51
|
The Effect of Ca 2+, Lobe-Specificity, and CaMKII on CaM Binding to Na V1.1. Int J Mol Sci 2018; 19:ijms19092495. [PMID: 30142967 PMCID: PMC6165294 DOI: 10.3390/ijms19092495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
Calmodulin (CaM) is well known as an activator of calcium/calmodulin-dependent protein kinase II (CaMKII). Voltage-gated sodium channels (VGSCs) are basic signaling molecules in excitable cells and are crucial molecular targets for nervous system agents. However, the way in which Ca2+/CaM/CaMKII cascade modulates NaV1.1 IQ (isoleucine and glutamine) domain of VGSCs remains obscure. In this study, the binding of CaM, its mutants at calcium binding sites (CaM12, CaM34, and CaM1234), and truncated proteins (N-lobe and C-lobe) to NaV1.1 IQ domain were detected by pull-down assay. Our data showed that the binding of Ca2+/CaM to the NaV1.1 IQ was concentration-dependent. ApoCaM (Ca2+-free form of calmodulin) bound to NaV1.1 IQ domain preferentially more than Ca2+/CaM. Additionally, the C-lobe of CaM was the predominant domain involved in apoCaM binding to NaV1.1 IQ domain. By contrast, the N-lobe of CaM was predominant in the binding of Ca2+/CaM to NaV1.1 IQ domain. Moreover, CaMKII-mediated phosphorylation increased the binding of Ca2+/CaM to NaV1.1 IQ domain due to one or several phosphorylation sites in T1909, S1918, and T1934 of NaV1.1 IQ domain. This study provides novel mechanisms for the modulation of NaV1.1 by the Ca2+/CaM/CaMKII axis. For the first time, we uncover the effect of Ca2+, lobe-specificity and CaMKII on CaM binding to NaV1.1.
Collapse
|
52
|
Moehring F, Waas M, Keppel TR, Rathore D, Cowie AM, Stucky CL, Gundry RL. Quantitative Top-Down Mass Spectrometry Identifies Proteoforms Differentially Released during Mechanical Stimulation of Mouse Skin. J Proteome Res 2018; 17:2635-2648. [PMID: 29925238 PMCID: PMC6195672 DOI: 10.1021/acs.jproteome.8b00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanotransduction refers to the processes whereby mechanical stimuli are converted into electrochemical signals that allow for the sensation of our surrounding environment through touch. Despite its fundamental role in our daily lives, the molecular and cellular mechanisms of mechanotransduction are not yet well-defined. Previous data suggest that keratinocytes may release factors that activate or modulate cutaneous sensory neuron terminals, including small molecules, lipids, peptides, proteins, and oligosaccharides. This study presents a first step toward identifying soluble mediators of keratinocyte-sensory neuron communication by evaluating the potential for top-down mass spectrometry to identify proteoforms released during 1 min of mechanical stimulation of mouse skin from naı̈ve animals. Overall, this study identified 47 proteoforms in the secretome of mouse hind paw skin, of which 14 were differentially released during mechanical stimulation, and includes proteins with known and previously unknown relevance to mechanotransduction. Finally, this study outlines a bioinformatic workflow that merges output from two complementary analysis platforms for top-down data and demonstrates the utility of this workflow for integrating quantitative and qualitative data.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theodore R. Keppel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deepali Rathore
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ashley M. Cowie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
53
|
Shaik NA, Awan ZA, Verma PK, Elango R, Banaganapalli B. Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms. J Cell Biochem 2018; 119:8233-8248. [PMID: 29932249 DOI: 10.1002/jcb.26834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
The life-threatening group of irregular cardiac rhythmic disorders also known as Cardiac Arrhythmias (CA) are caused by mutations in highly conserved Calmodulin (CALM/CaM) genes. Herein, we present a multidimensional approach to diagnose changes in phenotypic, stability, and Ca2+ ion binding properties of CA-causing mutations. Mutation pathogenicity was determined by diverse computational machine learning approaches. We further modeled the mutations in 3D protein structure and analyzed residue level phenotype plasticity. We have also examined the influence of torsion angles, number of H-bonds, and free energy dynamics on the stability, near-native simulation dynamic potential of residue fluctuations in protein structures, Ca2+ ion binding potentials, of CaM mutants. Our study recomends to use M-CAP method for measuring the pathogenicity of CA causing CaM variants. Interestingly, most CA-causing variants we analyzed, exists in either third (V/H-96, S/I-98, V-103) or fourth (G/V-130, V/E/H-132, H-134, P-136, G-141, and L-142) EF-hands located in carboxyl domains of the CaM molecule. We observed that the minor structural fluctuations caused by these variants are likely tolerable owing to the highly flexible nature of calmodulin's globular domains. However, our molecular docking results supports that these variants disturb the affinity of CaM toward Ca2+ ions and corroborate previous findings from functional studies. Taken together, these computational findings can explain the molecular reasons for subtle changes in structure, flexibility, and stability aspects of mutant CaM molecule. Our comprehensive molecular scanning approach demonstrates the utility of computational methods in quick preliminary screening of CA- CaM mutations before undertaking time consuming and complicated functional laboratory assays.
Collapse
Affiliation(s)
- Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant K Verma
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
54
|
Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ. A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure 2018; 26:683-694.e3. [PMID: 29606593 PMCID: PMC5932218 DOI: 10.1016/j.str.2018.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The function of the human cardiac sodium channel (NaV1.5) is modulated by the Ca2+ sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca2+-dependent manner to two sites in the intracellular loop that is critical for inactivation of NaV1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length NaV1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.
Collapse
Affiliation(s)
- Christopher N Johnson
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA.
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Matthew K Thompson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrew M Glazer
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
55
|
Winquist RJ, Cohen CJ. Integration of biological/pathophysiological contexts to help clarify genotype-phenotype mismatches in monogenetic diseases. Childhood epilepsies associated with SCN2A as a case study. Biochem Pharmacol 2018; 151:252-262. [DOI: 10.1016/j.bcp.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
56
|
Abnormal changes in voltage-gated sodium channels subtypes Na V 1.1, Na V 1.2, Na V 1.3, Na V 1.6 and CaM/CaMKII pathway in low-grade astrocytoma. Neurosci Lett 2018; 674:148-155. [DOI: 10.1016/j.neulet.2018.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
|
57
|
Zhou X, Zhang Y, Tang D, Liang S, Chen P, Tang C, Liu Z. A Chimeric NaV1.8 Channel Expression System Based on HEK293T Cell Line. Front Pharmacol 2018; 9:337. [PMID: 29686617 PMCID: PMC5900924 DOI: 10.3389/fphar.2018.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Among the nine voltage-gated sodium channel (NaV) subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively), which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
58
|
Bokhovchuk FM, Bate N, Kovalevskaya NV, Goult BT, Spronk CAEM, Vuister GW. The Structural Basis of Calcium-Dependent Inactivation of the Transient Receptor Potential Vanilloid 5 Channel. Biochemistry 2018; 57:2623-2635. [DOI: 10.1021/acs.biochem.7b01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fedir M. Bokhovchuk
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Neil Bate
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Nadezda V. Kovalevskaya
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Benjamin T. Goult
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Chris A. E. M. Spronk
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
- JSC Spronk, Vilnius, Lithuania
| | - Geerten W. Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
59
|
Affiliation(s)
- Ferenc Zsila
- Biomolecular Self-Assembly Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; 1117 Budapest Hungary
| |
Collapse
|
60
|
Gardill BR, Rivera-Acevedo RE, Tung CC, Okon M, McIntosh LP, Van Petegem F. The voltage-gated sodium channel EF-hands form an interaction with the III-IV linker that is disturbed by disease-causing mutations. Sci Rep 2018; 8:4483. [PMID: 29540853 PMCID: PMC5852250 DOI: 10.1038/s41598-018-22713-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated sodium channels (NaV) are responsible for the rapid depolarization of many excitable cells. They readily inactivate, a process where currents diminish after milliseconds of channel opening. They are also targets for a multitude of disease-causing mutations, many of which have been shown to affect inactivation. A cluster of disease mutations, linked to Long-QT and Brugada syndromes, is located in a C-terminal EF-hand like domain of NaV1.5, the predominant cardiac sodium channel isoform. Previous studies have suggested interactions with the III-IV linker, a cytosolic element directly involved in inactivation. Here we validate and map the interaction interface using isothermal titration calorimetry (ITC) and NMR spectroscopy. We investigated the impact of various disease mutations on the stability of the domain, and found that mutations that cause misfolding of the EF-hand domain result in hyperpolarizing shifts in the steady-state inactivation curve. Conversely, mutations in the III-IV linker that disrupt the interaction with the EF-hand domain also result in large hyperpolarization shifts, supporting the interaction between both elements in intact channels. Disrupting the interaction also causes large late currents, pointing to a dual role of the interaction in reducing the population of channels entering inactivation and in stabilizing the inactivated state.
Collapse
Affiliation(s)
- Bernd R Gardill
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ricardo E Rivera-Acevedo
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
61
|
Abdelsayed M, Ruprai M, Ruben PC. The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 2018; 8:3643. [PMID: 29483621 PMCID: PMC5827758 DOI: 10.1038/s41598-018-22033-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed syndrome SCN5a mutation underpinning both Brugada syndrome type 1 (BrS1) and Long-QT syndrome type 3 (LQT3). The charge reversal mutant enhances the late sodium current (INa) passed by the cardiac voltage-gated sodium channel (NaV1.5), delaying cardiac repolarization. Exercise-induced triggers, like elevated temperature and cytosolic calcium, exacerbate E1784K late INa. In this study, we tested the effects of Ranolazine, the late INa blocker, on voltage-dependent and kinetic properties of E1784K at elevated temperature and cytosolic calcium. We used whole-cell patch clamp to measure INa from wild type and E1784K channels expressed in HEK293 cells. At elevated temperature, Ranolazine attenuated gain-of-function in E1784K by decreasing late INa, hyperpolarizing steady-state fast inactivation, and increasing use-dependent inactivation. Both elevated temperature and cytosolic calcium hampered the capacity of Ranolazine to suppress E1784K late INa. In-silico action potential (AP) simulations were done using a modified O'Hara Rudy (ORd) cardiac model. Simulations showed that Ranolazine failed to shorten AP duration, an effect augmented at febrile temperatures. The drug-channel interaction is clearly affected by external triggers, as reported previously with ischemia. Determining drug efficacy under various physiological states in SCN5a cohorts is crucial for accurate management of arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Manpreet Ruprai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
62
|
Abdelsayed M, Peters CH, Ruben PC. Arrhythmogenic triggers associated with Sudden Cardiac Death. Channels (Austin) 2018; 12:76-77. [PMID: 28976236 PMCID: PMC5972799 DOI: 10.1080/19336950.2017.1388057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mena Abdelsayed
- a Department of Biomedical Physiology and Kinesiology , Simon Fraser University , Burnaby , British Columbia , Canada
| | - Colin H Peters
- a Department of Biomedical Physiology and Kinesiology , Simon Fraser University , Burnaby , British Columbia , Canada
| | - Peter C Ruben
- a Department of Biomedical Physiology and Kinesiology , Simon Fraser University , Burnaby , British Columbia , Canada
| |
Collapse
|
63
|
Weile J, Sun S, Cote AG, Knapp J, Verby M, Mellor JC, Wu Y, Pons C, Wong C, van Lieshout N, Yang F, Tasan M, Tan G, Yang S, Fowler DM, Nussbaum R, Bloom JD, Vidal M, Hill DE, Aloy P, Roth FP. A framework for exhaustively mapping functional missense variants. Mol Syst Biol 2017; 13:957. [PMID: 29269382 PMCID: PMC5740498 DOI: 10.15252/msb.20177908] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although we now routinely sequence human genomes, we can confidently identify only a fraction of the sequence variants that have a functional impact. Here, we developed a deep mutational scanning framework that produces exhaustive maps for human missense variants by combining random codon mutagenesis and multiplexed functional variation assays with computational imputation and refinement. We applied this framework to four proteins corresponding to six human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small ubiquitin‐like modifier), TPK1 (thiamin pyrophosphokinase), and CALM1/2/3 (three genes encoding the protein calmodulin). The resulting maps recapitulate known protein features and confidently identify pathogenic variation. Assays potentially amenable to deep mutational scanning are already available for 57% of human disease genes, suggesting that DMS could ultimately map functional variation for all human disease genes.
Collapse
Affiliation(s)
- Jochen Weile
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Song Sun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Atina G Cote
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Knapp
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marta Verby
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joseph C Mellor
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,SeqWell Inc, Boston, MA, USA
| | - Yingzhou Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Cassandra Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Fan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Murat Tasan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shan Yang
- Invitae Corp., San Francisco, CA, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada .,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
64
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
65
|
Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD. Calmodulin regulates Ca v3 T-type channels at their gating brake. J Biol Chem 2017; 292:20010-20031. [PMID: 28972185 PMCID: PMC5723990 DOI: 10.1074/jbc.m117.807925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I-II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I-II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | | | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | - Michael Piazza
- Departments of Chemistry, Waterloo, Ontario N2L 3G1, Canada
| | - Wendy Guan
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | | | | | - J David Spafford
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
66
|
Mangold KE, Brumback BD, Angsutararux P, Voelker TL, Zhu W, Kang PW, Moreno JD, Silva JR. Mechanisms and models of cardiac sodium channel inactivation. Channels (Austin) 2017; 11:517-533. [PMID: 28837385 PMCID: PMC5786193 DOI: 10.1080/19336950.2017.1369637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a "feet-on-the-door" approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.
Collapse
Affiliation(s)
- Kathryn E. Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brittany D. Brumback
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Taylor L. Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan D. Moreno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
67
|
Burel S, Coyan FC, Lorenzini M, Meyer MR, Lichti CF, Brown JH, Loussouarn G, Charpentier F, Nerbonne JM, Townsend RR, Maier LS, Marionneau C. C-terminal phosphorylation of Na V1.5 impairs FGF13-dependent regulation of channel inactivation. J Biol Chem 2017; 292:17431-17448. [PMID: 28882890 PMCID: PMC5655519 DOI: 10.1074/jbc.m117.787788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels are key regulators of myocardial excitability, and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent alterations in NaV1.5 channel inactivation are emerging as a critical determinant of arrhythmias in heart failure. However, the global native phosphorylation pattern of NaV1.5 subunits associated with these arrhythmogenic disorders and the associated channel regulatory defects remain unknown. Here, we undertook phosphoproteomic analyses to identify and quantify in situ the phosphorylation sites in the NaV1.5 proteins purified from adult WT and failing CaMKIIδc-overexpressing (CaMKIIδc-Tg) mouse ventricles. Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. We then tested the hypothesis that phosphorylation at these two sites impairs fibroblast growth factor 13 (FGF13)-dependent regulation of NaV1.5 channel inactivation. Whole-cell voltage-clamp analyses in HEK293 cells demonstrated that FGF13 increases NaV1.5 channel availability and decreases late Na+ current, two effects that were abrogated with NaV1.5 mutants mimicking phosphorylation at both sites. Additional co-immunoprecipitation experiments revealed that FGF13 potentiates the binding of calmodulin to NaV1.5 and that phosphomimetic mutations at both sites decrease the interaction of FGF13 and, consequently, of calmodulin with NaV1.5. Together, we have identified two novel native phosphorylation sites in the C terminus of NaV1.5 that impair FGF13-dependent regulation of channel inactivation and may contribute to CaMKIIδc-dependent arrhythmogenic disorders in failing hearts.
Collapse
Affiliation(s)
- Sophie Burel
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France
| | - Fabien C Coyan
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France
| | - Maxime Lorenzini
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France
| | | | - Cheryl F Lichti
- the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Joan H Brown
- the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636, and
| | - Gildas Loussouarn
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France
| | - Flavien Charpentier
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France
| | | | - R Reid Townsend
- Internal Medicine, and
- Cell Biology and Physiology, Washington University Medical School, St. Louis, Missouri 63110
| | - Lars S Maier
- the Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Céline Marionneau
- From the l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes 44007, France,
| |
Collapse
|
68
|
Mahling R, Kilpatrick AM, Shea MA. Backbone resonance assignments of complexes of human voltage-dependent sodium channel Na V1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:297-303. [PMID: 28823028 PMCID: PMC5791537 DOI: 10.1007/s12104-017-9767-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Human voltage-gated sodium channel NaV1.2 has a single pore-forming α-subunit and two transmembrane β-subunits. Expressed primarily in the brain, NaV1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13C,15N- CaM (CaMC) bound to an unlabeled peptide with the sequence of rat NaV1.2 IQ motif showed that apo CaMC (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaMC. However, we could not monitor the NaV1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaMN)) was determined. To distinguish contributions of CaMN and CaMC, we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13C,15N-labeled peptide with the sequence of human NaV1.2 IQ motif (NaV1.2IQp) bound to apo 13C,15N-CaM or apo 13C,15N-CaMC. Comparing the assignments of apo CaM in complex with NaV1.2IQp to those of free apo CaM showed that residues within CaMC were significantly perturbed, while residues within CaMN were essentially unchanged. The chemical shifts of residues in NaV1.2IQp and in the C-domain of CaM were nearly identical regardless of whether CaMN was covalently linked to CaMC. This suggests that CaMN does not influence apo CaM binding to NaV1.2IQp.
Collapse
Affiliation(s)
- Ryan Mahling
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242-1109, USA
| | - Adina M Kilpatrick
- Department of Physics and Astronomy, Drake University, Des Moines, IA, 50311-4516, USA
| | - Madeline A Shea
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242-1109, USA.
| |
Collapse
|
69
|
Abdelsayed M, Baruteau A, Gibbs K, Sanatani S, Krahn AD, Probst V, Ruben PC. Differential calcium sensitivity in Na V 1.5 mixed syndrome mutants. J Physiol 2017; 595:6165-6186. [PMID: 28734073 PMCID: PMC5599485 DOI: 10.1113/jp274536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. ABSTRACT Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, NaV 1.5. Mutants in NaV 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome NaV 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of NaV 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the NaV 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500 nm. In silico, action potential (AP) model simulations were performed using a modified O'Hara Rudy model. Elevated cytosolic calcium attenuates the late sodium current in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Elevated cytosolic calcium restores steady-state slow inactivation (SSSI) to the WT-form in Q1909R, but depolarized SSSI in E1784K. Our AP simulations showed a frequency-dependent reduction of AP duration in ∆KPQ, 1795insD and Q1909R carriers. In E1784K, AP duration is relatively prolonged at both low and high heart rates, resulting in a sodium overload. Cellular perturbations during exercise may affect BrS1/LQT3 patients differently depending on their individual genetic signature. Thus, exercise may be therapeutic or may be an arrhythmogenic trigger in some SCN5a patients.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada
| | - Alban‐Elouen Baruteau
- LIRYC Institute, Division of Pediatric Cardiology, Haut‐Lévèque HospitalBordeaux UniversityBordeauxFrance
| | - Karen Gibbs
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Shubhayan Sanatani
- Department of Pediatrics, University of British ColumbiaBC Children's HospitalVancouverCanada
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Vincent Probst
- L'institut du thorax, Inserm 1087Université de NantesNantesFrance
| | - Peter C. Ruben
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada
| |
Collapse
|
70
|
Peters CH, Yu A, Zhu W, Silva JR, Ruben PC. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation. PLoS One 2017; 12:e0184605. [PMID: 28898267 PMCID: PMC5595308 DOI: 10.1371/journal.pone.0184605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alec Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
71
|
Sun J, MacKinnon R. Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome. Cell 2017; 169:1042-1050.e9. [PMID: 28575668 PMCID: PMC5562354 DOI: 10.1016/j.cell.2017.05.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023]
Abstract
KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.
Collapse
Affiliation(s)
- Ji Sun
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
72
|
Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na V1.2. Biophys Chem 2017; 224:1-19. [PMID: 28343066 PMCID: PMC5503752 DOI: 10.1016/j.bpc.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Ryan Mahling
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Zesen Lin
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Mark Stephen Miller
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Dagan C Marx
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Jesse B Yoder
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Elaine H Kim
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Kristin M Tefft
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Brett C Waite
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Michael D Feldkamp
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States.
| |
Collapse
|
73
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a chloride channel located in the apical membrane of epithelia cells. The cAMP signaling pathway and protein phosphorylation are known to be primary controlling mechanisms for channel function. In this study, we present an alternative activation pathway that involves calcium-activated calmodulin binding of the intrinsically disordered regulatory (R) region of CFTR. Beyond their potential therapeutic value, these data provide insights into the intersection of calcium signaling with control of ion homeostasis and the ways in which the local CFTR microdomain organizes itself. Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.
Collapse
|
74
|
Yan H, Wang C, Marx SO, Pitt GS. Calmodulin limits pathogenic Na+ channel persistent current. J Gen Physiol 2017; 149:277-293. [PMID: 28087622 PMCID: PMC5299624 DOI: 10.1085/jgp.201611721] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanisms controlling “persistent” current through voltage-gated Na+ channels are poorly understood. Yan et al. show that apocalmodulin binding to the intracellular C-terminal domain limits persistent Na+ flux and accelerates inactivation across the voltage-gated Na+ channel family. Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.
Collapse
Affiliation(s)
- Haidun Yan
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
75
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
76
|
Marques-Carvalho MJ, Oppermann J, Muñoz E, Fernandes AS, Gabant G, Cadene M, Heinemann SH, Schönherr R, Morais-Cabral JH. Molecular Insights into the Mechanism of Calmodulin Inhibition of the EAG1 Potassium Channel. Structure 2016; 24:1742-1754. [PMID: 27618660 DOI: 10.1016/j.str.2016.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022]
Abstract
The human EAG1 potassium channel belongs to the superfamily of KCNH voltage-gated potassium channels that have roles in cardiac repolarization and neuronal excitability. EAG1 is strongly inhibited by Ca2+/calmodulin (CaM) through a mechanism that is not understood. We determined the binding properties of CaM with each one of three previously identified binding sites (BDN, BDC1, and BDC2), analyzed binding to protein stretches that include more than one site, and determined the effect of neighboring globular domains on the binding properties. The determination of the crystal structure of CaM bound to BDC2 shows the channel fragment interacting with only the C lobe of calmodulin and adopting an unusual bent conformation. Based on this structure and on a functional and biochemical analysis of mutants, we propose a model for the mechanism of inhibition whereby the local conformational change induced by CaM binding at BDC2 lies at the basis of channel modulation.
Collapse
Affiliation(s)
- Maria João Marques-Carvalho
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Johannes Oppermann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Eva Muñoz
- Software 4 Science Developments, 15782 Santiago de Compostela, Spain
| | - Andreia S Fernandes
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, CNRS UPR430, 45071 Orléans, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, CNRS UPR430, 45071 Orléans, France
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Roland Schönherr
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - João Henrique Morais-Cabral
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
77
|
Kumar S, Mazumder M, Gupta N, Chattopadhyay S, Gourinath S. Crystal structure of Arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding. FEBS Lett 2016; 590:3029-39. [PMID: 27500568 DOI: 10.1002/1873-3468.12349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 11/10/2022]
Abstract
Calmodulin (CaM) is a Ca(2+) sensor that participates in several cellular signaling cascades by interacting with various targets, including DNA. It has been shown that Arabidopsis thaliana CaM7 (AtCaM7) interacts with Z-box DNA and functions as a transcription factor [Kushwaha R et al. (2008) Plant Cell 20, 1747-1759; Abbas N et al. (2014) Plant Cell 26, 1036-1052]. The crystal structure of AtCaM7, and a model of the AtCAM7-Z-box complex suggest that Arg-127 determines the DNA-binding ability by forming crucial interactions with the guanine base. We validated the model using biolayer interferometry, which confirmed that AtCaM7 interacts with Z-box DNA with high affinity. In contrast, the AtCaM2/3/5 isoform does not show any binding, although it differs from AtCaM7 by only a single residue.
Collapse
Affiliation(s)
- Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
78
|
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Curr Mol Pharmacol 2016; 8:188-205. [PMID: 25966688 DOI: 10.2174/1874467208666150507110359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
79
|
DeFalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, Yoshioka K. Multiple Calmodulin-Binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. THE PLANT CELL 2016; 28:1738-51. [PMID: 27335451 PMCID: PMC4981125 DOI: 10.1105/tpc.15.00870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Ca(2+) signaling is critical to plant immunity; however, the channels involved are poorly characterized. Cyclic nucleotide-gated channels (CNGCs) are nonspecific, Ca(2+)-permeable cation channels. Plant CNGCs are hypothesized to be negatively regulated by the Ca(2+) sensor calmodulin (CaM), and previous work has focused on a C-terminal CaM-binding domain (CaMBD) overlapping with the cyclic nucleotide binding domain of plant CNGCs. However, we show that the Arabidopsis thaliana isoform CNGC12 possesses multiple CaMBDs at cytosolic N and C termini, which is reminiscent of animal CNGCs and unlike any plant channel studied to date. Biophysical characterizations of these sites suggest that apoCaM interacts with a conserved isoleucine-glutamine (IQ) motif in the C terminus of the channel, while Ca(2+)/CaM binds additional N- and C-terminal motifs with different affinities. Expression of CNGC12 with a nonfunctional N-terminal CaMBD constitutively induced programmed cell death, providing in planta evidence of allosteric CNGC regulation by CaM. Furthermore, we determined that CaM binding to the IQ motif was required for channel function, indicating that CaM can both positively and negatively regulate CNGC12. These data indicate a complex mode of plant CNGC regulation by CaM, in contrast to the previously proposed competitive ligand model, and suggest exciting parallels between plant and animal channels.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Christopher B Marshall
- Department of Medical Biophysics, Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Kim Munro
- Protein Function Discovery Facility, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
80
|
Pitt GS, Lee SY. Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins. Protein Sci 2016; 25:1573-84. [PMID: 27262167 DOI: 10.1002/pro.2960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022]
Abstract
In cardiac and skeletal myocytes, and in most neurons, the opening of voltage-gated Na(+) channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels' intercellular C-termini with auxiliary proteins and/or Ca(2+) . The molecular and structural details for how Ca(2+) and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca(2+) acts directly upon the NaV channel or through interacting proteins, such as the Ca(2+) binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C-termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca(2+) affects NaV function, and how altered Ca(2+) -dependent or FHF-mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10065
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
81
|
Jones BL, Smith SM. Calcium-Sensing Receptor: A Key Target for Extracellular Calcium Signaling in Neurons. Front Physiol 2016; 7:116. [PMID: 27065884 PMCID: PMC4811949 DOI: 10.3389/fphys.2016.00116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.
Collapse
Affiliation(s)
- Brian L. Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
| | - Stephen M. Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
82
|
Peters CH, Abdelsayed M, Ruben PC. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:77-88. [DOI: 10.1016/j.pbiomolbio.2015.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 01/16/2023]
|
83
|
Lin J, van den Bedem H, Brunger AT, Wilson MA. Atomic resolution experimental phase information reveals extensive disorder and bound 2-methyl-2,4-pentanediol in Ca(2+)-calmodulin. Acta Crystallogr D Struct Biol 2016; 72:83-92. [PMID: 26894537 PMCID: PMC4756614 DOI: 10.1107/s2059798315021609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/14/2015] [Indexed: 11/10/2022] Open
Abstract
Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca(2+)-CaM, but no assignment of these features has been made. In addition, Ca(2+)-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 Å resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca(2+)-CaM. Density-modified electron-density maps enabled the accurate assignment of Ca(2+)-CaM main-chain and side-chain disorder. These experimental maps also substantiate complex disorder models that were automatically built using low-contour features of model-phased electron density. Furthermore, experimental electron-density maps reveal that 2-methyl-2,4-pentanediol (MPD) is present in the C-terminal domain, mediates a lattice contact between N-terminal domains and may occupy the N-terminal binding pocket. The majority of the crystal structures of target-free Ca(2+)-CaM have been derived from crystals grown using MPD as a precipitant, and thus MPD is likely to be bound in functionally critical regions of Ca(2+)-CaM in most of these structures. The adventitious binding of MPD helps to explain differences between the Ca(2+)-CaM crystal and solution structures and is likely to favor more open conformations of the EF-hands in the crystal.
Collapse
Affiliation(s)
- Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Beadle Center, Lincoln, NE 68588, USA
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Axel T. Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University and Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Beadle Center, Lincoln, NE 68588, USA
| |
Collapse
|
84
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
85
|
Chen-Izu Y, Shaw RM, Pitt GS, Yarov-Yarovoy V, Sack JT, Abriel H, Aldrich RW, Belardinelli L, Cannell MB, Catterall WA, Chazin WJ, Chiamvimonvat N, Deschenes I, Grandi E, Hund TJ, Izu LT, Maier LS, Maltsev VA, Marionneau C, Mohler PJ, Rajamani S, Rasmusson RL, Sobie EA, Clancy CE, Bers DM. Na+ channel function, regulation, structure, trafficking and sequestration. J Physiol 2015; 593:1347-60. [PMID: 25772290 DOI: 10.1113/jphysiol.2014.281428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/02/2014] [Indexed: 12/19/2022] Open
Abstract
This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.
Collapse
Affiliation(s)
- Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, USA; Department of Biomedical Engineering, University of California, Davis, USA; Department of Internal Medicine/Cardiology, University of California, Davis, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Alberdi A, Gomis-Perez C, Bernardo-Seisdedos G, Alaimo A, Malo C, Aldaregia J, Lopez-Robles C, Areso P, Butz E, Wahl-Schott C, Villarroel A. Uncoupling PIP2-calmodulin regulation of Kv7.2 channels by an assembly destabilizing epileptogenic mutation. J Cell Sci 2015; 128:4014-23. [PMID: 26359296 DOI: 10.1242/jcs.176420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity.
Collapse
Affiliation(s)
- Araitz Alberdi
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carolina Gomis-Perez
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ganeko Bernardo-Seisdedos
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alessandro Alaimo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Covadonga Malo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juncal Aldaregia
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carlos Lopez-Robles
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Pilar Areso
- Departament de Farmacología, UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Elisabeth Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Alvaro Villarroel
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
87
|
Abdelsayed M, Peters CH, Ruben PC. Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. J Physiol 2015; 593:4201-23. [PMID: 26131924 DOI: 10.1113/jp270139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiac arrhythmias are often associated with mutations in SCN5A the gene that encodes the cardiac paralogue of the voltage-gated sodium channel, NaV 1.5. The NaV 1.5 mutants R1193Q and E1784K give rise to both long QT and Brugada syndromes. Various environmental factors, including temperature, may unmask arrhythmia. We sought to determine whether temperature might be an arrhythmogenic trigger in these two mixed syndrome mutants. Whole-cell patch clamp was used to measure the biophysical properties of NaV 1.5 WT, E1784K and R1193Q mutants. Recordings were performed using Chinese hamster ovary (CHOk1) cells transiently transfected with the NaV 1.5 α subunit (WT, E1784K, or R1193Q), β1 subunit, and eGFP. The channels' voltage-dependent and kinetic properties were measured at three different temperatures: 10ºC, 22ºC, and 34ºC. The E1784K mutant is more thermosensitive than either WT or R1193Q channels. When temperature is elevated from 22°C to 34°C, there is a greater increase in late INa and use-dependent inactivation in E1784K than in WT or R1193Q. However, when temperature is lowered to 10°C, the two mutants show a decrease in channel availability. Action potential modelling using Q10 fit values, extrapolated to physiological and febrile temperatures, show a larger transmural voltage gradient in E1784K compared to R1193Q and WT with hyperthermia. The E1784K mutant is more thermosensitive than WT or R1193Q channels. This enhanced thermosensitivity may be a mechanism for arrhythmogenesis in patients with E1784K sodium channels.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
88
|
Dick IE, Limpitikul WB, Niu J, Banerjee R, Issa JB, Ben-Johny M, Adams PJ, Kang PW, Lee SR, Sang L, Yang W, Babich J, Zhang M, Bazazzi H, Yue NC, Tomaselli GF. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels (Austin) 2015; 10:20-32. [PMID: 26176690 DOI: 10.1080/19336950.2015.1051272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca(2+) signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field.
Collapse
Affiliation(s)
- Ivy E Dick
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Worawan B Limpitikul
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jacqueline Niu
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Rahul Banerjee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - John B Issa
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manu Ben-Johny
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Paul J Adams
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,b Kwantlen Polytechnic University ; Surrey , BC Canada
| | - Po Wei Kang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Shin Rong Lee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Lingjie Sang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Wanjun Yang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jennifer Babich
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manning Zhang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Hojjat Bazazzi
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Nancy C Yue
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Gordon F Tomaselli
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,c Division of Cardiology; Department of Medicine ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| |
Collapse
|
89
|
Potet F, Beckermann TM, Kunic JD, George AL. Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels. Circ Arrhythm Electrophysiol 2015; 8:933-41. [PMID: 26022185 DOI: 10.1161/circep.115.002760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mutations of the cardiac voltage-gated sodium channel (SCN5A gene encoding voltage-gated sodium channel [NaV1.5]) cause congenital long-QT syndrome type 3 (LQT3). Most NaV1.5 mutations associated with LQT3 promote a mode of sodium channel gating in which some channels fail to inactivate, contributing to increased late sodium current (INaL), which is directly responsible for delayed repolarization and prolongation of the QT interval. LQT3 patients have highest risk of arrhythmia during sleep or during periods of slow heart rate. During exercise (high heart rate), there is elevated steady-state intracellular free calcium (Ca(2+)) concentration. We hypothesized that higher levels of intracellular Ca(2+) may lower arrhythmia risk in LQT3 subjects through effects on INaL. METHODS AND RESULTS We tested this idea by examining the effects of varying intracellular Ca(2+) concentrations on the level of INaL in cells expressing a typical LQT3 mutation, delKPQ, and another SCN5A mutation, R225P. We found that elevated intracellular Ca(2+) concentration significantly reduced INaL conducted by mutant channels but not wild-type channels. This attenuation of INaL in delKPQ expressing cells by Ca(2+) was not affected by the CaM kinase II inhibitor KN-93 but was partially attenuated by truncating the C-terminus of the channel. CONCLUSIONS We conclude that intracellular Ca(2+) contributes to the regulation of INaL conducted by NaV1.5 mutants and propose that, during excitation-contraction coupling, elevated intracellular Ca(2+) suppresses mutant channel INaL and protects cells from delayed repolarization. These findings offer a plausible explanation for the lower arrhythmia risk in LQT3 subjects during fast heart rates.
Collapse
Affiliation(s)
- Franck Potet
- From the Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (F.P., A.L.G.); and Department of Medicine (F.P., J.D.K., A.L.G.) and Department of Pharmacology (T.M.B., A.L.G.), Vanderbilt University, Nashville, TN.
| | - Thomas M Beckermann
- From the Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (F.P., A.L.G.); and Department of Medicine (F.P., J.D.K., A.L.G.) and Department of Pharmacology (T.M.B., A.L.G.), Vanderbilt University, Nashville, TN
| | - Jennifer D Kunic
- From the Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (F.P., A.L.G.); and Department of Medicine (F.P., J.D.K., A.L.G.) and Department of Pharmacology (T.M.B., A.L.G.), Vanderbilt University, Nashville, TN
| | - Alfred L George
- From the Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (F.P., A.L.G.); and Department of Medicine (F.P., J.D.K., A.L.G.) and Department of Pharmacology (T.M.B., A.L.G.), Vanderbilt University, Nashville, TN
| |
Collapse
|
90
|
Gabelli SB, Boto A, HalperinKuhns V, Bianchet MA, Farinelli F, Aripirala S, Yoder J, Jakoncic J, Tomaselli GF, Amzel LM. Regulation of the NaV1.5 cytoplasmic domain by calmodulin. Nat Commun 2014; 5:5126. [PMID: 25370050 PMCID: PMC4223872 DOI: 10.1038/ncomms6126] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated sodium channels (Na(v)) underlie the rapid upstroke of action potentials in excitable tissues. Binding of channel-interactive proteins is essential for controlling fast and long-term inactivation. In the structure of the complex of the carboxy-terminal portion of Na(v)1.5 (CTNa(v)1.5) with calmodulin (CaM)-Mg(2+) reported here, both CaM lobes interact with the CTNa(v)1.5. On the basis of the differences between this structure and that of an inactivated complex, we propose that the structure reported here represents a non-inactivated state of the CTNa(v), that is, the state that is poised for activation. Electrophysiological characterization of mutants further supports the importance of the interactions identified in the structure. Isothermal titration calorimetry experiments show that CaM binds to CTNa(v)1.5 with high affinity. The results of this study provide unique insights into the physiological activation and the pathophysiology of Na(v) channels.
Collapse
Affiliation(s)
- Sandra B. Gabelli
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Bldg. 844, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agedi Boto
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
| | - Victoria HalperinKuhns
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Bldg. 844, Baltimore, MD 21205, USA
| | - Mario A. Bianchet
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Federica Farinelli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Bldg. 844, Baltimore, MD 21205, USA
| | - Srinivas Aripirala
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
| | - Jesse Yoder
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
| | - Jean Jakoncic
- Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973
| | - Gordon F. Tomaselli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Bldg. 844, Baltimore, MD 21205, USA
| | - L. Mario Amzel
- Structural Enzymology and Thermodynamics Group. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 608, Baltimore, Maryland 21205, USA
| |
Collapse
|
91
|
Horvath B, Bers DM. The late sodium current in heart failure: pathophysiology and clinical relevance. ESC Heart Fail 2014; 1:26-40. [PMID: 28834665 DOI: 10.1002/ehf2.12003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
Large and growing body of data suggest that an increased late sodium current (INa,late ) can have a significant pathophysiological role in heart failure and other heart diseases. The first goal of this article is to describe how INa,late functions under physiological circumstances. The second goal is to show the wide range of cellular mechanisms that can increase INa,late in cardiac disease, and also to describe how the up-regulated INa,late contributes to the pathophysiology of heart failure. The final section of the article discusses the possible use of INa,late -modifying drugs in heart failure, on the basis of experimental and preclinical data.
Collapse
Affiliation(s)
- Balazs Horvath
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
92
|
Structural analyses of Ca²⁺/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nat Commun 2014; 5:4896. [PMID: 25232683 PMCID: PMC4170523 DOI: 10.1038/ncomms5896] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022] Open
Abstract
Ca2+ regulates voltage-gated Na+ (NaV) channels and perturbed Ca2+ regulation of NaV function is associated with epilepsy syndromes, autism, and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca2+ affects NaV channel function. Here, we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor, and Ca2+/calmodulin (Ca2+/CaM). These structures rule out direct binding of Ca2+ to the NaV CTD, and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca2+ could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.
Collapse
|
93
|
Conservation of Ca2+/calmodulin regulation across Na and Ca2+ channels. Cell 2014; 157:1657-70. [PMID: 24949975 DOI: 10.1016/j.cell.2014.04.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated Na and Ca2+ channels comprise distinct ion channel superfamilies, yet the carboxy tails of these channels exhibit high homology, hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail interactions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+ modulation that differs among reports, challenging attempts at unified understanding. Here, by rapid Ca2+ photorelease onto Na channels, we reset this view of Na channel regulation. For cardiac-muscle channels (NaV1.5), reported effects from which most mechanistic proposals derive, we observe no Ca2+ modulation. Conversely, for skeletal-muscle channels (NaV1.4), we uncover fast Ca2+ regulation eerily similar to that of Ca2+ channels. Channelopathic myotonia mutations halve NaV1.4 Ca2+ regulation, and transplanting the NaV1.4 carboxy tail onto Ca2+ channels recapitulates Ca2+ regulation. Thus, we argue for the persistence and physiological relevance of an ancient Ca2+ regulatory module across Na and Ca2+ channels.
Collapse
|
94
|
Payandeh J, Minor DL. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 2014; 427:3-30. [PMID: 25158094 DOI: 10.1016/j.jmb.2014.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
95
|
Wang X, Boyken SE, Hu J, Xu X, Rimer RP, Shea MA, Shaw AS, Andreotti AH, Huang YH. Calmodulin and PI(3,4,5)P₃ cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Sci Signal 2014; 7:ra74. [PMID: 25097034 DOI: 10.1126/scisignal.2005147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Precise regulation of the kinetics and magnitude of Ca(2+) signaling enables this signal to mediate diverse responses, such as cell migration, differentiation, vesicular trafficking, and cell death. We showed that the Ca(2+)-binding protein calmodulin (CaM) acted in a positive feedback loop to potentiate Ca(2+) signaling downstream of the Tec kinase family member Itk. Using NMR (nuclear magnetic resonance), we mapped CaM binding to two loops adjacent to the lipid-binding pocket within the Itk pleckstrin homology (PH) domain. The Itk PH domain bound synergistically to Ca(2+)/CaM and the lipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], such that binding to Ca(2+)/CaM enhanced the binding to PI(3,4,5)P3 and vice versa. Disruption of CaM binding attenuated Itk recruitment to the membrane and diminished release of Ca(2+) from the endoplasmic reticulum. Moreover, disruption of this feedback loop abrogated Itk-dependent production of the proinflammatory cytokine IL-17A (interleukin-17A) by CD4(+) T cells. Additionally, we found that CaM associated with PH domains from other proteins, indicating that CaM may regulate other PH domain-containing proteins.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott E Boyken
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jiancheng Hu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaolu Xu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P Rimer
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrey S Shaw
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy H Andreotti
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yina H Huang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA. Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
96
|
Kursula P. The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 2014; 46:2295-304. [PMID: 25005783 DOI: 10.1007/s00726-014-1795-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 12/16/2022]
Abstract
Calmodulin (CaM) is a highly conserved protein and a crucial calcium sensor in eukaryotes. CaM is a regulator of hundreds of diverse target proteins. A wealth of studies has been carried out on the structure of CaM, both in the unliganded form and in complexes with target proteins and peptides. The outcome of these studies points toward a high propensity to attain various conformational states, depending on the binding partner. The purpose of this review is to provide examples of different conformations of CaM trapped in the crystal state. In addition, comparisons are made to corresponding studies in solution. The different CaM conformations in crystal structures are also compared based on the positions of the metal ions bound to their EF hands, in terms of distances, angles, and pseudo-torsion angles. Possible caveats and artifacts in CaM crystal structures are discussed, as well as the possibilities of trapping biologically relevant CaM conformations in the crystal state.
Collapse
Affiliation(s)
- Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland,
| |
Collapse
|
97
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
98
|
Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol 2014; 144:105-14. [PMID: 24935744 PMCID: PMC4076516 DOI: 10.1085/jgp.201311140] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/21/2014] [Indexed: 11/20/2022] Open
Abstract
The calcium-binding protein calmodulin (CaM) directly binds to membrane transport proteins to modulate their function in response to changes in intracellular calcium concentrations. Because CaM recognizes and binds to a wide variety of target sequences, identifying CaM-binding sites is difficult, requiring intensive sequence gazing and extensive biochemical analysis. Here, we describe a straightforward computational script that rapidly identifies canonical CaM-binding motifs within an amino acid sequence. Analysis of the target sequences from high resolution CaM-peptide structures using this script revealed that CaM often binds to sequences that have multiple overlapping canonical CaM-binding motifs. The addition of a positive charge discriminator to this meta-analysis resulted in a tool that identifies potential CaM-binding domains within a given sequence. To allow users to search for CaM-binding motifs within a protein of interest, perform the meta-analysis, and then compare the results to target peptide-CaM structures deposited in the Protein Data Bank, we created a website and online database. The availability of these tools and analyses will facilitate the design of CaM-related studies of ion channels and membrane transport proteins.
Collapse
Affiliation(s)
- Karen Mruk
- Department of Biochemistry and Molecular Pharmacology and Programs in Chemical Biology and Neuroscience, and
| | - Brian M Farley
- Department of Biochemistry and Molecular Pharmacology and Programs in Chemical Biology and Neuroscience, and
| | - Alan W Ritacco
- Department of Scientific and Research Computing, University of Massachusetts Medical School, Worcester, MA 01605
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology and Programs in Chemical Biology and Neuroscience, and
| |
Collapse
|
99
|
Brath U, Lau K, Van Petegem F, Erdélyi M. Mapping the sevoflurane-binding sites of calmodulin. Pharmacol Res Perspect 2014; 2:5. [PMID: 25505574 PMCID: PMC4186402 DOI: 10.1002/prp2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022] Open
Abstract
General anesthetics, with sevoflurane (SF) being the first choice inhalational anesthetic agent, provide reversible, broad depressor effects on the nervous system yet have a narrow margin of safety. As characterization of low-affinity binding interactions of volatile substances is exceptionally challenging with the existing methods, none of the numerous cellular targets proposed as chief protagonists in anesthesia could yet be confirmed. The recognition that most critical functions modulated by volatile anesthetics are under the control of intracellular Ca2+ concentration, which in turn is primarily regulated by calmodulin (CaM), motivated us for characterization of the SF–CaM interaction. Solution NMR (Nuclear Magnetic Resonance) spectroscopy was used to identify SF-binding sites using chemical shift displacement, NOESY and heteronuclear Overhauser enhancement spectroscopy (HOESY) experiments. Binding affinities were measured using ITC (isothermal titration calorimetry). SF binds to both lobes of (Ca2+)4-CaM with low mmol/L affinity whereas no interaction was observed in the absence of Ca2+. SF does not affect the calcium binding of CaM. The structurally closely related SF and isoflurane are shown to bind to the same clefts. The SF-binding clefts overlap with the binding sites of physiologically relevant ion channels and bioactive small molecules, but the binding affinity suggests it could only interfere with very weak CaM targets.
Collapse
Affiliation(s)
- Ulrika Brath
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg SE-412 96, Gothenburg, Sweden
| | - Kelvin Lau
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, British Columbia, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, British Columbia, V6T 1Z3, Canada
| | - Máté Erdélyi
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg SE-412 96, Gothenburg, Sweden
| |
Collapse
|
100
|
Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective? PLoS One 2013; 8:e81063. [PMID: 24324661 PMCID: PMC3855693 DOI: 10.1371/journal.pone.0081063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 12/24/2022] Open
Abstract
Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.
Collapse
|