51
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
52
|
Soto-Faguás CM, Sanchez-Molina P, Saura CA. Loss of presenilin function enhances tau phosphorylation and aggregation in mice. Acta Neuropathol Commun 2021; 9:162. [PMID: 34593029 PMCID: PMC8482568 DOI: 10.1186/s40478-021-01259-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations in the presenilin (PS/PSEN) genes encoding the catalytic components of γ-secretase accelerate amyloid-β (Aβ) and tau pathologies in familial Alzheimer’s disease (AD). Although the mechanisms by which these mutations affect Aβ are well defined, the precise role PS/γ-secretase on tau pathology in neurodegeneration independently of Aβ is largely unclear. Here we report that neuronal PS deficiency in conditional knockout (cKO) mice results in age-dependent brain atrophy, inflammatory responses and accumulation of pathological tau in neurons and glial cells. Interestingly, genetic inactivation of presenilin 1 (PS1) or both PS genes in mutant human Tau transgenic mice exacerbates memory deficits by accelerating phosphorylation and aggregation of tau in excitatory neurons of vulnerable AD brain regions (e.g., hippocampus, cortex and amygdala). Remarkably, neurofilament (NF) light chain (NF-L) and phosphorylated NF are abnormally accumulated in the brain of Tau mice lacking PS. Synchrotron infrared microspectroscopy revealed aggregated and oligomeric β-sheet structures in amyloid plaque-free PS-deficient Tau mice. Hippocampal-dependent memory deficits are associated with synaptic tau accumulation and reduction of pre- and post-synaptic proteins in Tau mice. Thus, partial loss of PS/γ-secretase in neurons results in temporal- and spatial-dependent tau aggregation associated with memory deficits and neurodegeneration. Our findings show that tau phosphorylation and aggregation are key pathological processes that may underlie neurodegeneration caused by familial AD-linked PSEN mutations.
Collapse
|
53
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, Lee J, Kim E, Kim J, Cho Y, Park S, Palomera LF, Arumugam TV, Mattson MP, Jo DG. Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Am J Cancer Res 2021; 11:8855-8873. [PMID: 34522215 PMCID: PMC8419044 DOI: 10.7150/thno.59776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
Collapse
|
54
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
55
|
Wan K, Ma ZJ, Zhou X, Zhang YM, Yu XF, You MZ, Huang CJ, Zhang W, Sun ZW. A Novel Probable Pathogenic PSEN2 Mutation p.Phe369Ser Associated With Early-Onset Alzheimer's Disease in a Chinese Han Family: A Case Report. Front Aging Neurosci 2021; 13:710075. [PMID: 34366829 PMCID: PMC8334358 DOI: 10.3389/fnagi.2021.710075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of Alzheimer's disease is complex, and early-onset Alzheimer's disease (EOAD) is mostly influenced by genetic factors. Presenilin-1, presenilin-2 (PSEN2), and amyloid precursor protein are currently known as the three main causative genes for autosomal dominant EOAD, with the PSEN2 mutation being the rarest. In this study, we reported a 56-year-old Chinese Han proband who presented with prominent progressive amnesia, aphasia, executive function impairment, and depression 5 years ago. The 3-year follow-up showed that the patient experienced progressive brain atrophy displayed on magnetic resonance imaging (MRI) and dramatic cognitive decline assessed by neuropsychological evaluation. This patient was clinically diagnosed as EOAD based on established criteria. A heterozygous variant (NM_000447.2: c.1106T>C) of PSEN2 was identified for the first time in this patient and her two daughters. This mutation causing a novel missense mutation (p.Phe369Ser) in transmembrane domain 7 encoded by exon 11 had not been reported previously in 1000Genomes, ExAC, or ClinVar databases. This mutation was predicted by four in silico prediction programs, which all strongly suggested that it was damaging. Our results suggest that this novel PSEN2 Phe369Ser mutation may alter PSEN2 protein function and associate with EOAD.
Collapse
Affiliation(s)
- Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen-Juan Ma
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian-Feng Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Zhe You
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao-Juan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong-Wu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
56
|
Zhang T, Ma S, Lv J, Wang X, Afewerky HK, Li H, Lu Y. The emerging role of exosomes in Alzheimer's disease. Ageing Res Rev 2021; 68:101321. [PMID: 33727157 DOI: 10.1016/j.arr.2021.101321] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), manifested by memory loss and a decline in cognitive functions, is the most prevalent neurodegenerative disease accounting for 60-80 % of dementia cases. But, to-date, there is no effective treatment available to slow or stop the progression of AD. Exosomes are small extracellular vesicles that carry constituents, such as functional messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive substances of their source cells. In the brain, exosomes are likely to be sourced by almost all cell types and involve in cell communication to regulate cellular functions. The yet, accumulated evidence on the roles of exosomes and their constituents in the AD pathological process suggests their significance as additional biomarkers and therapeutic targets for AD. This review summarizes the current reported research findings on exosomes roles in the pathogenesis, diagnosis, and treatment of AD.
Collapse
|
57
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
58
|
Hou J, Bi H, Ye Z, Huang W, Zou G, Zou X, Shi YS, Shen Y, Ma Q, Kirchhoff F, Hu Y, Chen G. Pen-2 Negatively Regulates the Differentiation of Oligodendrocyte Precursor Cells into Astrocytes in the Central Nervous System. J Neurosci 2021; 41:4976-4990. [PMID: 33972402 PMCID: PMC8197633 DOI: 10.1523/jneurosci.2455-19.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations on γ-secretase subunits are associated with neurologic diseases. Whereas the role of γ-secretase in neurogenesis has been intensively studied, little is known about its role in astrogliogenesis. Recent evidence has demonstrated that astrocytes can be generated from oligodendrocyte precursor cells (OPCs). However, it is not well understood what mechanism may control OPCs to differentiate into astrocytes. To address the above questions, we generated two independent lines of oligodendrocyte lineage-specific presenilin enhancer 2 (Pen-2) conditional KO mice. Both male and female mice were used. Here we demonstrate that conditional inactivation of Pen-2 mediated by Olig1-Cre or NG2-CreERT2 causes enhanced generation of astrocytes. Lineage-tracing experiments indicate that abnormally generated astrocytes are derived from Cre-expressing OPCs in the CNS in Pen-2 conditional KO mice. Mechanistic analysis reveals that deletion of Pen-2 inhibits the Notch signaling to upregulate signal transducer and activator of transcription 3, which triggers activation of GFAP to promote astrocyte differentiation. Together, these novel findings indicate that Pen-2 regulates the specification of astrocytes from OPCs through the signal transducer and activator of transcription 3 signaling.SIGNIFICANCE STATEMENT Astrocytes and oligodendrocyte (OLs) play critical roles in the brain. Recent evidence has demonstrated that astrocytes can be generated from OL precursor cells (OPCs). However, it remains poorly understood what mechanism governs the differentiation of OPCs into astrocytes. In this study, we took advantage of OL lineage cells specific presenilin enhancer 2 (Pen-2) conditional KO mice. We show that deletion of Pen-2 leads to dramatically enhanced astrocyte differentiation from OPCs in the CNS. Mechanistic analysis reveals that deletion of Pen-2 inhibits Hes1 and activates signal transducer and activator of transcription 3 to trigger GFAP activation which promotes astrocyte differentiation. Overall, this study identifies a novel function of Pen-2 in astrogliogenesis from OPCs.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Huiru Bi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Zhuoyang Ye
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Gang Zou
- Department of General Surgery, Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518000, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Yimin Hu
- Department of Anesthesiology, Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| |
Collapse
|
59
|
Ma WH, Chen AF, Xie XY, Huang YS. Sigma ligands as potent inhibitors of Aβ and AβOs in neurons and promising therapeutic agents of Alzheimer's disease. Neuropharmacology 2021; 190:108342. [PMID: 33045243 DOI: 10.1016/j.neuropharm.2020.108342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and characterized by dementia, memory decline, loss of learning and cognitive disorder. The main pathological features of AD are the deposition of amyloid plaques and the formation of neurofibrillary tangles (NFTs) in the brain. The current anti-AD drugs have shown unsatisfactory therapeutic results. Due to the complications and unclear pathogenesis, AD is still irreversible and incurable. Among several hypotheses proposed by the academic community, the amyloid cascade is widely recognized by scholars and supported by a large amount of evidences. However, controversy over pathogenic factors has also been ongoing. Increasing evidence has shown that amyloid-β (Aβ) and especially amyloid-β oligomers (AβOs) are highly neurotoxic and pathogenic agents that damage neurons, mediate various receptors in the downstream pathways, and ultimately lead to learning and cognitive dysfunction. However, efforts in developing inhibitors of Aβ or amyloid-β precursor protein (APP) have all failed to yield good clinical results. More recently, it has been demonstrated that sigma receptors, including sigma-1 and sigma-2 subtypes, may play critical roles in the regulation of binding and metabolism of AβOs in neuron cells and the pathophysiology of AD. Thus, sigma receptor ligands are being recognized as promising therapeutic agents for treating or ameliorating AD. This article will review the pathophysiology of AD and highlight the sigma ligands that display the capability of preventing or even reversing Aβ- and AβOs-induced neurotoxicity and blocking the signal transduction caused by AβOs.
Collapse
Affiliation(s)
- Wen-Hui Ma
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Ai-Fang Chen
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Xiao-Yang Xie
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China.
| |
Collapse
|
60
|
Alvarez-Vergara MI, Rosales-Nieves AE, March-Diaz R, Rodriguez-Perinan G, Lara-Ureña N, Ortega-de San Luis C, Sanchez-Garcia MA, Martin-Bornez M, Gómez-Gálvez P, Vicente-Munuera P, Fernandez-Gomez B, Marchena MA, Bullones-Bolanos AS, Davila JC, Gonzalez-Martinez R, Trillo-Contreras JL, Sanchez-Hidalgo AC, Del Toro R, Scholl FG, Herrera E, Trepel M, Körbelin J, Escudero LM, Villadiego J, Echevarria M, de Castro F, Gutierrez A, Rabano A, Vitorica J, Pascual A. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nat Commun 2021; 12:3098. [PMID: 34035282 PMCID: PMC8149638 DOI: 10.1038/s41467-021-23337-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
Collapse
Affiliation(s)
- Maria I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Guiomar Rodriguez-Perinan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College of Dublin, D2, Dublin, Ireland
| | - Manuel A Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Miguel Martin-Bornez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Miguel A Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias, Biomédicas y de la Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Andrea S Bullones-Bolanos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose C Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | - Rocio Gonzalez-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Jose L Trillo-Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Ana C Sanchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Martin Trepel
- Augsburg Medical Center, Department of Hematology and Oncology, Augsburg, Germany
| | - Jakob Körbelin
- Section of Pneumology, Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarria
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | | | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
61
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
62
|
Priya K, Siddesha JM, Dharini S, Shashanka KP. Interacting Models of Amyloid-β and Tau Proteins: An Approach to Identify Drug Targets in Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:405-411. [PMID: 34189412 PMCID: PMC8203288 DOI: 10.3233/adr-210018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia affecting millions each year across the world, though still remains incurable. This might be attributed to the lack of knowledge about the associated proteins, their cellular and molecular mechanisms, and the genesis of the disease. The discovery of drugs that earlier revolved around targeting the amyloid-β cascade has now been reformed with the upgraded knowledge of the cross-seeding ability of tau protein which opens new gateways for therapeutic targets. This article provides a comprehensive review of various direct and indirect connecting pathways between the two main proteins involved in development and progression of AD, enabling us to further expand our repertoire of information regarding the etiology of AD. The current review indicates the need for extensive research in this niche, thus considerable advances can be made in understanding AD which eventually helps to improve the current therapeutics against AD.
Collapse
Affiliation(s)
- Khadgawat Priya
- Department of Genetics, University of Delhi, New Delhi, India
| | - J M Siddesha
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Shashank Dharini
- Department of Burns, Plastic and Maxillofacial Surgery, VMMC and Safdarjung Hospital, New Delhi, India
| | - K Prasad Shashanka
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| |
Collapse
|
63
|
Cheng Z, Shang Y, Xu X, Dong Z, Zhang Y, Du Z, Lu X, Zhang T. Presenilin 1 mutation likely contributes to U1 small nuclear RNA dysregulation and Alzheimer's disease-like symptoms. Neurobiol Aging 2021; 100:1-10. [PMID: 33450722 DOI: 10.1016/j.neurobiolaging.2020.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Previous studies showed that U1 small nuclear RNA (snRNA) was selectively enriched in the brain of individuals with familial Alzheimer's disease (AD), resulting in widespread changes in RNA splicing. Our study further reported that presenilin-1 (PSEN1) induced an increase in U1 snRNA expression, accompanied by changed amyloid precursor protein expression, β-amyloid level, and cell death in SH-SY5Y cells. However, the effect of U1 snRNA overexpression on learning and memory is still unclear. In the present study, we found that neuronal U1 snRNA overexpression could generate U1 snRNA aggregates in the nuclear, accompanied by the widespread alteration of RNA splicing, resulting in the impairments of synaptic plasticity and spatial memory. In addition, more U1 snRNAs is bound to the intron binding sites accompanied by an increased intracellular U1 snRNA level. This suggests that U1 snRNA overexpression regulates RNA splicing and gene expression in neurons by manipulating the recruitment of the U1 snRNA to the nascent transcripts. Using in situ hybridization staining of human central nervous system-type neurons, we identified nuclear aggregates of U1 snRNA in neurons by upregulating the U1 snRNA level. Quantitative polymerase chain reaction analysis showed U1 snRNA accumulation in the insoluble fraction of neurons with PSEN1 mutation neurons rather than other types of U snRNAs. These results show an independent function of U1 snRNA in regulating RNA splicing, suggesting that aberrant RNA processing may mediate neurodegeneration induced by PSEN1 mutation.
Collapse
Affiliation(s)
- Zhi Cheng
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
| | - Yingchun Shang
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
| | - Xinxin Xu
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
| | - Zhiqiang Dong
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
| | - Yongwang Zhang
- College of Pharmacy, Nankai University, Tianjin, PR China
| | - Zhanqiang Du
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
| | - Xinyi Lu
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China; College of Pharmacy, Nankai University, Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences & State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China.
| |
Collapse
|
64
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
65
|
Hunter S, Brayne C. Amyloid in the ageing brain: New frameworks and perspectives. AGING BRAIN 2021; 1:100008. [PMID: 36911501 PMCID: PMC9997141 DOI: 10.1016/j.nbas.2021.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sally Hunter
- Cambridge Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, United Kingdom
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
66
|
Mehra R, Kepp KP. Computational prediction and molecular mechanism of γ-secretase modulators. Eur J Pharm Sci 2021; 157:105626. [DOI: 10.1016/j.ejps.2020.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
|
67
|
Chen X, Salehi A, Pearn ML, Overk C, Nguyen PD, Kleschevnikov AM, Maccecchini M, Mobley WC. Targeting increased levels of APP in Down syndrome: Posiphen-mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. Alzheimers Dement 2021; 17:271-292. [PMID: 32975365 PMCID: PMC7984396 DOI: 10.1002/alz.12185] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as β-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including β-CTF and possibly Aβ peptides (Aβ42 and Aβ40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aβ species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.
Collapse
Affiliation(s)
- Xu‐Qiao Chen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ahmad Salehi
- Department of Psychiatry & Behavioral SciencesStanford Medical SchoolPalo AltoCaliforniaUSA
| | - Matthew L. Pearn
- Department of AnesthesiologyUniversity of California San Diego, School of MedicineLa JollaCaliforniaUSA
- V.A. San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Cassia Overk
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Phuong D. Nguyen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - William C. Mobley
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
68
|
Imbimbo BP, Lucca U, Watling M. Can Anti-β-amyloid Monoclonal Antibodies Work in Autosomal Dominant Alzheimer Disease? NEUROLOGY-GENETICS 2020; 7:e535. [PMID: 33575481 PMCID: PMC7862085 DOI: 10.1212/nxg.0000000000000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The dominant theory of Alzheimer disease (AD) has been that amyloid-β (Aβ) accumulation in the brain is the initial cause of the degeneration leading to cognitive and functional deficits. Autosomal dominant Alzheimer disease (ADAD), in which pathologic mutations of the amyloid precursor protein (APP) or presenilins (PSENs) genes are known to cause abnormalities of Aβ metabolism, should thus offer perhaps the best opportunity to test anti-Aβ drugs. Two long-term preventive studies (Dominantly Inherited Alzheimer Network Trials Unit Adaptive Prevention Trial [DIAN-TU-APT] and Alzheimer Preventive Initiative-ADAD) were set up to evaluate the efficacy of monoclonal anti-Aβ antibodies (solanezumab, gantenerumab, and crenezumab) in carriers of ADAD, but the results of the DIAN-TU-APT study have shown that neither solanezumab nor gantenerumab slowed cognitive decline in 144 subjects with ADAD followed for 4 years, despite one of the drugs (gantenerumab) significantly affected biomarkers relevant to their intended mechanism of action. Surprisingly, solanezumab significantly accelerated cognitive decline of both asymptomatic and symptomatic subjects. These failures further undermine the Aβ hypothesis and could support the suggestion that ADAD is triggered by accumulation of other APP metabolites, rather than Aβ.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| | - Ugo Lucca
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| | - Mark Watling
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| |
Collapse
|
69
|
Kang J, Shen J. Cell-autonomous role of Presenilin in age-dependent survival of cortical interneurons. Mol Neurodegener 2020; 15:72. [PMID: 33302995 PMCID: PMC7731773 DOI: 10.1186/s13024-020-00419-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mutations in the PSEN1 and PSEN2 genes are the major cause of familial Alzheimer's disease. Previous studies demonstrated that Presenilin (PS), the catalytic subunit of γ-secretase, is required for survival of excitatory neurons in the cerebral cortex during aging. However, the role of PS in inhibitory interneurons had not been explored. METHODS To determine PS function in GABAergic neurons, we generated inhibitory neuron-specific PS conditional double knockout (IN-PS cDKO) mice, in which PS is selectively inactivated by Cre recombinase expressed under the control of the endogenous GAD2 promoter. We then performed behavioral, biochemical, and histological analyses to evaluate the consequences of selective PS inactivation in inhibitory neurons. RESULTS IN-PS cDKO mice exhibit earlier mortality and lower body weight despite normal food intake and basal activity. Western analysis of protein lysates from various brain sub-regions of IN-PS cDKO mice showed significant reduction of PS1 levels and dramatic accumulation of γ-secretase substrates. Interestingly, IN-PS cDKO mice develop age-dependent loss of GABAergic neurons, as shown by normal number of GAD67-immunoreactive interneurons in the cerebral cortex at 2-3 months of age but reduced number of cortical interneurons at 9 months. Moreover, age-dependent reduction of Parvalbumin- and Somatostatin-immunoreactive interneurons is more pronounced in the neocortex and hippocampus of IN-PS cDKO mice. Consistent with these findings, the number of apoptotic cells is elevated in the cerebral cortex of IN-PS cDKO mice, and the enhanced apoptosis is due to dramatic increases of apoptotic interneurons, whereas the number of apoptotic excitatory neurons is unaffected. Furthermore, progressive loss of interneurons in the cerebral cortex of IN-PS cDKO mice is accompanied with astrogliosis and microgliosis. CONCLUSION Our results together support a cell-autonomous role of PS in the survival of cortical interneurons during aging. Together with earlier studies, these findings demonstrate a universal, essential requirement of PS in the survival of both excitatory and inhibitory neurons during aging.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
70
|
A computer-simulated mechanism of familial Alzheimer’s disease: Mutations enhance thermal dynamics and favor looser substrate-binding to γ-secretase. J Struct Biol 2020; 212:107648. [DOI: 10.1016/j.jsb.2020.107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
|
71
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
72
|
Montesinos J, Pera M, Larrea D, Guardia‐Laguarta C, Agrawal RR, Velasco KR, Yun TD, Stavrovskaya IG, Xu Y, Koo SY, Snead AM, Sproul AA, Area‐Gomez E. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. EMBO J 2020; 39:e103791. [PMID: 32865299 PMCID: PMC7560219 DOI: 10.15252/embj.2019103791] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marta Pera
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Present address:
Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Delfina Larrea
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Rishi R Agrawal
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
| | - Kevin R Velasco
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Taekyung D Yun
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Yimeng Xu
- Biomarkers Core LaboratoryColumbia University Irving Medical CenterNew YorkNYUSA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Amanda M Snead
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Estela Area‐Gomez
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
73
|
Evolutionary History of Alzheimer Disease-Causing Protein Family Presenilins with Pathological Implications. J Mol Evol 2020; 88:674-688. [DOI: 10.1007/s00239-020-09966-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
|
74
|
Dexamethasone does not ameliorate gliosis in a mouse model of neurodegenerative disease. Biochem Biophys Rep 2020; 24:100817. [PMID: 33015377 DOI: 10.1016/j.bbrep.2020.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.
Collapse
|
75
|
Bi HR, Zhou CH, Zhang YZ, Cai XD, Ji MH, Yang JJ, Chen GQ, Hu YM. Neuron-specific deletion of presenilin enhancer2 causes progressive astrogliosis and age-related neurodegeneration in the cortex independent of the Notch signaling. CNS Neurosci Ther 2020; 27:174-185. [PMID: 32961023 PMCID: PMC7816208 DOI: 10.1111/cns.13454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Presenilin enhancer2 (Pen‐2) is an essential subunit of γ‐secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen‐2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen‐2 regulates neuronal survival and neuroinflammation in the adult brain. Methods Forebrain neuron‐specific Pen‐2 conditional knockout (Pen‐2 cKO) mice were generated for this study. Pen‐2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. Results Loss of Pen‐2 causes astrogliosis followed by age‐dependent cortical atrophy and neuronal loss. Loss of Pen‐2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen‐2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. Conclusions Pen‐2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen‐2.
Collapse
Affiliation(s)
- Hui-Ru Bi
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Cui-Hua Zhou
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi-Zhi Zhang
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Xu-Dong Cai
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Quan Chen
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Yi-Min Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
76
|
Fung S, Smith CL, Prater KE, Case A, Green K, Osnis L, Winston C, Kinoshita Y, Sopher B, Morrison RS, Garden GA, Jayadev S. Early-Onset Familial Alzheimer Disease Variant PSEN2 N141I Heterozygosity is Associated with Altered Microglia Phenotype. J Alzheimers Dis 2020; 77:675-688. [PMID: 32741831 PMCID: PMC7592656 DOI: 10.3233/jad-200492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-β (Aβ), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aβ internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aβ production.
Collapse
Affiliation(s)
- Susan Fung
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Carole L. Smith
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - Amanda Case
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Kevin Green
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Leah Osnis
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Chloe Winston
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Yoshito Kinoshita
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Bryce Sopher
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - Gwenn A. Garden
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA,Dr. Suman Jayadev, Department of Neurology, Box 356465, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA. Tel.: +1 206 221 2930;
| |
Collapse
|
77
|
Qiu Q, Shen L, Jia L, Wang Q, Li F, Li Y, Jia J. A Novel PSEN1 M139L Mutation Found in a Chinese Pedigree with Early-Onset Alzheimer's Disease Increases Aβ42/Aβ40 ratio. J Alzheimers Dis 2020; 69:199-212. [PMID: 30958370 DOI: 10.3233/jad-181291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Presenilin1 (PSEN1) is the most common gene related to familial Alzheimer's disease (AD). Only several mutation types from Chinese have been reported, with less biological function research conducted. OBJECTIVES We explore the pathological function of PSEN1 M139L, a mutation located at α-helix of PSEN1 transmembrane 2, using predictive programs and in vitro study and compare its effects on Aβ production to those of an artificial PSEN1 S141G located at non α-helix mutation face. METHODS APP, PSEN1, and PSEN2 genes were screened for mutations using Sanger sequencing in the DNA samples of the proband and additional available family members. Disease-mutation cosegregation analysis and three software programs were performed to predict the mutation's pathogenicity. In vitro, we investigated the impact of these mutations on Aβ production in HEK293-APPswe cells using lentiviral vectors harboring PSEN1 WT, PSEN1 M139L, the positive control (PSEN1 M139V) and the non α-helical mutation (PSEN1 S141G). In addition, we co-transfected PSEN1 and tau into cells to determine the mutations' impact on tau phosphorylation. RESULTS PSEN1 M139L mutation was discovered in the index patient and four affected siblings. Cosegregation analysis and silicon prediction suggested the mutation was probably disease causing. In vitro studies demonstrated that both PSEN1 M139L and PSEN1 S141G caused elevated ratios of Aβ42/Aβ40, but changes of tau phosphorylation were not detected. CONCLUSION The novel PSEN1 M139L mutation found in familial AD increases the Aβ42/Aβ40 ratio significantly. Mutations at non α-helical mutation face of PSEN1 TM2 can affect Aβ production and the region may play a key role in PSEN1 function.
Collapse
Affiliation(s)
- Qiongqiong Qiu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China
| | - Luxi Shen
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, P.R. Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, P.R. Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| | - Qi Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, P.R. Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, P.R. Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| | - Fangyu Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, P.R. Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, P.R. Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| | - Ying Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, P.R. Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, P.R. Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, P.R. Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, P.R. Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, P.R. Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| |
Collapse
|
78
|
Agrawal RR, Montesinos J, Larrea D, Area-Gomez E, Pera M. The silence of the fats: A MAM's story about Alzheimer. Neurobiol Dis 2020; 145:105062. [PMID: 32866617 DOI: 10.1016/j.nbd.2020.105062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of contact sites was a breakthrough in cell biology. We have learned that an organelle cannot function in isolation, and that many cellular functions depend on communication between two or more organelles. One such contact site results from the close apposition of the endoplasmic reticulum (ER) and mitochondria, known as mitochondria-associated ER membranes (MAMs). These intracellular lipid rafts serve as hubs for the regulation of cellular lipid and calcium homeostasis, and a growing body of evidence indicates that MAM domains modulate cellular function in both health and disease. Indeed, MAM dysfunction has been described as a key event in Alzheimer disease (AD) pathogenesis. Our most recent work shows that, by means of its affinity for cholesterol, APP-C99 accumulates in MAM domains of the ER and induces the uptake of extracellular cholesterol as well as its trafficking from the plasma membrane to the ER. As a result, MAM functionality becomes chronically upregulated while undergoing continual turnover. The goal of this review is to discuss the consequences of C99 elevation in AD, specifically the upregulation of cholesterol trafficking and MAM activity, which abrogate cellular lipid homeostasis and disrupt the lipid composition of cellular membranes. Overall, we present a novel framework for AD pathogenesis that can be linked to the many complex alterations that occur during disease progression, and that may open a door to new therapeutic strategies.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Marta Pera
- Departament of Basic Sciences, Facultat de Medicina I Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallés, 08195, Spain.
| |
Collapse
|
79
|
Dehury B, Kepp KP. Membrane dynamics of γ-secretase with the anterior pharynx-defective 1B subunit. J Cell Biochem 2020; 122:69-85. [PMID: 32830360 DOI: 10.1002/jcb.29832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023]
Abstract
The four-subunit protease complex γ-secretase cleaves many single-pass transmembrane (TM) substrates, including Notch and β-amyloid precursor protein to generate amyloid-β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx-defective 1 (APH-1) and presenilin (PS) exist in two homologous forms APH1-A and APH1-B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ-secretase medicine. Here, we developed the first complete structural model of the APH-1B subunit using the published cryo-electron microscopy (cryo-EM) structures of APH1-A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all-atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH-1B alone and in γ-secretase without and with substrate C83-bound. We show that APH-1B adopts a 7TM topology with a water channel topology similar to APH-1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo-EM structures with APH-1A, however with subtle differences: The substrate-bound APH-1B γ-secretase was quite stable, but some TM helices of PS1 and APH-1B rearranged in the membrane consistent with the disorder seen in the cryo-EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH-1B, that is, it represents a more closed state, due to interactions with the C-terminal fragment of PS1. Our structural-dynamic model of APH-1B alone and in γ-secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
80
|
Seifert C, Storch S, Bähring R. Modulation of Kv4.2/KChIP3 interaction by the ceroid lipofuscinosis neuronal 3 protein CLN3. J Biol Chem 2020; 295:12099-12110. [PMID: 32641494 PMCID: PMC7443505 DOI: 10.1074/jbc.ra120.013828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (Kv) channels of the Kv4 subfamily associate with Kv channel-interacting proteins (KChIPs), which leads to enhanced surface expression and shapes the inactivation gating of these channels. KChIP3 has been reported to also interact with the late endosomal/lysosomal membrane glycoprotein CLN3 (ceroid lipofuscinosis neuronal 3), which is modified because of gene mutation in juvenile neuronal ceroid lipofuscinosis (JNCL). The present study was undertaken to find out whether and how CLN3, by its interaction with KChIP3, may indirectly modulate Kv4.2 channel expression and function. To this end, we expressed KChIP3 and CLN3, either individually or simultaneously, together with Kv4.2 in HEK 293 cells. We performed co-immunoprecipitation experiments and found a lower amount of KChIP3 bound to Kv4.2 in the presence of CLN3. In whole-cell patch-clamp experiments, we examined the effects of CLN3 co-expression on the KChIP3-mediated modulation of Kv4.2 channels. Simultaneous co-expression of CLN3 and KChIP3 with Kv4.2 resulted in a suppression of the typical KChIP3-mediated modulation; i.e. we observed less increase in current density, less slowing of macroscopic current decay, less acceleration of recovery from inactivation, and a less positively shifted voltage dependence of steady-state inactivation. The suppression of the KChIP3-mediated modulation of Kv4.2 channels was weaker for the JNCL-related missense mutant CLN3R334C and for a JNCL-related C-terminal deletion mutant (CLN3ΔC). Our data support the notion that CLN3 is involved in Kv4.2/KChIP3 somatodendritic A-type channel formation, trafficking, and function, a feature that may be lost in JNCL.
Collapse
Affiliation(s)
- Carolin Seifert
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Pädiatrische Forschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
81
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
82
|
Paroni G, Bisceglia P, Seripa D. Understanding the Amyloid Hypothesis in Alzheimer's Disease. J Alzheimers Dis 2020; 68:493-510. [PMID: 30883346 DOI: 10.3233/jad-180802] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid hypothesis (AH) is still the most accepted model to explain the pathogenesis of inherited Alzheimer's disease (IAD). However, despite the neuropathological overlapping with the non-inherited form (NIAD), AH waver in explaining NIAD. Thus, 30 years after its first statement several questions are still open, mainly regarding the role of amyloid plaques (AP) and apolipoprotein E (APOE). Accordingly, a pathogenetic model including the role of AP and APOE unifying IAD and NIAD pathogenesis is still missing. In the present understanding of the AH, we suggested that amyloid-β (Aβ) peptides production and AP formation is a physiological aging process resulting from a systemic age-related decrease in the efficiency of the proteins catabolism/clearance machinery. In this pathogenetic model Aβ peptides act as neurotoxic molecules, but only above a critical concentration [Aβ]c. A threshold mechanism triggers IAD/NIAD onset only when [Aβ]≥[Aβ]c. In this process, APOE modifies [Aβ]c threshold in an isoform-specific way. Consequently, all factors influencing Aβ anabolism, such as amyloid beta precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) gene mutations, and/or Aβ catabolism/clearance could contribute to exceed the threshold [Aβ]c, being characteristic of each individual. In this model, AP formation does not depend on [Aβ]c. The present interpretation of the AH, unifying the pathogenetic theories for IAD and NIAD, will explain why AP and APOE4 may be observed in healthy aging and why they are not the cause of AD. It is clear that further studies are needed to confirm our pathogenetic model. Nevertheless, our suggestion may be useful to better understand the pathogenesis of AD.
Collapse
Affiliation(s)
- Giulia Paroni
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
83
|
Al Rahim M, Yoon Y, Dimovasili C, Shao Z, Huang Q, Zhang E, Kezunovic N, Chen L, Schaffner A, Huntley GW, Ubarretxena-Belandia I, Georgakopoulos A, Robakis NK. Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Commun 2020; 2:fcaa100. [PMID: 33005890 PMCID: PMC7520050 DOI: 10.1093/braincomms/fcaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.
Collapse
Affiliation(s)
- Md Al Rahim
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Huang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W Huntley
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anastasios Georgakopoulos
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
84
|
Caselli RJ, Knopman DS, Bu G. An agnostic reevaluation of the amyloid cascade hypothesis of Alzheimer's disease pathogenesis: The role of APP homeostasis. Alzheimers Dement 2020; 16:1582-1590. [PMID: 32588983 DOI: 10.1002/alz.12124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To reassess the role of amyloid beta (Aβ) and the amyloid precursor protein (APP) system in the pathogenesis of Alzheimer's disease (AD). BACKGROUND APP is a cell adhesion molecule that has been highly conserved over the course of phylogeny that has critical roles in brain development, synaptic plasticity, and the brain's intrinsic immune system. The amyloid cascade hypothesis describes a relatively linear, deterministic sequence of events triggered by a gain of Aβ peptide fragment toxicity that results in neurodegeneration and cognitive loss, yet well designed immunotherapy and beta secretase inhibitor trials that have successfully targeted Aβ have failed to have any consistent effects on the steady decline of cognition. NEW/UPDATED HYPOTHESIS Mutations of the APP and presenilin genes not only alter the ratio of longer to shorter Aβ fragments (resulting in a gain of Aβ toxicity), but also disrupt the normal homeostatic roles of their respective proteins. The evolutionary history, physiological importance, and complexity of the APP and presenilin systems, as well as other critical components including tau and apolipoprotein E (APOE) imply that altered function of such systems could have severe consequences that include but need not be limited to a gain of Aβ toxicity and would more generally result in altered homeostasis of APP-related functions. MAJOR CHALLENGES ADDRESSED BY OUR HYPOTHESIS Challenges that a loss of APP homeostasis addresses better than the more limited gain of Aβ toxicity model include the topographic mismatches between Aβ and tau pathology, the profile and chronology of cognitive and biomarker changes that precede the clinical expression of mild cognitive impairment and dementia, and the disappointments of Aβ targeted therapeutics among others. LINKAGE TO OTHER MAJOR THEORIES The importance of APP, α- and β-secretases, the presenilins and γ-secretase, as well as tau was recognized by the authors of the amyloid cascade hypothesis, and has since led multiple investigators to propose alternative, more balanced hypotheses including reduced homeostasis and frank loss-of-function of key components that include but go beyond the currently envisioned linear model of Aβ toxicity.
Collapse
Affiliation(s)
- Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| |
Collapse
|
85
|
Kabir MT, Uddin MS, Setu JR, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2020; 38:833-849. [PMID: 32556937 DOI: 10.1007/s12640-020-00232-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mutations of presenilin (PSEN) genes that encode presenilin proteins have been found as the vital causal factors for early-onset familial AD (FAD). AD pathological features such as memory loss, synaptic dysfunction, and formation of plaques have been successfully mimicked in the transgenic mouse models that coexpress FAD-related presenilin and amyloid precursor protein (APP) variants. γ-Secretase (GS) is an enzyme that plays roles in catalyzing intramembranous APP proteolysis to release pathogenic amyloid beta (Aβ). It has been found that presenilins can play a role as the GS's catalytic subunit. FAD-related mutations in presenilins can modify the site of GS cleavage in a way that can elevate the production of longer and highly fibrillogenic Aβ. Presenilins can interact with β-catenin to generate presenilin complexes. Aforesaid interactions have also been studied to observe the mutational and physiological activities in the catenin signal transduction pathway. Along with APP, GS can catalyze intramembrane proteolysis of various substrates that play a vital role in synaptic function. PSEN mutations can cause FAD with autosomal dominant inheritance and early onset of the disease. In this article, we have reviewed the current progress in the analysis of PSENs and the correlation of PSEN mutations and AD pathogenesis.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh. .,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
86
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
87
|
Chung YH, Lin CW, Huang HY, Chen SL, Huang HJ, Sun YC, Lee GC, Lee-Chen GJ, Chang YC, Hsieh-Li HM. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 2020; 70:1140-1152. [PMID: 32170713 DOI: 10.1007/s12031-020-01521-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
88
|
Wolfe MS. Unraveling the complexity of γ-secretase. Semin Cell Dev Biol 2020; 105:3-11. [PMID: 31980377 PMCID: PMC7371508 DOI: 10.1016/j.semcdb.2020.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
γ-Secretase was initially defined as a proteolytic activity that cleaves within the transmembrane of the amyloid precursor protein (APP) to produce the amyloid β-peptide of Alzheimer's disease. The discovery of mutations in APP and the presenilins associated with familial Alzheimer's disease and their effects on APP processing dovetailed with pharmacological studies on γ-secretase, leading to the revelation that presenilins are unprecedented membrane-embedded aspartyl proteases. Other members of what became known as the γ-secretase complex were subsequently identified. In parallel with these advances, connections between presenilins and Notch receptors essential to metazoan development became evident, resulting in the concurrent realization that γ-secretase also carries out intramembrane proteolysis of Notch as part of its signaling mechanism. Substantial progress has been made toward elucidating how γ-secretase carries out complex processing of transmembrane domains, how it goes awry in familial Alzheimer's disease, the scope of its substrates, and the atomic details of its structure. Critical questions remain for future study, toward further unraveling the complexity of this unique membrane-embedded proteolytic machine and its roles in biology and disease.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
89
|
Qian C, Yuan C, Li C, Liu H, Wang X. Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomater Sci 2020; 8:5538-5554. [DOI: 10.1039/d0bm00756k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses the recent advances in multifunctional nano-enabled delivery systems (NDS) for Alzheimer's disease management, including multitherapeutics, multimodal imaging-guided diagnostics, and theranostics.
Collapse
Affiliation(s)
- Chengyuan Qian
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengyi Yuan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Changhong Li
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hao Liu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
90
|
A high throughput drug screening paradigm using transgenic Caenorhabditis elegans model of Alzheimer’s disease. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
91
|
Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:189-214. [DOI: 10.1016/bs.ircmb.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Computational analysis of Alzheimer-causing mutations in amyloid precursor protein and presenilin 1. Arch Biochem Biophys 2019; 678:108168. [DOI: 10.1016/j.abb.2019.108168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
|
93
|
Javier-Torrent M, Marco S, Rocandio D, Pons-Vizcarra M, Janes PW, Lackmann M, Egea J, Saura CA. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. eLife 2019; 8:43646. [PMID: 31577226 PMCID: PMC6774734 DOI: 10.7554/elife.43646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Marco
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Rocandio
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Maria Pons-Vizcarra
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Joaquim Egea
- Institut de Recerca Biomédica de Lleida, Universitat de Lleida, Lleida, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
94
|
Dehury B, Tang N, Kepp KP. Insights into membrane-bound presenilin 2 from all-atom molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:3196-3210. [PMID: 31405326 DOI: 10.1080/07391102.2019.1655481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Presenilins 1 and 2 (PS1 or PS2) are main genetic risk factors of familial Alzheimer's disease (AD) that produce the β-amyloid (Aβ) peptides and also have important stand-alone functions related to, e.g. calcium signaling. Most work so far has focused on PS1, but humans carry both PS1 and PS2, and mutations in both cause AD. Here, we develop a computational model of PS2 in the membrane to address the question how pathogenic PS2 mutations affect the membrane-embedded protein. The models are based on cryo-electron microscopy structures of PS1 translated to PS2, augmented with missing residues and a complete all-atom membrane-water system, and equilibrated using three independent 500-ns simulations of molecular dynamics with a structure-balanced force field. We show that the nine-transmembrane channel structure is substantially controlled by major dynamics in the hydrophilic loop bridging TM6 and TM7, which functions as a 'plug' in the PS2 membrane channel. TM2, TM6, TM7 and TM9 flexibility controls the size of this channel. We find that most pathogenic PS2 mutations significantly reduce stability relative to random mutations, using a statistical ANOVA test with all possible mutations in the affected sites as a control. The associated loss of compactness may also impair calcium affinity. Remarkably, similar properties of the open state are known to impair the binding of substrates to γ-secretase, and we thus argue that the two mechanisms could be functionally related.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ning Tang
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
95
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
96
|
Abstract
Kv channel-interacting proteins (KChIPs) belong to the neuronal calcium sensor (NCS) family of Ca2+-binding EF-hand proteins. KChIPs constitute a group of specific auxiliary β-subunits for Kv4 channels, the molecular substrate of transient potassium currents in both neuronal and non-neuronal tissues. Moreover, KChIPs can interact with presenilins to control ER calcium signaling and apoptosis, and with DNA to control gene transcription. Ca2+ binding via their EF-hands, with the consequence of conformational changes, is well documented for KChIPs. Moreover, the Ca2+ dependence of the presenilin/KChIP complex may be related to Alzheimer’s disease and the Ca2+ dependence of the DNA/KChIP complex to pain sensing. However, only in few cases could the Ca2+ binding to KChIPs be directly linked to the control of excitability in nerve and muscle cells known to express Kv4/KChIP channel complexes. This review summarizes current knowledge about the Ca2+ binding properties of KChIPs and the Ca2+ dependencies of macromolecular complexes containing KChIPs, including those with presenilins, DNA and especially Kv4 channels. The respective physiological or pathophysiolgical roles of Ca2+ binding to KChIPs are discussed.
Collapse
Affiliation(s)
- Robert Bähring
- a Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin , Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
97
|
A quantitative model of human neurodegenerative diseases involving protein aggregation. Neurobiol Aging 2019; 80:46-55. [DOI: 10.1016/j.neurobiolaging.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
|
98
|
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14:5541-5554. [PMID: 31410002 PMCID: PMC6650620 DOI: 10.2147/ijn.s200490] [Citation(s) in RCA: 632] [Impact Index Per Article: 126.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, 47 million people live with dementia globally, and it is estimated to increase more than threefold (~131 million) by 2050. Alzheimer's disease (AD) is one of the major causative factors to induce progressive dementia. AD is a neurodegenerative disease, and its pathogenesis has been attributed to extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles made of hyperphosphorylated τ-protein in cortical and limbic areas of the human brain. It is characterized by memory loss and progressive neurocognitive dysfunction. The anomalous processing of APP by β-secretases and γ-secretases leads to production of Aβ40 and Aβ42 monomers, which further oligomerize and aggregate into senile plaques. The disease also intensifies through infectious agents like HIV. Additionally, during disease pathogenesis, the presence of high concentrations of Aβ peptides in central nervous system initiates microglial infiltration. Upon coming into vicinity of Aβ, microglia get activated, endocytose Aβ, and contribute toward their clearance via TREM2 surface receptors, simultaneously triggering innate immunoresponse against the aggregation. In addition to a detailed report on causative factors leading to AD, the present review also discusses the current state of the art in AD therapeutics and diagnostics, including labeling and imaging techniques employed as contrast agents for better visualization and sensing of the plaques. The review also points to an urgent need for nanotechnology as an efficient therapeutic strategy to increase the bioavailability of drugs in the central nervous system.
Collapse
Affiliation(s)
- Sneham Tiwari
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Ajeet Kaushik
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL33199, USA
| |
Collapse
|
99
|
Substrate recognition and processing by γ-secretase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183016. [PMID: 31295475 PMCID: PMC6899174 DOI: 10.1016/j.bbamem.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The γ-secretase complex is composed of four membrane protein subunits, including presenilin as the catalytic component with aspartyl protease activity. The enzyme cleaves within the transmembrane domain of >70 different type I integral membrane proteins and has been dubbed "the proteasome of the membrane". The most studied substrates include the Notch family of receptors, involved in cell differentiation, and the amyloid precursor protein (APP), involved in the pathogenesis of Alzheimer's disease. A central mechanistic question is how γ-secretase recognizes helical transmembrane substrates and carries out processive proteolysis. Recent findings addressing substrate recognition and processing will be discussed, including the role of protease subunit nicastrin as a gatekeeper, the effects of Alzheimer-causing mutations in presenilin on processive proteolysis of APP, and evidence that three pockets in the active site (S1', S2', and S3') determine carboxypeptidase cleavage of substrate in intervals of three residues. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
|
100
|
Dehury B, Tang N, Blundell TL, Kepp KP. Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Adv 2019; 9:20901-20916. [PMID: 35515530 PMCID: PMC9065803 DOI: 10.1039/c9ra02623a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Severe early-onset familial Alzheimer's disease (FAD) is caused by more than 200 different mutations in the genes coding for presenilin, the catalytic subunit of the 4-subunit protease complex γ-secretase, which cleaves the C99 fragment of the amyloid precursor protein (APP) to produce Aβ peptides. γ-Secretase exists with either of two homologues, PS1 and PS2. All cryo-electron microscopic structures and computational work has so far focused on γ-secretase with PS1, yet PS2 mutations also cause FAD. A central question is thus whether there are structural and dynamic differences between PS1 and PS2. To address this question, we use the cryo-electron microscopic data for PS1 to develop the first structural and dynamic model of PS2-γ-secretase in the catalytically relevant mature membrane-bound state at ambient temperature, equilibrated by three independent 500 ns molecular dynamics simulations. We find that the characteristic nicastrin extra-cellular domain breathing mode and major movements in the cytosolic loop between TM6 and TM7 occur in both PS2- and PS1-γ-secretase. The overall structures and conformational states are similar, suggesting similar catalytic activities. However, at the sequence level, charge-controlled membrane-anchoring is extracellular for PS1 and intracellular for PS2, which suggests different subcellular locations. The tilt angles of the TM2, TM6, TM7 and TM9 helices differ in the two forms of γ-secretase, suggesting that the two proteins have somewhat different substrate processing and channel sizes. Our MD simulations consistently indicated that PS2 retains several water molecules near the catalytic site at the bilayer, as required for catalysis. The possible reasons for the differences of PS1 and PS2 are discussed in relation to their location and function.
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Cambridge CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +045 45252409
| |
Collapse
|