51
|
Liu W, Xu Z, Zhou J, Xing S, Li Z, Gao X, Feng S, Xiao Y. High Levels of HIST1H2BK in Low-Grade Glioma Predicts Poor Prognosis: A Study Using CGGA and TCGA Data. Front Oncol 2020; 10:627. [PMID: 32457836 PMCID: PMC7225299 DOI: 10.3389/fonc.2020.00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
A number of biomarkers have been identified for various cancers. However, biomarkers associated with glioma remain largely to be explored. In the current study, we investigated the relationship between the expression and prognostic value of the HIST1H2BK gene in glioma. Sequential data filtering (survival analysis, independent prognostic analysis, ROC curve analysis, and clinical correlation analysis) was performed, which resulted in identification of the association between the HIST1H2BK gene and glioma. Then, the HIST1H2BK gene was analyzed using bioinformatics (Kaplan–Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, and ROC curve analysis). The results showed that low expression of HIST1H2BK was associated with better prognosis, and high expression of HIST1H2BK was associated with poor prognosis. In addition, HIST1H2BK was an independent prognostic indicator for patients with glioma. We also evaluated the association between HIST1H2BK and clinical characteristics. Furthermore, gene set enrichment analysis (GSEA) and analysis of immune infiltration were performed. The results showed that HIST1H2BK was associated with intensity of immune infiltration in glioma. Finally, co-expression analysis was performed. The results showed that HIST1H2BK was positively correlated with HIST1H2AG, HIST2H2AA4, HIST1H2BJ, HIST2H2BE, and HIST1H2AC, and negatively correlated with PDZD4, CRY2, GABBR1, rp5-1119a7.17, and KCNJ11. This study showed that upregulation of HIST1H2BK in low-grade glioma (LGG) tissue was an indicator of poor prognosis. Moreover, this study demonstrated that HIST1H2BK may be a promising biomarker for the treatment of LGG.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zhentao Xu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Jie Zhou
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Shuang Xing
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military), Shenyang, China
| | - Shiyu Feng
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
52
|
Hudec M, Dankova P, Solc R, Bettazova N, Cerna M. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci 2020; 21:E3005. [PMID: 32344535 PMCID: PMC7215839 DOI: 10.3390/ijms21083005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
This review aims to summarize the knowledge about the relationship between circadian rhythms and their influence on the development of type 2 diabetes mellitus (T2DM) and metabolic syndrome. Circadian rhythms are controlled by internal molecular feedback loops that synchronize the organism with the external environment. These loops are affected by genetic and epigenetic factors. Genetic factors include polymorphisms and mutations of circadian genes. The expression of circadian genes is regulated by epigenetic mechanisms that change from prenatal development to old age. Epigenetic modifications are influenced by the external environment. Most of these modifications are affected by our own life style. Irregular circadian rhythm and low quality of sleep have been shown to increase the risk of developing T2DM and other metabolic disorders. Here, we attempt to provide a wide description of mutual relationships between epigenetic regulation, circadian rhythm, aging process and highlight new evidences that show possible therapeutic advance in the field of chrono-medicine which will be more important in the upcoming years.
Collapse
Affiliation(s)
- Michael Hudec
- Department of Medical Genetics, Third Faculty of Medicine, Charles University; Ruská 87, 100 00 Prague, Czech Republic; (N.B.); (M.C.)
| | - Pavlina Dankova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University; Viničná 7, 128 00 Prague, Czech Republic; (P.D.); (R.S.)
| | - Roman Solc
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University; Viničná 7, 128 00 Prague, Czech Republic; (P.D.); (R.S.)
| | - Nardjas Bettazova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University; Ruská 87, 100 00 Prague, Czech Republic; (N.B.); (M.C.)
| | - Marie Cerna
- Department of Medical Genetics, Third Faculty of Medicine, Charles University; Ruská 87, 100 00 Prague, Czech Republic; (N.B.); (M.C.)
| |
Collapse
|
53
|
Hergenhan S, Holtkamp S, Scheiermann C. Molecular Interactions Between Components of the Circadian Clock and the Immune System. J Mol Biol 2020; 432:3700-3713. [PMID: 31931006 PMCID: PMC7322557 DOI: 10.1016/j.jmb.2019.12.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/30/2023]
Abstract
The immune system is under control of the circadian clock. Many of the circadian rhythms observed in the immune system originate in direct interactions between components of the circadian clock and components of the immune system. The main means of circadian control over the immune system is by direct control of circadian clock proteins acting as transcription factors driving the expression or repression of immune genes. A second circadian control of immunity lies in the acetylation or methylation of histones to regulate gene transcription or inflammatory proteins. Furthermore, circadian clock proteins can engage in direct physical interactions with components of key inflammatory pathways such as members of the NFκB protein family. This regulation is transcription independent and allows the immune system to also reciprocally exert control over circadian clock function. Thus, the molecular interactions between the circadian clock and the immune system are manifold. We highlight and discuss here the recent findings with respect to the molecular mechanisms that control time-of-day-dependent immunity. This review provides a structured overview focusing on the key circadian clock proteins and discusses their reciprocal interactions with the immune system. The immune system is under control of the circadian clock. Circadian clock proteins act as transcription factors controlling genes of the immune system. Circadian clock proteins engage in direct physical interactions with inflammatory proteins. Immune factors also reciprocally exert control over circadian clock function.
Collapse
Affiliation(s)
- Sophia Hergenhan
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany
| | - Stephan Holtkamp
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany
| | - Christoph Scheiermann
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Munich, Germany; University of Geneva, Centre Médical Universitaire (CMU), Department of Pathology and Immunology, Geneva, Switzerland.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW This review is focused on the existing evidence for circadian control of innate and adaptive immune responses to provide a framework for evaluating the contributions of diurnal rhythms to control of infections and pathogenesis of disease. RECENT FINDINGS Circadian rhythms driven by cell-autonomous biological clocks are central to innate and adaptive immune responses against microbial pathogens. Research during the past few years has uncovered circadian circuits governing leukocyte migration between tissues, the magnitude of mucosal inflammation, the types of cytokines produced, and the severity of immune diseases. Other studies revealed how disruption of the circadian clock impairs immune function or how microbial products alter clock machinery. Revelations concerning the widespread impact of the circadian clock on immunity and homeostasis highlight how the timing of inflammatory challenges can dictate pathological outcomes and how the timing of therapeutic interventions likely determines clinical efficacy. An improved understanding of circadian circuits controlling immune function will facilitate advances in circadian immunotherapy.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45244, USA.
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 15012, Cincinnati, OH, 45244, USA.
| |
Collapse
|
55
|
Thakur S, Storewala P, Basak U, Jalan N, Pethe P. Clocking the circadian genes in human embryonic stem cells. Stem Cell Investig 2020; 7:9. [PMID: 32695802 PMCID: PMC7367470 DOI: 10.21037/sci-2020-014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023]
Abstract
Multicellular organisms respond to changing environment which is primarily driven by light from the sun. Essential cyclical processes such as digestion, sleep, migration and breeding are controlled by set of genes know as circadian genes. The core circadian genes comprise of CLOCK, BMAL-1, PERIOD and CYRPTOCHROME that are expressed cyclically and they regulate expression of several genes downstream. The expression of circadian genes has been well studied in multicellular animals; however, it has been shown that stem cells also possess active circadian cycle genes. The circadian cycle genes have been studied in mouse embryonic stem cells and in adult human stem cells. However, there are only few reports of circadian cycle genes in human pluripotent stem cells. We used human embryonic stem cells to investigate the expression of CLOCK, BMAL-1, PERIOD and CYRPTOCHORME genes by RT-PCR at 6, 18 and 22 hours in undifferentiated and differentiated cells. We differentiated human embryonic stem cells spontaneously by adding 10% fetal bovine serum (FBS), and the cells primarily differentiated into ectoderm and mesoderm. We report that CLOCK and BMAL-1 are differentially expressed while PERIOD and CRYPTOCHROME show cyclicity in differentiated and undifferentiated cells. Our results show circadian genes are active in human embryonic stem cells and this needs to be further investigated as human pluripotent stem cells have potential to be used for cell therapy, where they need to synchronize with the body's circadian cycle.
Collapse
Affiliation(s)
- Soumyaa Thakur
- NMIMS Sunandan Divatia School of Science, NMIMS (deemed to-be) University, Mumbai, India
| | - Prachi Storewala
- NMIMS Sunandan Divatia School of Science, NMIMS (deemed to-be) University, Mumbai, India
| | - Upasna Basak
- NMIMS Sunandan Divatia School of Science, NMIMS (deemed to-be) University, Mumbai, India
| | - Nitya Jalan
- NMIMS School of Business Management, NMIMS (deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, India
| |
Collapse
|
56
|
Yang Y, Yuan G, Xie H, Wei T, Zhu D, Cui J, Liu X, Shen R, Zhu Y, Yang X. Circadian clock associates with tumor microenvironment in thoracic cancers. Aging (Albany NY) 2019; 11:11814-11828. [PMID: 31881010 PMCID: PMC6949103 DOI: 10.18632/aging.102450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
The application of cancer chronotherapy is to treat cancers based on at specific times during circadian rhythms. Previous studies have characterized the impact of circadian clock on tumorigenesis and specific immune cells. Here, by using multi-omics computation techniques, we systematically characterized the distinct roles of core circadian clock genes in thoracic cancers including lung adenocarcinoma, lung squamous cell carcinoma, and esophageal carcinoma. Strikingly, a wide range of core clock genes are epigenetically altered in lung adenocarcinomas and lung squamous cell carcinomas but not esophageal carcinomas. Further cancer hallmark analysis reveals that several core clock genes highly correlate with apoptosis and cell cycle such as RORA and PER2. Interestingly, our results reveal that CD4 and CD8 T cells are correlated with core clock molecules especially in lung adenocarcinomas and lung squamous cell carcinomas, indicating that chrono-immunotherapy may serve as a candidate option for future cancer management.
Collapse
Affiliation(s)
- Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Guangda Yuan
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Hongya Xie
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Tengteng Wei
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Donglin Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Jianyong Cui
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Xiaoqiang Liu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Rongming Shen
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Yimeng Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Xuefang Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| |
Collapse
|
57
|
Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, Qiu Z, Prager BC, Wang X, Kim LJY, Morton AR, Dixit D, Zhou W, Huang H, Li B, Zhu Z, Bao S, Mack SC, Chavez L, Kay SA, Rich JN. Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discov 2019; 9:1556-1573. [PMID: 31455674 PMCID: PMC6983300 DOI: 10.1158/2159-8290.cd-19-0215] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/29/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Glioblastomas are highly lethal cancers, containing self-renewing glioblastoma stem cells (GSC). Here, we show that GSCs, differentiated glioblastoma cells (DGC), and nonmalignant brain cultures all displayed robust circadian rhythms, yet GSCs alone displayed exquisite dependence on core clock transcription factors, BMAL1 and CLOCK, for optimal cell growth. Downregulation of BMAL1 or CLOCK in GSCs induced cell-cycle arrest and apoptosis. Chromatin immunoprecipitation revealed that BMAL1 preferentially bound metabolic genes and was associated with active chromatin regions in GSCs compared with neural stem cells. Targeting BMAL1 or CLOCK attenuated mitochondrial metabolic function and reduced expression of tricarboxylic acid cycle enzymes. Small-molecule agonists of two independent BMAL1-CLOCK negative regulators, the cryptochromes and REV-ERBs, downregulated stem cell factors and reduced GSC growth. Combination of cryptochrome and REV-ERB agonists induced synergistic antitumor efficacy. Collectively, these findings show that GSCs co-opt circadian regulators beyond canonical circadian circuitry to promote stemness maintenance and metabolism, offering novel therapeutic paradigms. SIGNIFICANCE: Cancer stem cells are highly malignant tumor-cell populations. We demonstrate that GSCs selectively depend on circadian regulators, with increased binding of the regulators in active chromatin regions promoting tumor metabolism. Supporting clinical relevance, pharmacologic targeting of circadian networks specifically disrupted cancer stem cell growth and self-renewal.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew R Morton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Wenchao Zhou
- Department of Cancer Biology, Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Haidong Huang
- Department of Cancer Biology, Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, California
| | - Zhe Zhu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California
| | - Shideng Bao
- Department of Cancer Biology, Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stephen C Mack
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lukas Chavez
- Department of Medicine, University of California, San Diego, California
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, California.
| |
Collapse
|
58
|
Bartos P, Netusil R, Slaby P, Dolezel D, Ritz T, Vacha M. Weak radiofrequency fields affect the insect circadian clock. J R Soc Interface 2019; 16:20190285. [PMID: 31530135 DOI: 10.1098/rsif.2019.0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is known that the circadian clock in Drosophila can be sensitive to static magnetic fields (MFs). Man-made radiofrequency (RF) electromagnetic fields have been shown to have effects on animal orientation responses at remarkably weak intensities in the nanotesla range. Here, we tested if weak broadband RF fields also affect the circadian rhythm of the German cockroach (Blatella germanica). We observed that static MFs slow down the cockroach clock rhythm under dim UV light, consistent with results on the Drosophila circadian clock. Remarkably, 300 times weaker RF fields likewise slowed down the cockroach clock in a near-zero static magnetic field. This demonstrates that the internal clock of organisms can be sensitive to weak RF fields, consequently opening the possibility of an influence of man-made RF fields on many clock-dependent events in living systems.
Collapse
Affiliation(s)
- Premysl Bartos
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - Radek Netusil
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - Pavel Slaby
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - David Dolezel
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, Branisovska 31, Ceske Budejovice, Czech Republic
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
| | - Martin Vacha
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| |
Collapse
|
59
|
Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 2019; 5:475-494. [PMID: 31421905 DOI: 10.1016/j.trecan.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Circadian clocks constitute the evolutionary molecular machinery that dictates the temporal regulation of physiology to maintain homeostasis. Disruption of the circadian rhythm plays a key role in tumorigenesis and facilitates the establishment of cancer hallmarks. Conversely, oncogenic processes directly weaken circadian rhythms. Pharmacological modulation of core clock genes is a new approach in cancer therapy. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, encompassing the prevention, diagnosis, and treatment of this devastating disease. This review highlights the role of the circadian clock in tumorigenesis and cancer hallmarks, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Scintillon Institute, San Diego, CA 92121, USA.
| | - Michael Tun Yin Lam
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, 9300 Campus Point Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
60
|
Pick R, He W, Chen CS, Scheiermann C. Time-of-Day-Dependent Trafficking and Function of Leukocyte Subsets. Trends Immunol 2019; 40:524-537. [PMID: 31109762 DOI: 10.1016/j.it.2019.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The number of leukocytes circulating in blood in mammals is under circadian control (i.e., ∼24h). We summarize here latest findings on the mechanisms governing leukocyte migration from the blood into various organs, focusing on the distinct leukocyte subtype- and tissue-specific molecules involved. We highlight the oscillatory expression patterns of adhesion molecules, chemokines, and their receptors that are expressed on endothelial cells and leukocytes, and which are crucial regulators of rhythmic leukocyte recruitment. We also discuss the relevance of clock genes for leukocyte function and migration. Finally, we compare immune cell rhythms under steady-state conditions as well as during inflammation and disease, and we postulate how these findings provide potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Pick
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany; These authors contributed equally to this work
| | - Wenyan He
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany; Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China; These authors contributed equally to this work
| | - Chien-Sin Chen
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Christoph Scheiermann
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, BioMedical Centre, Planegg-Martinsried, Germany; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
61
|
Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019; 12:3645-3660. [PMID: 31190867 PMCID: PMC6526167 DOI: 10.2147/ott.s203144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are generated via variations in the expression of clock genes that are organized into a complex transcriptional–translational autoregulatory network and regulate the diverse physiological and behavioral activities that are required to adapt to periodic environmental changes. Aberrant clock gene expression is associated with a heightened risk of diseases that affect all aspects of human health, including cancers. Within the past several years, a number of studies have indicated that clock genes contribute to carcinogenesis by altering the expression of clock-controlled and tumor-related genes downstream of many cellular pathways. This review comprehensively summarizes how clock genes affect the development of tumors and their prognosis. In addition, the review provides a full description of the current state of oral cancer research that aims to optimize cancer diagnosis and treatment modalities.
Collapse
Affiliation(s)
- Han-Xue Li
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing 400015, People's Republic of China
| |
Collapse
|
62
|
Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 2019; 36:906-918. [PMID: 31014126 DOI: 10.1080/07420528.2018.1477792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm describes the 24-h oscillation in physiology and behavior of living organisms and presents a timing controller for life activity. Studies in recent years have reported that the abnormal expression of clock genes is closely related to the development of common abdominal malignant tumors. The expression of the 14 kinds of clock genes in 6 abdominal malignant tumors from Cancer Genome Atlas (TCGA) data was integrated and analyzed using R and Perl programming languages to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that the overexpression of Per1-3, Cry2, CLOCK, NR1D2 and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis in kidney cancer. In liver cancer, high expressions of Cry2 and RORA were correlated with prolonged overall survival (OS) in patients, while high expressions of NPAS2 and Timeless were correlated with a poor survival. High expression of CLOCK was positively correlated with OS in colon cancer patients. High expression of Cry2 and low expression of DEC1 were associated with a favorable prognosis in pancreatic cancer patients, respectively. Most of these clock-genes expressions were closely related to the clinical stage and degree of tumor differentiation of patients. Aberrant clock gene expression is related to the biological characteristics of abdominal malignant tumors, which likely has a causal role in cancer development and survival.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Li-Ping Liu
- b Department of Hepatobiliary and Pancreas Surgery , Second Clinical Medical College of Jinan University (Shenzhen People's Hospital) , Shenzhen , Guangdong Province , China
| | - Si Jin
- c Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan China
| | - Xie-Fan Fang
- d Department of Pediatrics , College of Medicine, University of Florida , Gainesville, FL , USA
| | - Xiao-Xiao He
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Zhi-Fan Xiong
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Sheng-Li Yang
- e Cancer Center, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| |
Collapse
|
63
|
Xu J, Gao B, Shi MR, Yu H, Huang LY, Chen P, Li YH. Copulation Exerts Significant Effects on mRNA Expression of Cryptochrome Genes in a Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:3. [PMID: 30817821 PMCID: PMC6394973 DOI: 10.1093/jisesa/iez016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
It is recognized that the behavioral rhythms of organisms are controlled by the circadian clock, while the reverse direction, i.e., whether changes in physiology and behavior react to the internal rhythms, is unclear. Cryptochromes (CRYs) are photolyase-like flavoproteins with blue-light receptor function and other functions on circadian clock and migration in animals. Here, we cloned the full-length cDNA of CRY1 and CRY2 in Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). Sl-CRYs show high similarity to orthologs from other insects, and their conserved regions contain a DNA photolyase domain and a FAD-binding seven domain. The expression levels of both genes were relatively low during the larval stage, which increased during the pupal stage and then peaked at the adult stage. The expression of Sl-CRY1 and Sl-CRY2 showed differences between males and females and between scotophase and photophase. Further, our study demonstrated that copulation has a significant effect on the expression of Sl-CRYs. More interestingly, the changes in the expression of Sl-CRY1 and Sl-CRY2 due to copulation showed the same trend in both sexes, in which the expression levels of both genes in copulated males and females decreased in the subsequent scotophase after copulation and then increased significantly in the following photophase. Considering the nature of the dramatic changes in reproductive behavior and physiology after copulation in S. litura, we propose that the changes in the expression of Sl-CRYs after copulation could have some function in the reproductive process.
Collapse
Affiliation(s)
- Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Ling-Yan Huang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming, China
| | - Yong-He Li
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| |
Collapse
|
64
|
Abstract
Monoclonal antibodies (mAbs) are a group of drugs with predicted slow linear and target-mediated distribution and elimination. Visual inspection of published pharmacokinetic profiles of mAbs frequently reveals plateaus in the distribution phase or an increasing concentration many days after a single intravenous dose. A question which has been left unanswered until now is whether mAbs undergo recirculation mechanisms. If so, then which mechanisms are crucial for the fluctuation in their pharmacokinetics profiles? What is the impact of such mechanisms on mAb absorption, distribution and elimination? Current commentary accounts for the fluctuation of mAbs concentrations based on different mechanisms, as well in different phases of their in vivo disposition. Current knowledge shows significant impact of mAbs lymphatic recirculation on characteristics of their pharmacokinetics profiles. Fluctuating or plateau phases in pharmacokinetic profiles of mAbs are a consequence of multiple simultaneously occurring recirculatory as well as adsorption/desorption processes rather than only slow, continuous elimination. Lymphatic recirculation as well as other mechanisms appears to be an obvious element of the mAbs disposition. Periodic changes in the key factors affecting mAbs disposition can be responsible for the unpredictable concentration peaks in absorption, distribution and the elimination phase.
Collapse
|
65
|
Wolf SJ, Estadt SN, Gudjonsson JE, Kahlenberg JM. Human and Murine Evidence for Mechanisms Driving Autoimmune Photosensitivity. Front Immunol 2018; 9:2430. [PMID: 30405625 PMCID: PMC6205973 DOI: 10.3389/fimmu.2018.02430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet (UV) light is an important environmental trigger for systemic lupus erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease are not fully known. This review covers evidence in both human and murine systems for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine production, inflammatory cell recruitment, and systemic flare induction. In addition, the role of the circadian clock is discussed. Evidence is compared in healthy individuals and SLE patients as well as in wild-type and lupus-prone mice. Further research is needed into the effects of UV light on cutaneous and systemic immune responses to understand how to prevent UV-light mediated lupus flares.
Collapse
Affiliation(s)
- Sonya J. Wolf
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
66
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
67
|
Complement systems C4, C3 and CH50 not subject to a circadian rhythm. Diagnosis (Berl) 2018; 5:77-82. [DOI: 10.1515/dx-2018-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/03/2018] [Indexed: 01/16/2023]
Abstract
Abstract
Background:
The circadian fluctuations in the blood levels of selected components of the complement system are ill-defined. Some authors found nadir serum levels of C4 and C3 components, together with C3a at nighttime, while others reported insomnia when pro-inflammatory components exhibited increased serum levels. In this study, we quantitatively estimate the morning and evening daytime serum levels of CH50, C4, C3, put into context with C-reactive protein (CRP), cortisol, parathyroid hormone (PTH) and 25(OH)vitamin D at 07:00 A.M. and at 07:00 P.M.
Methods:
Seven healthy adult women and 11 men who were voluntary participants agreed to a fasting venipuncture in the morning after having normally eaten through the day and in the evening. The C4 and C3 serum levels were measured on a Cobas (Roche Diagnostics, Switzerland) modular analyzer, CH50 was estimated using the COMPL300 enzyme-linked immunosorbent assay (ELISA) of Wieslab (Malmö, Sweden). CRP, 25(OH)vitamin D, PTH and cortisol concentrations were assessed with electro-chemiluminescence immunoassay (ECLIA) on the Roche Cobas 6000 platform; IgG was measured using nephelometry (Siemens, Germany).
Results:
With the exception of higher PTH levels in the evening [3.12–5.46, 95% confidence interval (CI)] compared to the morning (2.93–4.65, 95% CI), the mean and median values of C4, C3, CH50 as well as CRP, PTH and 25(OH)vitamin D fell within the established reference intervals. Cortisol levels were measured as an internal positive control for diurnal fluctuations (morning: 294–522 nmol/L, 95% CI; evening: 106–136 nmol/L, 95% CI).
Conclusions:
The concentrations of the assessed complement components C4 and C3 as well as CH50 surrogate assay did not yield significantly different values between early morning and evening. This does not exclude their participation in the circadian metabolome; this pilot study with healthy participants suggests that patients with an autoimmune disease in remission can give their blood samples independently during daytime with or without fasting.
Collapse
|