51
|
Ji D, Gao W, Zhang J, Morino Y, Zhou L, Yu P, Li Y, Sun J, Ge B, Tang G, Sun Y, Wang Y. Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:289-300. [PMID: 27505262 DOI: 10.1016/j.scitotenv.2016.07.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Understanding the formation of tropospheric ozone (O3) and secondary particulates is essential for controlling secondary pollution in megacities. Intensive observations were conducted to investigate the evolution of O3, nitrate (NO3-), sulfate (SO42-) and oxygenated organic aerosols ((OOAs), a proxy for secondary organic aerosols) and the interactions between O3, NOx oxidation products (NOz) and OOA in urban Beijing in August 2012. The O3 concentrations exhibited similar variations at both the urban and urban background sites in Beijing. Regarding the O3 profile, the O3 concentrations increased with increasing altitude. The peaks in O3 on the days exceeding the 1h or 8h O3 standards (polluted days) were substantially wider than those on normal days. Significant increases in the NOz mixing ratio (i.e., NOy - NOx) were observed between the morning and early afternoon, which were consistent with the increasing oxidant level. A discernable NO3- peak was also observed in the morning on the polluted days, and this peak was attributed to vertical mixing and strong photochemical production. In addition, a SO42- peak at 18:00 was likely caused by a combination of local generation and regional transport. The OOA concentration cycle exhibited two peaks at approximately 10:00 and 19:00. The OOA concentrations were correlated well with SO42- ([OOA]=0.55×[SO42-]+2.1, r2=0.69) because they both originated from secondary transformations that were dependent on the ambient oxidization level and relative humidity. However, the slope between OOA and SO42- was only 0.35, which was smaller than the slope observed for all of the OOA and SO42- data, when the RH ranged from 40 to 50%. In addition, a photochemical episode was selected for analysis. The results showed that regional transport played an important role in the evolution of the investigated secondary pollutants. The measured OOA and Ox concentrations were well correlated at the daily scale, whereas the hourly OOA and Ox concentrations were insignificantly correlated in urban Beijing. The synoptic situation and the differences in the VOC oxidation contributing to O3 and SOAs may have resulted in the differences among the correlations between OOA and Ox at different time scale. We calculated OOA production rates using the photochemical age (defined as -log10(NOx/NOy)) in urban plumes. The CO-normalized OOA concentration increased with increasing photochemical age, with production rates ranging from 1.1 to 8.5μgm-3ppm-1h-1 for the plume from the NCP.
Collapse
Affiliation(s)
- Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junke Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu Morino
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Luxi Zhou
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Pengfei Yu
- National Oceanic and Atmospheric Administration, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Ying Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Jiaren Sun
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Baozhu Ge
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
52
|
Abstract
Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.
Collapse
|
53
|
Abstract
The energy flows in Earth's natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth's atmosphere.
Collapse
|
54
|
Song YC, Haddrell AE, Bzdek BR, Reid JP, Bannan T, Topping DO, Percival C, Cai C. Measurements and Predictions of Binary Component Aerosol Particle Viscosity. J Phys Chem A 2016; 120:8123-8137. [DOI: 10.1021/acs.jpca.6b07835] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young Chul Song
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Allen E. Haddrell
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Thomas Bannan
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - David O. Topping
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
- National
Centre for Atmospheric Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Carl Percival
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Chen Cai
- The
Institute of Chemical Physics, Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
55
|
Malecha KT, Nizkorodov SA. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9990-7. [PMID: 27547987 DOI: 10.1021/acs.est.6b02313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigated the photodegradation of secondary organic aerosol (SOA) particles by near-UV radiation and photoproduction of oxygenated volatile organic compounds (OVOCs) from various types of SOA. We used a smog chamber to generate SOA from α-pinene, guaiacol, isoprene, tetradecane, and 1,3,5-trimethylbenzene under high-NOx, low-NOx, or ozone oxidation conditions. The SOA particles were collected on a substrate, and the resulting material was exposed to several mW of near-UV radiation (λ ∼ 300 nm) from a light-emitting diode. Various OVOCs, including acetic acid, formic acid, acetaldehyde, and acetone were observed during photodegradation, and their SOA-mass-normalized fluxes were estimated with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). All the SOA, with the exception of guaiacol SOA, emitted OVOCs upon irradiation. Based on the measured OVOC emission rates, we estimate that SOA particles would lose at least ∼1% of their mass over a 24 h period during summertime conditions in Los Angeles, California. This condensed-phase photochemical process may produce a few Tg/year of gaseous formic acid, the amount comparable to its primary sources. The condensed-phase SOA photodegradation processes could therefore measurably affect the budgets of both particulate and gaseous atmospheric organic compounds on a global scale.
Collapse
Affiliation(s)
- Kurtis T Malecha
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
56
|
Price HC, Mattsson J, Murray BJ. Sucrose diffusion in aqueous solution. Phys Chem Chem Phys 2016; 18:19207-16. [PMID: 27364512 PMCID: PMC5044753 DOI: 10.1039/c6cp03238a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022]
Abstract
The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle.
Collapse
Affiliation(s)
- Hannah C. Price
- School of Earth and Environment , University of Leeds , Leeds , UK .
| | - Johan Mattsson
- School of Physics and Astronomy , University of Leeds , Leeds , UK .
| | | |
Collapse
|
57
|
Berkemeier T, Ammann M, Mentel TF, Pöschl U, Shiraiwa M. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6334-42. [PMID: 27219077 DOI: 10.1021/acs.est.6b00961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.
Collapse
Affiliation(s)
- Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute , Villigen 5232, Switzerland
| | - Thomas F Mentel
- Institute of Energy and Climate Research , IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| |
Collapse
|
58
|
Steimer SS, Berkemeier T, Gilgen A, Krieger UK, Peter T, Shiraiwa M, Ammann M. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Phys Chem Chem Phys 2016; 17:31101-9. [PMID: 26536455 DOI: 10.1039/c5cp04544d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface.
Collapse
Affiliation(s)
- Sarah S Steimer
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, 5232 Villigen PSI, Switzerland. and ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128 Mainz, Germany
| | - Anina Gilgen
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Ulrich K Krieger
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Thomas Peter
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Manabu Shiraiwa
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128 Mainz, Germany
| | - Markus Ammann
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
59
|
Rindelaub JD, Craig RL, Nandy L, Bondy AL, Dutcher CS, Shepson PB, Ault AP. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity. J Phys Chem A 2016; 120:911-7. [PMID: 26745214 DOI: 10.1021/acs.jpca.5b12699] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.
Collapse
Affiliation(s)
- Joel D Rindelaub
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Rebecca L Craig
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Lucy Nandy
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Amy L Bondy
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Paul B Shepson
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric, and Planetary Sciences, Purdue University , West Lafayette, Indiana 47907, United States.,Purdue Climate Change Research Center , West Lafayette, Indiana 47907, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
60
|
Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proc Natl Acad Sci U S A 2016; 113:1516-21. [PMID: 26811465 DOI: 10.1073/pnas.1508108113] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.
Collapse
|
61
|
Trevitt AJ, Goulay F. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection. Phys Chem Chem Phys 2016; 18:5867-82. [DOI: 10.1039/c5cp06389b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase radical reactions of CN and CH with small hydrocarbons are overviewed with emphasis on isomer-resolved product detection.
Collapse
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Fabien Goulay
- Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
62
|
Athanasiadis A, Fitzgerald C, Davidson NM, Giorio C, Botchway SW, Ward AD, Kalberer M, Pope FD, Kuimova MK. Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Phys Chem Chem Phys 2016; 18:30385-30393. [DOI: 10.1039/c6cp05674a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The microscopic viscosity of squalene-based organic aerosol undergoing atmospherically relevant oxidation is investigated.
Collapse
Affiliation(s)
| | | | - Nicholas M. Davidson
- School of Geography
- Earth and Environmental Science
- University of Birmingham
- Edgbaston
- UK
| | - Chiara Giorio
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Stanley W. Botchway
- Central Laser Facility
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Oxon OX11 0QX
- UK
| | - Andrew D. Ward
- Central Laser Facility
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Oxon OX11 0QX
- UK
| | | | - Francis D. Pope
- School of Geography
- Earth and Environmental Science
- University of Birmingham
- Edgbaston
- UK
| | | |
Collapse
|
63
|
Hinks ML, Brady MV, Lignell H, Song M, Grayson JW, Bertram AK, Lin P, Laskin A, Laskin J, Nizkorodov SA. Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Phys Chem Chem Phys 2016; 18:8785-93. [DOI: 10.1039/c5cp05226b] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work explores the effect of environmental conditions on the photodegradation rates of atmospherically relevant, photolabile, organic molecules embedded in a film of viscous secondary organic material (SOM).
Collapse
Affiliation(s)
| | | | - Hanna Lignell
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Mijung Song
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - James W. Grayson
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Allan K. Bertram
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Peng Lin
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Alexander Laskin
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Julia Laskin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | | |
Collapse
|
64
|
Pye HOT, Luecken DJ, Xu L, Boyd CM, Ng NL, Baker KR, Ayres BR, Bash JO, Baumann K, Carter WPL, Edgerton E, Fry JL, Hutzell WT, Schwede DB, Shepson PB. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14195-203. [PMID: 26544021 DOI: 10.1021/acs.est.5b03738] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.
Collapse
Affiliation(s)
- Havala O T Pye
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Deborah J Luecken
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Lu Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christopher M Boyd
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Nga L Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Kirk R Baker
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Benjamin R Ayres
- Department of Chemistry, Reed College , Portland, Oregon 97202, United States
| | - Jesse O Bash
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Karsten Baumann
- Atmospheric Research and Analysis, Inc., Cary, North Carolina 27513, United States
| | - William P L Carter
- College of Engineering, Center for Environmental Research and Technology, University of California at Riverside , Riverside, California 92512, United States
| | - Eric Edgerton
- Atmospheric Research and Analysis, Inc., Cary, North Carolina 27513, United States
| | - Juliane L Fry
- Department of Chemistry, Reed College , Portland, Oregon 97202, United States
| | - William T Hutzell
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Donna B Schwede
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Paul B Shepson
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
65
|
Li YJ, Liu P, Gong Z, Wang Y, Bateman AP, Bergoend C, Bertram AK, Martin ST. Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13264-74. [PMID: 26465059 DOI: 10.1021/acs.est.5b03392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The reactivity of secondary organic material (SOM) of variable viscosity, ranging from nonliquid to liquid physical states, was studied. The SOM, produced in aerosol form from terpenoid and aromatic precursor species, was reacted with ammonia at variable relative humidity (RH). The ammonium-to-organic mass ratio (MNH4+/MOrg) increased monotonically from <5% RH to a limiting value at a threshold RH, implicating a transition from particle reactivity limited by diffusion at low RH to one limited by other factors at higher RH. For the studied size distributions and reaction times, the transition corresponded to a diffusivity above 10-17.5 ± 0.5 m2 s-1. The threshold RH values for the transition were <5% RH for isoprene-derived SOM, 35-45% RH for SOM derived from α-pinene, toluene, m-xylene, and 1,3,5-trimethylbenzene, and >90% for β-caryophyllene-derived SOM. The transition RH for reactivity differed in all cases from the transition RH of a nonliquid to a liquid state. For instance, for α-pinene-derived SOM the transition for chemical reactivity of 35-45% RH can be compared to the nonliquid to liquid transition of 65-90% RH. These differences imply that chemical transport models of atmospheric chemistry should not use the SOM liquid to nonliquid phase transition as one-to-one surrogates of SOM reactivity.
Collapse
Affiliation(s)
- Yong Jie Li
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau , Avenida da Universidade, Taipa, Macau, China
| | - Pengfei Liu
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Zhaoheng Gong
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Yan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts 02115, United States
| | - Adam P Bateman
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Clara Bergoend
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Energy and Environment, National Institute of Applied Science of Lyon , Villeurbanne 69100, France
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
66
|
Hosny NA, Fitzgerald C, Vyšniauskas A, Athanasiadis A, Berkemeier T, Uygur N, Pöschl U, Shiraiwa M, Kalberer M, Pope FD, Kuimova MK. Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chem Sci 2015; 7:1357-1367. [PMID: 29910892 PMCID: PMC5975791 DOI: 10.1039/c5sc02959g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/07/2015] [Indexed: 12/22/2022] Open
Abstract
We report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity.
Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.
Collapse
Affiliation(s)
- N A Hosny
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - C Fitzgerald
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK .
| | - A Vyšniauskas
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - A Athanasiadis
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - T Berkemeier
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - N Uygur
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - U Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - M Shiraiwa
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - M Kalberer
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK .
| | - F D Pope
- School of Geography , Earth and Environmental Science , University of Birmingham , Edgbaston , B15 2TT , UK .
| | - M K Kuimova
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| |
Collapse
|
67
|
Mai H, Shiraiwa M, Flagan RC, Seinfeld JH. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11485-11491. [PMID: 26339802 DOI: 10.1021/acs.est.5b02587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.
Collapse
Affiliation(s)
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | | | | |
Collapse
|
68
|
Robinson ES, Saleh R, Donahue NM. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9724-32. [PMID: 26158746 DOI: 10.1021/acs.est.5b01692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.
Collapse
Affiliation(s)
- Ellis Shipley Robinson
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rawad Saleh
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
69
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
70
|
Arangio AM, Slade JH, Berkemeier T, Pöschl U, Knopf DA, Shiraiwa M. Multiphase Chemical Kinetics of OH Radical Uptake by Molecular Organic Markers of Biomass Burning Aerosols: Humidity and Temperature Dependence, Surface Reaction, and Bulk Diffusion. J Phys Chem A 2015; 119:4533-44. [DOI: 10.1021/jp510489z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea M. Arangio
- Multiphase
Chemistry Department, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| | - Jonathan H. Slade
- Institute
for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric
Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| | - Daniel A. Knopf
- Institute
for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric
Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| |
Collapse
|
71
|
Wilson J, Imre D, Beránek J, Shrivastava M, Zelenyuk A. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:243-249. [PMID: 25494490 DOI: 10.1021/es505331d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.
Collapse
Affiliation(s)
- Jacqueline Wilson
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | | | | | | |
Collapse
|
72
|
Hohaus T, Gensch I, Kimmel J, Worsnop DR, Kiendler-Scharr A. Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs. Phys Chem Chem Phys 2015; 17:14796-804. [DOI: 10.1039/c5cp01608h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measured particle phase concentrations of semi-volatile organic compounds exceed those predicted by absorption equilibrium gas-particle partitioning by orders of magnitude.
Collapse
|
73
|
Zhao Y, Wingen LM, Perraud V, Greaves J, Finlayson-Pitts BJ. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Phys Chem Chem Phys 2015; 17:12500-14. [DOI: 10.1039/c5cp01171j] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigate the particle formation mechanism from ozonolysis, and find that it is highly dependent on the structure of the alkene.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Lisa M. Wingen
- Department of Chemistry
- University of California
- Irvine
- USA
| | | | - John Greaves
- Department of Chemistry
- University of California
- Irvine
- USA
| | | |
Collapse
|
74
|
Rickards AMJ, Song YC, Miles REH, Preston TC, Reid JP. Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol. Phys Chem Chem Phys 2015; 17:10059-73. [DOI: 10.1039/c4cp05383d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive assessment of the accuracy with which water transport in viscous aerosol can be measured and predicted is provided.
Collapse
Affiliation(s)
| | | | | | - Thomas C. Preston
- School of Chemistry
- University of Bristol
- Bristol
- UK
- Department of Atmospheric and Oceanic Sciences and Department of Chemistry
| | | |
Collapse
|
75
|
Bateman AP, Bertram AK, Martin ST. Hygroscopic Influence on the Semisolid-to-Liquid Transition of Secondary Organic Materials. J Phys Chem A 2014; 119:4386-95. [DOI: 10.1021/jp508521c] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Allan K. Bertram
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia BC V6T 1Z4, Canada
| | | |
Collapse
|
76
|
Wang B, O’Brien RE, Kelly ST, Shilling JE, Moffet RC, Gilles MK, Laskin A. Reactivity of Liquid and Semisolid Secondary Organic Carbon with Chloride and Nitrate in Atmospheric Aerosols. J Phys Chem A 2014; 119:4498-508. [DOI: 10.1021/jp510336q] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bingbing Wang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354 United States
| | - Rachel E. O’Brien
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Stephen T. Kelly
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John E. Shilling
- Atmospheric
Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan C. Moffet
- Department
of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Mary K. Gilles
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Laskin
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354 United States
| |
Collapse
|
77
|
Julin J, Winkler PM, Donahue NM, Wagner PE, Riipinen I. Near-unity mass accommodation coefficient of organic molecules of varying structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12083-9. [PMID: 25260072 PMCID: PMC4351623 DOI: 10.1021/es501816h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Atmospheric aerosol particles have a significant effect on global climate, air quality, and consequently human health. Condensation of organic vapors is a key process in the growth of nanometer-sized particles to climate relevant sizes. This growth is very sensitive to the mass accommodation coefficient α, a quantity describing the vapor uptake ability of the particles, but knowledge on α of atmospheric organics is lacking. In this work, we have determined α for four organic molecules with diverse structural properties: adipic acid, succinic acid, naphthalene, and nonane. The coefficients are studied using molecular dynamics simulations, complemented with expansion chamber measurements. Our results are consistent with α = 1 (indicating nearly perfect accommodation), regardless of the molecular structural properties, the phase state of the bulk condensed phase, or surface curvature. The results highlight the need for experimental techniques capable of resolving the internal structure of nanoparticles to better constrain the accommodation of atmospheric organics.
Collapse
Affiliation(s)
- Jan Julin
- Department
of Applied Environmental Science and Bolin Centre for
Climate Research, Stockholm University, SE-10691 Stockholm, Sweden
- E-mail: . Tel.: +46 8 674
7549. Fax +46 8 674 7325
| | - Paul M. Winkler
- Fakultät
für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, 5000
Forbes Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Paul E. Wagner
- Fakultät
für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
| | - Ilona Riipinen
- Department
of Applied Environmental Science and Bolin Centre for
Climate Research, Stockholm University, SE-10691 Stockholm, Sweden
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, 5000
Forbes Ave, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
78
|
Abstract
This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts.
Collapse
|
79
|
Dette HP, Qi M, Schröder DC, Godt A, Koop T. Glass-Forming Properties of 3-Methylbutane-1,2,3-tricarboxylic Acid and Its Mixtures with Water and Pinonic Acid. J Phys Chem A 2014; 118:7024-33. [DOI: 10.1021/jp505910w] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hans P. Dette
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Mian Qi
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - David C. Schröder
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Thomas Koop
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
80
|
Power RM, Reid JP. Probing the micro-rheological properties of aerosol particles using optical tweezers. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:074601. [PMID: 24994710 DOI: 10.1088/0034-4885/77/7/074601] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10(12) Pa s, whilst the frequencies of the normal modes of the oscillations of the particle can be used to infer surface properties. We will review the use of optical tweezers for studying the viscosity of aerosol particles and discuss the potential use of this micro-rheological tool for probing the fundamental concepts of phase, thermodynamic equilibrium and metastability.
Collapse
Affiliation(s)
- Rory M Power
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | |
Collapse
|
81
|
Kidd C, Perraud V, Wingen LM, Finlayson-Pitts BJ. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene. Proc Natl Acad Sci U S A 2014; 111:7552-7. [PMID: 24821796 PMCID: PMC4040618 DOI: 10.1073/pnas.1322558111] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Airborne particles are important for public health, visibility, and climate. Predicting their concentrations, effects, and responses to control strategies requires accurate models of their formation and growth in air. This is challenging, as a large fraction is formed by complex reactions of volatile organic compounds, generating secondary organic aerosol (SOA), which grows to sizes important for visibility, climate, and deposition in the lung. Growth of SOA is particularly sensitive to the phase/viscosity of the particles and remains poorly understood. We report studies using a custom-designed impactor with a germanium crystal as the impaction surface to study SOA formed from the ozonolysis of α-pinene at relative humidities (RHs) up to 87% at 297 ± 2 K (which corresponds to a maximum RH of 70-86% inside the impactor). The impaction patterns provide insight into changes in phase/viscosity as a function of RH. Attenuated total reflectance-Fourier transform infrared spectroscopy and aerosol mass spectrometry provide simultaneous information on composition changes with RH. The results show that as the RH at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an increasing contribution from carboxylic acids and a decreasing contribution from higher molecular mass products. In contrast, SOA that is formed dry and subsequently humidified remains solid to high RH. The results of these studies have significant implications for modeling the growth, aging, and ultimately, lifetime of SOA in the atmosphere.
Collapse
Affiliation(s)
- Carla Kidd
- Department of Chemistry, University of California, Irvine, CA 92697
| | | | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, CA 92697
| | | |
Collapse
|
82
|
Reed Harris AE, Ervens B, Shoemaker RK, Kroll JA, Rapf RJ, Griffith EC, Monod A, Vaida V. Photochemical Kinetics of Pyruvic Acid in Aqueous Solution. J Phys Chem A 2014; 118:8505-16. [DOI: 10.1021/jp502186q] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Allison E. Reed Harris
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| | - Barbara Ervens
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- Chemical
Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Richard K. Shoemaker
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| | - Jay A. Kroll
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| | - Rebecca J. Rapf
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| | - Elizabeth C. Griffith
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| | - Anne Monod
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- Aix Marseille Université, CNRS, LCE FRE 3416, 13331 Marseille, France
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
- CIRES, University of Colorado, UCB 215, Boulder, Colorado 80309, United States,
| |
Collapse
|
83
|
Zhou S, Shiraiwa M, McWhinney RD, Pöschl U, Abbatt JPD. Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss 2014; 165:391-406. [PMID: 24601014 DOI: 10.1039/c3fd00030c] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potential for aerosol physical properties, such as phase, morphology and viscosity/ diffusivity, to affect particle reactivity remains highly uncertain. We report here a study of the effect of bulk diffusivity of polycyclic aromatic hydrocarbons (PAHs) in secondary organic aerosol (SOA) on the kinetics of the heterogeneous reaction of particle-borne benzo[a]pyrene (BaP) with ozone. The experiments were performed by coating BaP-ammonium sulfate particles with multilayers of SOA formed from ozonolysis of alpha-pinene, and by subsequently investigating the kinetics of BaP loss via reaction with excess ozone using an aerosol flow tube coupled to an Aerodyne Aerosol Mass Spectrometer (AMS). All reactions exhibit pseudo-first order kinetics and are empirically well described by a Langmuir-Hinshelwood (L-H) mechanism. The results show that under dry conditions (RH < 5%) diffusion through the SOA coating can lead to significant mass transfer constraints on the kinetics, with behavior between that previously observed by our group for solid and liquid organic coats. The reactivity of BaP was enhanced at -50% relative humidity (RH) suggesting that water uptake lowers the viscosity of the SOA, hence lifting the mass transfer constraint to some degree. The kinetics for -70% RH were similar to results obtained without SOA coats, indicating that the SOA had sufficiently low viscosity and was sufficiently liquid-like that reactants could rapidly diffuse through the coat. A kinetic multi-layer model for aerosol surface and bulk chemistry was applied to simulate the kinetics, yielding estimates for the diffusion coefficients (in cm2 s(-1)) for BaP in alpha-pinene SOA of 2 x 10(-14), 8 x 10(-14) and > 1 x 10(-12) for dry (RH < 5%), 50% RH and 70% RH conditions, respectively. These results clearly indicate that slow diffusion of reactants through SOA coats under specific conditions can provide shielding from gas-phase oxidants, enabling the long-range atmospheric transport of toxic trace species, such as PAHs and persistent organic pollutants.
Collapse
Affiliation(s)
- Shouming Zhou
- Department of Chemistry, University of Toronto, Ontario, ON M5S 3H6, Canada.
| | - Manabu Shiraiwa
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robert D McWhinney
- Department of Chemistry, University of Toronto, Ontario, ON M5S 3H6, Canada
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Plank Institute for Chemistry, Mainz D-55128, Germany
| | | |
Collapse
|
84
|
Daumit KE, Kessler SH, Kroll JH. Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discuss 2014; 165:181-202. [PMID: 24601003 DOI: 10.1039/c3fd00045a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements of ambient organic aerosol indicate that a substantial fraction is highly oxidized and low in volatility, but this fraction is generally not reproduced well in either laboratory studies or models. Here we describe a new approach for constraining the viable precursors and formation pathways of highly oxidized organic aerosol, by starting with the oxidized product and considering the possible reverse reactions, using a set of simple chemical rules. The focus of this work is low-volatility oxidized organic aerosol (LV-OOA), determined from factor analysis of aerosol mass spectrometer data. The elemental composition and volatility of the aerosol enable the determination of its position in a three-dimensional chemical space (defined by H/C, O/C, and carbon number) and thus its average chemical formula. Consideration of possible back-reactions then defines the movement taken through this chemical space, constraining potential reaction pathways and precursors. This approach is taken for two highly oxidized aerosol types, an average of LV-OOA factors from ten field campaigns (average formula C10.5H13.4O7.3), and extremely oxidized LV-OOA (from Mexico City, average formula C10H12.1O8.4). Results suggest that potential formation pathways include functionalization reactions that add multiple functional groups per oxidation step, oligomerization of highly oxidized precursors, and, in some cases, fragmentation reactions that involve the loss of small, reduced fragments.
Collapse
Affiliation(s)
- Kelly E Daumit
- MIT Department of Civil and Environmental Engineering, Cambridge, MA, USA
| | - Sean H Kessler
- MIT Department of Chemical Engineering, Cambridge, MA, USA
| | - Jesse H Kroll
- MIT Department of Civil and Environmental Engineering, Cambridge, MA, USA
| |
Collapse
|
85
|
Xie M, Hannigan MP, Barsanti KC. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2835-2842. [PMID: 24517510 DOI: 10.1021/es405356n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples.
Collapse
Affiliation(s)
- Mingjie Xie
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado , Boulder, Colorado 80309, United States
| | | | | |
Collapse
|
86
|
Hawkins LN, Baril MJ, Sedehi N, Galloway MM, De Haan DO, Schill GP, Tolbert MA. Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2273-80. [PMID: 24428707 DOI: 10.1021/es4049626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for <1 h, but semisolid when dried for 20 h under ambient conditions. The RH required for flow (liquification) during humidification experiments followed the order methylglyoxal > glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.
Collapse
Affiliation(s)
- Lelia N Hawkins
- Department of Chemistry, Harvey Mudd College , 301 Platt Boulevard, Claremont, California 91711
| | | | | | | | | | | | | |
Collapse
|
87
|
Kidd C, Perraud V, Finlayson-Pitts BJ. New insights into secondary organic aerosol from the ozonolysis of α-pinene from combined infrared spectroscopy and mass spectrometry measurements. Phys Chem Chem Phys 2014; 16:22706-16. [DOI: 10.1039/c4cp03405h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thermograms of desorbing species from size-fractionated SOA.
Collapse
Affiliation(s)
- Carla Kidd
- Department of Chemistry
- University of California
- Irvine, USA
| | | | | |
Collapse
|
88
|
Robinson ES, Saleh R, Donahue NM. Organic Aerosol Mixing Observed by Single-Particle Mass Spectrometry. J Phys Chem A 2013; 117:13935-45. [DOI: 10.1021/jp405789t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ellis Shipley Robinson
- Center for Atmospheric Particle
Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rawad Saleh
- Center for Atmospheric Particle
Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Neil M. Donahue
- Center for Atmospheric Particle
Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
89
|
Ariya PA, Kos G, Mortazavi R, Hudson ED, Kanthasamy V, Eltouny N, Sun J, Wilde C. Bio-organic materials in the atmosphere and snow: measurement and characterization. Top Curr Chem (Cham) 2013; 339:145-99. [PMID: 23832685 DOI: 10.1007/128_2013_461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bio-organic chemicals are ubiquitous in the Earth's atmosphere and at air-snow interfaces, as well as in aerosols and in clouds. It has been known for centuries that airborne biological matter plays various roles in the transmission of disease in humans and in ecosystems. The implication of chemical compounds of biological origins in cloud condensation and in ice nucleation processes has also been studied during the last few decades, and implications have been suggested in the reduction of visibility, in the influence on oxidative potential of the atmosphere and transformation of compounds in the atmosphere, in the formation of haze, change of snow-ice albedo, in agricultural processes, and bio-hazards and bio-terrorism. In this review we critically examine existing observation data on bio-organic compounds in the atmosphere and in snow. We also review both conventional and cutting-edge analytical techniques and methods for measurement and characterisation of bio-organic compounds and specifically for microbial communities, in the atmosphere and snow. We also explore the link between biological compounds and nucleation processes. Due to increased interest in decreasing emissions of carbon-containing compounds, we also briefly review (in an Appendix) methods and techniques that are currently deployed for bio-organic remediation.
Collapse
Affiliation(s)
- P A Ariya
- Departments of Chemistry, Atmospheric and Oceanic Sciences, McGill University, 801 Sherbrooke St. W., Montreal, QC, Canada,
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Gustin MS, Huang J, Miller MB, Peterson C, Jaffe DA, Ambrose J, Finley BD, Lyman SN, Call K, Talbot R, Feddersen D, Mao H, Lindberg SE. Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7295-7306. [PMID: 23305532 DOI: 10.1021/es3039104] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
From August 22 to September 16, 2012, atmospheric mercury (Hg) was measured from a common manifold in the field during the Reno Atmospheric Mercury Intercomparison eXperiment. Data were collected using Tekran systems, laser induced fluorescence, and evolving new methods. The latter included the University of Washington-Detector for Oxidized Mercury, the University of Houston Mercury instrument, and a filter-based system under development by the University of Nevada-Reno. Good transmission of total Hg was found for the manifold. However, despite application of standard protocols and rigorous quality control, systematic differences in operationally defined forms of Hg were measured by the sampling systems. Concentrations of reactive Hg (RM) measured with new methods were at times 2-to-3-fold higher than that measured by Tekran system. The low RM recovery by the latter can be attributed to lack of collection as the system is currently configured. Concentrations measured by all instruments were influenced by their sampling location in-the-manifold and the instrument analytical configuration. On the basis of collective assessment of the data, we hypothesize that reactions forming RM were occurring in the manifold. Results provide a new framework for improved understanding of the atmospheric chemistry of Hg.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.
Collapse
|
92
|
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. Proc Natl Acad Sci U S A 2013; 110:11746-50. [PMID: 23818634 DOI: 10.1073/pnas.1307501110] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.
Collapse
|
93
|
Loza CL, Coggon MM, Nguyen TB, Zuend A, Flagan RC, Seinfeld JH. On the mixing and evaporation of secondary organic aerosol components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6173-6180. [PMID: 23725344 DOI: 10.1021/es400979k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.
Collapse
Affiliation(s)
- Christine L Loza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | | | | | | | |
Collapse
|
94
|
Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Phys Chem Chem Phys 2013; 15:11441-53. [PMID: 23748935 DOI: 10.1039/c3cp51595h] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
95
|
Saleh R, Donahue NM, Robinson AL. Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5588-5594. [PMID: 23647198 DOI: 10.1021/es400078d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most chemical transport models assume instantaneous equilibrium to represent gas-particle partitioning of semivolatile organic aerosol. This approach has been challenged by recent studies suggesting that secondary organic aerosol (SOA) cannot reach equilibrium within atmospheric time scales. The emergent hypothesis is that gas-particle partitioning rates are limited by diffusion within the condensed phase, which is thought to be "glassy." Here, we investigate the equilibration time scales of SOA formed from α-pinene ozonolysis by measuring the dynamic response to a modest step-change in temperature. Upon heating, equilibrium is disturbed, and the particles evaporate to restore equilibrium at the new temperature, which is attained when evaporation ceases. The SOA was formed at 10 °C and then heated to near room temperature (30 °C) so that the phase state (viscosity) of the condensed-phase after heating is similar to how it would be in the atmosphere. Experiments were performed in both a thermodenuder, with SOA loading of 350 μg/m(3), and in a smog chamber, with SOA loading of 2-12 μg/m(3). Both experiments show, contrary to previous findings, that the SOA achieves equilibrium with dynamic responses consistent with a mass accommodation coefficient of order 0.1. For typical atmospheric conditions, this translates into equilibration time scales on the order of minutes to tens of minutes, supporting the use of equilibrium partitioning in chemical transport models.
Collapse
Affiliation(s)
- Rawad Saleh
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | |
Collapse
|
96
|
Renbaum-Wolff L, Grayson JW, Bateman AP, Kuwata M, Sellier M, Murray BJ, Shilling JE, Martin ST, Bertram AK. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity. Proc Natl Acad Sci U S A 2013; 110:8014-9. [PMID: 23620520 PMCID: PMC3657821 DOI: 10.1073/pnas.1219548110] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a "bead-mobility" technique and a "poke-flow" technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293-295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.
Collapse
Affiliation(s)
- Lindsay Renbaum-Wolff
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - James W. Grayson
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Adam P. Bateman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Mikinori Kuwata
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Mathieu Sellier
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John E. Shilling
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352; and
| | - Scot T. Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Allan K. Bertram
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
97
|
Laskin J, Laskin A, Nizkorodov SA. New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2012.752904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
98
|
Aregahegn KZ, Nozière B, George C. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols. Faraday Discuss 2013; 165:123-34. [DOI: 10.1039/c3fd00044c] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Abramson E, Imre D, Beránek J, Wilson J, Zelenyuk A. Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys Chem Chem Phys 2013; 15:2983-91. [DOI: 10.1039/c2cp44013j] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
100
|
Power RM, Simpson SH, Reid JP, Hudson AJ. The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chem Sci 2013. [DOI: 10.1039/c3sc50682g] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|