51
|
Wei M, McKitrick TR, Mehta AY, Gao C, Jia N, McQuillan AM, Heimburg-Molinaro J, Sun L, Cummings RD. Novel Reversible Fluorescent Glycan Linker for Functional Glycomics. Bioconjug Chem 2019; 30:2897-2908. [PMID: 31600064 DOI: 10.1021/acs.bioconjchem.9b00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To aid in generating complex and diverse natural glycan libraries for functional glycomics, more efficient and reliable methods are needed to derivatize glycans. Here we present our development of a reversible, cleavable bifunctional linker 3-(methoxyamino)propylamine (MAPA). As the fluorenylmethyloxycarbonate (Fmoc) version (F-MAPA), it is highly fluorescent and efficiently derivatizes free reducing glycans to generate closed-ring derivatives that preserve the structural integrity of glycans. A library of glycans were derivatized and used to generate a covalent glycan microarray using N-hydroxysuccinimide derivatization. The array was successfully interrogated by a variety of lectins and antibodies, demonstrating the importance of closed-ring chemistry. The glycan derivatization was also performed at large scale using milligram quantities of glycans and excess F-MAPA, and the reaction system was successfully recycled up to five times, without an apparent decrease in conjugation efficiency. The MAPA-glycan is also easy to link to protein to generate neoglycoproteins with equivalent glycan densities. Importantly, the MAPA linker can be reversibly cleaved to regenerate free reducing glycans for detailed structural analysis (catch-and-release), often critical for functional studies of undefined glycans from natural sources. The high conjugation efficiency, bright fluorescence, and reversible cleavage of the linker enable access to natural glycans for functional glycomics.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Lijun Sun
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| |
Collapse
|
52
|
McQuillan AM, Byrd-Leotis L, Heimburg-Molinaro J, Cummings RD. Natural and Synthetic Sialylated Glycan Microarrays and Their Applications. Front Mol Biosci 2019; 6:88. [PMID: 31572731 PMCID: PMC6753469 DOI: 10.3389/fmolb.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
This focused chapter serves as a short survey of glycan microarrays that are available with sialylated glycans, including both defined and shotgun arrays, their generation, and their utility in studying differential binding interactions to sialylated compounds, highlighting N-glycolyl (Gc) modified sialylated compounds. A brief discussion of binding interactions by lectins, antibodies, and viruses, and their relevance that have been observed with sialylated glycan microarrays is presented, as well as a discussion of cross-comparisons of array platforms and efforts to centralize and standardize the glycan microarray data.
Collapse
Affiliation(s)
- Alyssa M. McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, United States
| | - Lauren Byrd-Leotis
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, United States
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
53
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
54
|
Mucin O-glycan microarrays. Curr Opin Struct Biol 2019; 56:187-197. [DOI: 10.1016/j.sbi.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/22/2022]
|
55
|
Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus 2019; 9:20180080. [PMID: 30842878 PMCID: PMC6388016 DOI: 10.1098/rsfs.2018.0080] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface 'glycoscape' at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.
Collapse
Affiliation(s)
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA
| |
Collapse
|
56
|
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019; 57:407-416. [PMID: 30138110 PMCID: PMC6785348 DOI: 10.1515/cclm-2018-0379] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Glycosylation is among the most important post-translational modifications for proteins and is of intrinsic complex character compared with DNAs and naked proteins. Indeed, over 50%-70% of proteins in circulation are glycosylated, and the "sweet attachments" have versatile structural and functional implications. Both the configuration and composition of the attached glycans affect the biological activities of consensus proteins significantly. Glycosylation is generated by complex biosynthetic pathways comprising hundreds of glycosyltransferases, glycosidases, transcriptional factors, transporters and the protein backbone. In addition, lack of direct genetic templates and glyco-specific antibodies such as those commonly used in DNA amplification and protein capture makes research on glycans and glycoproteins even more difficult, thus resulting in sparse knowledge on the pathophysiological implications of glycosylation. Fortunately, cutting-edge technologies have afforded new opportunities and approaches for investigating cancer-related glycosylation. Thus, glycans as well as aberrantly glycosylated protein-based cancer biomarkers have been increasingly recognized. This mini-review highlights the most recent developments in glyco-biomarker studies in an effort to discover clinically relevant cancer biomarkers using advanced analytical methodologies such as mass spectrometry, high-performance liquid chromatographic/ultra-performance liquid chromatography, capillary electrophoresis, and lectin-based technologies. Recent clinical-centered glycobiological studies focused on determining the regulatory mechanisms and the relation with diagnostics, prognostics and even therapeutics are also summarized. These studies indicate that glycomics is a treasure waiting to be mined where the growth of cancer-related glycomics and glycoproteomics is the next great challenge after genomics and proteomics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
57
|
Gao C, Hanes MS, Byrd-Leotis LA, Wei M, Jia N, Kardish RJ, McKitrick TR, Steinhauer DA, Cummings RD. Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans. Cell Chem Biol 2019; 26:535-547.e4. [PMID: 30745240 DOI: 10.1016/j.chembiol.2019.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-acetylglucosamine residues, as well as core fucose. We identified specific recognition of N-glycans by several plant lectins, human galectins, influenza viruses, and Siglecs, and explored the influence of sialic acid linkages and branching of the N-glycans. These results show the unique recognition of complex-type N-glycans by a wide variety of glycan-binding proteins and their abilities to distinguish isomeric structures, which provides new insights into the biological roles of these proteins and the uses of lectins in biological applications to identify glycans.
Collapse
Affiliation(s)
- Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Lauren A Byrd-Leotis
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA; Department of Microbiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert J Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - David A Steinhauer
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C, Cummings SF, Braulke T, Müller-Loennies S, Heimburg-Molinaro J, Steinhauer DA, Cummings RD. Influenza binds phosphorylated glycans from human lung. SCIENCE ADVANCES 2019; 5:eaav2554. [PMID: 30788437 PMCID: PMC6374103 DOI: 10.1126/sciadv.aav2554] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
Influenza A viruses can bind sialic acid-terminating glycan receptors, and species specificity is often correlated with sialic acid linkage with avian strains recognizing α2,3-linked sialylated glycans and mammalian strains preferring α2,6-linked sialylated glycans. These paradigms derive primarily from studies involving erythrocyte agglutination, binding to synthetic receptor analogs or binding to undefined surface markers on cells or tissues. Here, we present the first examination of the N-glycome of the human lung for identifying natural receptors for a range of avian and mammalian influenza viruses. We found that the human lung contains many α2,3- and α2,6-linked sialylated glycan determinants bound by virus, but all viruses also bound to phosphorylated, nonsialylated glycans.
Collapse
Affiliation(s)
- Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Sucharita Dutta
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Jessica F. Trost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Sandra F. Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Thomas Braulke
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sven Müller-Loennies
- Research Center Borstel (RCB), Leibniz Lung Center, Division Biophysics, Parkallee 22, D-23845 Borstel, Germany
| | - Jamie Heimburg-Molinaro
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D. Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
59
|
Rajao DS, Vincent AL, Perez DR. Adaptation of Human Influenza Viruses to Swine. Front Vet Sci 2019; 5:347. [PMID: 30723723 PMCID: PMC6349779 DOI: 10.3389/fvets.2018.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry.
Collapse
Affiliation(s)
- Daniela S Rajao
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
60
|
Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC, van der Woude R, Aldosari MH, Pieters RJ, Woods RJ, Paulson JC, Boons GJ, Ward AB, Verheije MH, de Vries RP. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol 2018; 431:842-856. [PMID: 30597163 DOI: 10.1016/j.jmb.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Influenza A virus carries hundreds of trimeric hemagglutinin (HA) proteins on its viral envelope that interact with various sialylated glycans on a host cell. This interaction represents a multivalent binding event that is present in all the current receptor binding assays, including those employing viruses or precomplexed HA trimers. To study the nature of such multivalent binding events, we fused a superfolder green fluorescent protein (sfGFP) to the C-terminus of trimeric HA to allow for direct visualization of HA-receptor interactions without the need for additional fluorescent antibodies. The multivalent binding of the HA-sfGFP proteins was studied using glycan arrays and tissue staining. The HA-sfGFP with human-type receptor specificity was able to bind to a glycan array as the free trimer. In contrast, the HA-sfGFP with avian-type receptor specificity required multimerization by antibodies before binding to glycans on the glycan array could be observed. Interestingly, multimerization was not required for binding to tissues. The array data may be explained by the possible bivalent binding mode of a single human-specific HA trimer to complex branched N-glycans, which is not possible for the avian-specific HA due to geometrical constrains of the binding sites. The fact that this specificity pattern changes upon interaction with a cell surface probably represents the enhanced amount of glycan orientations and variable densities versus those on the glycan array.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Drug sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands.
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
61
|
Li Z, Feizi T. The neoglycolipid (NGL) technology-based microarrays and future prospects. FEBS Lett 2018; 592:3976-3991. [PMID: 30074246 DOI: 10.1002/1873-3468.13217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/06/2022]
Abstract
The neoglycolipid (NGL) technology is the basis of a state-of-the-art oligosaccharide microarray system, which we offer for screening analyses to the broad scientific community. We review here the sequential development of the technology and its power in pinpointing and isolating naturally occurring ligands for glycan-binding proteins (GBPs) within glycan populations. We highlight our Designer Array approach and Beam Search Array approach for generating natural glycome arrays to identify novel ligands of biological relevance. These two microarray approaches have been applied for assignments of ligands or antigens on glucan polysaccharides for effector proteins of the immune system (Dectin-1, DC-SIGN and DC-SIGNR) and carbohydrate-binding modules (CBMs) on bacterial hydrolases. We also discuss here the more recent applications to elucidate the structure of a prostate cancer- associated antigen F77 and identify ligands for adhesins of two rotaviruses, P[10] and P[19], expressed on an epithelial mucin glycoprotein.
Collapse
Affiliation(s)
- Zhen Li
- Glycosciences Laboratory, Imperial College London, UK
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, UK
| |
Collapse
|
62
|
Characterization of avian influenza virus attachment patterns to human and pig tissues. Sci Rep 2018; 8:12215. [PMID: 30111851 PMCID: PMC6093914 DOI: 10.1038/s41598-018-29578-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Wild birds of Anseriformes and Charadriiformes are natural reservoirs of influenza A viruses (IAVs). Occasionally, IAVs transmit and adapt to mammalian hosts, and are maintained as epidemic strains in their new hosts. Viral adaptions to mammalian hosts include altered receptor preference of host epithelial sialylated oligosaccharides from terminal α2,3-linked sialic acid (SA) towards α2,6-linked SA. However, α2,3-linked SA has been found in human respiratory tract epithelium, and human infections by avian IAVs (AIVs) have been reported. To further explore the attachment properties of AIVs, four AIVs of different subtypes were investigated on human and pig tissues using virus histochemistry. Additionally, glycan array analysis was performed for further characterization of IAVs' receptor structure tropism. Generally, AIV attachment was more abundant to human tissues than to pig tissues. The attachment pattern was very strong to human conjunctiva and upper respiratory tract, but variable to the lower respiratory tract. AIVs mainly attached to α2,3-linked SA, but also to combinations of α2,3- and α2,6-linked SA. The low attachment of these AIV isolates to pig tissues, but high attachment to human tissues, addresses the question whether AIVs in general require passage through pigs to obtain adaptions towards mammalian receptor structures.
Collapse
|
63
|
Zhu Y, Yan M, Lasanajak Y, Smith DF, Song X. Large scale preparation of high mannose and paucimannose N-glycans from soybean proteins by oxidative release of natural glycans (ORNG). Carbohydr Res 2018; 464:19-27. [PMID: 29803109 PMCID: PMC6309449 DOI: 10.1016/j.carres.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/18/2022]
Abstract
Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans.
Collapse
Affiliation(s)
- Yuyang Zhu
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maomao Yan
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
64
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
65
|
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions. J Mol Biol 2018; 430:1863-1882. [PMID: 29746851 PMCID: PMC7094377 DOI: 10.1016/j.jmb.2018.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umea, Sweden.
| |
Collapse
|
66
|
Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. J Virol 2018; 92:JVI.02016-17. [PMID: 29491160 DOI: 10.1128/jvi.02016-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses.IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk.
Collapse
|
67
|
Sriwilaijaroen N, Nakakita SI, Kondo S, Yagi H, Kato K, Murata T, Hiramatsu H, Kawahara T, Watanabe Y, Kanai Y, Ono T, Hirabayashi J, Matsumoto K, Suzuki Y. N-glycan structures of human alveoli provide insight into influenza A virus infection and pathogenesis. FEBS J 2018. [PMID: 29542865 DOI: 10.1111/febs.14431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The rapidly evolvable influenza A virus has caused pandemics linked to millions of deaths in the past century. Influenza A viruses are categorized by H (hemagglutinin; HA) and N (neuraminidase; NA) proteins expressed on the viral envelope surface. Analyses of past pandemics suggest that the HA gene segment comes from a nonhuman virus, which is then introduced into an immunologically naïve human population with potentially devastating consequences. As a prerequisite for infection, the nonhuman HA molecules of H1-H16 viruses must be able to bind to specific sialyl receptors on the host cell surface along the human respiratory tract. Thus, additional insight into the structures of host cell glycans and how different HAs interact with different glycans might provide new insight into the mechanisms underlying sustained infection and transmission in humans. In this work, we identified the sialyl N-glycans found in normal human alveoli and characterized the influenza viruses that preferentially bound to these different structures. We also determined the amino acid changes in HA that were linked to a switch of receptor-binding preference from nonhuman to pandemic, as well as pandemic to seasonal. Our data provide insight into why seasonal viruses are associated with reduced alveolar infection and damage and suggest new considerations for designing anti-HA vaccines and drugs. The results provide a better understanding of viral tropism and pathogenesis in humans that will be important for prediction and surveillance of zoonotic, pandemic, and epidemic influenza outbreaks. DATABASE The novel hemagglutinin nucleotide sequences reported here were deposited in GISAID under the accession numbers of EPI685738 for A/Yamaguchi/20/2006(H1N1) and EPI685740 for A/Kitakyushu/10/2006(H1N1).
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.,College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Shin-Ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, Japan
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takeomi Murata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Japan
| | - Yasushi Kanai
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Takao Ono
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Jun Hirabayashi
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, Japan
| | - Kazuhiko Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| |
Collapse
|
68
|
Li Z, Gao C, Zhang Y, Palma AS, Childs RA, Silva LM, Liu Y, Jiang X, Liu Y, Chai W, Feizi T. O-Glycome Beam Search Arrays for Carbohydrate Ligand Discovery. Mol Cell Proteomics 2017; 17:121-133. [PMID: 29183914 PMCID: PMC5750842 DOI: 10.1074/mcp.ra117.000285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Indexed: 11/10/2022] Open
Abstract
O-glycosylation is a post-translational modification of proteins crucial to molecular mechanisms in health and disease. O-glycans are typically highly heterogeneous. The involvement of specific O-glycan sequences in many bio-recognition systems is yet to be determined because of a lack of efficient methodologies. We describe here a targeted microarray approach: O-glycome beam search that is both robust and efficient for O-glycan ligand-discovery. Substantial simplification of the complex O-glycome profile and facile chromatographic resolution is achieved by arraying O-glycans as branches, monitoring by mass spectrometry, focusing on promising fractions, and on-array immuno-sequencing. This is orders of magnitude more sensitive than traditional methods. We have applied beam search approach to porcine stomach mucin and identified extremely minor components previously undetected within the O-glycome of this mucin that are ligands for the adhesive proteins of two rotaviruses. The approach is applicable to O-glycome recognition studies in a wide range of biological settings to give insights into glycan recognition structures in natural microenvironments.
Collapse
Affiliation(s)
- Zhen Li
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK
| | - Chao Gao
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK.,§Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Yibing Zhang
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK
| | - Angelina S Palma
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK.,¶Department of Chemistry, UCIBIO-NOVA University of Lisbon, 1099085, Portugal
| | - Robert A Childs
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK
| | - Lisete M Silva
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK
| | - Yang Liu
- ‖Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and
| | - Xi Jiang
- ‖Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and.,**University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Yan Liu
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK
| | - Wengang Chai
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK;
| | - Ten Feizi
- From the ‡Glycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK;
| |
Collapse
|
69
|
Liau B, Tan B, Teo G, Zhang P, Choo A, Rudd PM. Shotgun Glycomics Identifies Tumor-Associated Glycan Ligands Bound by an Ovarian Carcinoma-Specific Monoclonal Antibody. Sci Rep 2017; 7:14489. [PMID: 29101385 PMCID: PMC5670200 DOI: 10.1038/s41598-017-15123-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cancers display distinctive carbohydrate molecules (glycans) on their surface proteins and lipids. mAb A4, an in-house generated monoclonal IgM antibody, is capable of distinguishing malignant ovarian carcinoma cells from benign ovarian epithelia by binding specifically to cancer cell-associated glycans. However, the structural details of the glycan targets of mAb A4 have been elusive. Here we developed a novel approach of isolating and fractionating glycan molecules released from glycoproteins in cancer cell lysates using HILIC-UPLC, and used them as probes on a microarray for affinity-based identification of the binding targets, allowing full-size, difficult to synthesize, cancer-associated glycans to be directly studied. As a result of this "shotgun" glycomics approach, we corroborate the previously assigned specificity of mAb A4 by showing that mAb A4 binds primarily to large (>15 glucose units), sialylated N-glycans containing the H-type 1 antigen (Fuc-α1,2-Gal-β1,3-GlcNAc). Although mAb A4 was also capable of directly binding to type 1 N-acetyl-lactosamine, this epitope was mostly shielded by sialylation and thus relatively inaccessible to binding. Knowledge of the structure of mAb A4 antigen will facilitate its clinical development as well as its use as a diagnostic biomarker.
Collapse
Affiliation(s)
- B Liau
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore.
| | - B Tan
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - G Teo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P Zhang
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - A Choo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P M Rudd
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| |
Collapse
|
70
|
The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci 2017; 18:ijms18071541. [PMID: 28714909 PMCID: PMC5536029 DOI: 10.3390/ijms18071541] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.
Collapse
|
71
|
Abente EJ, Kitikoon P, Lager KM, Gauger PC, Anderson TK, Vincent AL. A highly pathogenic avian-derived influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrates increased replication and transmission in pigs. J Gen Virol 2017; 98:18-30. [PMID: 28206909 DOI: 10.1099/jgv.0.000678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the pathogenicity and transmissibility of a reverse-genetics-derived highly pathogenic avian influenza (HPAI) H5N1 lineage influenza A virus that was isolated from a human, A/Iraq/755/06. We also examined surface gene reassortant viruses composed of the haemagglutinin and neuraminidase from A/Iraq/755/06 and the internal genes of a 2009 pandemic H1N1 virus, A/New York/18/2009 (2Iraq/06 : 6NY/09 H5N1), and haemagglutinin and neuraminidase from A/New York/18/2009 with the internal genes of A/Iraq/755/06 (2NY/09 : 6Iraq/06 H1N1). The parental A/Iraq/755/06 caused little to no lesions in swine, limited virus replication was observed in the upper respiratory and lower respiratory tracts and transmission was detected in 3/5 direct-contact pigs based on seroconversion, detection of viral RNA or virus isolation. In contrast, the 2Iraq/06 : 6NY/09 H5N1 reassortant caused mild lung lesions, demonstrated sustained virus replication in the upper and lower respiratory tracts and transmitted to all contacts (5/5). The 2NY/09 : 6Iraq/06 H1N1 reassortant also caused mild lung lesions, there was evidence of virus replication in the upper respiratory and lower respiratory tracts and transmission was detected in all contacts (5/5). These studies indicate that an HPAI-derived H5N1 reassortant with pandemic internal genes may be more successful in sustaining infection in swine and that HPAI-derived internal genes were marginally compatible with pandemic 2009 H1N1 surface genes. Comprehensive surveillance in swine is critical to identify a possible emerging HPAI reassortant in all regions with HPAI in wild birds and poultry and H1N1pdm09 in pigs or other susceptible hosts.
Collapse
Affiliation(s)
- Eugenio J Abente
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Pravina Kitikoon
- Present address: Merck Animal Health, De Soto, Kansas, USA.,Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
72
|
Russier M, Yang G, Marinova-Petkova A, Vogel P, Kaplan BS, Webby RJ, Russell CJ. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets. PLoS Pathog 2017; 13:e1006276. [PMID: 28282440 PMCID: PMC5362248 DOI: 10.1371/journal.ppat.1006276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/22/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
A pandemic-capable influenza virus requires a hemagglutinin (HA) surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5) and human and ferret (pH ≤5.5) species. Using an early 2009 pandemic H1N1 (pH1N1) virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5), HA1-Y17H (pH 6.0), and HA2-R106K (pH 5.3). All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0) acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like) HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.
Collapse
Affiliation(s)
- Marion Russier
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Atanaska Marinova-Petkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Bryan S. Kaplan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
73
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
74
|
Liu Y, McBride R, Stoll M, Palma AS, Silva L, Agravat S, Aoki-Kinoshita KF, Campbell MP, Costello CE, Dell A, Haslam SM, Karlsson NG, Khoo KH, Kolarich D, Novotny MV, Packer NH, Ranzinger R, Rapp E, Rudd PM, Struwe WB, Tiemeyer M, Wells L, York WS, Zaia J, Kettner C, Paulson JC, Feizi T, Smith DF. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology 2016; 27:280-284. [PMID: 27993942 PMCID: PMC5444268 DOI: 10.1093/glycob/cww118] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/12/2022] Open
Abstract
MIRAGE (Minimum Information Required for AGlycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26:907–910) and mass spectrometry data (Kolarich et al. 2013, Mol. Cell Proteomics, 12:991–995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ryan McBride
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark Stoll
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Angelina S Palma
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK.,Department of Chemistry, UCIBIO@REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - Lisete Silva
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sanjay Agravat
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoko F Aoki-Kinoshita
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangimachi, Hachioji, Tokyo 192-8577, Japan
| | - Matthew P Campbell
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118, USA
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, 39106 Magdeburg, Germany
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT-National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Weston B Struwe
- Department of Biochemistry, Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118, USA
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ten Feizi
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK.,Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
75
|
Henritzi D, Zhao N, Starick E, Simon G, Krog JS, Larsen LE, Reid SM, Brown IH, Chiapponi C, Foni E, Wacheck S, Schmid P, Beer M, Hoffmann B, Harder TC. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs. Influenza Other Respir Viruses 2016; 10:504-517. [PMID: 27397600 PMCID: PMC5059951 DOI: 10.1111/irv.12407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background A diversifying pool of mammalian‐adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost‐effective large‐scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype‐ and lineage‐specific multiplex real‐time RT‐PCRs (RT‐qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M‐gene‐specific influenza A virus RT‐qPCR. In a second step, positive samples are examined by tetraplex HA‐ and triplex NA‐specific RT‐qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages “av” (European avian‐derived), “hu” (European human‐derived) and “pdm” (human pandemic A/H1N1, 2009) are distinguished by RT‐qPCRs, and within the NA subtype N1, lineage “pdm” is differentiated. An RT‐PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT‐qPCR subtyping. Conclusions These new multiplex RT‐qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Na Zhao
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Gaelle Simon
- Anses, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Jesper S Krog
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Lars Erik Larsen
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Timm C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany.
| |
Collapse
|
76
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
77
|
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods 2016; 13:528-34. [PMID: 27135973 PMCID: PMC4887297 DOI: 10.1038/nmeth.3861] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Jiménez-Castells C, Stanton R, Yan S, Kosma P, Wilson IB. Development of a multifunctional aminoxy-based fluorescent linker for glycan immobilization and analysis. Glycobiology 2016; 26:1297-1307. [PMID: 27222531 DOI: 10.1093/glycob/cww051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Glycan arrays have become a technique of choice to screen glycan-protein interactions in a high-throughput manner with high sensitivity and low sample consumption. Here, the synthesis of a new multifunctional fluorescent linker for glycan labeling via aminoxy ligation and immobilization is described; the linker features a fluorescent naphthalene group suitable for highly sensitive high-performance liquid chromatography-based purification and an azido- or amino-modified pentanoyl moiety for the immobilization onto solid supports. Several glycoconjugates displaying small sugar epitopes via chemical or chemoenzymatic synthesis were covalently attached onto a microarray support and tested with lectins of known carbohydrate binding specificity. The glycan library was extended using glycosyltransferases (e.g. galactosyl-, sialyl- and fucosyltransferases); the resulting neoglycoconjugates, which are easily detected by mass spectrometry, mimic antennal elements of N- and O-glycans, including ABH blood group epitopes and sialylated structures. Furthermore, an example natural plant N-glycan containing core α1,3-fucose and β1,2-xylose was also successfully conjugated to the fluorescent linker, immobilized and probed with lectins as well as antihorseradish peroxidase. These experiments validate our linker as being a potentially valuable tool to study glycozyme and lectin specificities, sensitive enough to allow purification of natural glycans.
Collapse
Affiliation(s)
| | - Rhiannon Stanton
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Paul Kosma
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Iain Bh Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| |
Collapse
|
79
|
Balzli C, Lager K, Vincent A, Gauger P, Brockmeier S, Miller L, Richt JA, Ma W, Suarez D, Swayne DE. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses. Influenza Other Respir Viruses 2016; 10:346-52. [PMID: 26946338 PMCID: PMC4910171 DOI: 10.1111/irv.12386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
Background The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Objectives Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Methods Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT‐PCR and seroconversion data. Results Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT‐PCR‐positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. Conclusions LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human‐zoonotic LPAI virus dynamics.
Collapse
Affiliation(s)
- Charles Balzli
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| | - Kelly Lager
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Amy Vincent
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Phillip Gauger
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Susan Brockmeier
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Laura Miller
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Juergen A Richt
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David Suarez
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| | - David E Swayne
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| |
Collapse
|
80
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
81
|
H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion. J Virol 2015; 90:1569-77. [PMID: 26608319 DOI: 10.1128/jvi.02332-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased its conformational stability and increased pH optimum of membrane fusion activity. This finding represents the first formal evidence of alteration of the HA fusion activity/stability during interspecies transmission of influenza viruses under natural settings.
Collapse
|
82
|
Krishna VD, Roach E, Zaidman NA, Panoskaltsis-Mortari A, Rotschafer JH, O’Grady SM, Cheeran MCJ. Differential Induction of Type I and Type III Interferons by Swine and Human Origin H1N1 Influenza A Viruses in Porcine Airway Epithelial Cells. PLoS One 2015; 10:e0138704. [PMID: 26384331 PMCID: PMC4575210 DOI: 10.1371/journal.pone.0138704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 11/25/2022] Open
Abstract
Interferons (IFNs) have been shown to inhibit influenza A virus (IAV) replication and play an essential role in controlling viral infection. Here we studied the kinetics and magnitude of induction of type I and type III IFN transcripts by primary porcine airway epithelial cells (pAECs) in response to swine and human origin IAV. We observed that swine influenza viruses (SIV) replicate more efficiently than the human pandemic influenza A/California/2009 (pH1N1 CA/09) in pAECs. Interestingly, we also found significant difference in kinetics of IFN-β, IFN-λ1 and IFN-λ3 gene expression by these viruses. While there was delay of up to 12 hours post infection (h p.i.) in induction of IFN genes in pAECs infected with swine IAV A/Sw/Illinois/2008 (H1N1 IL/08), human pH1N1 CA/09 rapidly induced IFN-β, IFN-λ1 and IFN-λ3 gene expression as early as 4 h p.i. However, the magnitude of IFN-β and IFN-λ3 induction at 24 h p.i. was not significantly different between the viral strains tested. Additionally, we found that swine H1N1 IL/08 was less sensitive to dsRNA induced antiviral response compared to human pH1N1 CA/09. Our data suggest that the human and swine IAVs differ in their ability to induce and respond to type I and type III interferons in swine cells. Swine origin IAV may have adapted to the pig host by subverting innate antiviral responses to viral infection.
Collapse
Affiliation(s)
- Venkatramana D. Krishna
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Erin Roach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nathan A. Zaidman
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | | | - Jessica H. Rotschafer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Scott M. O’Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Maxim C-J. Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
83
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
84
|
Abstract
In June 2013, the first human infection by avian influenza A(H6N1) virus was reported in Taiwan. This incident raised the concern for possible human epidemics and pandemics from H6 viruses. In this study, we performed structural and functional investigation on the hemagglutinin (HA) proteins of the human-infecting A/Taiwan/2/2013(H6N1) (TW H6) virus and an avian A/chicken/Guangdong/S1311/2010(H6N6) (GD H6) virus that transmitted efficiently in guinea pigs. Our results revealed that in the presence of HA1 Q226, the triad of HA1 S137, E190 and G228 in GD H6 HA allows the binding to both avian- and human-like receptors with a slight preference for avian receptors. Its conservation among the majority of H6 HAs provides an explanation for the broader host range of this subtype. Furthermore, the triad of N137, V190 and S228 in TW H6 HA may alleviate the requirement for a hydrophobic residue at HA1 226 of H2 and H3 HAs when binding to human-like receptors. Consequently, TW H6 HA has a slight preference for human receptors, thus may represent an intermediate towards a complete human adaptation. Importantly, the triad observed in TW H6 HA is detected in 74% H6 viruses isolated from Taiwan in the past 14 years, suggesting an elevated threat of H6 viruses from this region to human health. The novel roles of the triad at HA1 137, 190 and 228 of H6 HA in binding to receptors revealed here may also be used by other HA subtypes to achieve human adaptation, which needs to be further tested in laboratory and closely monitored in field surveillance.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, Illinois, United States of America
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
85
|
Rajao DS, Vincent AL. Swine as a Model for Influenza A Virus Infection and Immunity. ILAR J 2015; 56:44-52. [DOI: 10.1093/ilar/ilv002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
86
|
Song X, Heimburg-Molinaro J, Smith DF, Cummings RD. Glycan microarrays of fluorescently-tagged natural glycans. Glycoconj J 2015; 32:465-73. [PMID: 25877830 DOI: 10.1007/s10719-015-9584-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 01/22/2023]
Abstract
This review discusses the challenges facing research in 'functional glycomics' and the novel technologies that are being developed to advance the field. The structural complexity of glycans and glycoconjugates makes studies of both their structures and recognition difficult. However, these intricate structures can be captured from their natural sources, isolated and fluorescently-tagged for detailed structural analysis and for presentation on glycan microarrays for functional recognition by glycan-binding proteins. These advances in glycan preparation and manipulation enable the streamlining of functional glycomics studies and will help to propel the field forward in studying natural, biologically relevant glycans.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - David F Smith
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| |
Collapse
|
87
|
Yang H, Carney PJ, Chang JC, Guo Z, Villanueva JM, Stevens J. Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. Virology 2015; 477:18-31. [PMID: 25617824 DOI: 10.1016/j.virol.2014.12.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/24/2022]
Abstract
A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans.
Collapse
Affiliation(s)
- Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jessie C Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Julie M Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
88
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
89
|
Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus. Trends Microbiol 2014; 22:632-41. [PMID: 25108746 DOI: 10.1016/j.tim.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Influenza A viruses are rapidly evolving pathogens with the potential for novel strains to emerge and result in pandemic outbreaks in humans. Some avian-adapted subtypes have acquired the ability to bind to human glycan receptors and cause severe infections in humans but have yet to adapt to and transmit between humans. The emergence of new avian strains and their ability to infect humans has confounded their distinction from circulating human virus strains through linking receptor specificity to human adaptation. Herein we review the various structural and biochemical analyses of influenza hemagglutinin-glycan receptor interactions. We provide our perspectives on how receptor specificity can be used to monitor evolution of the virus to adapt to human hosts so as to facilitate improved surveillance and pandemic preparedness.
Collapse
|
90
|
Abstract
It has been known for many years that influenza viruses bind by their hemagglutinin surface glycoprotein to sialic acid (N-acetylneuraminic acid) on the surface of the host cell, and that avian viruses most commonly bind to sialic acid linked α2-3 to galactose while most human viruses bind to sialic acid in the α2-6 configuration. Over the past few years there has been a large increase in data on this binding due to technological advances in glycan binding assays, reverse genetic systems for influenza and in X-ray crystallography. The results show some surprising changes in binding specificity that do not appear to affect the ability of the virus to infect host cells.
Collapse
Affiliation(s)
- Gillian M Air
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
91
|
Smith DF, Cummings RD. Investigating virus-glycan interactions using glycan microarrays. Curr Opin Virol 2014; 7:79-87. [PMID: 24995558 DOI: 10.1016/j.coviro.2014.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 01/01/2023]
Abstract
While all viruses must transit the plasma membrane of mammalian cells to initiate infection, we know little about the complex processes involved in viral attachment, which commonly involve recognition of glycans by viral proteins. Glycan microarrays derived from both synthetic glycans and natural glycans isolated through shotgun glycomics approaches provide novel platforms for interrogating diverse glycans as potential viral receptors. Recent studies with influenza and rotaviruses using such glycan microarrays provide examples of their utility in exploring the challenging questions raised in efforts to define the complex mechanistic protein-glycan interactions that regulate virus attachment to host cells.
Collapse
Affiliation(s)
- David F Smith
- The National Center for Functional Glycomics, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard D Cummings
- The National Center for Functional Glycomics, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
92
|
Xiong X, McCauley JW, Steinhauer DA. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol 2014; 385:63-91. [PMID: 25078920 DOI: 10.1007/82_2014_423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Host cell attachment by influenza A viruses is mediated by the hemagglutinin glycoprotein (HA), and the recognition of specific types of sialic acid -containing glycan receptors constitutes one of the major determinants of viral host range and transmission properties. Structural studies have elucidated some of the viral determinants involved in receptor recognition of avian-like and human-like receptors for various subtypes of influenza A viruses, and these provide clues relating to the mechanisms by which viruses evolve to adapt to human hosts. We discuss structural aspects of receptor binding by influenza HA, as well as the biological implications of functional interplay involving HA binding, NA sialidase functions, the effects of antigenic drift, and the inhibitory properties of natural glycans present on mucosal surfaces.
Collapse
Affiliation(s)
- Xiaoli Xiong
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK,
| | | | | |
Collapse
|