51
|
Blachly PG, Sandala GM, Giammona DA, Bashford D, McCammon JA, Noodleman L. Broken-Symmetry DFT Computations for the Reaction Pathway of IspH, an Iron-Sulfur Enzyme in Pathogenic Bacteria. Inorg Chem 2015; 54:6439-61. [PMID: 26098647 PMCID: PMC4568833 DOI: 10.1021/acs.inorgchem.5b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently discovered methylerythritol phosphate (MEP) pathway provides new targets for the development of antibacterial and antimalarial drugs. In the final step of the MEP pathway, the [4Fe-4S] IspH protein catalyzes the 2e(-)/2H(+) reductive dehydroxylation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) to afford the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Recent experiments have attempted to elucidate the IspH catalytic mechanism to drive inhibitor development. Two competing mechanisms have recently emerged, differentiated by their proposed HMBPP binding modes upon 1e(-) reduction of the [4Fe-4S] cluster: (1) a Birch reduction mechanism, in which HMBPP remains bound to the [4Fe-4S] cluster through its terminal C4-OH group (ROH-bound) until the -OH is cleaved as water; and (2) an organometallic mechanism, in which the C4-OH group rotates away from the [4Fe-4S] cluster, allowing the HMBPP olefin group to form a metallacycle complex with the apical iron (η(2)-bound). We perform broken-symmetry density functional theory computations to assess the energies and reduction potentials associated with the ROH- and η(2)-bound states implicated by these competing mechanisms. Reduction potentials obtained for ROH-bound states are more negative (-1.4 to -1.0 V) than what is typically expected of [4Fe-4S] ferredoxin proteins. Instead, we find that η(2)-bound states are lower in energy than ROH-bound states when the [4Fe-4S] cluster is 1e(-) reduced. Furthermore, η(2)-bound states can already be generated in the oxidized state, yielding reduction potentials of ca. -700 mV when electron addition occurs after rotation of the HMBPP C4-OH group. We demonstrate that such η(2)-bound states are kinetically accessible both when the IspH [4Fe-4S] cluster is oxidized and 1e(-) reduced. The energetically preferred pathway gives 1e(-) reduction of the cluster after substrate conformational change, generating the 1e(-) reduced intermediate proposed in the organometallic mechanism.
Collapse
Affiliation(s)
| | - Gregory M Sandala
- ‡Department of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra Ann Giammona
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Donald Bashford
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | | | - Louis Noodleman
- #Department of Integrative Structural and Computational Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
52
|
Rasulov B, Talts E, Kännaste A, Niinemets Ü. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen. PLANT PHYSIOLOGY 2015; 168:532-48. [PMID: 25926480 PMCID: PMC4453795 DOI: 10.1104/pp.15.00470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 05/05/2023]
Abstract
Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.)
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.)
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.)
| |
Collapse
|
53
|
Quitterer F, Frank A, Wang K, Rao G, O'Dowd B, Li J, Guerra F, Abdel-Azeim S, Bacher A, Eppinger J, Oldfield E, Groll M. Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE). J Mol Biol 2015; 427:2220-8. [PMID: 25868383 DOI: 10.1016/j.jmb.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
Abstract
IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent and an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG-catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate into (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate. In addition, the enzyme's structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism, which describes all stages from initial ring opening to formation of (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many prokaryotic and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.
Collapse
Affiliation(s)
- Felix Quitterer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Annika Frank
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Ke Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Guodong Rao
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Bing O'Dowd
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jikun Li
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Francisco Guerra
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Safwat Abdel-Azeim
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Adelbert Bacher
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Jörg Eppinger
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| |
Collapse
|
54
|
N-Terminal Region of GbIspH1, Ginkgo biloba IspH Type 1, May Be Involved in the pH-Dependent Regulation of Enzyme Activity. Bioinorg Chem Appl 2015; 2015:241479. [PMID: 25892986 PMCID: PMC4393896 DOI: 10.1155/2015/241479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
GbIspH1, IspH type 1 in Ginkgo biloba chloroplast, is the Fe/S enzyme catalyzing the reductive dehydroxylation of HMBPP to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) at the final step of methylerythritol phosphate pathway in chloroplast. Compared to the bacterial IspH, plant IspH, including GbIspH1, has an additional polypeptide chain at the N-terminus. Here, biochemical function of the N-terminal region of GbIspH1 was investigated with the N-terminal truncated GbIspH1 (GbIspH1-truncated). Both wild type GbIspH1 (GbIspH1-full) and GbIspH1-truncated were catalytically active and produced IPP and DMAPP in a ratio of 15 : 1. Kinetic parameters of KM (17.3 ± 1.9 and 14.9 ± 2.3 µM) and kcat (369 ± 10 and 347 ± 12 min−1) at pH 8.0 were obtained for GbIspH1-full and GbIspH1-truncated, respectively. Interestingly, GbIspH1-full and GbIspH1-truncated showed significantly different pH-dependent activities, and the maximum enzyme activities were obtained at pH 8.0 and 7.5, respectively. However, catalytic activation energies (Ea) of GbIspH1-full and GbIspH1-truncated were almost the same with 36.5 ± 1.6 and 35.0 ± 1.9 kJ/mol, respectively. It was suggested that the N-terminal region of GbIspH1 is involved in the pH-dependent regulation of enzyme activity during photosynthesis.
Collapse
|
55
|
Rekittke I, Warkentin E, Jomaa H, Ermler U. Structure of the GcpE-HMBPP complex from Thermus thermophilius. Biochem Biophys Res Commun 2015; 458:246-50. [DOI: 10.1016/j.bbrc.2015.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
|
56
|
Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng 2015; 119:165-71. [DOI: 10.1016/j.jbiosc.2014.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 02/08/2023]
|
57
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
58
|
Blachly PG, Sandala GM, Giammona D, Liu T, Bashford D, McCammon JA, Noodleman L. Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition. J Chem Theory Comput 2014; 10:3871-3884. [PMID: 25221444 PMCID: PMC4159220 DOI: 10.1021/ct5005214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 12/31/2022]
Abstract
With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathway, which uses its [4Fe-4S] cluster to catalyze the formation of the isoprenoid precursors IPP and DMAPP from HMBPP. IspH catalysis is achieved via a 2e-/2H+ reductive dehydroxylation of HMBPP; the mechanism by which catalysis is achieved, however, is highly controversial. The work presented herein provides the first step in assessing different routes to catalysis by using computational methods. By performing broken-symmetry density functional theory (BS-DFT) calculations that employ both the conductor-like screening solvation model (DFT/COSMO) and a finite-difference Poisson-Boltzmann self-consistent reaction field methodology (DFT/SCRF), we evaluate geometries, energies, and Mössbauer signatures of the different protonation states that may exist in the oxidized state of the IspH catalytic cycle. From DFT/SCRF computations performed on the oxidized state, we find a state where the substrate, HMBPP, coordinates the apical iron in the [4Fe-4S] cluster as an alcohol group (ROH) to be one of two, isoenergetic, lowest-energy states. In this state, the HMBPP pyrophosphate moiety and an adjacent glutamate residue (E126) are both fully deprotonated, making the active site highly anionic. Our findings that this low-energy state also matches the experimental geometry of the active site and that its computed isomer shifts agree with experiment validate the use of the DFT/SCRF method to assess relative energies along the IspH reaction pathway. Additional studies of IspH catalytic intermediates are currently being pursued.
Collapse
Affiliation(s)
- Patrick G. Blachly
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
| | - Gregory M. Sandala
- Department
of Chemistry and Biochemistry, Mount Allison
University, 63C York
Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra
Ann Giammona
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Donald Bashford
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, TPC15, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
59
|
Hsieh WY, Sung TY, Wang HT, Hsieh MH. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE. PLANT PHYSIOLOGY 2014; 166:57-69. [PMID: 25037211 PMCID: PMC4149731 DOI: 10.1104/pp.114.243642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
60
|
Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Jose GS, Jackson ER, Dowd CS, Couch RD. Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase). PLoS One 2014; 9:e106243. [PMID: 25171339 PMCID: PMC4149570 DOI: 10.1371/journal.pone.0106243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Clark J. Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Geraldine San Jose
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Emily R. Jackson
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
61
|
Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. PLANT, CELL & ENVIRONMENT 2014; 37:1936-49. [PMID: 24588567 DOI: 10.1111/pce.12314] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 02/18/2014] [Indexed: 05/20/2023]
Abstract
Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles.
Collapse
Affiliation(s)
- Joëlle K Muhlemann
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
62
|
Span I, Wang K, Eisenreich W, Bacher A, Zhang Y, Oldfield E, Groll M. Insights into the binding of pyridines to the iron-sulfur enzyme IspH. J Am Chem Soc 2014; 136:7926-32. [PMID: 24813236 PMCID: PMC4063180 DOI: 10.1021/ja501127j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 11/29/2022]
Abstract
(E)-1-Hydroxy-2-methylbut-2-enyl 4-diphosphate reductase (IspH) is a [Fe4S4] cluster-containing enzyme involved in isoprenoid biosynthesis in many bacteria as well as in malaria parasites and is an important drug target. Several inhibitors including amino and thiol substrate analogues, as well as acetylene and pyridine diphosphates, have been reported. Here, we investigate the mode of binding of four pyridine diphosphates to Escherichia coli IspH by using X-ray crystallography. In three cases, one of the iron atoms in the cluster is absent, but in the structure with (pyridin-3-yl)methyl diphosphate, the most potent pyridine-analogue inhibitor reported previously, the fourth iron of the [Fe4S4] cluster is present and interacts with the pyridine ring of the ligand. Based on the results of quantum chemical calculations together with the crystallographic results we propose a side-on η(2) coordination of the nitrogen and the carbon in the 2-position of the pyridine ring to the unique fourth iron in the cluster, which is in the reduced state. The X-ray structure enables excellent predictions using density functional theory of the (14)N hyperfine coupling and quadrupole coupling constants reported previously using HYSCORE spectroscopy, as well as providing a further example of the ability of such [Fe4S4]-containing proteins to form organometallic complexes.
Collapse
Affiliation(s)
- Ingrid Span
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ke Wang
- Department
of Chemistry, 600 South
Mathews Avenue, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wolfgang Eisenreich
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Adelbert Bacher
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yong Zhang
- Department
of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Eric Oldfield
- Department
of Chemistry, 600 South
Mathews Avenue, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael Groll
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
63
|
Wang W, Oldfield E. Biometallorganische Chemie mit IspG und IspH: Struktur, Funktion und Hemmung der an der Isoprenoid-Biosynthese beteiligten [Fe 4S 4]-Proteine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201306712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
64
|
Wang W, Oldfield E. Bioorganometallic chemistry with IspG and IspH: structure, function, and inhibition of the [Fe(4)S(4)] proteins involved in isoprenoid biosynthesis. Angew Chem Int Ed Engl 2014; 53:4294-310. [PMID: 24481599 DOI: 10.1002/anie.201306712] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/12/2022]
Abstract
Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.
Collapse
Affiliation(s)
- Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | | |
Collapse
|
65
|
Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs. PLoS Comput Biol 2013; 9:e1003395. [PMID: 24367248 PMCID: PMC3868525 DOI: 10.1371/journal.pcbi.1003395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
Abstract
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.
Collapse
|
66
|
Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013; 82:497-530. [PMID: 23746261 DOI: 10.1146/annurev-biochem-052010-100934] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.
Collapse
Affiliation(s)
- Lishan Zhao
- Amyris, Inc., Emeryville, California 94608, USA.
| | | | | | | | | |
Collapse
|
67
|
Zhou C, Li Z, Wiberley-Bradford AE, Weise SE, Sharkey TD. Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase. Anal Biochem 2013; 440:130-6. [DOI: 10.1016/j.ab.2013.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
68
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013. [PMID: 23585213 DOI: 10.1007/s1103-013-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
69
|
Chang WC, Song H, Liu HW, Liu P. Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 2013; 17:571-9. [PMID: 23891475 PMCID: PMC4068245 DOI: 10.1016/j.cbpa.2013.06.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
Isoprenoids are one of the largest classes of natural products and all of them are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For decades, the mevalonic acid (MVA) pathway was proposed to be the only IPP and DMAPP biosynthetic pathway. This review summarizes the newly discovered IPP and DMAPP production pathways since late 1990s, their distribution among different kingdoms, and their roles in secondary metabolite production. These new IPP and DMAPP production pathways include the methylerythritol phosphate (MEP) pathway, a modified MVA pathway, and the 5-methylthioadenosine shunt pathway. Relative to the studies on the MVA pathway, information on the MEP pathway regulation is limited and the mechanistic details of several of its novel transformations remain to be addressed. Current status on both MEP pathway regulation and mechanistic issues is also presented.
Collapse
Affiliation(s)
- Wei-chen Chang
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Heng Song
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
70
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
71
|
Abstract
Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.
Collapse
|
72
|
Banerjee A, Wu Y, Banerjee R, Li Y, Yan H, Sharkey TD. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 2013; 288:16926-16936. [PMID: 23612965 DOI: 10.1074/jbc.m113.464636] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.
Collapse
Affiliation(s)
- Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rahul Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.
| |
Collapse
|
73
|
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. THE NEW PHYTOLOGIST 2013; 198:16-32. [PMID: 23383981 DOI: 10.1111/nph.12145] [Citation(s) in RCA: 753] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 05/18/2023]
Abstract
Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.
Collapse
Affiliation(s)
- Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antje Klempien
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Joëlle K Muhlemann
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
74
|
Characterization of Burkholderia glumae BGR1 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), the terminal enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13765-012-2231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
75
|
Span I, Wang K, Wang W, Zhang Y, Bacher A, Eisenreich W, Li K, Schulz C, Oldfield E, Groll M. Discovery of acetylene hydratase activity of the iron-sulphur protein IspH. Nat Commun 2013; 3:1042. [PMID: 22948824 DOI: 10.1038/ncomms2052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/03/2012] [Indexed: 11/09/2022] Open
Abstract
The final step of the methylerythritol phosphate isoprenoid biosynthesis pathway is catalysed by the iron-sulphur enzyme IspH, producing the universal precursors of terpenes: isopentenyl diphosphate and dimethylallyl diphosphate. Here we report an unforeseen reaction discovered during the investigation of the interaction of IspH with acetylene inhibitors by X-ray crystallography, Mößbauer, and nuclear magnetic resonance spectroscopy. In addition to its role as a 2H(+)/2e(-) reductase, IspH can hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. The reactions only occur with the oxidised protein and proceed via η(1)-O-enolate intermediates. One of these is characterized crystallographically and contains a C4 ligand oxygen bound to the unique, fourth iron in the 4Fe-4S cluster: this intermediate subsequently hydrolyzes to produce an aldehyde product. This unexpected side to IspH reactivity is of interest in the context of the mechanism of action of other acetylene hydratases, as well as in the design of antiinfectives targeting IspH.
Collapse
Affiliation(s)
- Ingrid Span
- Department of Chemistry, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ke Wang
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA
| | - Weixue Wang
- Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA
| | - Yonghui Zhang
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA
| | - Adelbert Bacher
- Department of Chemistry, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Kai Li
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA
| | - Charles Schulz
- Department of Physics, Knox College, 2 East South Street, Galesburg, Illinois 61401, USA
| | - Eric Oldfield
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA.,Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois, Urbana, Illinois 61801, USA
| | - Michael Groll
- Department of Chemistry, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
76
|
Janthawornpong K, Krasutsky S, Chaignon P, Rohmer M, Poulter CD, Seemann M. Inhibition of IspH, a [4Fe-4S]2+ enzyme involved in the biosynthesis of isoprenoids via the methylerythritol phosphate pathway. J Am Chem Soc 2013; 135:1816-22. [PMID: 23316732 DOI: 10.1021/ja309557s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MEP pathway, which is absent in animals but present in most pathogenic bacteria, in the parasite responsible for malaria and in plant plastids, is a target for the development of antimicrobial drugs. IspH, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of this pathway and converts (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A crucial step in the mechanism of this enzyme is the binding of the C4 hydroxyl of HMBPP to the unique fourth iron site in the [4Fe-4S](2+) moiety. Here, we report the synthesis and the kinetic investigations of two new extremely potent inhibitors of E. coli IspH where the OH group of HMBPP is replaced by an amino and a thiol group. (E)-4-Mercapto-3-methylbut-2-en-1-yl diphosphate is a reversible tight-binding inhibitor of IspH with K(i) = 20 ± 2 nM. A detailed kinetic analysis revealed that (E)-4-amino-3-methylbut-2-en-1-yl diphosphate is a reversible slow-binding inhibitor of IspH with K(i) = 54 ± 19 nM. The slow binding behavior of this inhibitor is best described by a one-step mechanism with the slow step consisting of the formation of the enzyme-inhibitor (EI) complex.
Collapse
Affiliation(s)
- Karnjapan Janthawornpong
- Université de Strasbourg, CNRS UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
77
|
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:665-700. [PMID: 23451776 DOI: 10.1146/annurev-arplant-050312-120116] [Citation(s) in RCA: 573] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isoprenoid biosynthesis is essential for all living organisms, and isoprenoids are also of industrial and agricultural interest. All isoprenoids are derived from prenyl diphosphate (prenyl-PP) precursors. Unlike isoprenoid biosynthesis in other living organisms, prenyl-PP, as the precursor of all isoprenoids in plants, is synthesized by two independent pathways: the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. This review focuses on progress in our understanding of how the precursors for isoprenoid biosynthesis are synthesized in the two subcellular compartments, how the underlying pathway gene networks are organized and regulated, and how network perturbations impact each pathway and plant development. Because of the wealth of data on isoprenoid biosynthesis, we emphasize research in Arabidopsis thaliana and compare the synthesis of isoprenoid precursor molecules in this model plant with their synthesis in other prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Eva Vranová
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
78
|
Partow S, Siewers V, Daviet L, Schalk M, Nielsen J. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae. PLoS One 2012; 7:e52498. [PMID: 23285068 PMCID: PMC3532213 DOI: 10.1371/journal.pone.0052498] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/19/2012] [Indexed: 12/03/2022] Open
Abstract
Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH.
Collapse
Affiliation(s)
- Siavash Partow
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Laurent Daviet
- Firmenich SA, Corporate R&D Division, Geneva, Switzerland
| | - Michel Schalk
- Firmenich SA, Corporate R&D Division, Geneva, Switzerland
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
79
|
Lu XM, Hu XJ, Zhao YZ, Song WB, Zhang M, Chen ZL, Chen W, Dong YB, Wang ZH, Lai JS. Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. MOLECULAR PLANT 2012; 5:1100-12. [PMID: 22498772 DOI: 10.1093/mp/sss038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
IspH is a key enzyme in the last step of the methyl-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.
Collapse
Affiliation(s)
- Xiao-Min Lu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Structure of the GcpE (IspG)-MEcPP complex from Thermus thermophilus. FEBS Lett 2012; 586:3452-7. [DOI: 10.1016/j.febslet.2012.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/22/2022]
|
81
|
Developmental changes in the metabolic network of snapdragon flowers. PLoS One 2012; 7:e40381. [PMID: 22808147 PMCID: PMC3394800 DOI: 10.1371/journal.pone.0040381] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/05/2012] [Indexed: 01/27/2023] Open
Abstract
Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.
Collapse
|
82
|
A whole-cell phenotypic screening platform for identifying methylerythritol phosphate pathway-selective inhibitors as novel antibacterial agents. Antimicrob Agents Chemother 2012; 56:4906-13. [PMID: 22777049 DOI: 10.1128/aac.00987-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition.
Collapse
|
83
|
Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C, Papon N, Clastre M, St-Pierre B, Rodríguez-Concepción M, Burlat V, Courdavault V. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. PLANT MOLECULAR BIOLOGY 2012; 79:443-59. [PMID: 22638903 DOI: 10.1007/s11103-012-9923-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/05/2012] [Indexed: 05/23/2023]
Abstract
Isopentenyl diphosphate isomerases (IDI) catalyze the interconversion of the two isoprenoid universal C5 units, isopentenyl diphosphate and dimethylally diphosphate, to allow the biosynthesis of the large variety of isoprenoids including both primary and specialized metabolites. This isomerisation is usually performed by two distinct IDI isoforms located either in plastids/peroxisomes or mitochondria/peroxisomes as recently established in Arabidopsis thaliana mainly accumulating primary isoprenoids. By contrast, almost nothing is known in plants accumulating specialized isoprenoids. Here we report the cloning and functional validation of an IDI encoding cDNA (CrIDI1) from Catharanthus roseus that produces high amount of monoterpenoid indole alkaloids. The corresponding gene is expressed in all organs including roots, flowers and young leaves where transcripts have been detected in internal phloem parenchyma and epidermis. The CrIDI1 gene also produces long and short transcripts giving rise to corresponding proteins with and without a N-terminal transit peptide (TP), respectively. Expression of green fluorescent protein fusions revealed that the long isoform is targeted to both plastids and mitochondria with an apparent similar efficiency. Deletion/fusion experiments established that the first 18-residues of the N-terminal TP are solely responsible of the mitochondria targeting while the entire 77-residue long TP is needed for an additional plastid localization. The short isoform is targeted to peroxisomes in agreement with the presence of peroxisome targeting sequence at its C-terminal end. This complex plastid/mitochondria/peroxisomes triple targeting occurring in C. roseus producing specialized isoprenoid secondary metabolites is somehow different from the situation observed in A. thaliana mainly producing housekeeping isoprenoid metabolites.
Collapse
Affiliation(s)
- Grégory Guirimand
- EA2106 "Biomolécules et Biotechnologies Végétales", Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Wang W, Wang K, Span I, Jauch J, Bacher A, Groll M, Oldfield E. Are free radicals involved in IspH catalysis? An EPR and crystallographic investigation. J Am Chem Soc 2012; 134:11225-34. [PMID: 22687151 DOI: 10.1021/ja303445z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [4Fe-4S] protein IspH in the methylerythritol phosphate isoprenoid biosynthesis pathway is an important anti-infective drug target, but its mechanism of action is still the subject of debate. Here, by using electron paramagnetic resonance (EPR) spectroscopy and (2)H, (17)O, and (57)Fe isotopic labeling, we have characterized and assigned two key reaction intermediates in IspH catalysis. The results are consistent with the bioorganometallic mechanism proposed earlier, and the mechanism is proposed to have similarities to that of ferredoxin, thioredoxin reductase, in that one electron is transferred to the [4Fe-4S](2+) cluster, which then performs a formal two-electron reduction of its substrate, generating an oxidized high potential iron-sulfur protein (HiPIP)-like intermediate. The two paramagnetic reaction intermediates observed correspond to the two intermediates proposed in the bioorganometallic mechanism: the early π-complex in which the substrate's 3-CH(2)OH group has rotated away from the reduced iron-sulfur cluster, and the next, η(3)-allyl complex formed after dehydroxylation. No free radical intermediates are observed, and the two paramagnetic intermediates observed do not fit in a Birch reduction-like or ferraoxetane mechanism. Additionally, we show by using EPR spectroscopy and X-ray crystallography that two substrate analogues (4 and 5) follow the same reaction mechanism.
Collapse
Affiliation(s)
- Weixue Wang
- Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Xu W, Lees NS, Hall D, Welideniya D, Hoffman BM, Duin EC. A closer look at the spectroscopic properties of possible reaction intermediates in wild-type and mutant (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase. Biochemistry 2012; 51:4835-49. [PMID: 22646150 DOI: 10.1021/bi3001215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.
Collapse
Affiliation(s)
- Weiya Xu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | |
Collapse
|
86
|
Heuston S, Begley M, Gahan CGM, Hill C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology (Reading) 2012; 158:1389-1401. [DOI: 10.1099/mic.0.051599-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sinéad Heuston
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
87
|
Structure, function and inhibition of the two- and three-domain 4Fe-4S IspG proteins. Proc Natl Acad Sci U S A 2012; 109:8558-63. [PMID: 22586085 DOI: 10.1073/pnas.1121107109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IspG is a 4Fe4S protein involved in isoprenoid biosynthesis. Most bacterial IspGs contain two domains: a TIM barrel (A) and a 4Fe4S domain (B), but in plants and malaria parasites, there is a large insert domain (A*) whose structure and function are unknown. We show that bacterial IspGs function in solution as (AB)(2) dimers and that mutations in either both A or both B domains block activity. Chimeras harboring an A-mutation in one chain and a B-mutation in the other have 50% of the activity seen in wild-type protein, because there is still one catalytically active AB domain. However, a plant IspG functions as an AA*B monomer. We propose, using computational modeling and electron microscopy, that the A* insert domain has a TIM barrel structure that interacts with the A domain. This structural arrangement enables the A and B domains to interact in a "cup and ball" manner during catalysis, just as in the bacterial systems. EPR/HYSCORE spectra of reaction intermediate, product, and inhibitor ligands bound to both two and three domain proteins are identical, indicating the same local electronic structure, and computational docking indicates these ligands bridge both A and B domains. Overall, the results are of broad general interest because they indicate the insert domain in three-domain IspGs is a second TIM barrel that plays a structural role and that the pattern of inhibition of both two and three domain proteins are the same, results that can be expected to be of use in drug design.
Collapse
|
88
|
Citron CA, Brock NL, Rabe P, Dickschat JS. Der stereochemische Verlauf und Mechanismus der IspH-Reaktion. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Citron CA, Brock NL, Rabe P, Dickschat JS. The Stereochemical Course and Mechanism of the IspH Reaction. Angew Chem Int Ed Engl 2012; 51:4053-7. [DOI: 10.1002/anie.201201110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 11/06/2022]
|
90
|
Span I, Gräwert T, Bacher A, Eisenreich W, Groll M. Crystal Structures of Mutant IspH Proteins Reveal a Rotation of the Substrate's Hydroxymethyl Group during Catalysis. J Mol Biol 2012; 416:1-9. [DOI: 10.1016/j.jmb.2011.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 10/15/2022]
|
91
|
Loyola J, Verdugo I, González E, Casaretto JA, Ruiz-Lara S. Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:149-56. [PMID: 21974688 DOI: 10.1111/j.1438-8677.2011.00465.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.
Collapse
Affiliation(s)
- J Loyola
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | |
Collapse
|
92
|
Abstract
A noncarotenogenic microbe E. coli was engineered for high production of carotenoids. To increase the isoprenoid flux, the chromosomal native promoters of the rate-controlling steps (dxs, idi and ispDispF) in the isoprenoid pathway were replaced with a strong bacteriophage T5 promoter (P(T5)) by using the λ-Red recombinase system in combination with the Flp/FRT site-specific recombination system for marker excision and P1 transduction for gene trait stacking. The resulting high isoprenoid flux E. coli can be used as a starting strain to produce various carotenoids by introducing heterologous carotenoid genes. In this study, the high isoprenoid flux E. coli was transformed with a plasmid carrying the β-carotene biosynthetic genes from Pantoea stewartii for β-carotene production.
Collapse
Affiliation(s)
- Wonchul Suh
- DuPont Central Research and Development, Wilmington, DE, USA.
| |
Collapse
|
93
|
Gräwert T, Groll M, Rohdich F, Bacher A, Eisenreich W. Biochemistry of the non-mevalonate isoprenoid pathway. Cell Mol Life Sci 2011; 68:3797-814. [PMID: 21744068 PMCID: PMC11114746 DOI: 10.1007/s00018-011-0753-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/26/2011] [Accepted: 06/14/2011] [Indexed: 02/08/2023]
Abstract
The non-mevalonate pathway of isoprenoid (terpenoid) biosynthesis is essential in many eubacteria including the major human pathogen, Mycobacterium tuberculosis, in apicomplexan protozoa including the Plasmodium spp. causing malaria, and in the plastids of plants. The metabolic route is absent in humans and is therefore qualified as a promising target for new anti-infective drugs and herbicides. Biochemical and structural knowledge about all enzymes involved in the pathway established the basis for discovery and development of inhibitors by high-throughput screening of compound libraries and/or structure-based rational design.
Collapse
Affiliation(s)
- Tobias Gräwert
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Michael Groll
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | - Adelbert Bacher
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
94
|
Chang WC, Xiao Y, Liu HW, Liu P. Mechanistic studies of an IspH-catalyzed reaction: implications for substrate binding and protonation in the biosynthesis of isoprenoids. Angew Chem Int Ed Engl 2011; 50:12304-7. [PMID: 22025241 DOI: 10.1002/anie.201104124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Wei-chen Chang
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
95
|
Chang WC, Xiao Y, Liu HW, Liu P. Mechanistic Studies of an IspH-Catalyzed Reaction: Implications for Substrate Binding and Protonation in the Biosynthesis of Isoprenoids. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
96
|
Xiao Y, Chang WC, Liu HW, Liu P. Study of IspH, a key enzyme in the methylerythritol phosphate pathway using fluoro-substituted substrate analogues. Org Lett 2011; 13:5912-5. [PMID: 21981393 DOI: 10.1021/ol202559r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
IspH, a [4Fe-4S]-cluster-containing enzyme, catalyzes the reductive dehydroxylation of 4-hydroxy-3-methyl-butenyl diphosphate (HMBPP) to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the methylerythritol phosphate pathway. Studies of IspH using fluoro-substituted substrate analogues to dissect the contributions of several factors to IspH catalysis, including the coordination of the HMBPP C(4)-OH group to the iron-sulfur cluster, the H-bonding network in the active site, and the electronic properties of the substrates, are reported.
Collapse
Affiliation(s)
- Youli Xiao
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
97
|
Tsang A, Seidle H, Jawaid S, Zhou W, Smith C, Couch RD. Francisella tularensis 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase: kinetic characterization and phosphoregulation. PLoS One 2011; 6:e20884. [PMID: 21694781 PMCID: PMC3111433 DOI: 10.1371/journal.pone.0020884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022] Open
Abstract
Deliberate and natural outbreaks of infectious disease, the prevalence of antibiotic resistant strains, and the ease by which antibiotic resistant bacteria can be intentionally engineered all underscore the necessity of effective vaccines and continued development of novel antimicrobial/antiviral therapeutics. Isoprenes, a group of molecules fundamentally involved in a variety of crucial biological functions, are derived from either the mevalonic acid (MVA) or methylerythritol phosphate (MEP) pathway. While mammals utilize the MVA pathway, many bacteria utilize the MEP pathway, highlighting the latter as an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP cytidylyltransferase, a MEP pathway enzyme and potential target for antibiotic development. Size exclusion chromatography indicates the protein exists as a dimer in solution. Enzyme assays produced an apparentK(MEP)(M) = 178 μM, K(CTP)(M) = 73 μM , k(MEP)(cat) = 1(s-1), k(CTP)(cat) = 0.8( s-1), and a k(MEP)(cat)/ K(MEP)(M) = 3.4 x 10(5) M(-1) min(-1). The enzyme exhibits a strict preference for Mg(+2) as a divalent cation and CTP as the nucleotide. Titanium dioxide chromatography-tandem mass spectrometry identified Thr141 as a site of phosphorylation. T141D and T141E site-directed mutants are catalytically inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP cytidylyltransferase is an excellent target for the development of novel antibiotics against F. tularensis.
Collapse
Affiliation(s)
- Arthur Tsang
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Heather Seidle
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Safdar Jawaid
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Weidong Zhou
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Clint Smith
- Geospatial Research and Engineering Division, U.S. Army Engineer Research and Development Center, Alexandria, Virginia, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
98
|
Wang W, Wang K, Li J, Nellutla S, Smirnova TI, Oldfield E. An ENDOR and HYSCORE investigation of a reaction intermediate in IspG (GcpE) catalysis. J Am Chem Soc 2011; 133:8400-3. [PMID: 21574560 DOI: 10.1021/ja200763a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IspG is a 4Fe-4S protein that carries out an essential reduction step in isoprenoid biosynthesis. Using electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies on labeled samples, we have specifically assigned the hyperfine interactions in a reaction intermediate. These results help clarify the nature of the reaction intermediate, supporting a direct interaction between the unique fourth Fe in the cluster and C2 and O3 of the ligand.
Collapse
Affiliation(s)
- Weixue Wang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
99
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
100
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 DOI: 10.1043/tab.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|