors consisting of CaBa[LiAl3N4]2:Eu2+ (CBLA2) and the proposed Ca3Ba[LiAl3N4]4:Eu2+ (CBLA), respectively. The theoretical analysis presented in this work led us to propose a modification of the CBLA2 phosphor that should have improved and unprecedented narrow band red emission properties. Finally, we believe that the analysis presented here is important for the future rational design of novel Eu2+-doped phosphor materials, with a wide range of applications in science and technology.
Collapse
Affiliation(s)
- Rami Shafei
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- Department of Chemistry, Faculty of Science, Beni-Suef University, Salah Salem Str., 62511 Beni-Suef, Egypt
| | - Philipp Jean Strobel
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Peter J Schmidt
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
57
|
Hölzer C, Gordiy I, Grimme S, Bursch M. Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes─The LnQM Data Set. J Chem Inf Model 2024; 64:825-836. [PMID: 38238264 DOI: 10.1021/acs.jcim.3c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The unique properties of lanthanoids and their diverse applications make them an indispensable part of modern research and industry. While the field has garnered attention, there remains a gap in available molecule data sets that facilitate both classical quantum chemistry calculations and the burgeoning field of machine learning in data science applications. This research addresses the need for a comprehensive data set that allows for a comparative analysis of various lanthanoids. The herein presented, curated data set includes 17269 monolanthanoid complexes derived from 1205 distinct ligand motifs. Structures encompass all 15 lanthanoids in the +3 oxidation state and exhibit molecular charges ranging from -1 to +3, including structures with a high spin multiplicity up to 8. Starting from lanthanum complexes, samples were processed with a permutation of the central lanthanoid atom, resulting in highly comparable subsets, facilitating comparative studies in which the influence of the lanthanoid can be investigated independently of ligand effects. The data set provides a broad range of features such as PBE0-D4/def2-SVP optimized geometries and optimization trajectories, while also covering ωB97M-V/def2-SVPD energies, rotational constants, dipole moments, highest occupied molecular orbital-lowest-unoccupied molecular orbital (HOMO-LUMO) energies, and Mulliken, Löwdin, and Hirshfeld population analyses. Additionally, coordination numbers, polarizabilities, and partial charges from D4, electronegativity equilibration (EEQ), GFN2-xTB, and charge extended Hückel (CEH) calculations are included. The data set is openly accessible and may serve as a basis for further investigations into the properties of lanthanoids.
Collapse
Affiliation(s)
- Christian Hölzer
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Igor Gordiy
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
58
|
Hagai M, Inai N, Yasuda T, Fujimoto KJ, Yanai T. Extended theoretical modeling of reverse intersystem crossing for thermally activated delayed fluorescence materials. SCIENCE ADVANCES 2024; 10:eadk3219. [PMID: 38295171 PMCID: PMC10830100 DOI: 10.1126/sciadv.adk3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Thermally activated delayed fluorescence (TADF) materials and multi-resonant (MR) variants are promising organic emitters that can achieve an internal electroluminescence quantum efficiency of ~100%. The reverse intersystem crossing (RISC) is key for harnessing triplet energies for fluorescence. Theoretical modeling is thus crucial to estimate its rate constant (kRISC) for material development. Here, we present a comprehensive assessment of the theory for simulating the RISC of MR-TADF molecules within a perturbative excited-state dynamics framework. Our extended rate formula reveals the importance of the concerted effects of nonadiabatic spin-vibronic coupling and vibrationally induced spin-orbital couplings in reliably determining kRISC of MR-TADF molecules. The excited singlet-triplet energy gap is another factor influencing kRISC. We present a scheme for gap estimation using experimental Arrhenius plots of kRISC. Erroneous behavior caused by approximations in Marcus theory is elucidated by testing 121 MR-TADF molecules. Our extended modeling offers in-depth descriptions of kRISC.
Collapse
Affiliation(s)
- Masaya Hagai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takuma Yasuda
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Kyushu, Japan
- Department of Applied Chemistry, Graduate School of Engineering, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Kyushu, Japan
| | - Kazuhiro J. Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
59
|
Afonin MY, Martynenko PA, Kolybalov DS, Khisamov RM, Konchenko SN, Sukhikh TS. Pd(II)- and Pt(II)-Assisted P-C Activation/Cyclization Reactions with a Luminescent α-Aminophosphine. Inorg Chem 2024; 63:369-380. [PMID: 37988741 DOI: 10.1021/acs.inorgchem.3c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
There is unceasing interest toward transformations of phosphine derivatives, which are facilitated by transition metals. We report a facile Pd(II)- and Pt(II)-assisted P-C bond cleavage in a luminescent 2-phenylbenzothiazole-based α-methylaminophosphine (PCN, 1). Specifically, reactions between 1 and [M(COD)Cl2] (M = Pd, Pt; COD = cycloocta-1,5-diene) in different solvents (methylene chloride, acetonitrile, pyridine, toluene) resulted in the formation of PPh2-, captured either as a bridging ligand in binuclear complexes with a {M2(PPh2)2} moiety or as an adduct to COD in [Pt2(PPh2COD)2Cl2]. The heterocyclic part transforms to annulated c-CN+ species with a 1,2-dihydroquinazoline cycle formed. In the presence of pyridine as a base, annulated form c-CN+ destabilizes and undergoes reverse cyclization transforming to deprotonated CN form. Quantum-chemical density functional theory (DFT) calculations predict that a crucial step in the reactions involves proton transfer from the N atom of the amino group of PCN to a neighboring molecule. A combination of high photophysical sensitivity of c-CN+ toward its immediate environment and rich structural capabilities in assembling (c-CN)22+ pairs in different crystal packings in a family of phases with the general formula (c-CN)2[M2(PPh2)2Cl4] allows one to fine-tune the luminescence properties of the latter. The results were rationalized as a variation of π-π intercationic spacings, which tunes the degree of excited-state charge transfer between c-CN+ cations. As a result, compounds with relatively short interplanar π-π-separation between the cations show a stronger charge-transfer-mediated bathochromic shift.
Collapse
Affiliation(s)
- Mikhail Yu Afonin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Pavel A Martynenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry S Kolybalov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, National Research University─Novosibirsk State University, Novosibirsk 630090, Russia
| | - Radmir M Khisamov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey N Konchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, National Research University─Novosibirsk State University, Novosibirsk 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
60
|
Friede M, Ehlert S, Grimme S, Mewes JM. Do Optimally Tuned Range-Separated Hybrid Functionals Require a Reparametrization of the Dispersion Correction? It Depends. J Chem Theory Comput 2023; 19:8097-8107. [PMID: 37955590 DOI: 10.1021/acs.jctc.3c00717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
For ground- and excited-state studies of large molecules, it is the state of the art to combine (time-dependent) DFT with dispersion-corrected range-separated hybrid functionals (RSHs), which ensures an asymptotically correct description of exchange effects and London dispersion. Specifically for studying excited states, it is common practice to tune the range-separation parameter ω (optimal tuning), which can further improve the accuracy. However, since optimal tuning essentially changes the functional, it is unclear if and how much the parameters used for the dispersion correction depend on the chosen ω value. To answer this question, we explore this interdependency by refitting the DFT-D4 dispersion model for six established RSHs over a wide range of ω values (0.05-0.45 a0-1) using a set of noncovalently bound molecular complexes. The results reveal some surprising differences among the investigated functionals: While PBE-based RSHs and ωB97M-D4 generally exhibit a weak interdependency and robust performance over a wide range of ω values, B88-based RSHs, specifically LC-BLYP, are strongly affected. For these, even a minor reduction of ω from the default value manifests in strong systematic overbinding and poor performance in the typical range of optimally tuned ω values. Finally, we discuss strategies to mitigate these issues and reflect the results in the context of the employed D4 parameter optimization algorithm and fit set, outlining strategies for future improvements.
Collapse
Affiliation(s)
- Marvin Friede
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
61
|
Inai N, Yamaguchi S, Yanai T. Theoretical Insight into the Effect of Phosphorus Oxygenation on Nonradiative Decays: Comparative Analysis of P-Bridged Stilbene Analogs. ACS PHYSICAL CHEMISTRY AU 2023; 3:540-552. [PMID: 38034034 PMCID: PMC10683489 DOI: 10.1021/acsphyschemau.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Incorporation of the phosphorus element into a π-conjugated skeleton offers valuable prospects for adjusting the electronic structure of the resulting functional π-electron systems. Trivalent phosphorus has the potential to decrease the LUMO level through σ*-π* interaction, which is further enhanced by its oxygenation to the pentavalent P center. This study shows that utilizing our computational analysis to examine excited-state dynamics based on radiative/nonradiative rate constants and fluorescence quantum yield (ΦF) is effective for analyzing the photophysical properties of P-containing organic dyes. We theoretically investigate how the trivalent phosphanyl group and pentavalent phosphine oxide moieties affect radiative and nonradiative decay processes. We evaluate four variations of P-bridged stilbene analogs. Our analysis reveals that the primary decay pathway for photoexcited bis-phosphanyl-bridged stilbene is the intersystem crossing (ISC) to the triplet state and nonradiative. The oxidation of the phosphine moiety, however, suppresses the ISC due to the relative destabilization of the triplet states. The calculated rate constants match an increase in experimental ΦF from 0.07 to 0.98, as simulated from 0.23 to 0.94. The reduced HOMO-LUMO gap supports a red shift in the fluorescence spectra relative to the phosphine analog. The thiophene-fused variant with the nonoxidized trivalent P center exhibits intense emission with a high ΦF, 0.95. Our prediction indicates that the ISC transfer is obstructed owing to the relatively destabilized triplet state induced by the thiophene substitution. Conversely, the thiophene-fused analog with the phosphine oxide moieties triggers a high-rate internal conversion mediated by conical intersection, leading to a decreased ΦF.
Collapse
Affiliation(s)
- Naoto Inai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
62
|
Bruder F, Franzke YJ, Holzer C, Weigend F. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration. J Chem Phys 2023; 159:194117. [PMID: 37987521 DOI: 10.1063/5.0175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
An efficient implementation of zero-field splitting parameters based on the work of Schmitt et al. [J. Chem. Phys. 134, 194113 (2011)] is presented. Seminumerical integration techniques are used for the two-electron spin-dipole contribution and the response equations of the spin-orbit perturbation. The original formulation is further generalized. First, it is extended to meta-generalized gradient approximations and local hybrid functionals. For these functional classes, the response of the paramagnetic current density is considered in the coupled-perturbed Kohn-Sham equations for the spin-orbit perturbation term. Second, the spin-orbit perturbation is formulated within relativistic exact two-component theory and the screened nuclear spin-orbit (SNSO) approximation. The accuracy of the implementation is demonstrated for transition-metal and diatomic main-group compounds. The efficiency is assessed for Mn and Mo complexes. Here, it is found that coarse integration grids for the seminumerical schemes lead to drastic speedups while introducing clearly negligible errors. In addition, the SNSO approximation substantially reduces the computational demands and leads to very similar results as the spin-orbit mean field Ansatz.
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
63
|
Alves AL, Bernardino SV, Stadtlober CH, Girotto E, Farias G, do Nascimento RM, Curcio SF, Cazati T, Dotto MER, Eccher J, Furini LN, Gallardo H, Bock H, Bechtold IH. Charge carrier transport in perylene-based and pyrene-based columnar liquid crystals. Beilstein J Org Chem 2023; 19:1755-1765. [PMID: 38025088 PMCID: PMC10667716 DOI: 10.3762/bjoc.19.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.
Collapse
Affiliation(s)
- Alessandro L Alves
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Simone V Bernardino
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Carlos H Stadtlober
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Edivandro Girotto
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Rodney M do Nascimento
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio F Curcio
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Thiago Cazati
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Marta E R Dotto
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Juliana Eccher
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Leonardo N Furini
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Hugo Gallardo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600 Pessac, France
| | - Ivan H Bechtold
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
64
|
Maier T, Wutschitz J, Gajic N, Hejl M, Cseh K, Mai S, Jakupec MA, Galanski MS, Keppler BK. Not the usual suspect - an unexpected organometallic product during the synthesis of cytotoxic platinum(II) complexes. Dalton Trans 2023; 52:16326-16335. [PMID: 37855721 DOI: 10.1039/d3dt01736b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The reaction of (1R,2R)-(cyclohexane-1,2-diamine)dichloridoplatinum(II) with maleic acid unexpectedly resulted in the formation of an organometallic platinum(II) complex featuring a C,O-coordinating ligand. Additionally, a small series of close derivatives with increasing lipophilicity was synthesized. All complexes were fully characterized by multinuclear one- and two-dimensional (1H, 13C, 15N, and 195Pt) NMR spectroscopy, high resolution mass spectrometry, and in one case by X-ray diffraction. The lipophilicity and the impact on the DNA secondary structure as well as the cytotoxic properties in three human cancer cell lines (A549, SW480, and CH1/PA-1) were investigated. Unexpectedly, no clear-cut trend in cytotoxicity was observed with increasing lipophilicity. Also unexpectedly, the complexes showed only a low potential to inhibit cancer cell growth and no sign of interaction with DNA, in sharp contrast to the parent drug oxaliplatin, which seems to be caused by the low reactivity of the investigated compounds.
Collapse
Affiliation(s)
- Thomas Maier
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
- University of Vienna, Doctoral School in Chemistry (DoSChem), Waehringer Strasse 42, 1090 Vienna, Austria
| | - Judith Wutschitz
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Natalie Gajic
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Michaela Hejl
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Klaudia Cseh
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Sebastian Mai
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Waehringer Strasse 17, 1090 Vienna, Austria
| | - Michael A Jakupec
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Mathea S Galanski
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Department of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
65
|
Neugebauer H, Pinski P, Grimme S, Neese F, Bursch M. Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. J Chem Theory Comput 2023; 19:7695-7703. [PMID: 37862406 PMCID: PMC10653103 DOI: 10.1021/acs.jctc.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 10/22/2023]
Abstract
The unfavorable scaling (N5) of the conventional second-order Møller-Plesset theory (MP2) typically prevents the application of double-hybrid (DH) density functionals to large systems with more than 100 atoms. A prominent approach to reduce the computational demand of electron correlation methods is the domain-based local pair natural orbital (DLPNO) approximation that is successfully used in the framework of DLPNO-CCSD(T). Its extension to MP2 [Pinski P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2015, 143, 034108.] paved the way for DLPNO-based DH (DLPNO-DH) methods. In this work, we assess the accuracy of the DLPNO-DH approximation compared to conventional DHs on a large number of 7925 data points for thermochemistry and 239 data points for structural features, including main-group and transition-metal systems. It is shown that DLPNO-DH-DFT can be applied successfully to perform energy calculations and geometry optimizations for large molecules at a drastically reduced computational cost. Furthermore, PNO space extrapolation is shown to be applicable, similar to its DLPNO-CCSD(T) counterpart, to reduce the remaining error.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Peter Pinski
- HQS
Quantum Simulations GmbH, Rintheimer Straße 23, D-76131 Karlsruhe, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Bursch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
66
|
Li Y, Singh R, Sinha A, Lisensky GC, Haukka M, Nilsson J, Yiga S, Demeshko S, Gross SJ, Dechert S, Gonzalez A, Farias G, Wendt OF, Meyer F, Nordlander E. Nonheme Fe IV═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes. Inorg Chem 2023; 62:18338-18356. [PMID: 37913548 PMCID: PMC10647104 DOI: 10.1021/acs.inorgchem.3c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
Collapse
Affiliation(s)
- Yong Li
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Reena Singh
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Arup Sinha
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - George C. Lisensky
- Department
of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä FI-40014, Finland
| | - Justin Nilsson
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Solomon Yiga
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Serhiy Demeshko
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sophie Jana Gross
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sebastian Dechert
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, P.O.
Box 118, Lund SE-221 00, Sweden
| | - Giliandro Farias
- Department
of Chemistry, Federal University of Santa
Catarina, Florianópolis 88040900, Santa Catarina, Brazil
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Franc Meyer
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ebbe Nordlander
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
67
|
Neugebauer H, Bädorf B, Ehlert S, Hansen A, Grimme S. High-throughput screening of spin states for transition metal complexes with spin-polarized extended tight-binding methods. J Comput Chem 2023; 44:2120-2129. [PMID: 37401535 DOI: 10.1002/jcc.27185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
The semiempirical GFNn-xTB ( n = 1 , 2 ) tight-binding methods are extended with a spin-dependent energy term (spin-polarization), enabling the fast and efficient screening of different spin states for transition metal complexes. While GFNn-xTB methods inherently can not differentiate properly between high-spin (HS) and low-spin (LS) states, this shortcoming is corrected with the presented methods termed spGFNn-xTB. The performance of spGFNn-xTB methods for spin state energy splittings is evaluated on a newly compiled benchmark set of 90 complexes (27 HS and 63 LS complexes) containing 3d, 4d, and 5d transition metals (termed TM90S) employing DFT references at the TPSSh-D4/def2-QZVPP level of theory. The challenging TM90S set contains complexes with charges between - 4 and +3, spin multiplicities between 1 and 6, and spin-splitting energies that range from - 47.8 to 146.6 kcal/mol with a mean average of 32.2 kcal/mol. On this set the (sp)GFNn-xTB methods, the PM6-D3H4 method, and the PM7 method are evaluated with spGFN1-xTB yielding the lowest MAD of 19.6 kcal/mol followed by spGFN2-xTB with 24.8 kcal/mol. While for the 4d and 5d subsets small or no improvements are observed with spin-polarization, large improvements are obtained for the 3d subset with spGFN1-xTB yielding the smallest MAD of 14.2 kcal/mol followed by spGFN2-xTB with 17.9 kcal/mol and PM6-D3H4 with 28.4 kcal/mol. The correct sign of the spin state splittings is obtained with spGFN2-xTB in 89% of all cases closely followed by spGFN1-xTB with 88%. On the full set, a pure semiempirical vertical spGFN2-xTB//GFN2-xTB-based workflow for screening purposes yields a slightly better MAD of 22.2 kcal/mol due to error compensation, while being qualitative correct for one additional case. In combination with their low computational cost (scanning spin states in seconds), the spGFNn-xTB methods represent robust tools for pre-screening steps of spin state calculations and high-throughput workflows.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
68
|
Harden I, Neese F, Bistoni G. Dimerization of confined Brønsted acids in enantioselective organocatalytic reactions. Chem Sci 2023; 14:10580-10590. [PMID: 37799993 PMCID: PMC10548523 DOI: 10.1039/d3sc03769j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The formation of Brønsted acid aggregates in the course of asymmetric organocatalytic reactions is often overlooked in mechanistic studies, even though it might have a deep impact on the stereo-controlling factors of the transformations. In this work, we shed light on the influence of the catalyst structure and reaction conditions on the spontaneity of the aggregation process for popular chiral organocatalysts derived from phosphoric acids using high-level quantum mechanical calculations. Our study encompasses small and sterically unhindered chiral phosphoric acids as well as large and "confined" imidodiphosphates and imidodiphosphorimidates. These systems have recently proven particularly effective in promoting a large number of highly relevant asymmetric transformations. While cooperative catalytic effects of sterically less hindered chiral phosphoric acid catalysts are well appreciated in literature, it is found that the formation of catalyst dimers in solution is possible for both standard and confined catalysts. The spontaneity of the aggregation process depends on reaction conditions like solvent polarity, polarizability, temperature, the nature of the interaction with the substrate, as well as the catalyst architecture. Finally, it is shown that, at low temperatures (153 K), the aggregation process can profoundly influence the reaction kinetics and selectivity.
Collapse
Affiliation(s)
- Ingolf Harden
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
69
|
Bourrez M, Gloaguen F. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bioelectrochemistry 2023; 153:108488. [PMID: 37329847 DOI: 10.1016/j.bioelechem.2023.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The electrochemical reduction and protonation of [Fe2(adtH)(CO)6] (1, adtH = SCH2N(H)CH2S) and [Fe2(pdt)(CO)6] (2, pdt = SCH2CH2CH2S) in the presence of moderately strong acid in acetonitrile was investigated by cyclic voltammetry (CV), focusing on the catalysis of hydrogen evolution reaction (HER) by a {2e-,2H+} pathway. The turnover frequencies at zero overpotential (TOF0) of the N-protonated product 1(H)+ and 2 for the HER were estimated from simulations of the catalytic CV responses at low acid concentration using a simple ECEC mechanism (two electrochemical and chemical steps). This approach confirmed that 1(H)+ is clearly a better catalyst than 2, pointing to a possible role of the protonable and biologically relevant adtH ligand in the enhancement of the catalytic performances. Density functional theory (DFT) calculations further suggested that, owing to a strong structural rearrangement in the course of the catalytic cycle, the HER catalysis by 1(H)+ only involves the iron center adjacent to the amine group in adtH and not the two iron centers as in 2. Since terminal hydride species (FeFe-H) are known to more easily undergo protonolyse to H2 than their bridging hydride isomers (Fe-H-Fe), this may explain here the enhanced activity of 1(H)+ over 2 for the HER.
Collapse
Affiliation(s)
- Marc Bourrez
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France
| | - Frederic Gloaguen
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France.
| |
Collapse
|
70
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
71
|
Curtis K, King C, Odoh SO. Novel Triangulenes: Computational Investigations of Energy Thresholds for Photocatalytic Water Splitting. Chemphyschem 2023:e202300556. [PMID: 37718310 DOI: 10.1002/cphc.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Organic materials with Inverted Singlet-Triplet (INVEST) gaps are interesting for their potential use in photocatalytic small molecule transformations such as the entirely solar-driven water splitting reaction. However, only a few INVEST emitters are thermodynamically able to split water requiring a first singlet excited dark state, S1 , above 1.27 or 1.76 eV, and absorption near solar the maximum, 2.57 eV. These requirements and the INVEST character are key for achieving a long-lived photocatalyst for water splitting. The only known INVEST emitters that conform to these criteria are large triangular boron carbon nitrides with unknown synthesis pathways. Using ADC(2), a quantum-mechanical method, we describe three triangulenes. 3 a is a cyano azacyclopenta[cd]phenalene derivative while 3 b and 3 c are cycl[3.3.3]azine derivatives. 3 b has a previously undescribed disulfide bridge. Overall, 3 a fulfills requirements for photocatalytic four-electron reduction of water while the S1 states of 3 b and 3 c are likely slightly low for the two-electron reduction process. By analyzing impacts of ligands, we find that there are guidelines describing how S1 -S5 energies and oscillator strengths, T1 energies, and ΔES1T1 gaps are affected, requiring deep-learning algorithms for which studies will be presented by us in due time. The impact of ground-state geometries, solvation effects, as well as reduced-cost ADC(2) algorithms on our findings are also discussed.
Collapse
Affiliation(s)
- Kevin Curtis
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557-0216, USA
| | - Corban King
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557-0216, USA
| |
Collapse
|
72
|
Takebayashi S, Ariai J, Gellrich U, Kartashov SV, Fayzullin RR, Kang HB, Yamane T, Sugisaki K, Sato K. Synthesis and characterization of a formal 21-electron cobaltocene derivative. Nat Commun 2023; 14:4979. [PMID: 37669936 PMCID: PMC10480225 DOI: 10.1038/s41467-023-40557-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Metallocenes are highly versatile organometallic compounds. The versatility of the metallocenes stems from their ability to stabilize a wide range of formal electron counts. To date, d-block metallocenes with an electron count of up to 20 have been synthesized and utilized in catalysis, sensing, and other fields. However, d-block metallocenes with more than formal 20-electron counts have remained elusive. The synthesis and isolation of such complexes are challenging because the metal-carbon bonds in d-block metallocenes become weaker with increasing deviation from the stable 18-electron configuration. Here, we report the synthesis, isolation, and characterization of a 21-electron cobaltocene derivative. This discovery is based on the ligand design that allows the coordination of an electron pair donor to a 19-electron cobaltocene derivative while maintaining the cobalt-carbon bonds, a previously unexplored synthetic approach. Furthermore, we elucidate the origin of the stability, redox chemistry, and spin state of the 21-electron complex. This study reveals a synthetic method, structure, chemical bonding, and properties of the 21-electron metallocene derivative that expands our conceptual understanding of d-block metallocene chemistry. We expect that this report will open up previously unexplored synthetic possibilities in d-block transition metal chemistry, including the fields of catalysis and materials chemistry.
Collapse
Affiliation(s)
- Satoshi Takebayashi
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Jama Ariai
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, D-35392, Germany
| | - Urs Gellrich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, D-35392, Germany.
| | - Sergey V Kartashov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation.
| | - Hyung-Been Kang
- Engineering Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Takeshi Yamane
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Science and Technology, Keio University, 7-1 Shinkawasaki, Saiwai-ku, Kawasaki, Kanagawa, 212-0032, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
73
|
Hall K, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. J Am Chem Soc 2023; 145:18888-18903. [PMID: 37584157 PMCID: PMC10472438 DOI: 10.1021/jacs.3c05342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/17/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.
Collapse
Affiliation(s)
- Kelsi
R. Hall
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Chris Joseph
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Iván Ayuso-Fernández
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ashish Tamhankar
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lukas Rieder
- Institute
for Molecular Biotechnology, Graz University
of Technology, 8010, Graz, Austria
| | - Rannei Skaali
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Åsmund K. Røhr
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Sergio A. V. Jannuzzi
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Morten Sørlie
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| |
Collapse
|
74
|
Mitschke N, Chemutai Sum W, Hassan K, Kirchenwitz M, Schrey H, Gerhards L, Kellner H, Stradal TEB, Matasyoh JC, Stadler M. Biologically active drimane derivatives isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis. RSC Adv 2023; 13:25752-25761. [PMID: 37664205 PMCID: PMC10468952 DOI: 10.1039/d3ra04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Four previously undescribed drimane sesquiterpenoids were isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis along with two compounds that were previously reported as synthetic or biotransformation compounds but not as natural products. The constitution and relative configuration of these compounds was determined based on high-resolution electrospray ionization mass spectrometry as well as by 1D and 2D nuclear magnetic resonance spectroscopy. The absolute configurations were established based on exemplary calculation of circular dichroism spectra and comparison with measured data as well as on biogenetic considerations. The biological activities of the isolated compounds were assessed in antimicrobial, cytotoxicity and neurotrophic assays. 10-Methoxycarbonyl-10-norisodrimenin (3) exhibited weak activity against the Gram-positive bacterium Staphylococcus aureus and the zygomycete Mucor hiemalis with minimal inhibitory concentrations of 66.7 μg mL-1. In addition, compound 3 showed weak inhibition of the mammalian cell line KB3.1 (human endocervical adenocarcinoma) with a half maximal inhibitory concentration of 21.2 μM. The neurotrophic activities of 15-hydroxyisodrimenin (1) and 10-carboxy-10-norisodrimenin (5) were assed in neurite outgrowth and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. When supplemented with 5 ng mL-1 nerve growth factor (NGF), the drimanes 1 and 5 induced neurite outgrowth in PC-12 (rat pheochromocytoma) cells compared to cells solely treated with NGF. As evaluated by RT-qPCR, compounds 1 and 5 also increased NGF and brain-derived neurotrophic factor expression levels in 1321N1 astrocytoma cells. Interestingly, the current study only represents the second report on neurotrophic activities of this widespread class of terpenoids. The only other available study deals with Cyathus africanus, another basidiomycete that can produce drimanes and cyathanes, but is only distantly related to Dentipellis and the Hericiaceae.
Collapse
Affiliation(s)
- Nico Mitschke
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Marco Kirchenwitz
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Str. 9-11 26129 Oldenburg Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, Technische Universität Dresden - International Institute Zittau Markt 23 02763 Zittau Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Josphat C Matasyoh
- Department of Chemistry, Egerton University P.O. Box 536 20115 Njoro Kenya
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| |
Collapse
|
75
|
Williams-Young DB, Asadchev A, Popovici DT, Clark D, Waldrop J, Windus TL, Valeev EF, de Jong WA. Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory. J Chem Phys 2023; 158:234104. [PMID: 37326157 DOI: 10.1063/5.0151070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
With the growing reliance of modern supercomputers on accelerator-based architecture such a graphics processing units (GPUs), the development and optimization of electronic structure methods to exploit these massively parallel resources has become a recent priority. While significant strides have been made in the development GPU accelerated, distributed memory algorithms for many modern electronic structure methods, the primary focus of GPU development for Gaussian basis atomic orbital methods has been for shared memory systems with only a handful of examples pursing massive parallelism. In the present work, we present a set of distributed memory algorithms for the evaluation of the Coulomb and exact exchange matrices for hybrid Kohn-Sham DFT with Gaussian basis sets via direct density-fitted (DF-J-Engine) and seminumerical (sn-K) methods, respectively. The absolute performance and strong scalability of the developed methods are demonstrated on systems ranging from a few hundred to over one thousand atoms using up to 128 NVIDIA A100 GPUs on the Perlmutter supercomputer.
Collapse
Affiliation(s)
- David B Williams-Young
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey Asadchev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Doru Thom Popovici
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David Clark
- NVIDIA Corporation, Santa Clara, California 95051, USA
| | - Jonathan Waldrop
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Theresa L Windus
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Wibe A de Jong
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
76
|
Wang Z, Neese F. Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules. J Chem Phys 2023; 158:2889026. [PMID: 37154284 DOI: 10.1063/5.0141686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
In this work, we develop a new semiempirical method, dubbed NOTCH (Natural Orbital Tied Constructed Hamiltonian). Compared to existing semiempirical methods, NOTCH is less empirical in its functional form as well as parameterization. Specifically, in NOTCH, (1) the core electrons are treated explicitly; (2) the nuclear-nuclear repulsion term is calculated analytically, without any empirical parameterization; (3) the contraction coefficients of the atomic orbital (AO) basis depend on the coordinates of the neighboring atoms, which allows the size of AOs to depend on the molecular environment, despite the fact that a minimal basis set is used; (4) the one-center integrals of free atoms are derived from scalar relativistic multireference equation-of-motion coupled cluster calculations instead of empirical fitting, drastically reducing the number of necessary empirical parameters; (5) the (AA|AB) and (AB|AB)-type two-center integrals are explicitly included, going beyond the neglect of differential diatomic overlap approximation; and (6) the integrals depend on the atomic charges, effectively mimicking the "breathing" of AOs when the atomic charge varies. For this preliminary report, the model has been parameterized for the elements H-Ne, giving only 8 empirical global parameters. Preliminary results on the ionization potentials, electron affinities, and excitation energies of atoms and diatomic molecules, as well as the equilibrium geometries, vibrational frequencies dipole moments, and bond dissociation energies of diatomic molecules, show that the accuracy of NOTCH rivals or exceeds those of popular semiempirical methods (including PM3, PM7, OM2, OM3, GFN-xTB, and GFN2-xTB) as well as the cost-effective ab initio method Hartree-Fock-3c.
Collapse
Affiliation(s)
- Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
77
|
Troß J, Carter-Fenk K, Cole-Filipiak NC, Schrader P, Word M, McCaslin LM, Head-Gordon M, Ramasesha K. Excited-State Dynamics during Primary C-I Homolysis in Acetyl Iodide Revealed by Ultrafast Core-Level Spectroscopy. J Phys Chem A 2023; 127:4103-4114. [PMID: 37103479 DOI: 10.1021/acs.jpca.3c01414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to nπC═O* states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed nπC═O* and nσC-I* character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin-orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C-I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N4,5 edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C-I homolysis. By examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C-I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental-theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin-orbit coupled system.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Mi'Kayla Word
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
78
|
Yankovych H, Bodnár G, Elsaesser MS, Fizer M, Storozhuk L, Kolev H, Melnyk I, Václavíková M. Carbon Composites For Rapid And Effective Photodegradation Of 4-Halogenophenols: Characterization, Removal Performance, And Computational Studies. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
79
|
Schwiedrzik L, Rajkovic T, González L. Regeneration and Degradation in a Biomimetic Polyoxometalate Water Oxidation Catalyst. ACS Catal 2023; 13:3007-3019. [PMID: 36910868 PMCID: PMC9990072 DOI: 10.1021/acscatal.2c06301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Complete understanding of catalytic cycles is required to advance the design of water oxidation catalysts, but it is difficult to attain, due to the complex factors governing their reactivity and stability. In this study, we investigate the regeneration and degradation pathways of the highly active biomimetic water oxidation catalyst [Mn3+ 2Mn4+ 2V4O17(OAc)3]3-, thereby completing its catalytic cycle. Beginning with the deactivated species [Mn3+ 4V4O17(OAc)2]4- left over after O2 evolution, we scrutinize a network of reaction intermediates belonging to two alternative water oxidation cycles. We find that catalyst regeneration to the activated species [Mn4+ 4V4O17(OAc)2(OH)(H2O)]- proceeds via oxidation of each Mn center, with one water ligand being bound during the first oxidation step and a second water ligand being bound and deprotonated during the final oxidation step. ΔΔG values for this last oxidation are consistent with previous experimental results, while regeneration within an alternative catalytic cycle was found to be thermodynamically unfavorable. Extensive in silico sampling of catalyst structures also revealed two degradation processes: cubane opening and ligand dissociation, both of which have low barriers at highly reduced states of the catalyst due to the presence of Jahn-Teller effects. These mechanistic insights are expected to spur the development of more efficient and stable Mn cubane water oxidation catalysts.
Collapse
Affiliation(s)
- Ludwig Schwiedrzik
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Tina Rajkovic
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
80
|
Tang T, Huang H, Hu J, Huang S, Liu M, Yu S, Xiao X. Discovery of novel anti-cyanobacterial allelochemicals by multi-conformational QSAR approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106420. [PMID: 36774780 DOI: 10.1016/j.aquatox.2023.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Microcystis aeruginosa causes cyanobacterial harmful algal blooms (cHABs) in various freshwater environments. Due to global climate change, the cHABs have even spread to estuaries and coasts. Plant-derived flavones have been reported as allelochemicals that efficiently inhibit the growth of M. aeruginosa. Quantitative structure-activity relationship (QSAR) was applied to investigate the factors affecting the M. aeruginosa inhibitory activity of flavones, and to discover novel allelochemicals against M. aeruginosa. We constructed 2D and 3D-QSAR models based on the half maximum inhibitory concentration (IC50) of 22 flavones against M. aeruginosa, using molecular descriptors from multiple stable conformations. Both models showed satisfactory performances (2D-QSAR: r2=0.899, q2=0.596, rtest2=0.801; 3D-QSAR: r2=0.810, q2=0.516, rtest2=0.897). The 2D-QSAR model indicates that the anti-cyanobacterial activity is positively correlated with minimum and maximum surface electrostatic potential, and negatively correlated with polarity index and polar surface area. Through the 3D-QSAR approach, electronegative hydroxyl groups in 5- and 4'-position were favorable for the anti-cyanobacterial activity. In addition, we selected six untested flavones that fit the "activity-favorable" pattern of the visualized 3D-QSAR model. Five of the external flavones exhibited significant cyanobacterial inhibitory ability at their predicted IC50 by the 3D-QSAR model. In particular, diosmetin achieved an inhibition rate of 70.50±4.74%, which was much higher than expected. The flavones screened by the 3D-QSAR model are novel cyanobacterial inhibitors and should be fully exploited to mitigate cHABs.
Collapse
Affiliation(s)
- Tao Tang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, PR China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Shitao Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Muyuan Liu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Shumiao Yu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, PR China; Donghai Laboratory, Zhoushan 316000, PR China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China. https://person.zju.edu.cn/en/xixiao/844893.html
| |
Collapse
|
81
|
Aðalsteinsson HM, Bjornsson R. Ionization energies of metallocenes: a coupled cluster study of cobaltocene. Phys Chem Chem Phys 2023; 25:4570-4587. [PMID: 36723003 DOI: 10.1039/d2cp04715b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Open-shell transition metal chemistry presents challenges to contemporary electronic structure methods, based on either density functional or wavefunction theory. While CCSD(T) is the well-trusted gold standard for maingroup thermochemistry, the accuracy and robustness of the method is less clear for open-shell transition metal chemistry, requiring benchmarking of CCSD(T)-based protocols against either higher-level theory or experiment. Ionization energies (IEs) of metallocenes provide an interesting test case with metallocenes being common redox reagents as well as playing roles as redox mediators and cocatalysts in redox catalysis. Using highly accurate ZEKE-MATI experimental measurements of gas phase adiabatic (5.3275 ± 0.0006 eV) and vertical (5.4424 ± 0.0006 eV) ionization energies of cobaltocene, we systematically assessed the accuracy of the local coupled-cluster method DLPNO-CCSD(T) with respect to geometry, reference determinant, basis set size and extrapolation schemes, PNO cut-off and extrapolation, local triples approximation, relativistic effects and core-valence correlation. We show that PNO errors are controllable via the recently introduced PNO extrapolation schemes and that the expensive iterative triples (T1) contribution can be made more manageable by calculating it as a smaller-basis/smaller PNO-cutoff correction. The reference determinant turns out to be a critical aspect in these calculations with the HF determinant resulting in large DLPNO-CCSD(T) errors, likely due to the qualitatively flawed molecular orbital spectrum. The BP86 functional on the other hand was found to provide reference orbitals giving small DLPNO-CCSD(T) errors, likely due to more realistic orbitals as suggested by the more consistent MO spectrum compared to HF. A protocol including complete basis set extrapolations with correlation-consistent basis sets, complete PNO space extrapolations, iterative triples- and core-valence correlation corrections was found to give errors of -0.07 eV and -0.03 eV for adiabatic- and vertical-IE of cobaltocene, respectively, giving close to chemical accuracy for both properties. A computationally efficient DLPNO-CCSD(T) protocol was devised and tested against adiabatic ionization energies of 6 different metallocenes (V, Cr, Mn, Fe, Co, Ni). For the other metallocenes, the iterative triples (T1) and PNO extrapolation contributions turn out to be even more important. The results give errors close to the experimental uncertainty, similar to recent auxiliary-field quantum Monte Carlo results. The quality of the reference determinant orbitals is identified as the main source of uncertainty in CCSD(T) calculations of metallocenes.
Collapse
Affiliation(s)
| | - Ragnar Bjornsson
- Science Institute, University of Iceland, 107 Reykjavik, Iceland.,Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, F-38054 Grenoble Cedex, France.
| |
Collapse
|
82
|
Neese F. The SHARK integral generation and digestion system. J Comput Chem 2023; 44:381-396. [PMID: 35678278 DOI: 10.1002/jcc.26942] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023]
Abstract
In this paper, the SHARK integral generation and digestion engine is described. In essence, SHARK is based on a reformulation of the popular McMurchie/Davidson approach to molecular integrals. This reformulation leads to an efficient algorithm that is driven by BLAS level 3 operations. The algorithm is particularly efficient for high angular momentum basis functions (up to L = 7 is available by default, but the algorithm is programmed for arbitrary angular momenta). SHARK features a significant number of specific programming constructs that are designed to greatly simplify the workflow in quantum chemical program development and avoid undesirable code duplication to the largest possible extent. SHARK can handle segmented, generally and partially generally contracted basis sets. It can be used to generate a host of one- and two-electron integrals over various kernels including, two-, three-, and four-index repulsion integrals, integrals over Gauge Including Atomic Orbitals (GIAOs), relativistic integrals and integrals featuring a finite nucleus model. SHARK provides routines to evaluate Fock like matrices, generate integral transformations and related tasks. SHARK is the essential engine inside the ORCA package that drives essentially all tasks that are related to integrals over basis functions in version ORCA 5.0 and higher. Since the core of SHARK is based on low-level basic linear algebra (BLAS) operations, it is expected to not only perform well on present day but also on future hardware provided that the hardware manufacturer provides a properly optimized BLAS library for matrix and vector operations. Representative timings and comparisons to the Libint library used by ORCA are reported for Intel i9 and Apple M1 max processors.
Collapse
Affiliation(s)
- Frank Neese
- Department of Molecular Theory and Spectroscopy, Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
83
|
Csóka J, Kállay M. Analytic gradients for local density fitting Hartree-Fock and Kohn-Sham methods. J Chem Phys 2023; 158:024110. [PMID: 36641408 DOI: 10.1063/5.0131683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present analytic gradients for local density fitting Hartree-Fock (HF) and hybrid Kohn-Sham (KS) density functional methods. Due to the non-variational nature of the local fitting algorithm, the method of Lagrange multipliers is used to avoid the solution of the coupled perturbed HF and KS equations. We propose efficient algorithms for the solution of the arising Z-vector equations and the gradient calculation that preserve the third-order scaling and low memory requirement of the original local fitting algorithm. In order to demonstrate the speed and accuracy of our implementation, gradient calculations and geometry optimizations are presented for various molecular systems. Our results show that significant speedups can be achieved compared to conventional density fitting calculations without sacrificing accuracy.
Collapse
Affiliation(s)
- József Csóka
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
84
|
Curtis K, Adeyiga O, Suleiman O, Odoh SO. Building on the strengths of a double-hybrid density functional for excitation energies and inverted singlet-triplet energy gaps. J Chem Phys 2023; 158:024116. [PMID: 36641391 DOI: 10.1063/5.0133727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet-triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over "safe" excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet-triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature-the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states.
Collapse
Affiliation(s)
- Kevin Curtis
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Olabisi Suleiman
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
85
|
Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery. INORGANICS 2022. [DOI: 10.3390/inorganics10120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deprotonation of a bis(amino)phosphane H2L = PhP(HNBtd)2 bearing a heterocyclic Btd = 2,1,3-benzothiadiazol-4-yl substituents at nitrogen atoms by silylamides LiNTms2 and Y(NTms2)3 (Tms = trimethylsilylamide) results in lithium and yttrium complexes with the deprotonated HL– and L2– forms as κ2-N and κ4-N chelating ligands. A binuclear complex [LiHL]2 was crystallized from Et2O, and was shown to reversibly dissociate in thf (tetrahydrofuran) with the NH(soln)–PH(crystal) tautomeric shift; the compound [Li2L] was spectroscopically characterized. Yttrium readily forms stable bis-ligand complexes [YL2]– and [YL(HL)]. In the latter, the H atom in HL resides on phosphorus; the coordination sphere remains accessible to another ligands, and it was crystallized as [{YL(HL)}2(µ-dioxane)] species (YN8O coordination). In the former complex, the coordination sphere was saturated (YN8) by closer bound ligands; it was crystallized as a salt with [Li(thf)4]+. The monoligand complex could not be cleanly obtained in a 1:1 reaction of H2L and Y(NTms2)3, and was only crystallographically characterized as a dimer [YL(NTms)2]2. Partial oxidation of the central P atom with the formation of phosphine-oxide ligands PhP(O)(NBtd)2– was observed. They co-crystallize in the same position as non-oxidized ligands in [YL2]– and [YL(NTms2)]2 species and participate in bonding between two units in the latter. TD-DFT calculations reveal that main transitions in the visible region of electronic spectra correspond to the charge transfer bands mostly associated with the orbitals located on Btd fragments.
Collapse
|
86
|
Khisamov RM, Konchenko SN, Sukhikh TS. SYNTHESIS, STRUCTURE, AND POLYMORPHISM OF LUMINESCENT COPPER(I) COMPLEXES WITH BENZOTHIADIAZOLE BASED 1,3-AMINOPHOSPINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
87
|
Tessaro PS, do Nascimento Tomaz M, Farias G, de Paula CP, Rocha MC, Malavazi I, Cunha A, Pimenta BF, Terenzi HF, Mendes SR, Gariani RA, Xavier FR. Enhancing the biological properties of zinc complexes with bis(indolyl)methane groups: Synthesis, characterization, DNA interaction, and biocide activity. J Inorg Biochem 2022; 236:111973. [PMID: 36027843 DOI: 10.1016/j.jinorgbio.2022.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
The unprecedented mononucleated ligand (6,6-di(1H-indol-3-yl)-N,N-bis(pyridin-2-ylmethyl)hexan-1-amine (LC5) with an N3-donor set and its complexes [Zn(LC5)Cl2] • 2CH3OH (1) and [Zn(LC5)2](ClO4)2 (2), were successfully prepared. All compounds were fully characterized by a suite of physicochemical methods. Fluid 1H and 13C NMR spectroscopy, as well as DFT and TD-DFT calculations, were carried out to propose a viable structural arrangement for both complexes. The interaction between these compounds and DNA was monitored in the UV region where binding constants (Kb) were estimated (2 > 1 > LC5). These data were corroborated by DNA cleavage assays using groove binders, circular dichroism, and docking studies. Both complexes confirmed their biocide activity against selected microorganisms: Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, the filamentous fungi A. fumigatus and S. cerevisiae. Finally, the cytotoxic activities of 1 and 2 were tested against the erythroleukemia K562 cell line. For all biological studies, it was probed that the presence of the indole moieties and the zinc atoms in the chemical composition of the complexes studied could increase the magnitude of the activity following the order: 2 > 1 > LC5, where a linear relationship between the biological activity upon K562 cells (IC50) and DNA binding studies (Kb) was found.
Collapse
Affiliation(s)
- Patrícia S Tessaro
- Laboratório Síntese e Catálise - SINCA, Universidade do Estado de Santa Catarina, Joinville CEP 89219-710, SC, Brazil; Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Michele do Nascimento Tomaz
- Laboratório Síntese e Catálise - SINCA, Universidade do Estado de Santa Catarina, Joinville CEP 89219-710, SC, Brazil; Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Padova 35131, Italy
| | - Giliandro Farias
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Universidade Federal de Santa Catarina, Florianópolis CEP 88040-900, SC, Brazil
| | - Carla P de Paula
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos CEP 13565-905, SP, Brazil
| | - Marina C Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos CEP 13565-905, SP, Brazil; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos CEP 13565-905, SP, Brazil
| | - Anderson Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos CEP 13565-905, SP, Brazil
| | - Beatriz F Pimenta
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis CEP 88040-900, SC, Brazil
| | - Hernan F Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis CEP 88040-900, SC, Brazil
| | - Samuel R Mendes
- Laboratório Síntese e Catálise - SINCA, Universidade do Estado de Santa Catarina, Joinville CEP 89219-710, SC, Brazil
| | - Rogério A Gariani
- Laboratório Síntese e Catálise - SINCA, Universidade do Estado de Santa Catarina, Joinville CEP 89219-710, SC, Brazil
| | - Fernando R Xavier
- Laboratório Síntese e Catálise - SINCA, Universidade do Estado de Santa Catarina, Joinville CEP 89219-710, SC, Brazil.
| |
Collapse
|
88
|
Luiz E, Farias G, Bortoluzzi AJ, Neves A, de Melo Mattos LM, Pereira MD, Xavier FR, Peralta RA. Hydrolytic activity of new bioinspired Mn IIIMn II and Fe IIIMn II complexes as mimetics of PAPs: Biological and environmental interest. J Inorg Biochem 2022; 236:111965. [PMID: 35988388 DOI: 10.1016/j.jinorgbio.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Coordination compounds that mimic Purple Acid Phosphatases (PAPs) have drawn attention in the bioinorganic field due to their capacity to cleave phosphodiester bonds. However, their catalytic activity upon phosphate triesters is still unexplored. Thus, we report the synthesis and characterization of two binuclear complexes, [MnIIMnIII(L1)(OAc)2]BF4 (1) and [MnIIFeIII(L1)(OAc)2]BF4 (2) (H2L1 = 2-[N,N-bis-(2- pyridilmethyl)aminomethyl]-4-methyl-6-[N-(2-hydroxy-3-formyl-5-methylbenzyl)-N-(2-pyridylmethyl)aminomethyl]phenol), their hydrolytic activity and antioxidant potential. The complexes were fully characterized, including the X-Ray diffraction (XRD) of 1. Density functional theory (DFT) calculations were performed to better understand their electronic and structural properties and phosphate conjugates. The catalytic activity was analyzed for two model substrates, a diester (BDNPP) and a triester phosphate (DEDNPP). The results suggest enhancement of the hydrolysis reaction by 170 to 1500 times, depending on the substrate and complex. It was possible to accompany the catalytic reaction of DEDNPP hydrolysis by phosphorus nuclear magnetic resonance (31P NMR), showing that both 1 and 2 are efficient catalysts. Moreover, we also addressed that 1 and 2 present a relevant antioxidant potential, protecting the yeast Saccharomyces cerevisiae, used as eukaryotic model of study, against the exposure of cells to acute oxidative stress.
Collapse
Affiliation(s)
- Edinara Luiz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Larissa Maura de Melo Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Marcos Dias Pereira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, Joinville, Santa Catarina 89219-710, Brazil.
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
89
|
Moura JL, Costa IF, Santos PRS, Silva IF, Moura RT, Carneiro Neto AN, Faustino WM, Brito HF, Sabino JR, Teotonio EES. Enhancing the Luminescence of Eu(III) Complexes with the Ruthenocene Organometallic Unit as Ancillary Ligand. Inorg Chem 2022; 61:13510-13524. [PMID: 35984305 DOI: 10.1021/acs.inorgchem.2c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Five novel Eu(III)-β-diketonate complexes containing ruthenocene ancillary ligands (1,1'-bis(diphenylphosphoryl)ruthenocene─RcBPO) were synthesized and characterized. The coordination compounds presented the general formula [Eu(β-dik)3(RcBPO)], where β-dik stands for 2-thenoyltrifluoroacetonate (tta), 3-benzoyl-1,1,1-trifluoroacetone (btf), 2-dibenzoylmethanate (dbm), 2-acetyl-1,3-indandionate (aind), and 2-benzoyl-1,3-indandionate (bind), and RcBPO stands for 1,1'-bis(diphenylphosphoryl)ruthenocene. The [Eu(aind)3(RcBPO)] complex crystallizes in a monoclinic Cc non-centrosymmetric space group with the europium site environment, assuming a bicapped trigonal prism coordination polyhedron with the symmetry point group close to C2v. Photoluminescent properties for the solid-state samples were described in terms of excitation, emission, lifetime decay curves, and intrinsic and overall quantum yields. The replacement of the two coordinated H2O molecules by the RcBPO ancillary ligand leads to great enhancements of the overall quantum yields (QEuL), with the minimum increment by a factor of 5 for the case of [Eu(btf)3(RcBPO)] and the maximum enhancement of 270 times for the case of the [Eu(dbm)3(RcBPO)] complex. In addition, theoretical calculations were carried out to model the spectroscopic properties of the investigated compounds. To obtain theoretical Judd-Ofelt parameters (Ωλ, λ = 2, 4, and 6) and intramolecular energy transfer rates, the JOYSpectra web platform was employed using the structure obtained from density functional theory calculations. Hence, a rate equation model provided theoretical overall quantum yields, which are in great agreement with measured data.
Collapse
Affiliation(s)
- Jandeilson L Moura
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil
| | - Israel F Costa
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Paulo R S Santos
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil
| | - Iran F Silva
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000 Areia, Paraiba, Brazil.,Department of Chemistry, Southern Methodist University, 75275-0314 Dallas, Texas, United States
| | - Albano N Carneiro Neto
- Physics Department and CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wagner M Faustino
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil
| | - Hermi F Brito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - José R Sabino
- Institute of Physics, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Ercules E S Teotonio
- Department of Chemistry, Federal University of Paraíba, 58051-970 João Pessoa, Paraiba, Brazil.,Institute of Inorganic Chemistry, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
90
|
King NJ, Brown A. Intermolecular Interactions of Pyrene and Its Oxides in Toluene Solution. J Phys Chem A 2022; 126:4931-4940. [PMID: 35882012 DOI: 10.1021/acs.jpca.2c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the conformer-rotamer ensemble sampling tool (CREST), with the underlying semiempirical GFN2-xtb method, was used for automated geometry exploration of the homodimers of pyrene, pyrene-4,5-dione, and pyrene-4,5,9,10-tetraone, along with the heterodimer of pyrene and pyrene-4,5,9,10-tetraone. Geometries and energies of the dimers were further refined at the ωB97X-D4/def2-TZVP level of theory, both in the gas phase and in toluene solution. Computations in solution were handled using the CPCM (conductor-like polarizible continuum model) and SMD (solvation model based on density) models. Two previously unidentified pyrene-homodimer conformations were identified, and the effects of oxidation on the geometries and energies of dimerization were explored; in general, oxidation leads to stronger intermolecular interactions and decreased solubility in toluene. For selected dimers, DLPNO-CCSD(T)/cc-pVTZ/SMD(Toluene) energies were determined at the DFT geometries and illustrated the accuracy of the ωB97X-D4 approach, with an MAD of 1.47 kJ/mol.
Collapse
Affiliation(s)
- Nathanael J King
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
91
|
Hakey BM, Leary DC, Martinez JC, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Carbene Transfer from a Pyridine Dipyrrolide Iron–Carbene Complex: Reversible Migration of a Diphenylcarbene Ligand into an Iron–Nitrogen Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
92
|
Urban L, Laqua H, Ochsenfeld C. Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory. J Chem Theory Comput 2022; 18:4218-4228. [PMID: 35674337 DOI: 10.1021/acs.jctc.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employ our recently published highly efficient seminumerical exchange (sn-LinK) [Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput. 2020, 16, 1456-1468] and integral-direct resolution of the identity Coulomb (RI-J) [Kussmann, J.; Laqua, H.; Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 1512-1521] methods to significantly accelerate the computation of the demanding multiple orbital spaces spanning Fock matrix elements present in R12/F12 theory on central and graphics processing units. The errors introduced by RI-J and sn-LinK into the RI-MP2-F12 energy are thoroughly assessed for a variety of basis sets and integration grids. We find that these numerical errors are always below "chemical accuracy" (∼1 mH) even for the coarsest settings and can easily be reduced below 1 μH by employing only moderately large integration grids and RI-J basis sets. Since the number of basis functions of the multiple orbital spaces is notably larger compared with conventional Hartree-Fock theory, the efficiency gains from the superior basis scaling of RI-J and sn-LinK (O(Nbas2) instead of O(Nbas4) for both) are even more significant, with maximum speedup factors of 37 000 for RI-J and 4500 for sn-LinK. In total, the multiple orbital spaces spanning Fock matrix evaluation of the largest tested structure using a triple-ζ F12 basis set (5058 AO basis functions, 9267 CABS basis functions) is accelerated over 1575× using CPUs and over 4155× employing GPUs.
Collapse
Affiliation(s)
- Lars Urban
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Henryk Laqua
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
93
|
Helmich-Paris B. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J Chem Phys 2022; 156:204104. [DOI: 10.1063/5.0090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we present a one-step second-order converger for state-specific (SS) and state-averaged (SA) complete active space self-consistent field (CASSCF) wave functions. Robust convergence is achieved through step restrictions using a trust-region augmented Hessian (TRAH) algorithm. To avoid numerical instabilities, an exponential parameterization of variational configuration parameters is employed, which works with a nonredundant orthogonal complement basis. This is a common approach for SS-CASSCF and is extended to SA-CASSCF wave functions in this work. Our implementation is integral direct and based on intermediates that are formulated in either the sparse atomic-orbital or small active molecular-orbital basis. Thus, it benefits from a combination with efficient integral decomposition techniques, such as the resolution-of-the-identity or the chain-of-spheres for exchange approximations. This facilitates calculations on large molecules, such as a Ni(II) complex with 231 atoms and 5154 basis functions. The runtime performance of TRAH-CASSCF is competitive with the other state-of-the-art implementations of approximate and full second-order algorithms. In comparison with a sophisticated first-order converger, TRAH-CASSCF calculations usually take more iterations to reach convergence and, thus, have longer runtimes. However, TRAH-CASSCF calculations still converge reliably to a true minimum even if the first-order algorithm fails.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
94
|
Shafei R, Maganas D, Strobel PJ, Schmidt PJ, Schnick W, Neese F. Electronic and Optical Properties of Eu 2+-Activated Narrow-Band Phosphors for Phosphor-Converted Light-Emitting Diode Applications: Insights from a Theoretical Spectroscopy Perspective. J Am Chem Soc 2022; 144:8038-8053. [PMID: 35471974 PMCID: PMC9100680 DOI: 10.1021/jacs.2c00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
present a computational protocol that is able
to predict the experimental absorption and emission spectral shapes
of Eu2+-doped phosphors. The protocol is based on time-dependent
density functional theory and operates in conjunction with an excited-state
dynamics approach. It is demonstrated that across the study set consisting
of representative examples of nitride, oxo-nitride, and oxide Eu2+-doped phosphors, the energy distribution and the band shape
of the emission spectrum are related to the nature of the 4f–5d
transitions that are probed in the absorption process. Since the 4f
orbitals are very nearly nonbonding, the decisive quantity is the
covalency of the 5d acceptor orbitals that become populated in the electronically excited state that leads
to emission. The stronger the (anti) bonding interaction between the
lanthanide and the ligands is in the excited state, the larger will
be the excited state distortion. Consequently, the corresponding emission
will get broader due to the vibronic progression that is induced by
the structural distortion. In addition, the energy separation of the
absorption bands that are dominated by states with valence 4f–5d
and a metal to ligand charge transfer character defines a measure
for the thermal quenching of the studied Eu2+-doped phosphors.
Based on this analysis, simple descriptors are identified that show
a strong correlation with the energy position and bandwidth of the
experimental emission bands without the need for elaborate calculations.
Overall, we believe that this study serves as an important reference
for designing new Eu2+-doped phosphors with desired photoluminescence
properties.
Collapse
Affiliation(s)
- Rami Shafei
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany.,Department of Chemistry, Faculty of Science, Beni-Suef University, Salah Salem Str, Beni-Suef 62511, Egypt
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Philipp Jean Strobel
- Lumileds Phosphor Center Aachen, Lumileds (Germany) GmbH, Philipsstraße 8, Aachen 52068 , Germany
| | - Peter J Schmidt
- Lumileds Phosphor Center Aachen, Lumileds (Germany) GmbH, Philipsstraße 8, Aachen 52068 , Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, München 81377, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
95
|
Deng L, Hu X, Liu F. Intelligent Recognition Model of Business English Translation Based on Improved GLR Algorithm. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4105942. [PMID: 35463231 PMCID: PMC9033330 DOI: 10.1155/2022/4105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Aiming at the problem of low accuracy of traditional algorithm model, an intelligent recognition model of business English translation based on an improved GLR algorithm is proposed. Through this algorithm, the automatic sentence recognition technology is established, and according to the characteristics of business English, the improved GLR algorithm is used for collection, sorting, and analysis, so as to realize the intelligent recognition of business English. The results show that based on the improved GLR algorithm, the recognition accuracy is high, and the comprehensive score is 92.5 points, which overcomes the disadvantages of the GLR algorithm, and the operation speed and processing are improved. Based on the improved GLR algorithm, the intelligent translation of business English is realized, which is accurate and fast, and greatly promotes the learning and development of business English.
Collapse
Affiliation(s)
- Laiying Deng
- Guangzhou City Polytechnic, Guangzhou, Guangdong 510000, China
| | - Xinde Hu
- Beijing Qingneng Internet Technology Co., Ltd, Guangzhou Branch, Guangzhou, Guangdong 510000, China
| | - Fen Liu
- Guangzhou City Polytechnic, Guangzhou, Guangdong 510000, China
| |
Collapse
|
96
|
Hakey BM, Leary DC, Lopez LM, Valerio LR, Brennessel WW, Milsmann C, Matson EM. Synthesis and Characterization of Pyridine Dipyrrolide Uranyl Complexes. Inorg Chem 2022; 61:6182-6192. [PMID: 35420825 PMCID: PMC9044449 DOI: 10.1021/acs.inorgchem.2c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.
Collapse
Affiliation(s)
- Brett M Hakey
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lauren M Lopez
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Leyla R Valerio
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
97
|
Neese F. Software update: The
ORCA
program system—Version 5.0. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1606] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
98
|
Farias G, Salla CAM, Toigo J, Duarte LGTA, Bortoluzzi AJ, Girotto E, Gallardo H, Atvars TDZ, de Souza B, Bechtold IH. Enhancing the phosphorescence decay pathway of Cu(I) emitters - the role of copper-iodide moiety. Dalton Trans 2021; 51:1008-1018. [PMID: 34935838 DOI: 10.1039/d1dt03912a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Speeding up the phosphorescence channel in luminescent copper(I) complexes has been extremely challenging due to the copper atoms relatively low spin-orbit coupling constant compared to heavier metals such as iridium. Here, we report the synthesis and characterization of three mononuclear copper(I) complexes with diimines, triphenylphosphine, and iodide ligands to evaluate the effect of the copper-iodide (Cu-I) moiety into the phosphorescence decay pathway. Temperature-dependent photophysical studies revealed combined thermally activated delayed fluorescence and phosphorescence emission, with a phosphorescence decay rate of the order of 104 s-1. Density functional theory calculations indicate very high spin-orbit coupling matrix elements between the low-lying states of these complexes. Compared to the classical [Cu(phen)(POP)]+, our results demonstrate that Cu-I is a versatile moiety to speed up the phosphorescence decay pathway in about one order of magnitude, and it can be prepared by a simplified synthetic route with few synthetic steps. Furthermore, the SOC matrix elements and the phosphorescence decay rates of these complexes are comparable to those of extensively applied coordination complexes based on heavier metals, making them a promising alternative as active layers of organic light-emitting diodes.
Collapse
Affiliation(s)
- Giliandro Farias
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Cristian A M Salla
- Physics Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Jéssica Toigo
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | | | - Adailton J Bortoluzzi
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Edivandro Girotto
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Hugo Gallardo
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | | | - Bernardo de Souza
- Chemistry Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Ivan H Bechtold
- Physics Department, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
99
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|