51
|
Erazo-Garcia MP, Sotelo-Proaño AR, Ramirez-Villacis DX, Garcés-Carrera S, Leon-Reyes A. Methyl jasmonate-induced resistance to Delia platura (Diptera: Anthomyiidae) in Lupinus mutabilis. PEST MANAGEMENT SCIENCE 2021; 77:5382-5395. [PMID: 34313385 DOI: 10.1002/ps.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Andean lupin (Lupinus mutabilis Sweet) is an important leguminous crop from South America with a high protein content. In Ecuador, lupin yields are severely affected by the infestation of Delia platura larvae on germinating seeds. The application of elicitor molecules with activity against herbivorous insects to control D. platura infestation constitutes an unexplored and promising alternative for chemical insecticides. In this study, methyl jasmonate (MeJA), hexanoic acid, menadione sodium bisulfite, and DL-β-aminobutyric acid were evaluated for their ability to induce resistance against D. platura in three commercial lupin cultivars. RESULTS Only seeds pretreated with MeJA significantly impaired insect performance during choice and no-choice assays. Additionally, fitness indicators such as seed germination and growth were not affected by MeJA treatment. To investigate the molecular mechanisms behind the MeJA-mediated resistance, RT-qPCR assays were performed. First, RT-qPCR reference genes were validated, showing that LmUBC was the most stable reference gene. Next, expression analysis over time revealed that MeJA application up-regulated the activity of the jasmonic acid biosynthetic genes LmLOX2 and LmAOS, together with other jasmonate-related defense genes, such as LmTPS1, LmTPS4, LmPI2, LmMBL, LmL/ODC, LmCSD1, and LmPOD. CONCLUSION This study indicates that MeJA can be used as an environmentally friendly elicitor molecule to protect Andean lupin from D. platura attack without fitness cost. MeJA application induces plant defense responses to insects in Andean lupin that may be modulated by the onset of terpenoid biosynthesis, proteinase inhibitors, lectins, polyamines, and antioxidative enzymes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria P Erazo-Garcia
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Adolfo R Sotelo-Proaño
- Laboratorio de Entomología, Departamento de Protección Vegetal, Estación Experimental Santa Catalina, Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Dario X Ramirez-Villacis
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sandra Garcés-Carrera
- Laboratorio de Entomología, Departamento de Protección Vegetal, Estación Experimental Santa Catalina, Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
52
|
Gabriel L, Hoff KJ, Brůna T, Borodovsky M, Stanke M. TSEBRA: transcript selector for BRAKER. BMC Bioinformatics 2021; 22:566. [PMID: 34823473 PMCID: PMC8620231 DOI: 10.1186/s12859-021-04482-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. RESULTS We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. CONCLUSION TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence.
Collapse
Affiliation(s)
- Lars Gabriel
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Katharina J. Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Tomáš Brůna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
53
|
Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proc Natl Acad Sci U S A 2021; 118:2111031118. [PMID: 34716271 PMCID: PMC8612216 DOI: 10.1073/pnas.2111031118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.
Collapse
|
54
|
Feng J, Lee T, Schiessl K, Oldroyd GED. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science 2021; 374:629-632. [PMID: 34709900 DOI: 10.1126/science.abg2804] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
55
|
Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N. Nitrogen fixing cereal: A rising hero towards meeting food security. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:912-920. [PMID: 34547550 DOI: 10.1016/j.plaphy.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen serves as one of the primary components of major biomolecules and thus extends a significant contribution to crop growth and yield. But the inability of plants to utilize freely available atmospheric N2 makes the whole agricultural system dependent on chemical fertilizers, which incur significant input cost to supplement required quantities of nitrogen to crops. Only bacteria and archaea have been gifted with the power of drawing free N2 from air to convert them into NH3, which is one of the two utilizable forms of nitrogen taken up by plants. Legumes, the only family of crops, can engage themselves in symbiotic nitrogen fixation where they establish a mutualistic relationship with nitrogen-fixing bacteria and in turn, can waive off the necessity of adding nitrogen fertilizers. Sincere effort, therefore, has been undertaken to incorporate this capability of nitrogen-fixation into non-legume crops, especially cereals which make up a vital portion in the food basket. Biotechnological interventions have also played important role in providing nitrogen fixing trait to non-legumes. This review takes up an effort to look into and accumulate all the important updates to date regarding nitrogen-fixing non-legumes with a special focus on cereals, which is one of the most important future goals in the field of science in the present era.
Collapse
Affiliation(s)
- Parichita Priyadarshini
- ICAR-Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, U.P., 284003, India
| | - Sharani Choudhury
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, U.P., 274103, India.
| | - Alka Bharati
- ICAR-Central Agroforestry Research Institute, Jhansi, U.P., 284003, India
| | - N Sreeshma
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
56
|
van Velzen R, Schranz ME. Origin and Evolution of the Cannabinoid Oxidocyclase Gene Family. Genome Biol Evol 2021; 13:evab130. [PMID: 34100927 PMCID: PMC8521752 DOI: 10.1093/gbe/evab130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis is an ancient crop representing a rapidly increasing legal market, especially for medicinal purposes. Medicinal and psychoactive effects of Cannabis rely on specific terpenophenolic ligands named cannabinoids. Recent whole-genome sequencing efforts have uncovered variation in multiple genes encoding the final steps in cannabinoid biosynthesis. However, the origin, evolution, and phylogenetic relationships of these cannabinoid oxidocyclase genes remain unclear. To elucidate these aspects, we performed comparative genomic analyses of Cannabis, related genera within the Cannabaceae family, and selected outgroup species. Results show that cannabinoid oxidocyclase genes originated in the Cannabis lineage from within a larger gene expansion in the Cannabaceae family. Localization and divergence of oxidocyclase genes in the Cannabis genome revealed two main syntenic blocks, each comprising tandemly repeated cannabinoid oxidocyclase genes. By comparing these blocks with those in genomes from closely related species, we propose an evolutionary model for the origin, neofunctionalization, duplication, and diversification of cannabinoid oxidocycloase genes. Based on phylogenetic analyses, we propose a comprehensive classification of three main clades and seven subclades that are intended to aid unequivocal referencing and identification of cannabinoid oxidocyclase genes. Our data suggest that cannabinoid phenotype is primarily determined by the presence/absence of single-copy genes. Although wild populations of Cannabis are still unknown, increased sampling of landraces and wild/feral populations across its native geographic range is likely to uncover additional cannabinoid oxidocyclase sequence variants.
Collapse
Affiliation(s)
- Robin van Velzen
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Bedrocan International, Veendam, The Netherlands
| | - M Eric Schranz
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
57
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
58
|
Krönauer C, Radutoiu S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102026. [PMID: 33684882 DOI: 10.1016/j.pbi.2021.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 05/06/2023]
Abstract
Legumes evolved LysM receptors for recognition of rhizobial Nod factors and initiation of signalling pathways for nodule organogenesis and infection. Intracellularly hosted bacteria are supplied with carbon resources in exchange for fixed nitrogen. Nod factor recognition is crucial for initial signalling, but is reiterated in growing roots initiating novel symbiotic events, and in developing primordia until symbiosis is well-established. Understanding how this signalling coordinates the entire process from cellular to plant level is key for de novo engineering in non-legumes and for improved efficiency in legumes. Here we discuss how recent studies bring new insights into molecular determinants of specificity and sensitivity in Nod factor signalling in legumes, and present some of the unknowns and challenges for engineering.
Collapse
Affiliation(s)
- Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
59
|
Li H, Schilderink S, Cao Q, Kulikova O, Bisseling T. Plant-specific histone deacetylases are essential for early and late stages of Medicago nodule development. PLANT PHYSIOLOGY 2021; 186:1591-1605. [PMID: 33744928 PMCID: PMC8260124 DOI: 10.1093/plphys/kiab140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.
Collapse
Affiliation(s)
- Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present address: St. Bonifatius College, Burgemeester Fockema Andreaelaan 7–9, 3582 KA Utrecht, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
60
|
Shen D, Holmer R, Kulikova O, Mannapperuma C, Street NR, Yan Z, van der Maden T, Bu F, Zhang Y, Geurts R, Magne K. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1366-1386. [PMID: 33735477 PMCID: PMC9543857 DOI: 10.1111/tpj.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Rens Holmer
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Zhichun Yan
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Thomas van der Maden
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Yuanyuan Zhang
- Laboratory of Plant PhysiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708 PBThe Netherlands
- Present address:
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Kévin Magne
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris‐SaclayCNRSINRAEUniv EvryOrsay91405France
| |
Collapse
|
61
|
Udvardi M, Below FE, Castellano MJ, Eagle AJ, Giller KE, Ladha JK, Liu X, Maaz TM, Nova-Franco B, Raghuram N, Robertson GP, Roy S, Saha M, Schmidt S, Tegeder M, York LM, Peters JW. A Research Road Map for Responsible Use of Agricultural Nitrogen. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify research opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains.
Collapse
|
62
|
Rich MK, Delaux PM. Plant Evolution: When Arabidopsis Is More Ancestral Than Marchantia. Curr Biol 2021; 30:R642-R644. [PMID: 32516612 DOI: 10.1016/j.cub.2020.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The quest for determining how the plants that first lived on land 450 million years ago looked is among the most exciting challenges in evolutionary biology. Recent work indicates that they displayed angiosperm-like stomata.
Collapse
Affiliation(s)
- Mélanie K Rich
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| |
Collapse
|
63
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
64
|
Sheoran S, Kumar S, Kumar P, Meena RS, Rakshit S. Nitrogen fixation in maize: breeding opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1263-1280. [PMID: 33677701 DOI: 10.1007/s00122-021-03791-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) is a highly versatile crop with huge demand of nitrogen (N) for its growth and development. N is the most essential macronutrient for crop production. Despite being the highest abundant element in the atmosphere (~ 78%), it is scarcely available for plant growth. To fulfil the N demand, commercial agriculture is largely dependent on synthetic fertilizers. Excessive dependence on inorganic fertilizers has created extensive ecological as well as economic problems worldwide. Hence, for a sustainable solution to nitrogenous fertilizer use, development of biological nitrogen fixation (BNF) in cereals will be the best alternative. BNF is a well-known mechanism in legumes where diazotrophs convert atmospheric nitrogen (N≡N) to plant-available form, ammonium (NH4+). From many decades, researchers have dreamt to develop a similar symbiotic partnership as in legumes to the cereal crops. A large number of endophytic diazotrophs have been found associated with maize. Elucidation of the genetic and molecular aspects of their interaction will open up new avenues to introgress BNF in maize breeding. With the advanced understanding of N-fixation process, researchers are at a juncture of breeding and engineering this symbiotic relationships in cereals. Different breeding, genetic engineering, omics, gene editing, and synthetic biology approaches will be discussed in this review to make BNF a reality in cereals. It will help to provide a road map to develop/improve the BNF in maize to an advance step for the sustainable production system to achieve the food and nutritional security.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 1410 04, India
| | - Sandeep Kumar
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462 030, India
| | - Pradeep Kumar
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 1410 04, India
| | - Ram Swaroop Meena
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 1410 04, India.
| |
Collapse
|
65
|
Liang P, Schmitz C, Lace B, Ditengou FA, Su C, Schulze E, Knerr J, Grosse R, Keller J, Libourel C, Delaux PM, Ott T. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Curr Biol 2021; 31:2712-2719.e5. [PMID: 33930305 PMCID: PMC8231094 DOI: 10.1016/j.cub.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4, 5, 6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the “infection chamber” (IC),1,2,7,8 from which a tube-like membrane channel, the “infection thread” (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12, 13, 14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15, 16, 17, 18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections. The SYMBIOTIC FORMIN 1 (SYFO1) specifically regulates symbiotic root hair curling SYFO1 directly binds actin and polarizes in responding root hairs SYFO1 induces membrane protrusions in cell-wall-devoid protoplasts Cell wall association of SYFO1 is indispensable for its function in root hairs
Collapse
Affiliation(s)
- Pengbo Liang
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Clara Schmitz
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Chao Su
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Eija Schulze
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Julian Knerr
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany
| | - Robert Grosse
- University of Freiburg, Medical Faculty, Institute of Pharmacology, Albertstr. 25, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 8, 79104 Freiburg, Germany.
| |
Collapse
|
66
|
Chen QL, Hu HW, He ZY, Cui L, Zhu YG, He JZ. Potential of indigenous crop microbiomes for sustainable agriculture. NATURE FOOD 2021; 2:233-240. [PMID: 37118464 DOI: 10.1038/s43016-021-00253-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 03/05/2021] [Indexed: 04/30/2023]
Abstract
The intimate interactions of indigenous crops with their associated microbiomes during long-term co-evolution strengthen the capacity and flexibility of crops to cope with biotic and abiotic stresses. This represents a promising untapped field for searching novel tools to sustainably increase crop productivity. However, the current capability of harnessing the power of indigenous crop microbiomes for sustainable crop production is limited due to low efficiency of separating the targeted functional microbes. Here, we highlight the potential benefits and existing challenges of utilizing indigenous crop microbiomes to reduce agrochemical inputs and increase crop resistance to biotic and abiotic stresses. We propose a framework using Raman-spectroscopy-based single-cell-sorting technology combined with a synthetic community approach to design and optimize a functionally reliable 'beneficial biome' under controlled conditions. This framework will offer opportunities for sustainable agriculture and provide a new direction for future studies.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| | - Zi-Yang He
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
67
|
Ghahremani M, MacLean AM. Home sweet home: how mutualistic microbes modify root development to promote symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2275-2287. [PMID: 33369646 DOI: 10.1093/jxb/eraa607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Post-embryonic organogenesis has uniquely equipped plants to become developmentally responsive to their environment, affording opportunities to remodel organism growth and architecture to an extent not possible in other higher order eukaryotes. It is this developmental plasticity that makes the field of plant-microbe interactions an exceptionally fascinating venue in which to study symbiosis. This review article describes the various ways in which mutualistic microbes alter the growth, development, and architecture of the roots of their plant hosts. We first summarize general knowledge of root development, and then examine how association of plants with beneficial microbes affects these processes. Working our way inwards from the epidermis to the pericycle, this review dissects the cell biology and molecular mechanisms underlying plant-microbe interactions in a tissue-specific manner. We examine the ways in which microbes gain entry into the root, and modify this specialized organ for symbiont accommodation, with a particular emphasis on the colonization of root cortical cells. We present significant advances in our understanding of root-microbe interactions, and conclude our discussion by identifying questions pertinent to root endosymbiosis that at present remain unresolved.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Allyson M MacLean
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| |
Collapse
|
68
|
Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021; 371:371/6531/eaba6605. [PMID: 33602828 DOI: 10.1126/science.aba6605] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today's continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
69
|
Monroe JG, McKay JK, Weigel D, Flood PJ. The population genomics of adaptive loss of function. Heredity (Edinb) 2021; 126:383-395. [PMID: 33574599 PMCID: PMC7878030 DOI: 10.1038/s41437-021-00403-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/23/2022] Open
Abstract
Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - John K McKay
- College of Agriculture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
70
|
Fedorova EE, Coba de la Peña T, Lara-Dampier V, Trifonova NA, Kulikova O, Pueyo JJ, Lucas MM. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1336-1348. [PMID: 33130893 PMCID: PMC7904148 DOI: 10.1093/jxb/eraa508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Rhizobia establish a symbiotic relationship with legumes that results in the formation of root nodules, where bacteria encapsulated by a membrane of plant origin (symbiosomes), convert atmospheric nitrogen into ammonia. Nodules are more sensitive to ionic stresses than the host plant itself. We hypothesize that such a high vulnerability might be due to defects in ion balance in the infected tissue. Low temperature SEM (LTSEM) and X-ray microanalysis of Medicago truncatula nodules revealed a potassium (K+) decrease in symbiosomes and vacuoles during the life span of infected cells. To clarify K+ homeostasis in the nodule, we performed phylogenetic and gene expression analyses, and confocal and electron microscopy localization of two key plant Shaker K+ channels, AKT1 and SKOR/GORK. Phylogenetic analyses showed that the genome of some legume species, including the Medicago genus, contained one SKOR/GORK and one AKT1 gene copy, while other species contained more than one copy of each gene. Localization studies revealed mistargeting and partial depletion of both channels from the plasma membrane of M. truncatula mature nodule-infected cells that might compromise ion transport. We propose that root nodule-infected cells have defects in K+ balance due to mislocation of some plant ion channels, as compared with non-infected cells. The putative consequences are discussed.
Collapse
Affiliation(s)
- Elena E Fedorova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | | | - Natalia A Trifonova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
71
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
72
|
Quilbé J, Lamy L, Brottier L, Leleux P, Fardoux J, Rivallan R, Benichou T, Guyonnet R, Becana M, Villar I, Garsmeur O, Hufnagel B, Delteil A, Gully D, Chaintreuil C, Pervent M, Cartieaux F, Bourge M, Valentin N, Martin G, Fontaine L, Droc G, Dereeper A, Farmer A, Libourel C, Nouwen N, Gressent F, Mournet P, D'Hont A, Giraud E, Klopp C, Arrighi JF. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium-legume symbiosis. Nat Commun 2021; 12:829. [PMID: 33547303 PMCID: PMC7864950 DOI: 10.1038/s41467-021-21094-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Johan Quilbé
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Léo Lamy
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Laurent Brottier
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Philippe Leleux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Thomas Benichou
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Irene Villar
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Bárbara Hufnagel
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Amandine Delteil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Marjorie Pervent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Fabienne Cartieaux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Mickaël Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nicolas Valentin
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Loïc Fontaine
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398, Montpellier, France
| | - Gaëtan Droc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), University of Montpellier, DIADE, IPME, Montpellier, France
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France.
| |
Collapse
|
73
|
Ancient CO 2 levels favor nitrogen fixing plants over a broader range of soil N compared to present. Sci Rep 2021; 11:3038. [PMID: 33542399 PMCID: PMC7862480 DOI: 10.1038/s41598-021-82701-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Small inreases in CO2 stimulate nitrogen fixation and plant growth. Increasing soil N can inhibit nitrogen fixation. However, no studies to date have tested how nitrogen fixing plants perform under ancient CO2 levels (100 MYA), when nitrogen fixing plants evolved, with different levels of N additions. The aim of this study was to assess if ancient CO2, compared to present, favors nitrogen fixers over a range of soil nitrogen concentrations. Nitrogen fixers (Alnus incana ssp. rugosa, Alnus viridis ssp. crispa, and Alnus rubra) and their close non-nitrogen fixing relatives (Betula pumila, Betula papyrifera, Betula glandulosa) were grown at ancient (1600 ppm) or present (400 ppm) CO2 over a range of soil N levels, equivalent to 0, 10, 50, and 200 kg N ha-1 year-1. The growth of non-N fixing plants increased more than N fixing plants in response to the increasing N levels. When grown at an ancient CO2 level, the N level at which non-nitrogen fixing plant biomass exceeded nitrogen fixing plant biomass was twice as high (61 kg N ha-1 year-1) as the N level when plants were grown at the ambient CO2 level. Specific nodule activity was also reduced with an increasing level of soil N. Our results show there was a greater advantage in being a nitrogen fixer under ancient levels of CO2 compared with the present CO2 level.
Collapse
|
74
|
Soyano T, Liu M, Kawaguchi M, Hayashi M. Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:102000. [PMID: 33454544 DOI: 10.1016/j.pbi.2020.102000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
Legumes and several plant species in the monophyletic nitrogen-fixing clade produce root nodules that function as symbiotic organs and establish mutualistic relationships with nitrogen-fixing bacteria. The modes of nodule organogenesis are distinct from those of lateral root development and also differ among different types of nodules formed in legumes and actinorhizal plants. It is considered that the evolution of new organs occurs through rearrangement of molecular networks interposed by certain neo-functionalized factors. Accumulating evidence has suggested that root nodule organogenesis involves root or lateral root developmental pathways. This review describes the current knowledge about the factors/pathways acquired by the common ancestor of the nitrogen-fixing clade in order to control nodule organogenesis.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Meng Liu
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, 230-0045 Kanagawa, Japan
| |
Collapse
|
75
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
76
|
Xun W, Liu Y, Li W, Ren Y, Xiong W, Xu Z, Zhang N, Miao Y, Shen Q, Zhang R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. MICROBIOME 2021; 9:35. [PMID: 33517892 PMCID: PMC7849160 DOI: 10.1186/s40168-020-00985-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND The relationship between biodiversity and soil microbiome stability remains poorly understood. Here, we investigated the impacts of bacterial phylogenetic diversity on the functional traits and the stability of the soil microbiome. Communities differing in phylogenetic diversity were generated by inoculating serially diluted soil suspensions into sterilized soil, and the stability of the microbiome was assessed by detecting community variations under various pH levels. The taxonomic features and potential functional traits were detected by DNA sequencing. RESULTS We found that bacterial communities with higher phylogenetic diversity tended to be more stable, implying that microbiomes with higher biodiversity are more resistant to perturbation. Functional gene co-occurrence network and machine learning classification analyses identified specialized metabolic functions, especially "nitrogen metabolism" and "phosphonate and phosphinate metabolism," as keystone functions. Further taxonomic annotation found that keystone functions are carried out by specific bacterial taxa, including Nitrospira and Gemmatimonas, among others. CONCLUSIONS This study provides new insights into our understanding of the relationships between soil microbiome biodiversity and ecosystem stability and highlights specialized metabolic functions embedded in keystone taxa that may be essential for soil microbiome stability. Video abstract.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wei Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
77
|
Yang LL, Jiang Z, Li Y, Wang ET, Zhi XY. Plasmids Related to the Symbiotic Nitrogen Fixation Are Not Only Cooperated Functionally but Also May Have Evolved over a Time Span in Family Rhizobiaceae. Genome Biol Evol 2020; 12:2002-2014. [PMID: 32687170 PMCID: PMC7719263 DOI: 10.1093/gbe/evaa152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Ling-Ling Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| | - Zhao Jiang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| | - Yan Li
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, PR China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City D.F., México
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| |
Collapse
|
78
|
Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C, Mengoni A, diCenzo GC. Symbiotic and Nonsymbiotic Members of the Genus Ensifer (syn. Sinorhizobium) Are Separated into Two Clades Based on Comparative Genomics and High-Throughput Phenotyping. Genome Biol Evol 2020; 12:2521-2534. [PMID: 33283865 PMCID: PMC7719227 DOI: 10.1093/gbe/evaa221] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Rhizobium–legume symbioses serve as paradigmatic examples for the study of mutualism evolution. The genus Ensifer (syn. Sinorhizobium) contains diverse plant-associated bacteria, a subset of which can fix nitrogen in symbiosis with legumes. To gain insights into the evolution of symbiotic nitrogen fixation (SNF), and interkingdom mutualisms more generally, we performed extensive phenotypic, genomic, and phylogenetic analyses of the genus Ensifer. The data suggest that SNF likely emerged several times within the genus Ensifer through independent horizontal gene transfer events. Yet, the majority (105 of 106) of the Ensifer strains with the nodABC and nifHDK nodulation and nitrogen fixation genes were found within a single, monophyletic clade. Comparative genomics highlighted several differences between the “symbiotic” and “nonsymbiotic” clades, including divergences in their pangenome content. Additionally, strains of the symbiotic clade carried 325 fewer genes, on average, and appeared to have fewer rRNA operons than strains of the nonsymbiotic clade. Initial characterization of a subset of ten Ensifer strains identified several putative phenotypic differences between the clades. Tested strains of the nonsymbiotic clade could catabolize 25% more carbon sources, on average, than strains of the symbiotic clade, and they were better able to grow in LB medium and tolerate alkaline conditions. On the other hand, the tested strains of the symbiotic clade were better able to tolerate heat stress and acidic conditions. We suggest that these data support the division of the genus Ensifer into two main subgroups, as well as the hypothesis that pre-existing genetic features are required to facilitate the evolution of SNF in bacteria.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Alexandru Ilie
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Carlo Viti
- Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry, University of Florence, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.,Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
79
|
Rutten L, Miyata K, Roswanjaya YP, Huisman R, Bu F, Hartog M, Linders S, van Velzen R, van Zeijl A, Bisseling T, Kohlen W, Geurts R. Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis. PLANT PHYSIOLOGY 2020; 184:1004-1023. [PMID: 32669419 PMCID: PMC7536700 DOI: 10.1104/pp.19.01420] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/07/2020] [Indexed: 05/02/2023]
Abstract
Rhizobium nitrogen-fixing nodule symbiosis occurs in two taxonomic lineages: legumes (Fabaceae) and the genus Parasponia (Cannabaceae). Both symbioses are initiated upon the perception of rhizobium-secreted lipochitooligosaccharides (LCOs), called Nod factors. Studies in the model legumes Lotus japonicus and Medicago truncatula showed that rhizobium LCOs are perceived by a heteromeric receptor complex of distinct Lys motif (LysM)-type transmembrane receptors named NOD FACTOR RECEPTOR1 (LjNFR1) and LjNFR5 (L. japonicus) and LYSM DOMAIN CONTAINING RECEPTOR KINASE3 (MtLYK3)-NOD FACTOR PERCEPTION (MtNFP; M. truncatula). Recent phylogenomic comparative analyses indicated that the nodulation traits of legumes, Parasponia spp., as well as so-called actinorhizal plants that establish a symbiosis with diazotrophic Frankia spp. bacteria share an evolutionary origin about 110 million years ago. However, the evolutionary trajectory of LysM-type LCO receptors remains elusive. By conducting phylogenetic analysis, transcomplementation studies, and CRISPR-Cas9 mutagenesis in Parasponia andersonii, we obtained insight into the origin of LCO receptors essential for nodulation. We identified four LysM-type receptors controlling nodulation in P. andersonii: PanLYK1, PanLYK3, PanNFP1, and PanNFP2 These genes evolved from ancient duplication events predating and coinciding with the origin of nodulation. Phylogenetic and functional analyses associated the occurrence of a functional NFP2-orthologous receptor to LCO-driven nodulation. Legumes and Parasponia spp. use orthologous LysM-type receptors to perceive rhizobium LCOs, suggesting a shared evolutionary origin of LCO-driven nodulation. Furthermore, we found that both PanLYK1 and PanLYK3 are essential for intracellular arbuscule formation of mutualistic endomycorrhizal fungi. PanLYK3 also acts as a chitin oligomer receptor essential for innate immune signaling, demonstrating functional analogy to CHITIN ELECITOR RECEPTOR KINASE-type receptors.
Collapse
Affiliation(s)
- Luuk Rutten
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Kana Miyata
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre of Technology for Agricultural Production, Agency for the Assessment and Application of Technology, 10340 Jakarta, Indonesia
| | - Rik Huisman
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Marijke Hartog
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Sidney Linders
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
80
|
Müller LM. An Evolutionary Perspective on LysM Receptors Reveals Conserved Mechanisms for Microbial Signal Perception. PLANT PHYSIOLOGY 2020; 184:562-563. [PMID: 33020322 PMCID: PMC7536689 DOI: 10.1104/pp.20.01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
81
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
82
|
Wu Z, Liu H, Huang W, Yi L, Qin E, Yang T, Wang J, Qin R. Genome-Wide Identification, Characterization, and Regulation of RWP-RK Gene Family in the Nitrogen-Fixing Clade. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1178. [PMID: 32932820 PMCID: PMC7569760 DOI: 10.3390/plants9091178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
RWP-RK is a plant-specific family of transcription factors, involved in nitrate response, gametogenesis, and nodulation. However, genome-wide characterization, phylogeny, and the regulation of RWP-RK genes in the nodulating and non-nodulating plant species of nitrogen-fixing clade (NFC) are widely unknown. Therefore, we identified a total of 292 RWP-RKs, including 278 RWP-RKs from 25 NFC species and 14 RWP-RKs from the outgroup, Arabidopsis thaliana. We classified the 292 RWP-RKs in two subfamilies: the NIN-like proteins (NLPs) and the RWP-RK domain proteins (RKDs). The transcriptome and phylogenetic analysis of RWP-RKs suggested that, compared to RKD genes, the NLP genes were just upregulated in nitrate response and nodulation. Moreover, nodule-specific NLP genes of some nodulating NFC species may have a common ancestor (OG0002084) with AtNLP genes in A. thaliana. Further, co-expression networks of A.thaliana under N-starvation and N-supplementation conditions revealed that there is a higher correlation between expression of AtNLP genes and symbiotic genes during N-starvation. In P. vulgaris, we confirmed that N-starvation stimulated nodulation by regulating expression of PvNLP2, closely related to AtNLP6 and AtNLP7 with another common origin (OG0004041). Taken together, we concluded that different origins of the NLP genes involved in both N-starvation response and specific expression of nodulation would contribute to the evolution of nodulation in NFC plant species. Our results shed light on the phylogenetic relationships of NLP genes and their differential regulation in nitrate response of A. thaliana and nodulation of NFC.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Wen Huang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Lisha Yi
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| |
Collapse
|
83
|
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314-1335. [PMID: 31797528 PMCID: PMC7415380 DOI: 10.1111/1751-7915.13517] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022] Open
Abstract
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.
Collapse
Affiliation(s)
- Kristina Lindström
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| | - Seyed Abdollah Mousavi
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| |
Collapse
|
84
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
85
|
Erwin DH. A conceptual framework of evolutionary novelty and innovation. Biol Rev Camb Philos Soc 2020; 96:1-15. [PMID: 32869437 DOI: 10.1111/brv.12643] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Since 1990 the recognition of deep homologies among metazoan developmental processes and the spread of more mechanistic approaches to developmental biology have led to a resurgence of interest in evolutionary novelty and innovation. Other evolutionary biologists have proposed central roles for behaviour and phenotypic plasticity in generating the conditions for the construction of novel morphologies, or invoked the accessibility of new regions of vast sequence spaces. These approaches contrast with more traditional emphasis on the exploitation of ecological opportunities as the primary source of novelty. This definitional cornucopia reflects differing stress placed on three attributes of novelties: their radical nature, the generation of new taxa, and ecological and evolutionary impact. Such different emphasis has led to conflating four distinct issues: the origin of novel attributes (genes, developmental processes, phenotypic characters), new functions, higher clades and the ecological impact of new structures and functions. Here I distinguish novelty (the origin of new characters, deep character transformations, or new combinations) from innovation, the ecological and evolutionary success of clades. Evidence from the fossil record of macroevolutionary lags between the origin of a novelty and its ecological success demonstrates that novelty may be decoupled from innovation, and only definitions of novelty based on radicality (rather than generativity or consequentiality) can be assessed without reference to the subsequent history of the clade to which a novelty belongs. These considerations suggest a conceptual framework for novelty and innovation, involving: (i) generation of the potential for novelty; (ii) the formation of novel attributes; (iii) refinement of novelties through adaptation; (iv) exploitation of novelties by a clade, which may coincide with a new round of ecological or environmental potentiation; followed by (v) the establishment of innovations through ecological processes. This framework recognizes that there is little empirical support for either the dominance of ecological opportunity, nor abrupt discontinuities (often caricatured as 'hopeful monsters'). This general framework may be extended to aspects of cultural and social innovation.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121 National Museum of Natural History, PO Box 37012, Washington, DC, 20013-7012, U.S.A.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, U.S.A
| |
Collapse
|
86
|
Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 2020; 44:107614. [PMID: 32858117 DOI: 10.1016/j.biotechadv.2020.107614] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 10/25/2022]
Abstract
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Collapse
Affiliation(s)
- Jakub Papik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Magdalena Folkmanova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Marketa Polivkova-Majorova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
87
|
Liu J, Yu X, Qin Q, Dinkins RD, Zhu H. The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes. Front Genet 2020; 11:00973. [PMID: 33014021 PMCID: PMC7461779 DOI: 10.3389/fgene.2020.00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 01/12/2023] Open
Abstract
Legumes are the second most important family of crop plants. One defining feature of legumes is their unique ability to establish a nitrogen-fixing root nodule symbiosis with soil bacteria known as rhizobia. Since domestication from their wild relatives, crop legumes have been under intensive breeding to improve yield and other agronomic traits but with little attention paid to the belowground symbiosis traits. Theoretical models predict that domestication and breeding processes, coupled with high−input agricultural practices, might have reduced the capacity of crop legumes to achieve their full potential of nitrogen fixation symbiosis. Testing this prediction requires characterizing symbiosis traits in wild and breeding populations under both natural and cultivated environments using genetic, genomic, and ecological approaches. However, very few experimental studies have been dedicated to this area of research. Here, we review how legumes regulate their interactions with soil rhizobia and how domestication, breeding and agricultural practices might have affected nodulation capacity, nitrogen fixation efficiency, and the composition and function of rhizobial community. We also provide a perspective on how to improve legume-rhizobial symbiosis in sustainable agricultural systems.
Collapse
Affiliation(s)
- Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Xiaocheng Yu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Qiulin Qin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Randy D Dinkins
- Forage-Animal Production Research Unit, United States Department of Agriculture-Agricultural Research Service, Lexington, KY, United States
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
88
|
Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. PLANTS 2020; 9:plants9081011. [PMID: 32796519 PMCID: PMC7464700 DOI: 10.3390/plants9081011] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Abdala G. Diedhiou
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar 1386, Senegal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar 18524, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Moses Thuita
- International Institute of Tropical Agriculture, Nairobi PO BOX 30772-00100, Kenya;
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
| |
Collapse
|
89
|
Merényi Z, Prasanna AN, Wang Z, Kovács K, Hegedüs B, Bálint B, Papp B, Townsend JP, Nagy LG. Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Mol Biol Evol 2020; 37:2228-2240. [PMID: 32191325 PMCID: PMC7403615 DOI: 10.1093/molbev/msaa077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
90
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
91
|
Liu J, Bisseling T. Evolution of NIN and NIN-like Genes in Relation to Nodule Symbiosis. Genes (Basel) 2020; 11:E777. [PMID: 32664480 PMCID: PMC7397163 DOI: 10.3390/genes11070777] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
Legumes and actinorhizal plants are capable of forming root nodules symbiosis with rhizobia and Frankia bacteria. All these nodulating species belong to the nitrogen fixation clade. Most likely, nodulation evolved once in the last common ancestor of this clade. NIN (NODULE INCEPTION) is a transcription factor that is essential for nodulation in all studied species. Therefore, it seems probable that it was recruited at the start when nodulation evolved. NIN is the founding member of the NIN-like protein (NLP) family. It arose by duplication, and this occurred before nodulation evolved. Therefore, several plant species outside the nitrogen fixation clade have NLP(s), which is orthologous to NIN. In this review, we discuss how NIN has diverged from the ancestral NLP, what minimal changes would have been essential for it to become a key transcription controlling nodulation, and which adaptations might have evolved later.
Collapse
Affiliation(s)
- Jieyu Liu
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
92
|
Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, Semchenko M, Sweeney CJ, van Ruijven J, York LM, Mommer L. The fungal collaboration gradient dominates the root economics space in plants. SCIENCE ADVANCES 2020; 6:eaba3756. [PMID: 32937432 PMCID: PMC7458448 DOI: 10.1126/sciadv.aba3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Plant economics run on carbon and nutrients instead of money. Leaf strategies aboveground span an economic spectrum from "live fast and die young" to "slow and steady," but the economy defined by root strategies belowground remains unclear. Here, we take a holistic view of the belowground economy and show that root-mycorrhizal collaboration can short circuit a one-dimensional economic spectrum, providing an entire space of economic possibilities. Root trait data from 1810 species across the globe confirm a classical fast-slow "conservation" gradient but show that most variation is explained by an orthogonal "collaboration" gradient, ranging from "do-it-yourself" resource uptake to "outsourcing" of resource uptake to mycorrhizal fungi. This broadened "root economics space" provides a solid foundation for predictive understanding of belowground responses to changing environmental conditions.
Collapse
Affiliation(s)
- Joana Bergmann
- Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany
| | | | | | - Nathaly Guerrero-Ramirez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | | | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Grégoire T Freschet
- CEFE, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
- Station d'Ecologie Théorique et Expérimentale (CNRS, Université Toulouse III), Moulis, France
| | | | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Matthias C Rillig
- Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Catherine Roumet
- CEFE, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Marina Semchenko
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
93
|
Baggs EL, Monroe JG, Thanki AS, O'Grady R, Schudoma C, Haerty W, Krasileva KV. Convergent Loss of an EDS1/PAD4 Signaling Pathway in Several Plant Lineages Reveals Coevolved Components of Plant Immunity and Drought Response. THE PLANT CELL 2020; 32:2158-2177. [PMID: 32409319 PMCID: PMC7346574 DOI: 10.1105/tpc.19.00903] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/19/2023]
Abstract
Plant innate immunity relies on nucleotide binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived molecules and activate downstream signaling pathways. We analyzed the variation in NLR gene copy number and identified plants with a low number of NLR genes relative to sister species. We specifically focused on four plants from two distinct lineages, one monocot lineage (Alismatales) and one eudicot lineage (Lentibulariaceae). In these lineages, the loss of NLR genes coincides with loss of the well-known downstream immune signaling complex ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)/PHYTOALEXIN DEFICIENT 4 (PAD4). We expanded our analysis across whole proteomes and found that other characterized immune genes were absent only in Lentibulariaceae and Alismatales. Additionally, we identified genes of unknown function that were convergently lost together with EDS1/PAD4 in five plant species. Gene expression analyses in Arabidopsis (Arabidopsis thaliana) and Oryza sativa revealed that several homologs of the candidates are differentially expressed during pathogen infection, drought, and abscisic acid treatment. Our analysis provides evolutionary evidence for the rewiring of plant immunity in some plant lineages, as well as the coevolution of the EDS1/PAD4 pathway and drought responses.
Collapse
Affiliation(s)
- Erin L Baggs
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
- University of California Berkeley, Berkeley, California 94720
| | - J Grey Monroe
- University of California Davis, Davis, California 95616
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Anil S Thanki
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Ruby O'Grady
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Christian Schudoma
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Ksenia V Krasileva
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
- University of California Berkeley, Berkeley, California 94720
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
94
|
Shen D, Xiao TT, van Velzen R, Kulikova O, Gong X, Geurts R, Pawlowski K, Bisseling T. A Homeotic Mutation Changes Legume Nodule Ontogeny into Actinorhizal-Type Ontogeny. THE PLANT CELL 2020; 32:1868-1885. [PMID: 32276984 PMCID: PMC7268803 DOI: 10.1105/tpc.19.00739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Some plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or Frankia bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules. The evolutionary relationship between these nodule types has been a long-standing enigma for molecular and evolutionary biologists. Recent phylogenomic studies on nodulating and nonnodulating species in the nitrogen-fixing clade indicated that the nodulation trait has a shared evolutionary origin in all 10 lineages. However, this hypothesis faces a conundrum in that legume-type and actinorhizal-type nodules have been regarded as fundamentally different. Here, we analyzed the actinorhizal-type nodules formed by Parasponia andersonii (Rosales) and Alnus glutinosa (Fagales) and found that their ontogeny is more similar to that of legume-type nodules (Fabales) than generally assumed. We also show that in Medicago truncatula, a homeotic mutation in the co-transcriptional regulator gene NODULE ROOT1 (MtNOOT1) converts legume-type nodules into actinorhizal-type nodules. These experimental findings suggest that the two nodule types have a shared evolutionary origin.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Ting Ting Xiao
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Robin van Velzen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Olga Kulikova
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Xiaoyun Gong
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - René Geurts
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
95
|
Whitewoods C. A Nod to Their Ancestors: Mutation of MtNOOT1 Highlights Conserved Nodule Development. THE PLANT CELL 2020; 32:1777-1778. [PMID: 32312787 PMCID: PMC7268810 DOI: 10.1105/tpc.20.00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Chris Whitewoods
- Department of Cell and Developmental BiologyJohn Innes CentreNorwich, United Kingdom
| |
Collapse
|
96
|
Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends Ecol Evol 2020; 35:426-439. [DOI: 10.1016/j.tree.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/29/2022]
|
97
|
Kovalchuk I, Pellino M, Rigault P, van Velzen R, Ebersbach J, Ashnest JR, Mau M, Schranz ME, Alcorn J, Laprairie RB, McKay JK, Burbridge C, Schneider D, Vergara D, Kane NC, Sharbel TF. The Genomics of Cannabis and Its Close Relatives. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:713-739. [PMID: 32155342 DOI: 10.1146/annurev-arplant-081519-040203] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10-25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
Collapse
Affiliation(s)
- I Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - M Pellino
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - P Rigault
- Gydle Inc., Québec, Québec G1S 1E7, Canada
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - R van Velzen
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
- Bedrocan International, 9640 CA Veendam, The Netherlands
| | - J Ebersbach
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - J R Ashnest
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M Mau
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M E Schranz
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
| | - J Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - R B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - J K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - C Burbridge
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Schneider
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Vergara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - N C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - T F Sharbel
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| |
Collapse
|
98
|
Harris JM, Pawlowski K, Mathesius U. Editorial: Evolution of Signaling in Plant Symbioses. FRONTIERS IN PLANT SCIENCE 2020; 11:456. [PMID: 32411157 PMCID: PMC7198894 DOI: 10.3389/fpls.2020.00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/27/2020] [Indexed: 05/29/2023]
Affiliation(s)
- Jeanne Marie Harris
- Department of Plant Biology, University of Vermont, Burlington, VT, United States
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
99
|
Oldroyd GED, Leyser O. A plant's diet, surviving in a variable nutrient environment. Science 2020; 368:368/6486/eaba0196. [PMID: 32241923 DOI: 10.1126/science.aba0196] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
As primary producers, plants rely on a large aboveground surface area to collect carbon dioxide and sunlight and a large underground surface area to collect the water and mineral nutrients needed to support their growth and development. Accessibility of the essential nutrients nitrogen (N) and phosphorus (P) in the soil is affected by many factors that create a variable spatiotemporal landscape of their availability both at the local and global scale. Plants optimize uptake of the N and P available through modifications to their growth and development and engagement with microorganisms that facilitate their capture. The sensing of these nutrients, as well as the perception of overall nutrient status, shapes the plant's response to its nutrient environment, coordinating its development with microbial engagement to optimize N and P capture and regulate overall plant growth.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK. .,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
100
|
Maillet F, Fournier J, Mendis HC, Tadege M, Wen J, Ratet P, Mysore KS, Gough C, Jones KM. Sinorhizobium meliloti succinylated high-molecular-weight succinoglycan and the Medicago truncatula LysM receptor-like kinase MtLYK10 participate independently in symbiotic infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:311-326. [PMID: 31782853 PMCID: PMC9327734 DOI: 10.1111/tpj.14625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
The formation of nitrogen-fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen-fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin-motif receptor-like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild-type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild-type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan-defective strains was achieved by in trans rescue with a Nod factor-deficient S. meliloti mutant. While the Nod factor-deficient strain was always more abundant inside nodules, the succinoglycan-deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.
Collapse
Affiliation(s)
- Fabienne Maillet
- LIPMUniversité de Toulouse, INRA, CNRSCastanet‐TolosanCS 52627France
| | - Joëlle Fournier
- LIPMUniversité de Toulouse, INRA, CNRSCastanet‐TolosanCS 52627France
| | - Hajeewaka C. Mendis
- Department of Biological ScienceFlorida State UniversityTallahasseeFL32306USA
| | - Million Tadege
- Department of Plant and Soil SciencesInstitute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Jiangqi Wen
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Pascal Ratet
- IPS2Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-SaclayBâtiment 63091405OrsayFrance
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-CitéBâtiment 63091405OrsayFrance
| | | | - Clare Gough
- LIPMUniversité de Toulouse, INRA, CNRSCastanet‐TolosanCS 52627France
| | - Kathryn M. Jones
- Department of Biological ScienceFlorida State UniversityTallahasseeFL32306USA
| |
Collapse
|