51
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
52
|
Gomes JLP, Tobias GC, Fernandes T, Silveira AC, Negrão CE, Chammas R, Brum PC, Oliveira EM. Effects of Aerobic Exercise Training on MyomiRs Expression in Cachectic and Non-Cachectic Cancer Mice. Cancers (Basel) 2021; 13:5728. [PMID: 34830882 PMCID: PMC8616427 DOI: 10.3390/cancers13225728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated the effects of AET on myomiRs expression in the skeletal muscle and serum of colon cachectic (CT26) and breast non-cachectic (MMTV-PyMT) cancer mice models. Colon cancer decreased microRNA-486 expression, increasing PTEN in tibialis anterior muscle (TA), decreasing the PI3K/mTOR protein pathway, body and muscle wasting, fibers' cross-sectional area and muscle dysfunction, that were not preserved by AET. In contrast, breast cancer decreased those muscle functions, but were preserved by AET. In circulation, the downregulation of microRNA-486 and -206 in colon cancer, and the downregulation of microRNA-486 and upregulation of microRNA-206 expression in breast cancer might be good cancer serum biomarkers. Since the microRNA-206 is skeletal muscle specific, their expression was increased in the TA, serum and tumor in MMTV, suggesting a communication among these three compartments. The AET prevents these effects on microRNA-206, but not on microRNA-486 in MMTV. In conclusion, cancer induced a downregulation of microRNA-486 expression in TA and serum of CT26 and MMTV mice and these effects were not prevented by AET; however, to MMTV, the trained muscle function was preserved, probably sustained by the downregulation of microRNA-206 expression. Serum microRNA-206 is a potential biomarker for colon (decreased) and breast (increased) cancer to monitor the disease evolution and the effects promoted by the AET.
Collapse
Affiliation(s)
- João Lucas Penteado Gomes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Gabriel Cardial Tobias
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Tiago Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - André Casanova Silveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Carlos Eduardo Negrão
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
- Heart Institute (InCor), Medical School, University of Sao Paulo, Sao Paulo 05508-030, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Edilamar Menezes Oliveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| |
Collapse
|
53
|
MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 2021; 285:119926. [PMID: 34480932 DOI: 10.1016/j.lfs.2021.119926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Considering the expansion of human life-span over the past few decades; sarcopenia, a physiological consequence of aging process characterized with a diminution in mass and strength of skeletal muscle, has become more frequent. Thus, there is a growing need for expanding our knowledge on the molecular mechanisms of muscle atrophy in sarcopenia which are complex and involve many signaling pathways associated with protein degradation and synthesis. MicroRNAs (miRNAs) as evolutionary conserved small RNAs, could complementarily bind to their target mRNAs and post-transcriptionally inhibit their translation. Aberrant expression of miRNAs contributes to the development of sarcopenia by regulating the expression of critical genes involved in age-related skeletal muscle mass loss. Here we have a review on the signaling pathways along with the miRNAs controlling their components expression and subsequently we provide a brief overview on the effects of exercise on expression pattern of miRNAs in sarcopenia.
Collapse
|
54
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
55
|
Chen Y, Liu Q, Yang T, Shen L, Xu D. Soluble Epoxide Hydrolase Inhibitors Regulate Ischemic Arrhythmia by Targeting MicroRNA-1. Front Physiol 2021; 12:717119. [PMID: 34646152 PMCID: PMC8502875 DOI: 10.3389/fphys.2021.717119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Soluble epoxide hydrolase inhibitors (sEHis) inhibit the degradation of epoxyeicosatrienoic acids (EETs) in cells, and EETs have antiarrhythmic effects. Our previous experiments confirmed that t-AUCB, a preparation of sEHis, inhibited ischemic arrhythmia by negatively regulating microRNA-1 (miR-1), but its specific mechanism remained unclear. Aim: This study aimed to examine the role of serum response factor (SRF) and the PI3K/Akt/GSK3β pathway in t-AUCB-mediated regulation of miR-1 and the interaction between them. Methods/Results: We used SRF small interfering RNA (siSRF), SRF small hairpin (shSRF) RNA sequence adenovirus, PI3K/Akt/GSK3β pathway inhibitors, t-AUCB, and 14,15-EEZE (a preparation of EETs antagonists) to treat mouse cardiomyocytes overexpressing miR-1 and mice with myocardial infarction (MI). We found that silencing SRF attenuated the effects on miR-1 and its target genes KCNJ2 and GJA1 in the presence of t-AUCB, and inhibition of the PI3K/Akt/GSK3β pathway antagonized the effects of t-AUCB on miR-1, KCNJ2, and GJA1, which were associated with PI3Kα, Akt, and Gsk3β but not PI3Kβ or PI3Kγ. Moreover, the PI3K/Akt/GSK3β pathway was involved in the regulation of SRF by t-AUCB, and silencing SRF inhibited the t-AUCB-induced increases in Akt and Gsk3β phosphorylation. Conclusions: Both the SRF and the PI3K/Akt/GSK3β pathway are involved in the t-AUCB-mediated regulation of miR-1, and these factors interact with each other.
Collapse
Affiliation(s)
- Yanying Chen
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tian Yang
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Shen
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
56
|
Wang R, Bhat-Nakshatri P, Zhong X, Zimmers T, Nakshatri H. Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects. Endocrinology 2021; 162:6321973. [PMID: 34265069 PMCID: PMC8335968 DOI: 10.1210/endocr/bqab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/20/2022]
Abstract
Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
57
|
Dicer-mediated miRNA processing is not involved in controlling muscle mass during muscle atrophy. Sci Rep 2021; 11:19361. [PMID: 34588544 PMCID: PMC8481297 DOI: 10.1038/s41598-021-98545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Muscle atrophy occurs in a variety of physiological and pathological conditions. Specific molecular networks that govern protein synthesis and degradation play important roles in controlling muscle mass under diverse catabolic states. MicroRNAs (miRNAs) were previously found to be regulators of protein synthesis and degradation, and their expressions in skeletal muscle were altered in muscle wasting conditions. However, functional roles of miRNAs in muscle atrophy are poorly understood. In this study, we generated tamoxifen-inducible Dicer knockout (iDicer KO) mice and subjected them to 2 weeks of single hindlimb denervation. The expression of Dicer mRNA was significantly reduced in muscle of the iDicer KO mice compared to that of WT mice. The loss of Dicer moderately reduced levels of muscle-enriched miRNAs, miR-1, miR-133a and miR-206 in both innervated and denervated muscles of the iDicer KO mice. We also found that the extent of denervation-induced muscle atrophy as well as changes of signaling molecules related to protein synthesis/degradation pathways in the iDicer KO mice were comparable to these in WT mice. Taken together, Dicer knockout in adult skeletal muscle did not affect denervation-induced muscle atrophy.
Collapse
|
58
|
Wang H, Maimaitiaili R, Yao J, Xie Y, Qiang S, Hu F, Li X, Shi C, Jia P, Yang H, Wei M, Zhao J, Zhou Z, Xie J, Jiang J, Cai H, Sluijter JPG, Xu Y, Zhang Y, Xiao J. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension 2021; 78:1541-1554. [PMID: 34488435 DOI: 10.1161/hypertensionaha.121.17574] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Sujing Qiang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Peng Jia
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Yang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Juan Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Zheng Zhou
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Haidong Cai
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands (J.P.G.S.)
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, the Netherlands (J.P.G.S.)
| | - Yawei Xu
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| |
Collapse
|
59
|
Al Azzouny MA, Behiry EG, Behairy OG, Abd Ellraouf HA, Elfallah AA. Serum microRNA-486-5p expression in obese Egyptian children and its possible association with fatty liver. Diabetes Metab Syndr 2021; 15:102258. [PMID: 34509791 DOI: 10.1016/j.dsx.2021.102258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
AIMS Several microRNAs (miRNAs) are involved in regulating the process of adipogenesis. White adipose tissue is a major source for these miRNAs. We aimed to evaluate the expression of miR-486-5p in children with obesity and its possible association with nonalcoholic fatty liver disease (NAFLD). METHOD This case-control study included 100 obese and overweight children and 100 normal-weight children of matched age and sex. All children were subjected to anthropometric measurements and evaluation of miR-486-5p expression levels using the SYBR green-based real-time RT-PCR technique. RESULTS Obese children showed significantly up-regulated miR-486-5p gene expression (p value < 0.001) when compared to control group. MiR-486-5p gene expression showed significant positive correlation with weight (r = 0.924), BMI (r = 0.497), waist circumference (r = 0.387), fat mass (r = 0.361), LDL(r = 0.351), TG (r = 0.867), TC (r = 0.875) and presence of fatty liver (r = 0.760). The best cutoff value of miR-486-5p gene expression in the prediction of obesity was 0.44 with AUC 0.736 that has a sensitivity 60% and specificity 90%, CONCLUSION: The serum level of the miR-486-5p gene is up-regulated in obese and overweight children and might be an independent predictor for obesity and fatty liver susceptibility.
Collapse
Affiliation(s)
- Mahmoud A Al Azzouny
- Department of Chemical and Clinical Pathology, Faculty of Medicine, Benha University, Egypt.
| | - Eman G Behiry
- Department of Chemical and Clinical Pathology, Faculty of Medicine, Benha University, Egypt.
| | - Ola G Behairy
- Department of Pediatrics, Faculty of Medicine, Benha University, Egypt.
| | | | - Asmaa A Elfallah
- Department of Chemical and Clinical Pathology, Faculty of Medicine, Benha University, Egypt.
| |
Collapse
|
60
|
Effects of single bouts of different endurance exercises with different intensities on microRNA biomarkers with and without blood flow restriction: a three-arm, randomized crossover trial. Eur J Appl Physiol 2021; 121:3243-3255. [PMID: 34435273 PMCID: PMC8505326 DOI: 10.1007/s00421-021-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/10/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE Physical activity is associated with altered levels of circulating microRNAs (ci-miRNAs). Changes in miRNA expression have great potential to modulate biological pathways of skeletal muscle hypertrophy and metabolism. This study was designed to determine whether the profile of ci-miRNAs is altered after different approaches of endurance exercise. METHODS Eighteen healthy volunteers (aged 24 ± 3 years) participated this three-arm, randomized-balanced crossover study. Each arm was a single bout of treadmill-based acute endurance exercise at (1) 100% of the individual anaerobic threshold (IANS), (2) at 80% of the IANS and (3) at 80% of the IANS with blood flow restriction (BFR). Load-associated outcomes (fatigue, feeling, heart rate, and exhaustion) as well as acute effects (circulating miRNA patterns and lactate) were determined. RESULTS All training interventions increased the lactate concentration (LC) and heart rate (HR) (p < 0.001). The high-intensity intervention (HI) resulted in a higher LC than both lower intensity protocols (p < 0.001). The low-intensity blood flow restriction (LI-BFR) protocol led to a higher HR and higher LC than the low-intensity (LI) protocol without BFR (p = 0.037 and p = 0.003). The level of miR-142-5p and miR-197-3p were up-regulated in both interventions without BFR (p < 0.05). After LI exercise, the expression of miR-342-3p was up-regulated (p = 0.038). In LI-BFR, the level of miR-342-3p and miR-424-5p was confirmed to be up-regulated (p < 0.05). Three miRNAs and LC show a significant negative correlation (miR-99a-5p, p = 0.011, r = - 0.343/miR-199a-3p, p = 0.045, r = - 0.274/miR-125b-5p, p = 0.026, r = - 0.302). Two partial correlations (intervention partialized) showed a systematic impact of the type of exercise (LI-BFR vs. HI) (miR-99a-59: r = - 0.280/miR-199a-3p: r = - 0.293). CONCLUSION MiRNA expression patterns differ according to type of activity. We concluded that not only the intensity of the exercise (LC) is decisive for the release of circulating miRNAs-as essential is the type of training and the oxygen supply.
Collapse
|
61
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
62
|
Tewari RS, Ala U, Accornero P, Baratta M, Miretti S. Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age. Sci Rep 2021; 11:15815. [PMID: 34349188 PMCID: PMC8339070 DOI: 10.1038/s41598-021-95137-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection.
Collapse
Affiliation(s)
- Rupal S Tewari
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
63
|
Viñas JL, Spence M, Porter CJ, Douvris A, Gutsol A, Zimpelmann JA, Campbell PA, Burns KD. micro-RNA-486-5p protects against kidney ischemic injury and modifies the apoptotic transcriptome in proximal tubules. Kidney Int 2021; 100:597-612. [PMID: 34181969 DOI: 10.1016/j.kint.2021.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) carries high morbidity and mortality, and effective treatments are lacking. Preclinical models support involvement of micro-RNAs (miRs) in AKI pathogenesis, although effects on the kidney transcriptome are unclear. We previously showed that injection of cord blood endothelial colony forming cell-derived exosomes, enriched in miR-486-5p, prevented ischemic AKI in mice. To further define this, we studied direct effects of miR-486-5p in mice with kidney ischemia-reperfusion injury. RNA-Seq was used to compare the impact of miR-486-5p and exosomes on the transcriptome of proximal tubules and kidney endothelial cells 24 hours after ischemia-reperfusion. In mice with AKI, injection of miR-486-5p mimic increased its levels in proximal tubules and endothelial cells, and improved plasma creatinine, histological injury, neutrophil infiltration, and apoptosis. Additionally, miR-486-5p inhibited expression of its target phosphatase and tensin homolog, and activated protein kinase B. In proximal tubules, miR-486-5p or exosomes reduced expression of genes associated with ischemic injury and the tumor necrosis factor (TNF) pathway, and altered distinct apoptotic genes. In endothelial cells, genes associated with metabolic processes were altered by miR-486-5p or exosomes, although TNF pathway genes were not affected. Thus, our results suggest that miR-486-5p may have therapeutic potential in AKI.
Collapse
Affiliation(s)
- Jose L Viñas
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Spence
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrianna Douvris
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph A Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Pearl A Campbell
- Regenerative Medicine Program, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
64
|
Mytidou C, Koutsoulidou A, Katsioloudi A, Prokopi M, Kapnisis K, Michailidou K, Anayiotos A, Phylactou LA. Muscle-derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication. FASEB J 2021; 35:e21279. [PMID: 33484211 DOI: 10.1096/fj.201902468rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022]
Abstract
Exosomes are extracellular vesicles that are released from most cell types encapsulating specific molecular cargo. Exosomes serve as mediators of cell-to-cell and tissue-to-tissue communications under normal and pathological conditions. It has been shown that exosomes carrying muscle-specific miRNAs, myomiRs, are secreted from skeletal muscle cells in vitro and are elevated in the blood of muscle disease patients. The aim of this study was to investigate the secretion of exosomes encapsulating the four myomiRs from skeletal muscle tissues and to assess their role in inter-tissue communication between neighboring skeletal muscles in vivo. We demonstrate, for the first time, that isolated, intact skeletal muscle tissues secrete exosomes encapsulating the four myomiRs, miR-1, miR-133a, miR-133b, and miR-206. Notably, we show that the sorting of the four myomiRs within exosomes varies between skeletal muscles of different muscle fiber-type composition. miR-133a and miR-133b downregulation in TA muscles caused a reduction of their levels in neighboring skeletal muscles and in serum exosomes. In conclusion, our results reveal that skeletal muscle-derived exosomes encapsulate the four myomiRs, some of which enter the blood, while a portion is used for the local communication between proximal muscle tissues. These findings provide important evidence regarding novel pathways implicated in skeletal muscle function.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - Marianna Prokopi
- Theramir Ltd, Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,Department of Research and Development, German Oncology Center, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Kyriaki Michailidou
- The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,Biostatistics Unit, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
65
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
66
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
67
|
Amor F, Vu Hong A, Corre G, Sanson M, Suel L, Blaie S, Servais L, Voit T, Richard I, Israeli D. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2021; 12:677-693. [PMID: 34037326 PMCID: PMC8200436 DOI: 10.1002/jcsm.12708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a lethal muscle disease detected in approximately 1:5000 male births. DMD is caused by mutations in the DMD gene, encoding a critical protein that links the cytoskeleton and the extracellular matrix in skeletal and cardiac muscles. The primary consequence of the disrupted link between the extracellular matrix and the myofibre actin cytoskeleton is thought to involve sarcolemma destabilization, perturbation of Ca2+ homeostasis, activation of proteases, mitochondrial damage, and tissue degeneration. A recently emphasized secondary aspect of the dystrophic process is a progressive metabolic change of the dystrophic tissue; however, the mechanism and nature of the metabolic dysregulation are yet poorly understood. In this study, we characterized a molecular mechanism of metabolic perturbation in DMD. METHODS We sequenced plasma miRNA in a DMD cohort, comprising 54 DMD patients treated or not by glucocorticoid, compared with 27 healthy controls, in three groups of the ages of 4-8, 8-12, and 12-20 years. We developed an original approach for the biological interpretation of miRNA dysregulation and produced a novel hypothesis concerning metabolic perturbation in DMD. We used the mdx mouse model for DMD for the investigation of this hypothesis. RESULTS We identified 96 dysregulated miRNAs (adjusted P-value <0.1), of which 74 were up-regulated and 22 were down-regulated in DMD. We confirmed the dysregulation in DMD of Dystro-miRs, Cardio-miRs, and a large number of the DLK1-DIO3 miRNAs. We also identified numerous dysregulated miRNAs yet unreported in DMD. Bioinformatics analysis of both target and host genes for dysregulated miRNAs predicted that lipid metabolism might be a critical metabolic perturbation in DMD. Investigation of skeletal muscles of the mdx mouse uncovered dysregulation of transcription factors of cholesterol and fatty acid metabolism (SREBP-1 and SREBP-2), perturbation of the mevalonate pathway, and the accumulation of cholesterol in the dystrophic muscles. Elevated cholesterol level was also found in muscle biopsies of DMD patients. Treatment of mdx mice with Simvastatin, a cholesterol-reducing agent, normalized these perturbations and partially restored the dystrophic parameters. CONCLUSIONS This investigation supports that cholesterol metabolism and the mevalonate pathway are potential therapeutic targets in DMD.
Collapse
Affiliation(s)
- Fatima Amor
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Ai Vu Hong
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Guillaume Corre
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Mathilde Sanson
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Laurence Suel
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | | | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, UK & Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of PaediatricsUniversity Hospital of Liège & University of LiègeLiègeBelgium
| | - Thomas Voit
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Isabelle Richard
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - David Israeli
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| |
Collapse
|
68
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
69
|
Pinelli S, Alinovi R, Poli D, Corradi M, Pelosi G, Tiseo M, Goldoni M, Cavallo D, Mozzoni P. Overexpression of microRNA‑486 affects the proliferation and chemosensitivity of mesothelioma cell lines by targeting PIM1. Int J Mol Med 2021; 47:117. [PMID: 33955505 PMCID: PMC8083808 DOI: 10.3892/ijmm.2021.4950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Dysregulated levels of microRNAs (miRNAs or miRs), involved in oncogenic pathways, have been proposed to contribute to the aggressiveness of malignant pleural mesothelioma (MPM). Previous studies have highlighted the downregulation of miRNA miR-486-5p in patients with mesothelioma and the introduction of miRNA mimics to restore their reduced or absent functionality in cancer cells is considered an important therapeutic strategy. The aim of the present study was to evaluate the mechanisms through which miRNAs may influence the functions, proliferation and sensitivity to cisplatin of MPM cells. In the present study, a miR-486-5p mimic was transfected into the H2052 and H28 MPM cell lines, and cell viability, proliferation, apoptosis and mitochondrial membrane potential were monitored. miR-486-5p overexpression led to a clear impairment of cell proliferation, targeting CDK4 and attenuating cell cycle progression. In addition, transfection with miR-486-5p mimic negatively regulated the release of inflammatory factors and the expression of Provirus integration site for Moloney murine leukaemia virus 1 (PIM1). The sensitivity of the cells to cisplatin was enhanced by enhancing the apoptotic effects of the drug and impairing mitochondrial function. On the whole, the present study demonstrates that miR-486-5p may play an important role in MPM treatment by targeting multiple pathways involved in tumour development and progression. These activities may be mostly related to the downregulation of PIM1, a crucial regulator of cell survival and proliferation. Furthermore, these results provide support for the combined use of miR-486-5p with chemotherapy as a therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| |
Collapse
|
70
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
71
|
Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. J Biol Chem 2021; 296:100376. [PMID: 33548229 PMCID: PMC8289116 DOI: 10.1016/j.jbc.2021.100376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is one of the most important organs of the animal body. Long noncoding RNAs play a crucial role in the regulation of skeletal muscle development via several mechanisms. We recently identified obesity-related lncRNA (lnc-ORA) in a search for long noncoding RNAs that influence adipogenesis, finding it impacted adipocyte differentiation by regulating the PI3K/protein kinase B/mammalian target of rapamycin pathway. However, whether lnc-ORA has additional roles, specifically in skeletal muscle myogenesis, is not known. Here, we found that lnc-ORA was significantly differentially expressed with age in mouse skeletal muscle tissue and predominantly located in the cytoplasm. Overexpression of lnc-ORA promoted C2C12 myoblast proliferation and inhibited myoblast differentiation. In contrast, lnc-ORA knockdown repressed myoblast proliferation and facilitated myoblast differentiation. Interestingly, silencing of lnc-ORA rescued dexamethasone-induced muscle atrophy in vitro. Furthermore, adeno-associated virus 9–mediated overexpression of lnc-ORA decreased muscle mass and the cross-sectional area of muscle fiber by upregulating the levels of muscle atrophy–related genes and downregulating the levels of myogenic differentiation–related genes in vivo. Mechanistically, lnc-ORA inhibited skeletal muscle myogenesis by acting as a sponge of miR-532-3p, which targets the phosphatase and tensin homolog gene; the resultant changes in phosphatase and tensin homolog suppressed the PI3K/protein kinase B signaling pathway. In addition, lnc-ORA interacted with insulin-like growth factor 2 mRNA-binding protein 2 and reduced the stability of myogenesis genes, such as myogenic differentiation 1 and myosin heavy chain. Collectively, these findings indicate that lnc-ORA could be a novel underlying regulator of skeletal muscle development.
Collapse
|
72
|
Liu HC, Han DS, Hsu CC, Wang JS. Circulating MicroRNA-486 and MicroRNA-146a serve as potential biomarkers of sarcopenia in the older adults. BMC Geriatr 2021; 21:86. [PMID: 33516190 PMCID: PMC7847166 DOI: 10.1186/s12877-021-02040-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023] Open
Abstract
Background Age-related sarcopenia meaningfully increases the risks of functional limitations and mortality in the older adults. Although circulating microRNAs (c-miRNAs) are associated with aging-related cellular senescence and inflammation, the relationships between c-miRNAs and sarcopenia in the older adults remain unclear. This study investigates whether circulating myo-miRNAs and inflammation-related miRNAs are associated with sarcopenia in the older adults. Methods This investigation recruited 77 eligible subjects (41 males and 36 females) from 597 community-dwelling older adults, and then divided them into normal (n = 24), dynapenic (loss of muscular function without mass, n = 35), and sarcopenic groups (loss of muscular function with mass, n = 18). Moreover, myo- (c-miRNA-133a and c-miRNA-486) and inflammation- (c-miRNA-21 and c-miRNA-146a) related miRNAs, as well as, inflammatory-related cytokine and peroxide levels in plasma were determined using quantitative polymerase chain reaction and ELISA, respectively. Results Sarcopenic group exhibited lesser skeletal muscle mass index (SMI), handgrip strength, and gait speed, as well as, lower c-miR-486 and c-miR-146a levels, compared to those of normal and dynapenic groups. Moreover, c-miR-486 level was positively related to SMI (r = 0.334, P = 0.003), whereas c-miR-146a level was positively associated with SMI (r = 0.240, P = 0.035) and handgrip strength (r = 0.253, P = 0.027). In the receiver operating characteristic analysis for predicting sarcopenia, the area under the curve in c-miR-486 was 0.708 (95% confidence interval: 0.561–0.855, P = 0.008) and c-miR-146a was 0.676 (95% CI: 0.551–0.801, P = 0.024). However, no significant relationships were observed between SMI/handgrip strength/gait speed and plasma myeloperoxidase/interleukin-1훽/interleukin-6 levels. Conclusions Myo-miRNA (c-miR-486) and inflammation-related miRNA (c-miR-146a) are superior to inflammatory peroxide/cytokines in plasma for serving as critical biomarkers of age-related sarcopenia.
Collapse
Affiliation(s)
- Huang-Chun Liu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan.,Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Heart Failure Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
73
|
Huang Z, Li Q, Li M, Li C. Transcriptome analysis reveals the long intergenic noncoding RNAs contributed to skeletal muscle differences between Yorkshire and Tibetan pig. Sci Rep 2021; 11:2622. [PMID: 33514792 PMCID: PMC7846844 DOI: 10.1038/s41598-021-82126-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds. 138 differentially expressed lincRNAs (DELs) were obtained between the two breeds, and their potential target genes (PTGs) were predicted. The results of GO and KEGG analysis revealed that PTGs are involved in multiple biological processes and pathways related to muscle development. The quantitative trait loci (QTLs) of DELs were predicted, and the results showed that most QTLs are related to muscle development. Finally, we constructed a co-expression network between muscle development related PTGs (MDRPTGs) and their corresponding DELs on the basis of their expression levels. The expression of DELs was significantly correlated with the corresponding MDRPTGs. Also, multiple MDRPTGs are involved in the key regulatory pathway of muscle fiber hypertrophy, which is the IGF-1-AKT-mTOR pathway. In summary, multiple lincRNAs that may cause differences in skeletal muscle development between the two breeds were identified, and their possible regulatory roles were explored. The findings of this study may provide a valuable reference for further research on the role of lincRNA in skeletal muscle development.
Collapse
Affiliation(s)
- Ziying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China. .,Guangxi Yangxiang Co., Ltd. Production Center, Guigang, 537131, China.
| |
Collapse
|
74
|
Liu S, Xie S, Chen H, Li B, Chen Z, Tan Y, Yang J, Zheng L, Xiao Z, Zhang Q, Qu L. The functional analysis of transiently upregulated miR-101 suggests a "braking" regulatory mechanism during myogenesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1612-1623. [PMID: 33521860 DOI: 10.1007/s11427-020-1856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022]
Abstract
Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shujuan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huafeng Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhirong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yeya Tan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhendong Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
75
|
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells. Sci Rep 2021; 11:1161. [PMID: 33441918 PMCID: PMC7806978 DOI: 10.1038/s41598-020-80742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
Collapse
Affiliation(s)
- Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Mengistu Lemecha
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
- Department of Molecular and Cellular Biology, City of Hope, Los Angeles, USA
| | - Lucia Sugawara
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
76
|
Aoi W, Tanimura Y. Roles of Skeletal Muscle-Derived Exosomes in Organ Metabolic and Immunological Communication. Front Endocrinol (Lausanne) 2021; 12:697204. [PMID: 34594301 PMCID: PMC8476901 DOI: 10.3389/fendo.2021.697204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscles secrete various factors, such as proteins/peptides, nucleotides, and metabolites, which are referred to as myokines. Many of these factors are transported into extracellular bodily fluids in a free or protein-bound form. Furthermore, several secretory factors have been shown to be wrapped up by small vesicles, particularly exosomes, secreted into circulation, and subsequently regulate recipient cells. Thus, exosome contents can be recognized as myokines. In recipient cells, proteins, microRNAs, and metabolites in exosomes can regulate the expression and activity of target proteins associated with nutrient metabolism and immune function. The levels of circulating exosomes and their contents are altered in muscle disorders and metabolic-related states, such as metabolic dysfunction, sarcopenia, and physical fitness. Therefore, such circulating factors could mediate various interactions between skeletal muscle and other organs and may be useful as biomarkers reflecting physiological and pathological states associated with muscular function. Here, this review summarizes secretory regulation of muscle-derived exosomes. Their metabolic and immunological roles and the significance of their circulating levels are also discussed.
Collapse
Affiliation(s)
- Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- *Correspondence: Wataru Aoi,
| | - Yuko Tanimura
- Department of Sport Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
77
|
Li Z, Liu C, Li S, Li T, Li Y, Wang N, Bao X, Xue P, Liu S. BMSC-Derived Exosomes Inhibit Dexamethasone-Induced Muscle Atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne) 2021; 12:681267. [PMID: 34659106 PMCID: PMC8517407 DOI: 10.3389/fendo.2021.681267] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Sarcopenia, characterized by reduced muscle function as well as muscle mass, has been a public health problem with increasing prevalence. It might result from aging, injury, hormone imbalance and other catabolic conditions. Recently, exosomes were considered to regulate muscle regeneration and protein synthesis. In order to confirm the effect of BMSC-derived exosomes (BMSC-Exos) on muscle, dexamethasone-induced muscle atrophy was built both in vitro and in vivo. In the present research, BMSC-Exos attenuated the decrease of myotube diameter induced by dexamethasone, indicating that BMSC-Exos played a protective role in skeletal muscle atrophy. Further mechanism analysis exhibited that the content of miR-486-5p in C2C12 myotubes was up-regulated after treated with BMSC-Exos. Meanwhile, BMSC-Exos markedly downregulated the nuclear translocation of FoxO1, which plays an important role in muscle differentiation and atrophy. Importantly, the miR-486-5p inhibitor reversed the decreased expression of FoxO1 induced by BMSC-Exos. In animal experiments, BMSC-Exos inhibited dexamethasone-induced muscle atrophy, and miR-486-5p inhibitor reversed the protective effect of BMSC-Exos. These results indicating that BMSC-derived exosomes inhibit dexamethasone-induced muscle atrophy via miR486-5p/Foxo1 Axis.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Shilun Li
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Sijing Liu,
| | - Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Sijing Liu,
| |
Collapse
|
78
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
79
|
The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I. J Clin Med 2020; 9:jcm9123939. [PMID: 33291833 PMCID: PMC7762003 DOI: 10.3390/jcm9123939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are mostly known for their gene regulation properties, but they also play an important role in intercellular signaling. This means that they can be found in bodily fluids, giving them excellent biomarker potential. Myotonic Dystrophy type I (DM1) is the most frequent autosomal dominant muscle dystrophy in adults, with an estimated prevalence of 1:8000. DM1 symptoms include muscle weakness, myotonia, respiratory failure, cardiac conduction defects, cataracts, and endocrine disturbances. Patients display heterogeneity in both age of onset and disease manifestation. No treatment or cure currently exists for DM1, which shows the necessity for a biomarker that can predict disease progression, providing the opportunity to implement preventative measures before symptoms arise. In the past two decades, extensive research has been conducted in the miRNA expression profiles of DM1 patients and their biomarker potential. Here we review the current state of the field with a tissue-specific focus, given the multi-systemic nature of DM1 and the intracellular signaling role of miRNAs.
Collapse
|
80
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
81
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. Identification and Characterization of circRNA in Longissimus Dorsi of Different Breeds of Cattle. Front Genet 2020; 11:565085. [PMID: 33324445 PMCID: PMC7726199 DOI: 10.3389/fgene.2020.565085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023] Open
Abstract
Shandong black cattle is a new breed of cattle that is developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of cattle (Shandong black and Luxi). We identified 14,640 circRNAs and found 655 differentially expressed circRNAs. We also analyzed the classification and characteristics of circRNAs in muscle tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fiber development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK, and mTOR signaling pathways. In addition, we used miRanda to predict the interactions between 14 circRNAs and 11 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003424, circ0003721, circ0003720, circ0001519, circ0001530, circ0005011, circ0014518, circ0000181, circ0000190, circ0010558) that may play important roles in the regulation of muscle growth and development. Using real-time quantitative PCR, 14 circRNAs were randomly selected to verify the real circRNAs. Luciferase reporter gene system was used to verify the binding site of miR-1 in circ0014518. Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
82
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
83
|
Heier CR, Zhang A, Nguyen NY, Tully CB, Panigrahi A, Gordish-Dressman H, Pandey SN, Guglieri M, Ryan MM, Clemens PR, Thangarajh M, Webster R, Smith EC, Connolly AM, McDonald CM, Karachunski P, Tulinius M, Harper A, Mah JK, Fiorillo AA, Chen YW. Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy. J Pers Med 2020; 10:jpm10040236. [PMID: 33228131 PMCID: PMC7711540 DOI: 10.3390/jpm10040236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
The development of therapeutics for muscle diseases such as facioscapulohumeral dystrophy (FSHD) is impeded by a lack of objective, minimally invasive biomarkers. Here we identify circulating miRNAs and proteins that are dysregulated in early-onset FSHD patients to develop blood-based molecular biomarkers. Plasma samples from clinically characterized individuals with early-onset FSHD provide a discovery group and are compared to healthy control volunteers. Low-density quantitative polymerase chain reaction (PCR)-based arrays identify 19 candidate miRNAs, while mass spectrometry proteomic analysis identifies 13 candidate proteins. Bioinformatic analysis of chromatin immunoprecipitation (ChIP)-seq data shows that the FSHD-dysregulated DUX4 transcription factor binds to regulatory regions of several candidate miRNAs. This panel of miRNAs also shows ChIP signatures consistent with regulation by additional transcription factors which are up-regulated in FSHD (FOS, EGR1, MYC, and YY1). Validation studies in a separate group of patients with FSHD show consistent up-regulation of miR-100, miR-103, miR-146b, miR-29b, miR-34a, miR-454, miR-505, and miR-576. An increase in the expression of S100A8 protein, an inflammatory regulatory factor and subunit of calprotectin, is validated by Enzyme-Linked Immunosorbent Assay (ELISA). Bioinformatic analyses of proteomics and miRNA data further support a model of calprotectin and toll-like receptor 4 (TLR4) pathway dysregulation in FSHD. Moving forward, this panel of miRNAs, along with S100A8 and calprotectin, merit further investigation as monitoring and pharmacodynamic biomarkers for FSHD.
Collapse
Affiliation(s)
- Christopher R. Heier
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Nhu Y Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Aswini Panigrahi
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Heather Gordish-Dressman
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Sachchida Nand Pandey
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | | | - Monique M. Ryan
- The Royal Children’s Hospital, Melbourne University, Parkville, Victoria 3052, Australia;
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
| | | | - Edward C. Smith
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27705, USA;
| | - Anne M. Connolly
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA;
| | - Craig M. McDonald
- Department of Physical Medicine and Rehabilitation, University of California at Davis Medical Center, Sacramento, CA 95817, USA;
| | - Peter Karachunski
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mar Tulinius
- Department of Pediatrics, Gothenburg University, Queen Silvia Children’s Hospital, 41685 Göteborg, Sweden;
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jean K. Mah
- Deparment of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, T2N T3B, Calgary, AB 6A81N4, Canada;
| | - Alyson A. Fiorillo
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | | |
Collapse
|
84
|
Lmod3 promotes myoblast differentiation and proliferation via the AKT and ERK pathways. Exp Cell Res 2020; 396:112297. [DOI: 10.1016/j.yexcr.2020.112297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
|
85
|
Holstein I, Singh AK, Pohl F, Misiak D, Braun J, Leitner L, Hüttelmaier S, Posern G. Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts. Nucleic Acids Res 2020; 48:8927-8942. [PMID: 32692361 PMCID: PMC7498330 DOI: 10.1093/nar/gkaa596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/02/2022] Open
Abstract
The differentiation and regeneration of skeletal muscle from myoblasts to myotubes involves myogenic transcription factors, such as myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF). In addition, post-transcriptional regulation by miRNAs is required during myogenesis. Here, we provide evidence for novel mechanisms regulating MRTF-A during myogenic differentiation. Endogenous MRTF-A protein abundance and activity decreased during C2C12 differentiation, which was attributable to miRNA-directed inhibition. Conversely, overexpression of MRTF-A impaired differentiation and myosin expression. Applying miRNA trapping by RNA affinity purification (miTRAP), we identified miRNAs which directly regulate MRTF-A via its 3′UTR, including miR-1a-3p, miR-206-3p, miR-24-3p and miR-486-5p. These miRNAs were upregulated during differentiation and specifically recruited to the 3′UTR of MRTF-A. Concomitantly, Ago2 recruitment to the MRTF-A 3′UTR was considerably increased, whereas Dicer1 depletion or 3′UTR deletion elevated MRTF-A and inhibited differentiation. MRTF-A protein expression was inhibited by ectopic miRNA expression in murine C2C12 and primary human myoblasts. 3′UTR reporter activity diminished upon differentiation or miRNA expression, whereas deletion of the predicted binding sites reversed these effects. Furthermore, TGF-β abolished MRTF-A reduction and decreased miR-486-5p expression. Our findings implicate miR-24-3p and miR-486-5p in the repression of MRTF-A and suggest a complex network of transcriptional and post-transcriptional mechanisms regulating myogenesis.
Collapse
Affiliation(s)
- Ingo Holstein
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Falk Pohl
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Juliane Braun
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Laura Leitner
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle (Saale), Germany
| |
Collapse
|
86
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
87
|
Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs. Front Cell Dev Biol 2020; 8:577010. [PMID: 33043011 PMCID: PMC7523183 DOI: 10.3389/fcell.2020.577010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a common complication of cachexia, characterized by progressive bodyweight loss and decreased muscle strength, and it significantly increases the risks of morbidity and mortality in the population with atrophy. Numerous complications associated with decreased muscle function can activate catabolism, reduce anabolism, and impair muscle regeneration, leading to muscle wasting. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), types of non-coding RNAs, are important for regulation of skeletal muscle development. Few studies have specifically identified the roles of miRNAs and lncRNAs in cellular or animal models of muscular atrophy during cachexia, and the pathogenesis of skeletal muscle wasting in cachexia is not entirely understood. To develop potential approaches to improve skeletal muscle mass, strength, and function, a more comprehensive understanding of the known key pathophysiological processes leading to muscular atrophy is needed. In this review, we summarize the known miRNAs, lncRNAs, and corresponding signaling pathways involved in regulating skeletal muscle atrophy in cachexia and other diseases. A comprehensive understanding of the functions and mechanisms of miRNAs and lncRNAs during skeletal muscle wasting in cachexia and other diseases will, therefore, promote therapeutic treatments for muscle atrophy.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
88
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
89
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
90
|
Zhang J, Meng Q, Zhong J, Zhang M, Qin X, Ni X, Ma J, He Y, Zeng D, Lan D. Serum MyomiRs as Biomarkers for Female Carriers of Duchenne/Becker Muscular Dystrophy. Front Neurol 2020; 11:563609. [PMID: 33071947 PMCID: PMC7530632 DOI: 10.3389/fneur.2020.563609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked recessive lethal neuromuscular disease. MicroRNAs expressed in striated muscle, myomiRs, have been proposed as its potential biomarkers. Serum creatine kinase (CK) is commonly used as a biomarker in clinical practice, but it is not reliable. The aim of this study was to assess whether serum levels of myomiRs has diagnostic value for detection of female DMD/BMD carriers with normal or elevated CK. Methods: Thirty four female carriers and 33 age-matched healthy female controls were enrolled. Peripheral blood samples were collected and serum miRNAs were extracted for measurement of miR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, and miR-499 by quantitative real-time polymerase chain reaction. Results: MiR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, and miR-499 were upregulated in all female carriers in comparison to healthy controls. MiR-1 (Spearman's rho = +0.406, p = 0.017) was correlated with CK in the female carrier group. Receiver operating characteristic curve analysis of all seven myomiRs showed that the area under the curve (AUC) for miR-499, miR-133b, miR-1, miR-208b, and miR-133a exceeded 70.0%, and for miR-206 and miR-208a exceeded 60.0%. MiR-133b and miR-499 were significantly increased in all female carriers, even those with normal CK. AUC for the combination of all seven miRNAs was 87.2%. CK (OR 0.406, 95% CI 0.000–0.001, p < 0.0001) and miR-499 (OR 0.323, 95% CI 0.023–0.106, p = 0.003) were considered to be independent predictors for female carriers presence in the multivariable regression analysis model. Conclusions: MiR-133b and miR-499 are potentially useful biomarkers for female carriers with DMD/BMD (including those with normal CK). The combination of all seven serum miRNAs and their respective combinations with CK have better diagnostic value for female carriers than either CK or any separate miRNA.
Collapse
Affiliation(s)
- Jiapeng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi Meng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Ni
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawen Ma
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yangwen He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Zeng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
91
|
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020; 9:cells9091970. [PMID: 32858949 PMCID: PMC7564605 DOI: 10.3390/cells9091970] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly, IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity, autophagy, and muscle regeneration.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| | - Patrice Delafontaine
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| |
Collapse
|
92
|
Chang YC, Liu HW, Chan YC, Hu SH, Liu MY, Chang SJ. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch Biochem Biophys 2020; 692:108511. [PMID: 32710883 DOI: 10.1016/j.abb.2020.108511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.
| | - Hung-Wen Liu
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan.
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
| | - Shu-Hui Hu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Yi Liu
- Department of Long Term Care, Wu Feng University, Chiayi County, Taiwan; Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology. No. 1, Nan-Tai Street, Yongkang Dist., Tainan City, Taiwan.
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
93
|
Hallal S, Ebrahim Khani S, Wei H, Lee MYT, Sim HW, Sy J, Shivalingam B, Buckland ME, Alexander-Kaufman KL. Deep Sequencing of Small RNAs from Neurosurgical Extracellular Vesicles Substantiates miR-486-3p as a Circulating Biomarker that Distinguishes Glioblastoma from Lower-Grade Astrocytoma Patients. Int J Mol Sci 2020; 21:ijms21144954. [PMID: 32668808 PMCID: PMC7404297 DOI: 10.3390/ijms21144954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play key roles in glioblastoma (GBM; astrocytoma grade IV) biology and are novel sources of biomarkers. EVs released from GBM tumors can cross the blood-brain-barrier into the periphery carrying GBM molecules, including small non-coding RNA (sncRNA). Biomarkers cargoed in circulating EVs have shown great promise for assessing the molecular state of brain tumors in situ. Neurosurgical aspirate fluids captured during tumor resections are a rich source of GBM-EVs isolated directly from tumor microenvironments. Using density gradient ultracentrifugation, EVs were purified from cavitron ultrasonic surgical aspirate (CUSA) washings from GBM (n = 12) and astrocytoma II-III (GII-III, n = 5) surgeries. The sncRNA contents of surgically captured EVs were profiled using the Illumina® NextSeqTM 500 NGS System. Differential expression analysis identified 27 miRNA and 10 piRNA species in GBM relative to GII-III CUSA-EVs. Resolved CUSA-EV sncRNAs could discriminate serum-EV sncRNA profiles from GBM and GII-III patients and healthy controls and 14 miRNAs (including miR-486-3p and miR-106b-3p) and cancer-associated piRNAs (piR_016658, _016659, _020829 and _204090) were also significantly expressed in serum-EVs. Circulating EV markers that correlate with histological, neuroradiographic and clinical parameters will provide objective measures of tumor activity and improve the accuracy of GBM tumor surveillance.
Collapse
Affiliation(s)
- Susannah Hallal
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Saeideh Ebrahim Khani
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
| | - Heng Wei
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Maggie Yuk Ting Lee
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Hao-Wen Sim
- Department of Medical Oncology and NHMRC Clinical Trials Centre, Chris O’Brien Lifehouse, Camperdown 2050, Australia;
- Central Clinical School, The University of Sydney, Camperdown 2006, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst 2010, Australia
| | - Joanne Sy
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Brindha Shivalingam
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
| | - Michael E. Buckland
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Kimberley L. Alexander-Kaufman
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
- Correspondence: ; Tel.: +61-2-8514-0675
| |
Collapse
|
94
|
Nair VD, Ge Y, Li S, Pincas H, Jain N, Seenarine N, Amper MAS, Goodpaster BH, Walsh MJ, Coen PM, Sealfon SC. Sedentary and Trained Older Men Have Distinct Circulating Exosomal microRNA Profiles at Baseline and in Response to Acute Exercise. Front Physiol 2020; 11:605. [PMID: 32587527 PMCID: PMC7298138 DOI: 10.3389/fphys.2020.00605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Exercise has multi-systemic benefits and attenuates the physiological impairments associated with aging. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. However, the impact of regular exercise and acute exercise on circulating exosomal microRNAs (exomiRs) in older populations remains unknown. In the present study, we analyzed circulating exomiR expression in endurance-trained elderly men (n = 5) and age-matched sedentary males (n = 5) at baseline (Pre), immediately after a forty minute bout of aerobic exercise on a cycle ergometer (Post), and three hours after this acute exercise (3hPost). Following the isolation and enrichment of exosomes from plasma, exosome-enriched preparations were characterized and exomiR levels were determined by sequencing. The effect of regular exercise on circulating exomiRs was assessed by comparing the baseline expression levels in the trained and sedentary groups. The effect of acute exercise was determined by comparing baseline and post-training expression levels in each group. Regular exercise resulted in significantly increased baseline expression of three exomiRs (miR-486-5p, miR-215-5p, miR-941) and decreased expression of one exomiR (miR-151b). Acute exercise altered circulating exomiR expression in both groups. However, exomiRs regulated by acute exercise in the trained group (7 miRNAs at Post and 8 at 3hPost) were distinct from those in the sedentary group (9 at Post and 4 at 3hPost). Pathway analysis prediction and reported target validation experiments revealed that the majority of exercise-regulated exomiRs are targeting genes that are related to IGF-1 signaling, a pathway involved in exercise-induced muscle and cardiac hypertrophy. The immediately post-acute exercise exomiR signature in the trained group correlates with activation of IGF-1 signaling, whereas in the sedentary group it is associated with inhibition of IGF-1 signaling. While further validation is needed, including measurements of IGF-1/IGF-1 signaling in blood or skeletal muscle, our results suggest that training status may counteract age-related anabolic resistance by modulating circulating exomiR profiles both at baseline and in response to acute exercise.
Collapse
Affiliation(s)
- Venugopalan D. Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Side Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary Anne S. Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
95
|
Zhou R, Joshi P, Katsushima K, Liang W, Liu W, Goldenberg NA, Dover G, Perera RJ. The Emerging Field of Noncoding RNAs and Their Importance in Pediatric Diseases. J Pediatr 2020; 221S:S11-S19. [PMID: 32482229 PMCID: PMC9003624 DOI: 10.1016/j.jpeds.2020.02.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins All Children's Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL.
| | - Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Weihong Liang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Wei Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Institute for Clinical and Translational Research, St. Petersburg, FL
| | - George Dover
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ranjan J. Perera
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| |
Collapse
|
96
|
Dori M, Cavalli D, Lesche M, Massalini S, Alieh LHA, de Toledo BC, Khudayberdiev S, Schratt G, Dahl A, Calegari F. MicroRNA profiling of mouse cortical progenitors and neurons reveals miR-486-5p as a regulator of neurogenesis. Development 2020; 147:dev.190520. [PMID: 32273274 DOI: 10.1242/dev.190520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are short (∼22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over recent years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs expressed in a cell-specific manner in progenitor types of the developing mammalian cortex is still missing. Overcoming this limitation, here we exploited a double reporter mouse line previously validated by our group to allow the identification of the transcriptional signature of neurogenic commitment and provide the field with the complete atlas of miRNA expression in proliferating neural stem cells, neurogenic progenitors and newborn neurons during corticogenesis. By extending the currently known list of miRNAs expressed in the mouse brain by over twofold, our study highlights the power of cell type-specific analyses for the detection of transcripts that would otherwise be diluted out when studying bulk tissues. We further exploited our data by predicting putative miRNAs and validated the power of our approach by providing evidence for the involvement of miR-486 in brain development.
Collapse
Affiliation(s)
- Martina Dori
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Daniel Cavalli
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Simone Massalini
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Leila Haj Abdullah Alieh
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Beatriz Cardoso de Toledo
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Sharof Khudayberdiev
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Karl-von-Frisch-Strasse 2, 35043 Marburg, Germany
| | - Gerhard Schratt
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Karl-von-Frisch-Strasse 2, 35043 Marburg, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD - Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Fetcherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
97
|
Li F, Bai M, Xu J, Zhu L, Liu C, Duan R. Long-Term Exercise Alters the Profiles of Circulating Micro-RNAs in the Plasma of Young Women. Front Physiol 2020; 11:372. [PMID: 32477155 PMCID: PMC7233279 DOI: 10.3389/fphys.2020.00372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: The objective of this paper was to study the effects of long-term exercise on circulating microRNAs (miRNAs) in human plasma. Methods: Whole blood was collected from 10 female elite athletes with at least 5 years of training experience in a Synchronized Swimming Group (S group) and 15 female college students without regular exercise training (C group). Plasma miRNAs were then isolated, sequenced, and semi-quantified by the second-generation sequencing technology, and the results were analyzed by bioinformatics methods. Results: We found 380 differentially expressed miRNAs in the S group compared with the C group, among which 238 miRNAs were upregulated and 142 were downregulated. The top five abundant miRNAs in the 380 miRNAs of the S group are hsa-miR-451a, hsa-miR-486, hsa-miR-21-5p, hsa-miR-423-5p, and hsa-let-7b-5p. Muscle-specific/enriched miRNAs were not significantly different, except for miR-206 and miR-486. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, a large proportion of the differentially expressed miRNAs are targeted in cancer-related pathways, including proteoglycans in cancer and miRNAs in cancer and basal cell carcinoma. As the levels of circulating miRNAs (ci-miRNAs) are commonly known to be significantly deregulated in cancer patients, we further compared the levels of some well-studied miRNAs in different types of cancer patients with those in the S group and found that long-term exercise regulates the level of ci-miRNAs in an opposite direction to those in cancer patients. Conclusion: Long-term exercise significantly alters the profiles of plasma miRNAs in healthy young women. It may reduce the risk of certain types of cancers by regulating plasma miRNA levels.
Collapse
Affiliation(s)
- Fan Li
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Muwei Bai
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.,Department of Physical Education, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianfang Xu
- China Institute of Sport Science, Beijing, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
98
|
Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020; 8:323. [PMID: 32391340 PMCID: PMC7193099 DOI: 10.3389/fbioe.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Soraia Fernandes
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Jan Vrbsky
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Ece Ergir
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, VIC, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica, Rome, Italy
| | - Giancarlo Forte
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
99
|
Wu CH, Chen CY, Yeh CT, Lin KH. Radiosensitization of Hepatocellular Carcinoma through Targeting Radio-Associated MicroRNA. Int J Mol Sci 2020; 21:ijms21051859. [PMID: 32182776 PMCID: PMC7084923 DOI: 10.3390/ijms21051859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. For patients who are resistant to monotherapy, multimodal therapy is a basic oncologic principle that incorporates surgery, radiotherapy (RT), and chemotherapy providing survival benefits for patients with most types of cancer. Although liver has low tolerance for radiation, high-precision RT for local HCC minimizes the likelihood of radiation-induced liver disease (RILD) in noncancerous liver tissue. RT have several therapeutic benefits, including the down-staging of tumors to make them resectable and repression of metastasis. The DNA damage response (DDR) is a cellular response to irradiation (IR), including DNA repair of injured cells and induction of programmed cell death, thereby resulting in maintenance of cell homeostasis. Molecules that block the activity of proteins in DDR pathways have been found to enhance radiotherapeutic effects. These molecules include antibodies, kinase inhibitors, siRNAs and miRNAs. MicroRNAs (miRNAs) are short non-coding regulatory RNAs binding to the 3'-untranslated regions (3'-UTR) of the messenger RNAs (mRNAs) of target genes, regulating their translation and expression of proteins. Thus, miRNAs and their target genes constitute complicated interactive networks, which interact with other molecules during carcinogenesis. Due to their promising roles in carcinogenesis, miRNAs were shown to be the potential factors that mediated radiosensitivity and optimized outcomes of the combination of systemic therapy and radiotherapy.
Collapse
Affiliation(s)
- Cheng-Heng Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-2118263
| |
Collapse
|
100
|
Inzaghi E, Kistner A, Germani D, Deodati A, Vanpee M, Legnevall L, Berinder K, Cianfarani S. A prospective case-control study on miRNA circulating levels in subjects born small for gestational age (SGA) evaluated from childhood into young adulthood. PLoS One 2020; 15:e0228075. [PMID: 31978117 PMCID: PMC6980597 DOI: 10.1371/journal.pone.0228075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE microRNAs (miRNAs) associated with metabolic risk have never been extensively investigated in SGA subjects. The aim of the current study was to evaluate miRNAs in SGA and AGA subjects and their relationships with the metabolic status and growth. DESIGN AND METHODS A prospective longitudinal case-control study was performed in 23 SGA with postnatal catch-up growth and 27 AGA subjects evaluated at the age of 9 and 21 years. Circulating levels of miR-122-5p, miR-16-5p, miR-126-3p, and miR-486-5p were assessed by qPCR. RESULTS SGA subjects were shorter both at 9 and at 21 years. No significant differences in insulin like growth factors and metabolic profile were found with the exception of basal glycemia at 9 years. miRNA levels did not differ between SGA and AGA subjects, at 9 and 21 years. miR-16-5p and miR-126-3p levels were higher at 9 than at 21 years. In SGA subjects, miR-122-5p at 9 years was inversely related to adiponectin levels at 21 years and miR-486-5p at 9 years was inversely related to whole-body insulin sensitivity at 9 years and directly related to Hb1Ac at 21 years. Regression analyses showed no predictive value of miRNAs for growth parameters in neither SGA nor AGA subjects. CONCLUSIONS SGA with postnatal catch-up growth did not show any difference in metabolic risk markers or miRNA circulating levels compared to AGA controls in childhood and young adulthood. miR-122-5p during childhood could identify SGA subjects at higher risk of developing insulin resistance and, eventually, type 2 diabetes in adulthood but further studies are needed to confirm it.
Collapse
Affiliation(s)
- Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero, “Bambino Gesù” Children’s Hospital – Tor Vergata University, Rome, Italy
- * E-mail:
| | - Anna Kistner
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniela Germani
- Dipartimento di Medicina dei Sistemi, University of Rome Tor vergata, Rome, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero, “Bambino Gesù” Children’s Hospital – Tor Vergata University, Rome, Italy
| | - Mireille Vanpee
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lena Legnevall
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Katarina Berinder
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Patient Area Endocrinology and Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, “Bambino Gesù” Children’s Hospital – Tor Vergata University, Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|