51
|
Morgan A, Crowley J, Nagisetty RM. Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation. AIR 2024; 2:142-161. [PMID: 39959284 PMCID: PMC11829816 DOI: 10.3390/air2020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Wildfires pose a direct threat to the property, life, and well-being of the population of Montana, USA, and indirectly to their health through hazardous smoke and gases emitted into the atmosphere. Studies have shown that elevated levels of particulate matter cause impacts to human health ranging from early death, to neurological and immune diseases, to cancer. Although there is currently a network of ground-based air quality sensors (n = 20) in Montana, the geographically sparse network has large gaps and lacks the ability to make accurate predictions for air quality in many areas of the state. Using the random forest method, a predictive model was developed in the Google Earth Engine (GEE) environment to estimate PM2.5 concentrations using satellite-based aerosol optical depth (AOD), dewpoint temperature (DPT), relative humidity (RH), wind speed (WIND), wind direction (WDIR), pressure (PRES), and planetary-boundary-layer height (PBLH). The validity of the prediction model was evaluated using 10-fold cross validation with a R2 value of 0.572 and RMSE of 9.98 μg/m3. The corresponding R2 and RMSE values for 'held-out data' were 0.487 and 10.53 μg/m3. Using the validated prediction model, daily PM2.5 concentration maps (1 km-resolution) were estimated from 2012 to 2023 for the state of Montana. These concentration maps are accessible via an application developed using GEE. The product provides valuable insights into spatiotemporal trends of PM2.5 concentrations, which will be useful for communities to take appropriate mitigation strategies and minimize hazardous PM2.5 exposure.
Collapse
Affiliation(s)
- Aspen Morgan
- Autonomous Aerial Systems Office, University of Montana, Missoula, MT 59812, USA
| | - Jeremy Crowley
- Autonomous Aerial Systems Office, University of Montana, Missoula, MT 59812, USA
| | - Raja M. Nagisetty
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| |
Collapse
|
52
|
Yu M, Zhang S, Ning H, Li Z, Zhang K. Assessing the 2023 Canadian wildfire smoke impact in Northeastern US: Air quality, exposure and environmental justice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171853. [PMID: 38522543 DOI: 10.1016/j.scitotenv.2024.171853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
The Canadian wildfires in June 2023 significantly impacted the northeastern United States, particularly in terms of worsened air pollution and environmental justice concerns. While advancements have been made in low-cost sensor deployments and satellite observations of atmospheric composition, integrating dynamic human mobility with wildfire PM2.5 exposure to fully understand the environmental justice implications remains underinvestigated. This study aims to enhance the accuracy of estimating ground-level fine particulate matter (PM2.5) concentrations by fusing chemical transport model outputs with empirical observations, estimating exposures using human mobility data, and evaluating the impact of environmental justice. Employing a novel data fusion technique, the study combines the Weather Research and Forecasting model with Chemistry (WRF-Chem) outputs and surface PM2.5 measurements, providing a more accurate estimation of PM2.5 distribution. The study addresses the gap in traditional exposure assessments by incorporating human mobility data and further investigates the spatial correlation of PM2.5 levels with various environmental and demographic factors from the US Environmental Protection Agency (EPA) Environmental Justice Screening and Mapping Tool (EJScreen). Results reveal that despite reduced mobility during high PM2.5 levels from wildfire smoke, exposure for both residents and individuals on the move remains high. Regions already burdened with high environmental pollution levels face amplified PM2.5 effects from wildfire smoke. Furthermore, we observed mixed correlations between PM2.5 concentrations and various demographic and socioeconomic factors, indicating complex exposure patterns across communities. Urban areas, in particular, experience persistent high exposure, while significant correlations in rural areas with EJScreen factors highlight the unique vulnerabilities of these populations to smoke exposure. These results advocate for a comprehensive approach to environmental health that leverages advanced models, integrates human mobility data, and addresses socio-demographic disparities, contributing to the development of equitable strategies against the growing threat of wildfires.
Collapse
Affiliation(s)
- Manzhu Yu
- Department of Geography, The Pennsylvania State University, USA.
| | - Shiyan Zhang
- Department of Geography, The Pennsylvania State University, USA
| | - Huan Ning
- Department of Geography, The Pennsylvania State University, USA
| | - Zhenlong Li
- Department of Geography, The Pennsylvania State University, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer 12144, NY, USA
| |
Collapse
|
53
|
Sol JA, Covington AC, McCloy AD, Sessums IP, Malek EM, McGinnis GR, Quindry JC. Effects of Acute Sleep Deprivation on the Physiological Response to Woodsmoke and Exercise. J Occup Environ Med 2024; 66:381-387. [PMID: 38383951 PMCID: PMC11073906 DOI: 10.1097/jom.0000000000003071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To evaluate sleep deprivation effects on the acute physiological response to a combined stressor of woodsmoke and exercise. METHODS Ten participants completed two exercise trials (8 hours of sleep vs 4 hours) with woodsmoke. Trials were conducted in a crossover design. Key measures examined before and after each trial included heart rate variability, pulse wave velocity, blood pressure, pulmonary function testing, and oxidative stress. RESULTS Acute sleep deprivation experienced before exercise and woodsmoke exposure did not impact metrics of heart rate variability, pulse wave velocity, pulmonary function testing, blood pressure, or oxidative stress. CONCLUSIONS Acute sleep deprivation did not amplify physiologic metrics in response to moderate-intensity aerobic exercise with inhaled woodsmoke. Although findings do not eliminate the negative impacts of inhaling woodsmoke, more research is needed to understand the acute effects of woodsmoke exposure on the cardiovascular system. 1.
Collapse
Affiliation(s)
- Joseph A. Sol
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Anna C. Covington
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Aidan D.A. McCloy
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Izaac P. Sessums
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Elias M. Malek
- School of Kinesiology and Nutrition Sciences, University of Nevada – Las Vegas, Las Vegas, NV
| | - Graham R. McGinnis
- School of Kinesiology and Nutrition Sciences, University of Nevada – Las Vegas, Las Vegas, NV
| | - John C. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| |
Collapse
|
54
|
Rafie SAA, Blentlinger LR, Putt AD, Williams DE, Joyner DC, Campa MF, Schubert MJ, Hoyt KP, Horn SP, Franklin JA, Hazen TC. Impact of prescribed fire on soil microbial communities in a Southern Appalachian Forest clear-cut. Front Microbiol 2024; 15:1322151. [PMID: 38741734 PMCID: PMC11090169 DOI: 10.3389/fmicb.2024.1322151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Escalating wildfire frequency and severity, exacerbated by shifting climate patterns, pose significant ecological and economic challenges. Prescribed burns, a common forest management tool, aim to mitigate wildfire risks and protect biodiversity. Nevertheless, understanding the impact of prescribed burns on soil and microbial communities in temperate mixed forests, considering temporal dynamics and slash fuel types, remains crucial. Our study, conducted at the University of Tennessee Forest Resources AgResearch and Education Center in Oak Ridge, TN, employed controlled burns across various treatments, and the findings indicate that low-intensity prescribed burns have none or minimal short-term effects on soil parameters but may alter soil nutrient concentrations, as evidenced by significant changes in porewater acetate, formate, and nitrate concentrations. These burns also induce shifts in microbial community structure and diversity, with Proteobacteria and Acidobacteria increasing significantly post-fire, possibly aiding soil recovery. In contrast, Verrucomicrobia showed a notable decrease over time, and other specific microbial taxa correlated with soil pH, porewater nitrate, ammonium, and phosphate concentrations. Our research contributes to understanding the intricate relationships between prescribed fire, soil dynamics, and microbial responses in temperate mixed forests in the Southern Appalachian Region, which is valuable for informed land management practices in the face of evolving environmental challenges.
Collapse
Affiliation(s)
- S. A. A. Rafie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - L. R. Blentlinger
- Department of Geography, University of Tennessee, Knoxville, TN, United States
| | - A. D. Putt
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - D. E. Williams
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - D. C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - M. F. Campa
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Bredesen Center—Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - M. J. Schubert
- Forest Resources AgResearch and Education Center, Knoxville, TN, United States
| | - K. P. Hoyt
- Forest Resources AgResearch and Education Center, Knoxville, TN, United States
| | - S. P. Horn
- Department of Geography, University of Tennessee, Knoxville, TN, United States
| | - J. A. Franklin
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - T. C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Bredesen Center—Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
55
|
Conlisk E, Butsic V, Syphard AD, Evans S, Jennings M. Evidence of increasing wildfire damage with decreasing property price in Southern California fires. PLoS One 2024; 19:e0300346. [PMID: 38656930 PMCID: PMC11042721 DOI: 10.1371/journal.pone.0300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Across the Western United States, human development into the wildland urban interface (WUI) is contributing to increasing wildfire damage. Given that natural disasters often cause greater harm within socio-economically vulnerable groups, research is needed to explore the potential for disproportionate impacts associated with wildfire. Using Zillow Transaction and Assessment Database (ZTRAX), hereafter "Zillow", real estate data, we explored whether lower-priced structures were more likely to be damaged during the most destructive, recent wildfires in Southern California. Within fire perimeters occurring from 2000-2019, we matched property price data to burned and unburned structures. To be included in the final dataset, fire perimeters had to surround at least 25 burned and 25 unburned structures and have been sold at most seven years before the fire; five fires fit these criteria. We found evidence to support our hypothesis that lower-priced properties were more likely to be damaged, however, the likelihood of damage and the influence of property value significantly varied across individual fire perimeters. When considering fires individually, properties within two 2003 fires-the Cedar and Grand Prix-Old Fires-had statistically significantly decreasing burn damage with increasing property value. Occurring in 2007 and later, the other three fires (Witch-Poomacha, Thomas, and Woolsey) showed no significant relationship between price and damage. Consistent with other studies, topographic position, slope, elevation, and vegetation were also significantly associated with the likelihood of a structure being damaged during the wildfire. Driving time to the nearest fire station and previously identified fire hazard were also significant. Our results suggest that further studies on the extent and reason for disproportionate impacts of wildfire are needed. In the meantime, decision makers should consider allocating wildfire risk mitigation resources-such as fire-fighting and wildfire structural preparedness resources-to more socioeconomically vulnerable neighborhoods.
Collapse
Affiliation(s)
- Erin Conlisk
- Research was Performed while at Point Blue Conservation Science, Petaluma, California, United States of America
- Conservation Biology Institute, Corvallis, OR, United States of America
| | - Van Butsic
- UC Berkeley, Environmental Science, Policy, and Management, Berkeley, California, United States of America
| | | | - Sam Evans
- Mills College at Northeastern University, Oakland, California, United States of America
| | - Megan Jennings
- San Diego State University, San Diego, California, United States of America
| |
Collapse
|
56
|
Daniels J, Liang L, Benedict KB, Brahney J, Rangel R, Weathers KC, Ponette-González AG. Satellite-based aerosol optical depth estimates over the continental U.S. during the 2020 wildfire season: Roles of smoke and land cover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171122. [PMID: 38395165 DOI: 10.1016/j.scitotenv.2024.171122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Wildfires produce smoke that can affect an area >1000 times the burn extent, with far-reaching human health, ecologic, and economic impacts. Accurately estimating aerosol load within smoke plumes is therefore crucial for understanding and mitigating these impacts. We evaluated the effectiveness of the latest Collection 6.1 MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm in estimating aerosol optical depth (AOD) across the U.S. during the historic 2020 wildfire season. We compared satellite-based MAIAC AOD to ground-based AERONET AOD measurements during no-, light-, medium-, and heavy-smoke conditions identified using the Hazard Mapping System Fire and Smoke Product. This smoke product consists of maximum extent smoke polygons digitized by analysts using visible band imagery and classified according to smoke density. We also examined the strength of the correlations between satellite- and ground-based AOD for major land cover types under various smoke density levels. MAIAC performed well in estimating AOD during smoke-affected conditions. Correlations between MAIAC and AERONET AOD were strong for medium- (r = 0.91) and heavy-smoke (r = 0.90) density, and MAIAC estimates of AOD showed little bias relative to ground-based AERONET measurements (normalized mean bias = 3 % for medium, 5 % for heavy smoke). During two high AOD, heavy smoke episodes, MAIAC underestimated ground-based AERONET AOD under mixed aerosol (i.e., smoke and dust; median bias = -0.08) and overestimated AOD under smoke-dominated (median bias = 0.02) aerosol. MAIAC most overestimated ground-based AERONET AOD over barren land (mean NMB = 48 %). Our findings indicate that MODIS MAIAC can provide robust estimates of AOD as smoke density increases in coming years. Increased frequency of mixed aerosol and expansion of developed land could affect the performance of the MAIAC algorithm in the future, however, with implications for evaluating wildfire-associated health and welfare effects and air quality standards.
Collapse
Affiliation(s)
- Jacob Daniels
- Department of Electrical Engineering, University of North Texas, 1155 Union Circle #305279, Denton, TX 76203, USA
| | - Lu Liang
- Department of Geography and the Environment, University of North Texas, 1155 Union Circle #305279, Denton, TX 76203, USA
| | - Katherine B Benedict
- Earth and Environmental Science Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, 5210 Old Main Hill, Logan, UT 84322, USA
| | - Roman Rangel
- Department of Geography and the Environment, University of North Texas, 1155 Union Circle #305279, Denton, TX 76203, USA
| | | | - Alexandra G Ponette-González
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108, USA; Department of City and Metropolitan Planning, University of Utah, 375 South 1530 East, Suite 220, Salt Lake City, UT 84112, USA.
| |
Collapse
|
57
|
Zhu Q, Zhang D, Wang W, D’Souza RR, Zhang H, Yang B, Steenland K, Scovronick N, Ebelt S, Chang HH, Liu Y. Wildfires are associated with increased emergency department visits for anxiety disorders in the western United States. NATURE. MENTAL HEALTH 2024; 2:379-387. [PMID: 39568497 PMCID: PMC11575985 DOI: 10.1038/s44220-024-00210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/23/2024] [Indexed: 11/22/2024]
Abstract
As wildfires increasingly impact the global economy and public health, understanding their effects is crucial. Particularly, the relationship between wildfires and anxiety disorders remains unclear. In this study, we explore this association by analyzing 1,897,865 emergency department visits for anxiety disorders in the western United States. We examined records from 2007 to 2018, using a case-crossover design and conditional logistic regression to assess the impact of wildfire-related exposures on these visits. Here we show that exposure to wildfire smokeP M 2.5 is positively linked with emergency department visits for anxiety disorders. This effect is more pronounced in women and girls and in older adults, highlighting their vulnerability. Notably, major smoke events (smokeP M 2.5 contributed ≥75% of the totalP M 2.5 ) significantly amplify this risk. These findings underscore the psychological impacts of wildfires and their smoke, suggesting a need for targeted disaster risk reduction and climate risk management strategies, especially for vulnerable groups such as older adults and women. Our results call for increased climate awareness and tailored risk communication to mitigate these emerging health challenges.
Collapse
Affiliation(s)
- Qingyang Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Danlu Zhang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wenhao Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rohan Richard D’Souza
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haisu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Binyu Yang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Noah Scovronick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
58
|
Picciotto S, Huang S, Lurmann F, Pavlovic N, Ying Chang S, Mukherjee A, Goin DE, Sklar R, Noth E, Morello-Frosch R, Padula AM. Pregnancy exposure to PM 2.5 from wildland fire smoke and preterm birth in California. ENVIRONMENT INTERNATIONAL 2024; 186:108583. [PMID: 38521046 PMCID: PMC11410054 DOI: 10.1016/j.envint.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Wildfires in the Western United States are a growing and significant source of air pollution that is eroding decades of progress in air pollution reduction. The effects on preterm birth during critical periods of pregnancy are unknown. METHODS We assessed associations between prenatal exposure to wildland fire smoke and risk of preterm birth (gestational age < 37 weeks). We assigned smoke exposure to geocoded residence at birth for all live singleton births in California conceived 2007-2018, using weekly average concentrations of particulate matter ≤ 2.5 µm (PM2.5) attributable to wildland fires from United States Environmental Protection Agency's Community Multiscale Air Quality Model. Logistic regression yielded odds ratio (OR) for preterm birth in relation to increases in average exposure across the whole pregnancy, each trimester, and each week of pregnancy. Models adjusted for season, age, education, race/ethnicity, medical insurance, and smoking of the birthing parent. RESULTS For the 5,155,026 births, higher wildland fire PM2.5 exposure averaged across pregnancy, or any trimester, was associated with higher odds of preterm birth. The OR for an increase of 1 µg/m3 of average wildland fire PM2.5 during pregnancy was 1.013 (95 % CI:1.008,1.017). Wildland fire PM2.5 during most weeks of pregnancy was associated with higher odds. Strongest estimates were observed in weeks in the second and third trimesters. A 10 µg/m3 increase in average wildland fire PM2·5 in gestational week 23 was associated with OR = 1.034; 95 % CI: 1.019, 1.049 for preterm birth. CONCLUSIONS Preterm birth is sensitive to wildland fire PM2.5; therefore, we must reduce exposure during pregnancy.
Collapse
Affiliation(s)
- Sally Picciotto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | - Dana E Goin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Sklar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
59
|
Allen RJ, Samset BH, Wilcox LJ, Fisher RA. Are Northern Hemisphere boreal forest fires more sensitive to future aerosol mitigation than to greenhouse gas-driven warming? SCIENCE ADVANCES 2024; 10:eadl4007. [PMID: 38552024 PMCID: PMC10980282 DOI: 10.1126/sciadv.adl4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Considerable interest exists in understanding how climate change affects wildfire activity. Here, we use the Community Earth System Model version 2 to show that future anthropogenic aerosol mitigation yields larger increases in fire activity in the Northern Hemisphere boreal forests, relative to a base simulation that lacks climate policy and has large increases in greenhouse gases. The enhanced fire response is related to a deeper layer of summertime soil drying, consistent with increased downwelling surface shortwave radiation and enhanced surface evapotranspiration. In contrast, soil column drying is muted under increasing greenhouse gases due to plant physiological responses to increased carbon dioxide and by enhanced melting of soil ice at a depth that increases soil liquid water. Although considerable uncertainty remains in the representation of fire processes in models, our results suggest that boreal forest fires may be more sensitive to future aerosol mitigation than to greenhouse gas-driven warming.
Collapse
Affiliation(s)
- Robert J. Allen
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA 92521 USA
| | - Bjørn H. Samset
- CICERO Center for International Climate and Environmental Research in Oslo, Oslo, Norway
| | - Laura J. Wilcox
- National Centre for Atmospheric Science, University of Reading, Reading, UK
| | - Rosie A. Fisher
- CICERO Center for International Climate and Environmental Research in Oslo, Oslo, Norway
| |
Collapse
|
60
|
Neyestani SE, Porter WC, Kiely L. Air quality impacts of observationally constrained biomass burning heat flux inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170321. [PMID: 38278259 DOI: 10.1016/j.scitotenv.2024.170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Biomass burning is a major contributor to ambient air pollution worldwide, and the accurate characterization of biomass burning plume behavior is an important consideration for air quality models that attempt to reproduce these emissions. Smoke plume injection height, or the vertical level into which the combustion emissions are released, is an important consideration for determining plume behavior, transport, and eventual impacts. This injection height is dependent on several fire properties, each with estimates and uncertainties in terms of historical fire emissions inventories. One such property is the fire heat flux, a fire property metric sometimes used to predict and parameterize plume injection heights in current chemical transport models. Although important for plume behavior, fire heat flux is difficult to predict and parameterize efficiently, and is therefore often held to fixed, constant values in these models, leading to potential model biases relative to real world conditions. In this study we collect observed heat flux estimates from satellite data products for three wildfire events over northern California and use these estimates in a regional chemical transport model to investigate and quantify the impacts of observationally constrained heat fluxes on the modeled injection height and downwind air quality. We find large differences between these observationally derived heat flux estimates and fixed model assumptions, with important implications for modeled behavior of plume dynamics and surface air quality impacts. Overall, we find that using observationally constrained heat flux estimates tends to reduce modeled injection heights for our chosen fires, resulting in large increases in surface particulate matter concentrations. While local wind conditions contribute to variability and additional uncertainties in the impacts of modified plume injection heights, we find observationally constrained heat fluxes to be an impactful and potentially useful tool towards the improvement of emissions inventory assumptions and parameterizations.
Collapse
Affiliation(s)
- Soroush E Neyestani
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| | - William C Porter
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| | - Laura Kiely
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
61
|
Lin Y, Wang X, Chen R, Weil T, Ge Y, Stapleton HM, Bergin MH, Zhang J(J. Arachidonic Acid Metabolites in Self-collected Biospecimens Following Campfire Exposure: Exploring Non-invasive Biomarkers of Wildfire Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:201-207. [PMID: 38828437 PMCID: PMC11144521 DOI: 10.1021/acs.estlett.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Climate change has contributed to increased frequency and intensity of wildfire. Studying its acute effects is limited due to unpredictable nature of wildfire occurrence, which necessitates readily deployable techniques to collect biospecimens. To identify biomarkers of wildfire's acute effects, we conducted this exploratory study in eight healthy campers (four men and four women) who self-collected nasal fluid, urine, saliva, and skin wipes at different time points before, during, and after 4-hour exposure to wood smoke in a camping event. Concentrations of black carbon in the air and polycyclic aromatic hydrocarbons in participants' silicone wristbands were significantly elevated during the exposure session. Among 30 arachidonic acid metabolites measured, lipoxygenase metabolites were more abundant in nasal fluid and saliva, whereas cyclooxygenase and non-enzymatic metabolites were more abundant in urine. We observed drastic increases, at 8 hours following the exposure, in urinary levels of PGE2 (398%) and 15-keto-PGF2α (191%) (FDR<10%), with greater increases in men (FDR < 0.01%) than in women. No significant changes were observed for other metabolites in urine or the other biospecimens. Our results suggest urinary PGE2 and 15-keto-PGF2α as promising biomarkers reflecting pathophysiologic (likely sex-dependent) changes induced by short-term exposure to wildfire.
Collapse
Affiliation(s)
- Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Ruoxue Chen
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Tenley Weil
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Michael H. Bergin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| | - Junfeng (Jim) Zhang
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| |
Collapse
|
62
|
Batcheler M, Smith MM, Swanson ME, Ostrom M, Carpenter-Boggs L. Assessing silvopasture management as a strategy to reduce fuel loads and mitigate wildfire risk. Sci Rep 2024; 14:5954. [PMID: 38467773 PMCID: PMC10928111 DOI: 10.1038/s41598-024-56104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Managing private forests for wildfire resilience is challenging due to conflicting social, economic, and ecological decisions that may result in an increase of surface fuel loads leading to greater fire risk. Due to fire suppression and a changing climate, land managers in fire-prone regions face an increasing threat of high severity fires. Thus, land managers need fuel treatment options that match their forest types and management objectives. One potential option for producers that graze livestock is silvopasture management, where livestock, forages, and overstory vegetation are carefully managed for co-benefits on the same unit of land. This study compared forest composition and structure, fuel types, and vegetative biomass between silvopasture and non-grazed managed forests in Washington, U.S. We show that silvopasture management results in reductions in grass biomass, litter, and duff depth when compared to non-grazed managed forest. These findings point to the integrated nature of silvopasture, where management of overstory composition and structure, understory vegetation, and grazing can reduce fuel loads and potential wildfire risk.
Collapse
Affiliation(s)
- Mark Batcheler
- Corvallis Forestry Sciences Laboratory, USDA National Agroforestry Center, 3200 Southwest Jefferson Way, Corvallis, OR, 97331, USA.
| | - Matthew M Smith
- USDA National Agroforestry Center, 1945 North 38Th Street, Lincoln, NE, 68583, USA
| | - Mark E Swanson
- School of the Environment, Washington State University, P.O. Box 64610, Pullman, WA, 99164, USA
| | - Marcia Ostrom
- School of the Environment, Washington State University, 1100 North Western Avenue, Wenatchee, WA, 98801, USA
| | | |
Collapse
|
63
|
Steel BS, Lovrich NP, Pierce JC. Cultural Theory, Wildfire Information Source, and Agency Public Trust: A Central Oregon Case Study. ENVIRONMENTAL MANAGEMENT 2024; 73:579-594. [PMID: 37981581 DOI: 10.1007/s00267-023-01909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
With the increasing occurrence and severity of wildfires in the U.S., and especially in the forests and rangelands of the western U.S., it is important to know which wildfire information sources are trusted by households and the amount of trust placed on natural resources agencies to manage for wildfire. The Theory of Motivated Reasoning suggests that people will trust and use those information sources that conform to their own value and ideological orientations. Similarly, trust in natural resource agencies' ability to manage wildfire may also be the result of cultural traits. This study uses Cultural Theory as a theoretical perspective to determine those value systems, and how cultural traits motivate people to use and trust various wildfire information sources and the agencies tasked with managing wildfire. Using random sample surveys of Wildland-Urban-Interface (WUI) households in fire-prone Deschutes County in central Oregon, the study finds that egalitarians are significantly more likely than those with other cultural traits to use and trust natural resource agency information sources, while individualists are more likely to use and trust family members and neighbors for their information. Similarly, egalitarians are trusting of natural resource managers to use prescribed fire, manage naturally ignited fires, and to thin forests to reduce fuels. Individualists are less trusting of government agencies to use the same approaches to reduce fuels. The study concludes with some suggestions for how wildfire policy makers and managers can use these findings to communicate more effectively important wildfire information to audiences with differing cultural traits and differing levels of natural resource agency trust.
Collapse
Affiliation(s)
- Brent S Steel
- School of Public Policy, Oregon State University, Corvallis, OR, 97331, USA.
| | - Nicholas P Lovrich
- School of Politics, Philosophy and Public Affairs, Washington State University, Pullman, WA, 99164, USA
| | - John C Pierce
- School of Public Affairs and Administration, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
64
|
Hasan MZ, Semmens EO, DuBose KN, McCray LK, Noonan CW. Subclinical Measures of Cardiovascular Health Among Wildland Firefighters. J Occup Environ Med 2024; 66:e116-e121. [PMID: 38234129 PMCID: PMC11104274 DOI: 10.1097/jom.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
OBJECTIVE The aim of the study is to compare subclinical measures of cardiovascular health among wildland firefighters (WFFs) to the US general population. METHODS Our cross-sectional study compared body mass index, total cholesterol, and blood pressure in 11,051 WFFs aged 17 to 64 years using Department of the Interior Medical Screening Program clinical screening examinations between 2014-2018 to National Health and Nutrition Examination Survey of 2015-2016 cycle using adjusted logistic regression analyses. RESULTS The logistic regression model shows significantly higher odds of hypertension and prehypertension in WFFs (2.84 times more with 95% CI: 2.28-3.53) than US general population. There were no consistent differences in body mass index or total cholesterol between the two population. CONCLUSIONS Hypertension and prehypertension were more prevalent in WFFs compared with the US general population, which suggests the need for actions for protecting against cardiovascular disease among WFFs.
Collapse
Affiliation(s)
- Md. Zahid Hasan
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana
| | - Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana
| | | | | | - Curtis W. Noonan
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana
| |
Collapse
|
65
|
Bittner AS, Holder AL, Grieshop AP, Hagler GSW, Mitchell W. Performance of Vehicle Add-on Mobile Monitoring System PM 2.5 measurements during wildland fire episodes. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:306-320. [PMID: 39296539 PMCID: PMC11406472 DOI: 10.1039/d3ea00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Fine particulate matter (PM2.5) resulting from wildland fire is a significant public health risk in the United States (U.S.). The existing stationary monitoring network and the tools used to alert the public of smoke conditions, such as the Air Quality Index or NowCast, are not optimized to capture actual exposure concentrations in impacted communities given that wildland fire smoke plumes have characteristically steep exposure concentration gradients that can vary over fine spatiotemporal scales. In response, we developed and evaluated a lightweight, universally attachable mobile PM2.5 monitoring system to provide supplemental, real-time air quality information during wildfire incidents and prescribed burning activities. We retroactively assessed the performance of the mobile monitor compared to nearby (100-1500 m) stationary low-cost sensors and regulatory monitors using 1 minute averaged data collected during two large wildfires in the western U.S. and during one small, prescribed burn in the Midwest. The mobile measurements were highly correlated (R 2 > 0.85) with the stationary network during the large wildfires. Further, 1 minute averaged mobile measurements differed from three collocated stationary instruments by <25% on average for fourteen out of fifteen total passages. For the small, prescribed burn, rapidly changing conditions near the fire border complicated the comparison of mobile and stationary measurements but the spatial maximum concentrations measured by both instruments were consistent. In general, this work highlights the value of using portable sensor technologies to address the monitoring challenges presented by dynamic wildland fire conditions and demonstrates the value in combining mobile monitoring with stationary data where possible.
Collapse
Affiliation(s)
- Ashley S Bittner
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27606, USA
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC 27709, USA
| | - Amara L Holder
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC 27709, USA
| | - Andrew P Grieshop
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Gayle S W Hagler
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC 27709, USA
| | - William Mitchell
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC 27709, USA
| |
Collapse
|
66
|
Casey JA, Kioumourtzoglou MA, Padula A, González DJX, Elser H, Aguilera R, Northrop AJ, Tartof SY, Mayeda ER, Braun D, Dominici F, Eisen EA, Morello-Frosch R, Benmarhnia T. Measuring long-term exposure to wildfire PM 2.5 in California: Time-varying inequities in environmental burden. Proc Natl Acad Sci U S A 2024; 121:e2306729121. [PMID: 38349877 PMCID: PMC10895344 DOI: 10.1073/pnas.2306729121] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024] Open
Abstract
Wildfires have become more frequent and intense due to climate change and outdoor wildfire fine particulate matter (PM2.5) concentrations differ from relatively smoothly varying total PM2.5. Thus, we introduced a conceptual model for computing long-term wildfire PM2.5 and assessed disproportionate exposures among marginalized communities. We used monitoring data and statistical techniques to characterize annual wildfire PM2.5 exposure based on intermittent and extreme daily wildfire PM2.5 concentrations in California census tracts (2006 to 2020). Metrics included: 1) weeks with wildfire PM2.5 < 5 μg/m3; 2) days with non-zero wildfire PM2.5; 3) mean wildfire PM2.5 during peak exposure week; 4) smoke waves (≥2 consecutive days with <15 μg/m3 wildfire PM2.5); and 5) mean annual wildfire PM2.5 concentration. We classified tracts by their racial/ethnic composition and CalEnviroScreen (CES) score, an environmental and social vulnerability composite measure. We examined associations of CES and racial/ethnic composition with the wildfire PM2.5 metrics using mixed-effects models. Averaged 2006 to 2020, we detected little difference in exposure by CES score or racial/ethnic composition, except for non-Hispanic American Indian and Alaska Native populations, where a 1-SD increase was associated with higher exposure for 4/5 metrics. CES or racial/ethnic × year interaction term models revealed exposure disparities in some years. Compared to their California-wide representation, the exposed populations of non-Hispanic American Indian and Alaska Native (1.68×, 95% CI: 1.01 to 2.81), white (1.13×, 95% CI: 0.99 to 1.32), and multiracial (1.06×, 95% CI: 0.97 to 1.23) people were over-represented from 2006 to 2020. In conclusion, during our study period in California, we detected disproportionate long-term wildfire PM2.5 exposure for several racial/ethnic groups.
Collapse
Affiliation(s)
- Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY10032
- Department of Environmental and Occupational Health, University of Washington School of Public Health, Seattle, WA98195
| | | | - Amy Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA94143
| | - David J. X. González
- Department of Environmental Policy, Science, and Management, University of California, Berkeley, CA94720
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA19104
| | - Rosana Aguilera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037
| | | | - Sara Y. Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA91101
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, Los Angeles, CA90095
| | - Danielle Braun
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA02115
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA02215
| | - Francesca Dominici
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA02115
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Rachel Morello-Frosch
- Department of Environmental Policy, Science, and Management, University of California, Berkeley, CA94720
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037
| |
Collapse
|
67
|
Villarruel CM, Figueroa LA, Ranville JF. Quantification of Bioaccessible and Environmentally Relevant Trace Metals in Structure Ash from a Wildland-Urban Interface Fire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2502-2513. [PMID: 38277687 DOI: 10.1021/acs.est.3c08446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.
Collapse
Affiliation(s)
- Carmen M Villarruel
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Linda A Figueroa
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
68
|
Wettstein ZS, Vaidyanathan A. Psychotropic Medication Prescriptions and Large California Wildfires. JAMA Netw Open 2024; 7:e2356466. [PMID: 38407907 PMCID: PMC10897744 DOI: 10.1001/jamanetworkopen.2023.56466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024] Open
Abstract
Importance Wildfires, intensified by climate change, have known effects on physical health but their effects on mental health are less well characterized. It has been hypothesized that the residential proximity to a large wildfire can exacerbate underlying mental health conditions as evidenced by increased prescriptions of psychotropic medications. Objective To evaluate the association between the occurrence of large wildfires and the prescription rates of psychotropic medications immediately following the start of the fire. Design, Setting, and Participants This cohortstudy used an interrupted time-series analysis to compare psychotropic medication prescriptions in the 6 weeks before and after each of 25 wildfires. The setting was California counties within metropolitan statistical areas (MSAs) experiencing large wildfires from 2011 through 2018. Participants included individuals residing in California MSAs with prescriptions of psychotropic medications recorded in the Merative MarketScan Research Database (MarketScan) during the study period. Statistical analysis was performed for these 25 large wildfires occurring between September 2011 and November 2018. Exposure Residential proximity to large wildfires that burned more than 25 000 acres occurring in a California county within an MSA. Main Outcomes and Measures Prescriptions of psychotropic medications, including antidepressants, antipsychotics, anxiolytics, hypnotics, and mood-stabilizers, with statins as a negative control outcome. Results For the study period, prescription data and patient-level attributes were extracted for 7 115 690 unique individuals (annual mean [range]: 889 461 [455 705-1 426 928] individuals) enrolled in MarketScan and residing in fire-affected MSAs. This study found a statistically significant increase in prescriptions of antidepressants (rate ratio [RR], 1.04 [95% CI, 1.01-1.07]), anxiolytics (RR, 1.05 [95% CI, 1.02-1.09]), and mood-stabilizing medications (RR, 1.06 [95% CI, 1.01-1.13]) in the fire period compared with the prefire baseline. However, the prescriptions of antipsychotics, hypnotics, and the negative control outcome, statins, showed no significant association. Conclusions and Relevance In this cohort study of large California wildfires, the occurrence of wildfire was associated with increased mental health burden as reflected in increased prescription rates of certain psychotropic medications. The findings underscore the need for further scientific examination into the mental health effects of wildfires and the allocation of mental health resources in disaster responses. California experienced a substantial burden of wildfires from 2011 to 2018, and as wildfires become more intense and frequent in the context of anthropogenic climate change, it is increasingly important to understand and address their mental health effects.
Collapse
Affiliation(s)
- Zachary S. Wettstein
- Climate and Health Program, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
- University of Washington School of Medicine, Department of Emergency Medicine, Seattle
| | - Ambarish Vaidyanathan
- Climate and Health Program, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
69
|
Slavik CE, Chapman DA, Cohen AS, Bendefaa N, Peters E. Clearing the air: evaluating institutions' social media health messaging on wildfire and smoke risks in the US Pacific Northwest. BMC Public Health 2024; 24:379. [PMID: 38317121 PMCID: PMC10840270 DOI: 10.1186/s12889-024-17907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Wildfire smoke contributes substantially to the global disease burden and is a major cause of air pollution in the US states of Oregon and Washington. Climate change is expected to bring more wildfires to this region. Social media is a popular platform for health promotion and a need exists for effective communication about smoke risks and mitigation measures to educate citizens and safeguard public health. METHODS Using a sample of 1,287 Tweets from 2022, we aimed to analyze temporal Tweeting patterns in relation to potential smoke exposure and evaluate and compare institutions' use of social media communication best practices which include (i) encouraging adoption of smoke-protective actions; (ii) leveraging numeric, verbal, and Air Quality Index risk information; and (iii) promoting community-building. Tweets were characterized using keyword searches and the Linguistic Inquiry and Word Count (LIWC) software. Descriptive and inferential statistics were carried out. RESULTS 44% of Tweets in our sample were authored between January-August 2022, prior to peak wildfire smoke levels, whereas 54% of Tweets were authored during the two-month peak in smoke (September-October). Institutional accounts used Twitter (or X) to encourage the adoption of smoke-related protective actions (82% of Tweets), more than they used it to disseminate wildfire smoke risk information (25%) or promote community-building (47%). Only 10% of Tweets discussed populations vulnerable to wildfire smoke health effects, and 14% mentioned smoke mitigation measures. Tweets from Washington-based accounts used significantly more verbal and numeric risk information to discuss wildfire smoke than Oregon-based accounts (p = 0.042 and p = 0.003, respectively); however, Tweets from Oregon-based accounts on average contained a higher percentage of words associated with community-building language (p < 0.001). CONCLUSIONS This research provides practical recommendations for public health practitioners and researchers communicating wildfire smoke risks on social media. As exposures to wildfire smoke rise due to climate change, reducing the environmental disease burden requires health officials to leverage popular communication platforms, distribute necessary health-related messaging rapidly, and get the message right. Timely, evidence-based, and theory-driven messaging is critical for educating and empowering individuals to make informed decisions about protecting themselves from harmful exposures. Thus, proactive and sustained communications about wildfire smoke should be prioritized even during wildfire "off-seasons."
Collapse
Affiliation(s)
- Catherine E Slavik
- School of Journalism and Communication, University of Oregon, 1715 Franklin Boulevard, Eugene, OR, 97403, USA.
- Center for Science Communication Research, University of Oregon, Eugene, OR, USA.
| | - Daniel A Chapman
- School of Journalism and Communication, University of Oregon, 1715 Franklin Boulevard, Eugene, OR, 97403, USA
- Center for Science Communication Research, University of Oregon, Eugene, OR, USA
| | - Alex Segrè Cohen
- School of Journalism and Communication, University of Oregon, 1715 Franklin Boulevard, Eugene, OR, 97403, USA
- Center for Science Communication Research, University of Oregon, Eugene, OR, USA
| | - Nahla Bendefaa
- School of Journalism and Communication, University of Oregon, 1715 Franklin Boulevard, Eugene, OR, 97403, USA
| | - Ellen Peters
- School of Journalism and Communication, University of Oregon, 1715 Franklin Boulevard, Eugene, OR, 97403, USA
- Center for Science Communication Research, University of Oregon, Eugene, OR, USA
- Department of Psychology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
70
|
Abstract
We review current knowledge on the trends and drivers of global wildfire activity, advances in the measurement of wildfire smoke exposure, and evidence on the health effects of this exposure. We describe methodological issues in estimating the causal effects of wildfire smoke exposures on health and quantify their importance, emphasizing the role of nonlinear and lagged effects. We conduct a systematic review and meta-analysis of the health effects of wildfire smoke exposure, finding positive impacts on all-cause mortality and respiratory hospitalizations but less consistent evidence on cardiovascular morbidity. We conclude by highlighting priority areas for future research, including leveraging recently developed spatially and temporally resolved wildfire-specific ambient air pollution data to improve estimates of the health effects of wildfire smoke exposure.
Collapse
Affiliation(s)
- Carlos F Gould
- Doerr School of Sustainability, Stanford University, Stanford, California, USA; ,
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California, USA;
| | - Mary Johnson
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ,
| | - Juan Aguilera
- Center for Community Health Impact, The University of Texas Health Science Center at Houston School of Public Health, El Paso, Texas, USA;
| | - Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, California, USA; ,
- Center on Food Security and the Environment, Stanford University, Stanford, California, USA;
- National Bureau of Economic Research, Boston, Massachusetts, USA
| | - Kari Nadeau
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ,
| |
Collapse
|
71
|
Vien MH, Ivey SL, Boyden H, Holm S, Neuhauser L. A scoping review of wildfire smoke risk communications: issues, gaps, and recommendations. BMC Public Health 2024; 24:312. [PMID: 38281022 PMCID: PMC10822163 DOI: 10.1186/s12889-024-17681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Wildfire smoke exposure has become a growing public health concern, as megafires and fires at the wildland urban interface increase in incidence and severity. Smoke contains many pollutants that negatively impact health and is linked to a number of health complications and chronic diseases. Communicating effectively with the public, especially at-risk populations, to reduce their exposure to this environmental pollutant has become a public health priority. Although wildfire smoke risk communication research has also increased in the past decade, best practice guidance is limited, and most health communications do not adhere to health literacy principles: readability, accessibility, and actionability. This scoping review identifies peer-reviewed studies about wildfire smoke risk communications to identify gaps in research and evaluation of communications and programs that seek to educate the public. METHODS Four hundred fifty-one articles were identified from Web of Science and PubMed databases. After screening, 21 articles were included in the final sample for the abstraction process and qualitative thematic analysis. Ten articles were based in the US, with the other half in Australia, Canada, Italy, and other countries. Fifteen articles examined communication materials and messaging recommendations. Eight papers described communication delivery strategies. Eleven articles discussed behavior change. Six articles touched on risk communications for vulnerable populations; findings were limited and called for increasing awareness and prioritizing risk communications for at-risk populations. RESULTS This scoping review found limited studies describing behavior change to reduce wildfire smoke exposure, characteristics of effective communication materials and messaging, and communication delivery strategies. Literature on risk communications, dissemination, and behavior change for vulnerable populations was even more limited. CONCLUSIONS Recommendations include providing risk communications that are easy-to-understand and adapted to specific needs of at-risk groups. Communications should provide a limited number of messages that include specific actions for avoiding smoke exposure. Effective communications should use mixed media formats and a wide variety of dissemination strategies. There is a pressing need for more intervention research and effectiveness evaluation of risk communications about wildfire smoke exposure, and more development and dissemination of risk communications for both the general public and vulnerable populations.
Collapse
Affiliation(s)
- Morgan H Vien
- Health Research for Action, University of California Berkeley, School of Public Health, Berkeley, USA.
| | - Susan L Ivey
- Health Research for Action, University of California Berkeley, School of Public Health, Berkeley, USA
| | - Hollynd Boyden
- Health Research for Action, University of California Berkeley, School of Public Health, Berkeley, USA
| | - Stephanie Holm
- Health Research for Action, University of California Berkeley, School of Public Health, Berkeley, USA
- Western States Pediatric Environmental Health Specialty Unit, San Francisco, USA
- University of California, San Francisco, USA
| | - Linda Neuhauser
- Health Research for Action, University of California Berkeley, School of Public Health, Berkeley, USA
| |
Collapse
|
72
|
Wilgus ML, Merchant M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare (Basel) 2024; 12:307. [PMID: 38338192 PMCID: PMC10855577 DOI: 10.3390/healthcare12030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Wildfires are a global natural phenomenon. In North America, wildfires have not only become more frequent, but also more severe and longer in duration, a trend ascribed to climate change combined with large fuel stores left from modern fire suppression. The intensification of wildfire activity has significant implications for planetary health and public health, as exposure to fine particulate matter (PM2.5) in wildfire smoke is linked to adverse health effects. This review focuses on respiratory morbidity from wildfire smoke exposure. Inhalation of wildfire PM2.5 causes lung injury via oxidative stress, local and systemic inflammation, airway epithelium compromise, and increased vulnerability to infection. Wildfire PM2.5 exposure results in exacerbations of pre-existing asthma and chronic obstructive pulmonary disease, with an escalation in healthcare utilization, including emergency department visits and hospitalizations. Wildfire smoke exposure may be associated with asthma onset, long-term impairment of lung function, and increased all-cause mortality. Children, older adults, occupationally-exposed groups, and possibly women are the most at risk from wildfire smoke. Future research is needed to clarify best practices for risk mitigation and wildfire management.
Collapse
Affiliation(s)
- May-Lin Wilgus
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1405, USA;
| | | |
Collapse
|
73
|
Jaoui M, Urbanski SP, Long RW, Landis MS. Molecular composition and the impact of fuel moisture content on fresh primary organic aerosol emissions during laboratory combustion of Ponderosa pine needles. ENVIRONMENTAL CHEMISTRY (COLLINGWOOD, VIC.) 2024; 20:319-338. [PMID: 39502471 PMCID: PMC11534018 DOI: 10.1071/en23013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Pine needles represent an important fuel source in coniferous forest systems in the western United States. During forest fires, they can be easily ignited and help sustain flame on the ground. In this study, a comprehensive chemical analysis was conducted to examine oxygenated organic compounds (OOCs) present in PM2.5 formed from burning dry and moist ponderosa pine needles (PPN) in the presence and absence of fine woody debris (FWD). The effect of fuel moisture content (FMC), a key parameter that influence smoke formation, has not received much attention. Therefore, we also investigated the effect of FMC on PM2.5 formation and its composition. Thirty three experiments were conducted at the US Forest Service Fire Science Laboratory. PM2.5 was collected onto 47 mm Teflon filters, and silylated extracts were analyzed by gas chromatography-mass spectrometry. More than fifty OOCs were identified, including levoglucosan and mannosan; n-dodecanoic acid and n-hexadecanoic acid; dihydroabietic acid, and dehydroabietic acid; and a series of intermediate volatile and semivolatile organic compounds. Mass spectra of a wide variety of compounds in electron and chemical ionization mode are provided. Most of these OOCs were identified in this study for the first time in PPN aerosol, although some were previously reported in pine wood and other biomass burning aerosol. Our results show significant changes in the composition and abundance of particles depending on the amount and type of PPN burned. When compared with dry PPN condition, moist PPN showed decreased emissions of PM2.5 and OOCs, due likely to the presence of water in the system that partially suppressed the production of OOCs. Incorporating pine needles in atmospheric models as a contributor to smoke particles generated during forest fires is an essential step towards reducing the current uncertainties regarding the influence of these aerosols on chemical/air mass characteristics, regional meteorology, and the climate.
Collapse
Affiliation(s)
- Mohammed Jaoui
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| | - Shawn P. Urbanski
- U.S.D.A. Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Russell W. Long
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| | - Matthew S. Landis
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
74
|
Raffuse S, O’Neill S, Schmidt R. A model for rapid PM 2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3. GEOSCIENTIFIC MODEL DEVELOPMENT 2024; 17:381-397. [PMID: 39398326 PMCID: PMC11469206 DOI: 10.5194/gmd-17-381-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has increased. The rapidfire (relatively accurate particulate information derived from inputs retrieved easily) R package (version 0.1.3) provides a suite of tools for developing exposure assignments using data sets that are routinely generated and publicly available within a month of the event. Specifically, rapidfire harvests official air quality monitoring, satellite observations, meteorological modeling, operational predictive smoke modeling, and low-cost sensor networks. A machine learning approach, random forest (RF) regression, is used to fuse the different data sets. Using rapidfire, we produced estimates of ground-level 24 h average particulate matter for several large wildfire smoke events in California from 2017-2021. These estimates show excellent agreement with independent measures from filter-based networks.
Collapse
Affiliation(s)
- Sean Raffuse
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
| | - Susan O’Neill
- Pacific Northwest Research Station, USDA Forest Service, Seattle, WA, United States
| | - Rebecca Schmidt
- Department of Public Health Sciences, MIND Institute, University of California Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
75
|
Wu TD. Portable Air Purifiers to Mitigate the Harms of Wildfire Smoke for People with Asthma. Am J Respir Crit Care Med 2024; 209:126-128. [PMID: 38047880 PMCID: PMC10806428 DOI: 10.1164/rccm.202311-2012ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Affiliation(s)
- Tianshi David Wu
- Section of Pulmonary, Critical Care, and Sleep Medicine Baylor College of Medicine Houston, Texas
- Center for Innovations in Quality, Effectiveness, and Safety Michael E. DeBakey Veterans Affairs Medical Center Houston, Texas
| |
Collapse
|
76
|
Scarpa C, Bacciu V, Ascoli D, Costa-Saura JM, Salis M, Sirca C, Marchetti M, Spano D. Estimating annual GHG and particulate matter emissions from rural and forest fires based on an integrated modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167960. [PMID: 37865246 DOI: 10.1016/j.scitotenv.2023.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Rural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007-2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases. On average, Italy's GHG and particulate matter emissions were 2621 Gg yr-1, ranging from a minimum of 772 Gg yr-1 in 2013 to a maximum of 7020 Gg yr-1 in 2007. Emissions from fire disturbances in broadleaf forests, shrublands, and agricultural fuel types account for about 76 % of the total. Results were compared with global and national inventories and showed good agreement, especially considering CO2 and particulate matter. The approach of this study added confidence in emission estimates, and the results can be utilized in decision support systems to address air quality management and fire impact mitigation policies.
Collapse
Affiliation(s)
- Carla Scarpa
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Valentina Bacciu
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy; EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy.
| | - Davide Ascoli
- University of Torino, Department of Agricultural, Forest and Food Sciences, 10095 Grugliasco, Italy.
| | - Josè Maria Costa-Saura
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy; National Biodiversity Future Center, Palazzo Steri, Piazza Marina 61, 90133 Palermo, Italy.
| | - Michele Salis
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Costantino Sirca
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| | - Marco Marchetti
- University of Study of Molise, Department of Biosciences and Territory, 86090 Pesche, Italy; Fondazione Alberitalia ETS, Via Isola Capaccio 77, 47018 Santa Sofia, Italy.
| | - Donatella Spano
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| |
Collapse
|
77
|
Cromar K, Gladson L, Gohlke J, Li Y, Tong D, Ewart G. Adverse Health Impacts of Outdoor Air Pollution, Including from Wildland Fires, in the United States: "Health of the Air," 2018-2020. Ann Am Thorac Soc 2024; 21:76-87. [PMID: 37906164 PMCID: PMC10867920 DOI: 10.1513/annalsats.202305-455oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Adverse health impacts from outdoor air pollution occur across the United States, but the magnitude of these impacts varies widely by geographic region. Ambient pollutant concentrations, emission sources, baseline health conditions, and population sizes and distributions are all important factors that need to be taken into account to quantify local health burdens. Objectives: To determine health impacts from ambient air pollution concentrations in the United States that exceed the levels recommended by the American Thoracic Society. Methods: Using a methodology that has been well established in previous "Health of the Air" reports, this study provides policy-relevant estimates for every monitored county and city in the United States for the adverse health impacts of outdoor pollution concentrations using U.S. Environmental Protection Agency design values for years 2018-2020. Additionally, for the first time, the report includes adverse birth outcomes as well as estimates of health impacts specifically attributable to wildland fires using an exposure dataset generated through Community Multiscale Air Quality simulations. Results: The adverse health burdens attributable to air pollution occur across the entire age spectrum, including adverse birth outcomes (10,660 preterm and/or low-weight births; 95% confidence interval [CI], 3,180-18,330), in addition to mortality impacts (21,300 avoidable deaths; 95% CI, 16,180-26,200), lung cancer incidence (3,000 new cases; 95% CI, 1,550-4,390), multiple types of cardiovascular and respiratory morbidity (748,660 events; 95% CI, 326,050-1,057,080), and adversely impacted days (52.4 million days; 95% CI, 7.9-92.4 million days). Two different estimates of mortality impacts from wildland fires were created based on assumptions regarding the underlying toxicity of particles from wildland fires (low estimate of 4,080 deaths, 95% CI, 240-7,890; middle estimate of 28,000 deaths, 95% CI, 27,300-28,700). Conclusions: This year's report identified sizable health benefits that would be expected to occur across the United States with compliance with more health-protective air quality standards such as those recommended by the American Thoracic Society. This study also indicates that a large number of excess deaths are attributable to emissions from wildland fires; air quality management strategies outside what is required by the Clean Air Act will be needed to best address this important source of air pollution and its associated health risks.
Collapse
Affiliation(s)
- Kevin Cromar
- Marron Institute of Urban Management, New York University, New York, New York
- New York University Grossman School of Medicine, New York, New York
| | - Laura Gladson
- Marron Institute of Urban Management, New York University, New York, New York
- New York University Grossman School of Medicine, New York, New York
| | | | - Yunyao Li
- Department of Atmospheric, Oceanic and Earth Sciences and
| | - Daniel Tong
- Department of Atmospheric, Oceanic and Earth Sciences and
- Center for Spatial Information Science and Systems, George Mason University, Fairfax, Virginia; and
| | - Gary Ewart
- American Thoracic Society, Washington, DC
| |
Collapse
|
78
|
Sheehan D, Mullan K, West TAP, Semmens E. Protecting Life and Lung: Protected Areas affect fine particulate matter and respiratory hospitalizations in the Brazilian Amazon Biome. ENVIRONMENTAL & RESOURCE ECONOMICS 2024; 87:45-87. [PMID: 39429973 PMCID: PMC11484674 DOI: 10.1007/s10640-023-00813-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/22/2024]
Abstract
There is growing recognition of the connection between ecosystem conservation and human health. For example, protection of tropical forests can affect the spread of infectious diseases, water quality, and dietary diversity, while forest loss can have important consequences for respiratory health due to the use of fire for converting land to alternative uses in many countries. Studies demonstrating links between ecosystems and health often conclude with recommendations to expand policies that protect natural ecosystems. However, there is little empirical evidence on the extent to which conservation policies actually deliver health benefits when they are implemented in real contexts. We estimate the effects of protected areas (PAs), the dominant type of conservation policy, on hospitalizations for respiratory illness in the Brazilian Amazon biome. We find that doubling upwind PAs reduces PM2.5 by 10% and respiratory hospitalizations by 7% in the months of most active biomass burning. Brazil has an extensive network of PAs, but investments in management and enforcement have declined in recent years. Forest fires have increased dramatically over the same period. We estimate that the value of the health benefits exceed current average expenditures on PA management for the 1/3 of PAs with the largest local populations, although not for PAs in more remote locations. Our findings highlight how quantifying the contributions to the wellbeing of local populations can support conservation objectives, even if global environmental benefits are not a high priority for decision makers.
Collapse
Affiliation(s)
| | | | - Thales A. P. West
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam
| | - Erin Semmens
- School of Public and Community Health Sciences, University of Montana
| |
Collapse
|
79
|
Rice RB, Boaggio K, Olson NE, Foley KM, Weaver CP, Sacks JD, McDow SR, Holder AL, LeDuc SD. Wildfires Increase Concentrations of Hazardous Air Pollutants in Downwind Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21235-21248. [PMID: 38051783 PMCID: PMC10862657 DOI: 10.1021/acs.est.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Due in part to climate change, wildfire activity is increasing, with the potential for greater public health impact from smoke in downwind communities. Studies examining the health effects of wildfire smoke have focused primarily on fine particulate matter (PM2.5), but there is a need to better characterize other constituents, such as hazardous air pollutants (HAPs). HAPs are chemicals known or suspected to cause cancer or other serious health effects that are regulated by the United States (US) Environmental Protection Agency. Here, we analyzed concentrations of 21 HAPs in wildfire smoke from 2006 to 2020 at 309 monitors across the western US. Additionally, we examined HAP concentrations measured in a major population center (San Jose, CA) affected by multiple fires from 2017 to 2020. We found that concentrations of select HAPs, namely acetaldehyde, acrolein, chloroform, formaldehyde, manganese, and tetrachloroethylene, were all significantly elevated on smoke-impacted versus nonsmoke days (P < 0.05). The largest median increase on smoke-impacted days was observed for formaldehyde, 1.3 μg/m3 (43%) higher than that on nonsmoke days. Acetaldehyde increased 0.73 μg/m3 (36%), and acrolein increased 0.14 μg/m3 (34%). By better characterizing these chemicals in wildfire smoke, we anticipate that this research will aid efforts to reduce exposures in downwind communities.
Collapse
Affiliation(s)
- R Byron Rice
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Katie Boaggio
- US EPA, Office of Air and Radiation, Durham, North Carolina 27709, United States
| | - Nicole E Olson
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Kristen M Foley
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Christopher P Weaver
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Jason D Sacks
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Stephen R McDow
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Amara L Holder
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Stephen D LeDuc
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| |
Collapse
|
80
|
Wen J, Heft-Neal S, Baylis P, Boomhower J, Burke M. Quantifying fire-specific smoke exposure and health impacts. Proc Natl Acad Sci U S A 2023; 120:e2309325120. [PMID: 38085772 PMCID: PMC10743475 DOI: 10.1073/pnas.2309325120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 12/18/2023] Open
Abstract
Rapidly changing wildfire regimes across the Western United States have driven more frequent and severe wildfires, resulting in wide-ranging societal threats from wildfires and wildfire-generated smoke. However, common measures of fire severity focus on what is burned, disregarding the societal impacts of smoke generated from each fire. We combine satellite-derived fire scars, air parcel trajectories from individual fires, and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health impacts experienced by populations in the contiguous United States from April 2006 to 2020. We quantify fire-specific accumulated smoke exposure based on the cumulative population exposed to smoke PM2.5 over the duration of a fire and estimate excess asthma-related emergency department (ED) visits as a result of this exposure. We find that excess asthma visits attributable to each fire are only moderately correlated with common measures of wildfire severity, including burned area, structures destroyed, and suppression cost. Additionally, while recent California fires contributed nearly half of the country's smoke-related excess asthma ED visits during our study period, the most severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a majority of smoke PM2.5 comes from sources outside the local jurisdictions where the smoke is experienced, with 87% coming from fires in other counties and 60% from fires in other states. Our approach could enable broad-scale assessment of whether specific fire characteristics affect smoke toxicity or impact, inform cost-effectiveness assessments for allocation of suppression resources, and help clarify the growing transboundary nature of local air quality.
Collapse
Affiliation(s)
- Jeff Wen
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Patrick Baylis
- Department of Economics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Judson Boomhower
- Department of Economics, University of California, San Diego, CA92093
- National Bureau of Economic Research, Cambridge, MA02138
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| |
Collapse
|
81
|
Lopez AM, Pacheco JL, Fendorf S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat Commun 2023; 14:8007. [PMID: 38086795 PMCID: PMC10716285 DOI: 10.1038/s41467-023-43101-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Accentuated by climate change, catastrophic wildfires are a growing, distributed global public health risk from inhalation of smoke and dust. Underrecognized, however, are the health threats arising from fire-altered toxic metals natural to soils and plants. Here, we demonstrate that high temperatures during California wildfires catalyzed widespread transformation of chromium to its carcinogenic form in soil and ash, as hexavalent chromium, particularly in areas with metal-rich geologies (e.g., serpentinite). In wildfire ash, we observed dangerous levels (327-13,100 µg kg-1) of reactive hexavalent chromium in wind-dispersible particulates. Relatively dry post-fire weather contributed to the persistence of elevated hexavalent chromium in surficial soil layers for up to ten months post-fire. The geographic distribution of metal-rich soils and fire incidents illustrate the broad global threat of wildfire smoke- and dust-born metals to populations. Our findings provide new insights into why wildfire smoke exposure appears to be more hazardous to humans than pollution from other sources.
Collapse
Affiliation(s)
- Alandra Marie Lopez
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Juan Lezama Pacheco
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Scott Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
82
|
Zheng J. Exposure to wildfires and health outcomes of vulnerable people: Evidence from US data. ECONOMICS AND HUMAN BIOLOGY 2023; 51:101311. [PMID: 37816268 DOI: 10.1016/j.ehb.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
This paper investigates the causal effect of wildfire exposure on birth outcomes and older people's health outcomes in United States (US). The study focuses on three sub-questions for each health outcome: (1) the causal effect of each of the five largest wildfires on individual health, (2) the causal impact of multiple large wildfires on individual health outcomes, and (3) the causal influence of wildfires larger than different sizes within different distances of counties on health outcomes at the county level. The analysis exploits data from National Vital Statistics System, Behavioural Risk Factor Surveillance System and FIRESTAT. In terms of birth outcomes, the findings show that the largest wildfire slightly increased the risk of other circulatory or respiratory anomalies. Multiple large wildfires moderately raised the risk of prematurity and led to a small decline in the probability of getting omphalocele and cleft lip. The county-level analysis suggests an increased risk of macrosomia following maternal exposure to wildfires. As for the elderly aged 65 + , the results indicate that exposure to multiple massive wildfires led to frequent occurrence of asthma symptoms, while the largest wildfire led to sleeping difficulty caused by asthma symptoms. The number of days older people experienced psychological problems was increased following exposure to multiple large wildfires.
Collapse
Affiliation(s)
- Jiyuan Zheng
- Department of Economics, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
83
|
Wei J, Wang J, Li Z, Kondragunta S, Anenberg S, Wang Y, Zhang H, Diner D, Hand J, Lyapustin A, Kahn R, Colarco P, da Silva A, Ichoku C. Long-term mortality burden trends attributed to black carbon and PM 2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. Lancet Planet Health 2023; 7:e963-e975. [PMID: 38056967 DOI: 10.1016/s2542-5196(23)00235-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA. METHODS In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations. We estimated the annual PM2·5-attributable and black carbon-attributable mortality burden at each 1-km2 grid using concentration-response functions collected from a national cohort study and a meta-analysis study, respectively. We investigated the spatiotemporal linear-regressed trends in PM2·5 and black carbon pollution and their associated premature deaths from 2000 to 2020, and the impact of wildfires on air quality and public health. FINDINGS Our results showed that PM2·5 and black carbon estimates are reliable, with sample-based cross-validated coefficients of determination of 0·82 and 0·80, respectively, for daily estimates (0·97 and 0·95 for monthly estimates). Both PM2·5 and black carbon in the USA showed significantly decreasing trends overall during 2000 to 2020 (22% decrease for PM2·5 and 11% decrease for black carbon), leading to a reduction of around 4200 premature deaths per year (95% CI 2960-5050). However, since 2010, the decreasing trends of fine particles and premature deaths have reversed to increase in the western USA (55% increase in PM2·5, 86% increase in black carbon, and increase of 670 premature deaths [460-810]), while remaining mostly unchanged in the eastern USA. The western USA showed large interannual fluctuations that were attributable to the increasing incidence of wildfires. Furthermore, the black carbon-to-PM2·5 mass ratio increased annually by 2·4% across the USA, mainly due to increasing wildfire emissions in the western USA and more rapid reductions of other components in the eastern USA, suggesting a potential increase in the relative toxicity of PM2·5. 100% of populated areas in the USA have experienced at least one day of PM2·5 pollution exceeding the daily air quality guideline level of 15 μg/m3 during 2000-2020, with 99% experiencing at least 7 days and 85% experiencing at least 30 days. The recent widespread wildfires have greatly increased the daily exposure risks in the western USA, and have also impacted the midwestern USA due to the long-range transport of smoke. INTERPRETATION Wildfires have become increasingly intensive and frequent in the western USA, resulting in a significant increase in smoke-related emissions in populated areas. This increase is likely to have contributed to a decline in air quality and an increase in attributable mortality. Reducing fire risk via effective policies besides mitigation of climate warming, such as wildfire prevention and management, forest restoration, and new revenue generation, could substantially improve air quality and public health in the coming decades. FUNDING National Aeronautics and Space Administration (NASA) Applied Science programme, NASA MODIS maintenance programme, NASA MAIA satellite mission programme, NASA GMAO core fund, National Oceanic and Atmospheric Administration (NOAA) GEO-XO project, NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) programme, and NOAA Educational Partnership Program with Minority Serving Institutions.
Collapse
Affiliation(s)
- Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA.
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Shobha Kondragunta
- Center for Satellite Applications and Research, NOAA National Environmental Satellite, Data, and Information Service, College Park, MD, USA
| | - Susan Anenberg
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| | - Yi Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - Huanxin Zhang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - David Diner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Jenny Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Alexei Lyapustin
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Ralph Kahn
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Peter Colarco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Arlindo da Silva
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Charles Ichoku
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
84
|
Wu X, Sverdrup E, Mastrandrea MD, Wara MW, Wager S. Low-intensity fires mitigate the risk of high-intensity wildfires in California's forests. SCIENCE ADVANCES 2023; 9:eadi4123. [PMID: 37948522 PMCID: PMC10637742 DOI: 10.1126/sciadv.adi4123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
The increasing frequency of severe wildfires demands a shift in landscape management to mitigate their consequences. The role of managed, low-intensity fire as a driver of beneficial fuel treatment in fire-adapted ecosystems has drawn interest in both scientific and policy venues. Using a synthetic control approach to analyze 20 years of satellite-based fire activity data across 124,186 square kilometers of forests in California, we provide evidence that low-intensity fires substantially reduce the risk of future high-intensity fires. In conifer forests, the risk of high-intensity fire is reduced by 64.0% [95% confidence interval (CI): 41.2 to 77.9%] in areas recently burned at low intensity relative to comparable unburned areas, and protective effects last for at least 6 years (lower bound of one-sided 95% CI: 6 years). These findings support a policy transition from fire suppression to restoration, through increased use of prescribed fire, cultural burning, and managed wildfire, of a presuppression and precolonial fire regime in California.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Erik Sverdrup
- Graduate School of Business, Stanford University, Stanford, CA, USA
| | | | - Michael W. Wara
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Stefan Wager
- Graduate School of Business, Stanford University, Stanford, CA, USA
| |
Collapse
|
85
|
Scharadin B, Zanocco C, Chistolini J. Food retail environments, extreme weather, and their overlap: Exploratory analysis and recommendations for U.S. food policy. PLoS One 2023; 18:e0289282. [PMID: 37939027 PMCID: PMC10631631 DOI: 10.1371/journal.pone.0289282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 11/10/2023] Open
Abstract
Extreme weather events are increasing in frequency and severity due to climate change, yet many of their impacts on human populations are not well understood. We examine the relationship between prior extreme weather events and food environment characteristics. To do so, we conduct a U.S. county-level analysis that assesses the association between extreme weather events and two common food retail environment dimensions. Overall, we find a relationship between higher levels of historic extreme weather exposure and lower food availability and accessibility. In addition, we find heterogeneity in association across the distribution of the number of extreme weather events and event type. Specifically, we find that more localized extreme weather events are more associated with a reduction of access and availability than broad geographic events. Our findings suggest that as extreme weather events amplify in intensity and increase in frequency, new approaches for mitigating less acute and longer-term impacts are needed to address how extreme weather may interact with and reinforce existing disparities in food environment factors. Furthermore, our research argues that integrated approaches to improving vulnerable food retail environments will become an important component of extreme weather planning and should be a consideration in both disaster- and food-related policy.
Collapse
Affiliation(s)
- Benjamin Scharadin
- Department of Economics, Colby College, Waterville, Maine, United States of America
| | - Chad Zanocco
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, United States of America
| | - Jacqueline Chistolini
- Department of Statistics, Colby College, Waterville, Maine, United States of America
| |
Collapse
|
86
|
Ding J, Han S, Wang X, Yao Q. Impact of air pollution changes and meteorology on asthma outpatient visits in a megacity in North China Plain. Heliyon 2023; 9:e21803. [PMID: 38027642 PMCID: PMC10651508 DOI: 10.1016/j.heliyon.2023.e21803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of air pollution and meteorology on asthma is less studied in North China Plain. In the last decade, air quality in this region is markedly mitigated. This study compared the short-term effects of air pollutants on daily asthma outpatient visits (AOV) within different sex and age groups from 2014 to 2016 and 2017-2019 in Tianjin, with the application of distributed lag nonlinear model. Moreover, relative humidity (RH) and temperature as well as the synergistic impact with air pollutants were assessed. Air pollutants-associated risk with linear (different reference values were used) and non-linear assumptions were compared. In 2014-2016, PM10 and PM2.5 exhibited a larger impact on AOV, with the corresponding cumulative excess risks (ER) for every 10 μg/m3 increase at 1.04 % (95%CI:0.67-1.40 %, similarly hereafter) and 0.79 % (0.35-1.23 %), as well as increased to 43 % (26-63 %) and 20 % (10-31 %) at severe pollution. In 2017-2019, NO2 and MDA8 O3 exhibited a larger impact on AOV, with a cumulative ER for every 10 μg/m3 increase at 1.0 (0.63-1.4 %) and 0.36 % (0.15-0.57 %), with corresponding values of 7.9 % (4.8-11 %) and 5.6 % (2.3-9.0 %), at severe pollution. SO2 associated risk was only significant from 2014 to 2016. Cold effect, including extremely low temperature exposure and sharp temperature drop could generate a pronounced increase in AOV at 9.6 % (3.8-16 %) and 24 % (9.1-41 %), respectively. Moderate low temperature combined with air pollutants can enhance AOV during winter. Higher temperature in spring and autumn could trigger asthma by increasing pollen levels. Low RH resulted in AOV increase by 4.6 % (2.4-6.9), while higher RH generated AOV increase by 3.4 % (1.6-5.3). Females, children, and older adults tended to have a higher risk for air pollution, non-optimum temperature, and RH. As air pollution-associated risks on AOV tends to be weaker due to air quality improvement in recent years, the impact of extreme meteorological condition amidst climate change on asthma visits warrants further attention.
Collapse
Affiliation(s)
- Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Suqin Han
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Xiaojia Wang
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Qing Yao
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| |
Collapse
|
87
|
Jiao A, Headon K, Han T, Umer W, Wu J. Associations between short-term exposure to wildfire particulate matter and respiratory outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168134. [PMID: 39491190 DOI: 10.1016/j.scitotenv.2023.168134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND The frequency and severity of wildfires have been sharply increasing due to climate change, which largely contributes to ambient particulate matter (PM) pollution. We conducted a systematic review focusing on the short-term relationships between PM attributable to wildfires (wildfire-specific PM) and diverse respiratory endpoints, with a comparison between the effects of wildfire-specific PM vs. all-source/non-wildfire PM. METHODS A comprehensive online search for the literature published from 2000 to 2022 was conducted through PubMed, Web of Sciences, Scopus, and EMBASE. We applied search terms related to wildfire smoke and respiratory health outcomes. RESULTS In total, 3196 articles were retrieved, and 35 articles were included in this review. Most studies focused on the associations of wildfire-specific PM with an aerodynamic diameter of <2.5 μm (PM2.5) with respiratory emergency department visits or hospitalizations, with a time-series or case-crossover study design. Studies were mostly conducted in the United States, Canada, and Australia. Positive associations of wildfire-specific PM with respiratory morbidity were observed in most studies. Studies that focused on respiratory mortality were limited. Females can be more vulnerable to the respiratory impacts of wildfire PM, while the evidence of vulnerable subpopulations among different age groups was inconclusive. Few studies compared the effects of wildfire-specific vs. all-source/non-wildfire PM, and some reported higher levels of toxicity of wildfire-specific PM, potentially due to its distinct chemical and physical compositions. Asthma and chronic obstructive pulmonary disease were the most studied diseases, and both were adversely affected by wildfire-specific PM. CONCLUSION To our knowledge, this is the first review that systematically summarized the associations of wildfire-specific PM exposure with adverse respiratory outcomes and compared associations of wildfire-specific vs. all-source/non-wildfire PM. Further investigations may add to the literature by examining the impacts on respiratory mortality and the effects of specific PM components from different types of wildfires.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Kathryne Headon
- School of Medicine, University of California, Irvine, CA, USA
| | - Tianmei Han
- Public Health Sciences, Program in Public Health, University of California, Irvine, CA, USA
| | - Wajeeha Umer
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
88
|
Walker ES, Stewart T, Jones D. Fine particulate matter infiltration at Western Montana residences during wildfire season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165238. [PMID: 37392877 PMCID: PMC10529724 DOI: 10.1016/j.scitotenv.2023.165238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND/AIMS Wildfire air pollution is a growing public health concern as wildfires increase in size, intensity, and duration in the United States. The public is often encouraged to stay indoors during wildfire smoke events to reduce exposure. However, there is limited information on how much wildfire smoke infiltrates indoors at residences and what household/behavioral characteristics contribute to higher infiltration. We assessed fine particulate matter (PM2.5) infiltration into Western Montana residences during wildfire season. METHODS We measured continuous outdoor and indoor PM2.5 concentrations from July-October 2022 at 20 residences in Western Montana during wildfire season using low-cost PM2.5 sensors. We used paired outdoor/indoor PM2.5 data from each household to calculate infiltration efficiency (Finf; range 0-1; higher values indicate more outdoor PM2.5 infiltration to the indoor environment) using previously validated methods. Analyses were conducted for all households combined and for various household subgroups. RESULTS Median (25th percentile, 75th percentile) daily outdoor PM2.5 at the households was 3.7 μg/m3 (2.1, 7.1) during the entire study period and 29.0 μg/m3 (19.0, 49.4) during a 2-week period in September impacted by wildfire smoke. Median daily indoor PM2.5 at the households was 2.5 μg/m3 (1.3, 5.5) overall and 10.4 μg/m3 (5.6, 21.0) during the wildfire period. Overall Finf was 0.34 (95 % Confidence Interval [95%CI]: 0.33, 0.35) with lower values during the wildfire period (0.32; 95%CI: 0.28, 0.36) versus non-wildfire period (0.39; 95%CI: 0.37, 0.42). Indoor PM2.5 concentrations and Finf varied substantially across household subgroups such as household income, age of the home, presence of air conditioning units, and use of portable air cleaners. CONCLUSIONS Indoor PM2.5 was substantially higher during wildfire-impacted periods versus the rest of the study. Indoor PM2.5 and Finf were highly variable across households. Our results highlight potentially modifiable behaviors and characteristics that can be used in targeted intervention strategies.
Collapse
Affiliation(s)
- Ethan S Walker
- Center for Population Health Research, University of Montana, Missoula, MT, USA.
| | - Taylor Stewart
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| | - Dave Jones
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| |
Collapse
|
89
|
Quesnel Seipp K, Maurer T, Elias M, Saksa P, Keske C, Oleson K, Egoh B, Cleveland R, Nyelele C, Goncalves N, Hemes K, Wyrsch P, Lewis D, Chung MG, Guo H, Conklin M, Bales R. A multi-benefit framework for funding forest management in fire-driven ecosystems across the Western U.S. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118270. [PMID: 37354586 DOI: 10.1016/j.jenvman.2023.118270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Forests across the Western U.S. face unprecedented risk due to historic fire exclusion, environmental degradation, and climate change. Forest management activities like ecological thinning, prescribed burning, and meadow restoration can improve landscape resilience. Resilient forests are at a lower risk of high-intensity wildfires, drought, insects, and other disturbances and provide a wide range of benefits to ecosystems and communities. However, insufficient funding limits implementation of critically needed management. To address this challenge, we propose a multi-benefit framework that leverages the diverse benefits of forest management to engage a suite of stakeholders in sharing project costs. We take a three-pronged approach to develop our conceptual model: examining existing frameworks for environmental project implementation, conducting a literature review of forest management benefits, and evaluating case studies. Through our framework, we describe the steps to engage partners, starting by identifying benefits that could accrue to potential public and private beneficiaries, and moving through an iterative and collaborative process of valuing benefits, which can accrue over different spatial and temporal scales, in close consultation with potential beneficiaries themselves. The aim of this approach is to stack funding streams associated with each valued benefit to fully fund a given forest management project. The multi-benefit framework has the potential to unlock new sources of funding to meet the exceptional challenges of climate and wildfire disturbances. We apply the framework to dry forests of the Western U.S., but opportunities exist for expanding and modifying this approach to any geography or ecosystem where management provides multiple benefits.
Collapse
Affiliation(s)
| | - Tessa Maurer
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - Micah Elias
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA; University of California Berkeley, Berkeley, CA, 94720, USA
| | - Phil Saksa
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - Catherine Keske
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Kirsten Oleson
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Benis Egoh
- University of California Irvine, Irvine, CA, 92697, USA
| | - Rachael Cleveland
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Charity Nyelele
- University of California Irvine, Irvine, CA, 92697, USA; University of Virginia, Charlottesville, VA, 22904, USA
| | - Nicolas Goncalves
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Kyle Hemes
- Stanford Woods Institute for the Environment, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Peter Wyrsch
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - David Lewis
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Min Gon Chung
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Han Guo
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Martha Conklin
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Roger Bales
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| |
Collapse
|
90
|
Paul MJ, LeDuc SD, Boaggio K, Herrick JD, Kaylor SD, Lassiter MG, Nolte CG, Rice RB. Effects of Air Pollutants from Wildfires on Downwind Ecosystems: Observations, Knowledge Gaps, and Questions for Assessing Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14787-14796. [PMID: 37769297 PMCID: PMC11345788 DOI: 10.1021/acs.est.2c09061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Wildfires have increased in frequency and area burned, trends expected to continue with climate change. Among other effects, fires release pollutants into the atmosphere, representing a risk to human health and downwind terrestrial and aquatic ecosystems. While human health risks are well studied, the ecological impacts to downwind ecosystems are not, and this gap may present a constraint on developing an adequate assessment of the ecological risks associated with downwind wildfire exposure. Here, we first screened the scientific literature to assess general knowledge about pathways and end points of a conceptual model linking wildfire generated pollutants and other materials to downwind ecosystems. We found a substantial body of literature on the composition of wildfire derived pollution and materials in the atmosphere and subsequent transport, yet little observational or experimental work on their effects on downwind ecological end points. This dearth of information raises many questions related to adequately assessing the ecological risk of downwind exposure, especially given increasing wildfire trends. To guide future research, we pose eight questions within the well-established US EPA ecological risk assessment paradigm that if answered would greatly improve ecological risk assessment and, ultimately, management strategies needed to reduce potential wildfire impacts.
Collapse
Affiliation(s)
- Michael J. Paul
- Tetra Tech Inc., PO Box 14409, Durham, NC 27709 USA
- Current address: United States Environmental Protection Agency, Office of Water, 1301 Constitution Ave NW, Washington DC 20460 USA
| | - Stephen D. LeDuc
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Katie Boaggio
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Jeffrey D. Herrick
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - S. Douglas Kaylor
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Meredith G. Lassiter
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Christopher G. Nolte
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - R. Byron Rice
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| |
Collapse
|
91
|
Swain DL, Abatzoglou JT, Kolden C, Shive K, Kalashnikov DA, Singh D, Smith E. Climate change is narrowing and shifting prescribed fire windows in western United States. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:340. [PMID: 38665191 PMCID: PMC11041722 DOI: 10.1038/s43247-023-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes-including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as "prescribed fire," can reduce the risk of destructive fires and restore ecosystem resilience. Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (-17%), particularly during spring (-25%) and summer (-31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.
Collapse
Affiliation(s)
- Daniel L. Swain
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA USA
- Capacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, CO USA
- The Nature Conservancy of California, Sacramento, CA USA
| | - John T. Abatzoglou
- Management of Complex Systems Department, University of California, Merced, Merced, CA USA
| | - Crystal Kolden
- Management of Complex Systems Department, University of California, Merced, Merced, CA USA
| | - Kristen Shive
- The Nature Conservancy of California, Sacramento, CA USA
- Environmental Science, Policy and Management Department, University of California, Berkeley, Berkeley, CA USA
| | | | - Deepti Singh
- School of the Environment, Washington State University, Vancouver, WA USA
| | - Edward Smith
- The Nature Conservancy of California, Sacramento, CA USA
| |
Collapse
|
92
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
93
|
Burke M, Childs ML, de la Cuesta B, Qiu M, Li J, Gould CF, Heft-Neal S, Wara M. The contribution of wildfire to PM 2.5 trends in the USA. Nature 2023; 622:761-766. [PMID: 37730996 DOI: 10.1038/s41586-023-06522-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Collapse
Affiliation(s)
- Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA.
- National Bureau of Economic Research, Cambridge, MA, USA.
| | - Marissa L Childs
- Center for the Environment, Harvard University, Cambridge, MA, USA
| | - Brandon de la Cuesta
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jessica Li
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Carlos F Gould
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Michael Wara
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA
- Woods Institute of the Environment, Stanford University, Stanford, CA, USA
| |
Collapse
|
94
|
Darling R, Hansen K, Aguilera R, Basu R, Benmarhnia T, Letellier N. The Burden of Wildfire Smoke on Respiratory Health in California at the Zip Code Level: Uncovering the Disproportionate Impacts of Differential Fine Particle Composition. GEOHEALTH 2023; 7:e2023GH000884. [PMID: 37869264 PMCID: PMC10586090 DOI: 10.1029/2023gh000884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023]
Abstract
Wildfires constitute a growing source of extremely high levels of particulate matter that is less than 2.5 microns in diameter (PM2.5). Recently, toxicologic and epidemiologic studies have shown that PM2.5 generated from wildfires may have a greater health burden than PM2.5 generated from other pollutant sources. This study examined the impact of PM2.5 on hospitalizations for respiratory diseases in California between 2006 and 2019 using a health impact assessment approach that considers differential concentration-response functions (CRF) for PM2.5 from wildfire and non-wildfire sources of emissions. We quantified the burden of respiratory hospitalizations related to PM2.5 exposure at the zip code level through two different approaches: (a) naïve (considering the same CRF for all PM2.5 emissions) and (b) nuanced (considering different CRFs for PM2.5 from wildfires and from other sources). We conducted a Geographically Weighted Regression to analyze spatially varying relationships between the delta (i.e., the difference between the naïve and nuanced approaches) and the Centers for Disease Control and Prevention's Social Vulnerability Index (SVI). A higher attributable number of respiratory hospitalizations was found when accounting for the larger health burden of wildfire PM2.5. We found that, between 2006 and 2019, the number of hospitalizations attributable to PM2.5 may have been underestimated by approximately 13% as a result of not accounting for the higher CRF of wildfire-related PM2.5 throughout California. This underestimation was higher in northern California and areas with higher SVI rankings. The relationship between delta and SVI varied spatially across California. These findings can be useful for updating future air pollution guideline recommendations.
Collapse
Affiliation(s)
- Rachel Darling
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
| | - Kristen Hansen
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
- Herbert Wertheim School of Public Health and Human Longevity ScienceUC San DiegoSan DiegoCAUSA
| | - Rosana Aguilera
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
| | - Rupa Basu
- Air and Climate Epidemiology SectionCalifornia Office of Environmental Health Hazard AssessmentOaklandCAUSA
| | | | | |
Collapse
|
95
|
Siddiqi MUA, Giordono L, Zanocco C, Stelmach G, Flora J, Boudet H. Disaster preparedness and community helping behaviour in the wake of the 2020 Oregon wildfires. DISASTERS 2023; 47:1138-1172. [PMID: 37086026 DOI: 10.1111/disa.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extreme weather events are increasing in frequency and severity owing to climate change. Individual-level behavioural responses-notably, disaster preparedness and community helping actions (such as donating and volunteering)-supplement government efforts to respond to such phenomena, but rarely have they been explored together. Using data from a survey administered soon after the 2020 Oregon wildfires, this paper compares a range of socio-demographic, experiential, attitudinal, and communication-related factors associated with these two individual-level behavioural responses. Findings indicate that respondents who reported experiencing a higher degree of harm and heightened concern about climate change after the wildfires were more likely to report disaster preparedness and community helping actions. Those who reported more frequent informal discussions about the wildfires, consulting more sources to seek information on them, and higher percentages of friends, neighbours, and community members taking actions to prepare for future wildfires also reported more disaster preparedness and community helping actions. Disaster preparedness actions were also positively associated with seeking information from formal/official sources.
Collapse
Affiliation(s)
| | - Leanne Giordono
- Assistant Professor at the Department of Political Science, California Polytechnic State University, United States
| | - Chad Zanocco
- Postdoctoral Scholar at the Department of Civil and Environmental Engineering, Stanford University, Stanford, United States
| | - Greg Stelmach
- Instructor and PhD Candidate at the School of Public Policy, Oregon State University, United States
| | - June Flora
- Senior Research Scholar at the Department of Civil and Environmental Engineering, Stanford University, United States
| | - Hilary Boudet
- Associate Professor at the School of Public Policy, Oregon State University, United States
| |
Collapse
|
96
|
Fadadu RP, Chee E, Jung A, Chen JY, Abuabara K, Wei ML. Air pollution and global healthcare use for atopic dermatitis: A systematic review. J Eur Acad Dermatol Venereol 2023; 37:1958-1970. [PMID: 37184289 DOI: 10.1111/jdv.19193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is common around the world, but the impacts of outdoor air pollution exposure on atopic dermatitis (AD) are unclear. We synthesized the current global epidemiologic evidence for air pollution exposure and associated medical visits for AD among adults and children. This review followed PRISMA guidelines, and searches were conducted on PubMed, MEDLINE, Web of Science and EMBASE databases. The searches yielded 390 studies, and after screening, 18 studies around the world assessing at least 5,197,643 medical visits for AD in total were included for the final analysis. We found that exposure to particulate matter ≤2.5 μm in diameter (PM2.5 ) [(10/11) of studies], particulate matter ≤10 μm in diameter (PM10 ) (11/13), nitrogen dioxide (NO2 ) (12/14) and sulfur dioxide (SO2 ) (10/13) was positively associated with AD visits. Results were equivocal for ozone [(4/8) of studies reported positive association] and limited for carbon monoxide [(1/4) of studies reported positive association]. When stratifying results by patient age, patient sex and season, we found that the associations with particulate matter, NO2 and O3 may be affected by temperature. Exposure to selected air pollutants is associated with AD visits, and increasingly poor worldwide air quality may increase global healthcare use for AD.
Collapse
Affiliation(s)
- R P Fadadu
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - E Chee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - A Jung
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Information, University of California, Berkeley, Berkeley, California, USA
| | - J Y Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - K Abuabara
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - M L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| |
Collapse
|
97
|
Heft-Neal S, Gould CF, Childs ML, Kiang MV, Nadeau KC, Duggan M, Bendavid E, Burke M. Emergency department visits respond nonlinearly to wildfire smoke. Proc Natl Acad Sci U S A 2023; 120:e2302409120. [PMID: 37722035 PMCID: PMC10523589 DOI: 10.1073/pnas.2302409120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/28/2023] [Indexed: 09/20/2023] Open
Abstract
Air pollution negatively affects a range of health outcomes. Wildfire smoke is an increasingly important contributor to air pollution, yet wildfire smoke events are highly salient and could induce behavioral responses that alter health impacts. We combine geolocated data covering all emergency department (ED) visits to nonfederal hospitals in California from 2006 to 2017 with spatially resolved estimates of daily wildfire smoke PM[Formula: see text] concentrations and quantify how smoke events affect ED visits. Total ED visits respond nonlinearly to smoke concentrations. Relative to a day with no smoke, total visits increase by 1 to 1.5% in the week following low or moderate smoke days but decline by 6 to 9% following extreme smoke days. Reductions persist for at least a month. Declines at extreme levels are driven by diagnoses not thought to be acutely impacted by pollution, including accidental injuries and several nonurgent symptoms, and declines come disproportionately from less-insured populations. In contrast, health outcomes with the strongest physiological link to short-term air pollution increase dramatically in the week following an extreme smoke day: We estimate that ED visits for asthma, COPD, and cough all increase by 30 to 110%. Data from internet searches, vehicle traffic sensors, and park visits indicate behavioral changes on high smoke days consistent with declines in healthcare utilization. Because low and moderate smoke days vastly outweigh high smoke days, we estimate that smoke was responsible for an average of 3,010 (95% CI: 1,760-4,380) additional ED visits per year 2006 to 2017. Given the increasing intensity of wildfire smoke events, behavioral mediation is likely to play a growing role in determining total smoke impacts.
Collapse
Affiliation(s)
- Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Carlos F. Gould
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| | | | - Mathew V. Kiang
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA94305
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard University, Cambridge, MA02138
| | - Mark Duggan
- Department of Economics, Stanford University, Stanford, CA94305
- Stanford Institute of Economic Policy Research, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| | - Eran Bendavid
- Department of Health Policy, Stanford University, Stanford, CA94305
- Department of Medicine, Stanford University, Stanford, CA94305
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| |
Collapse
|
98
|
Liu F, Joo T, Ditto JC, Saavedra MG, Takeuchi M, Boris AJ, Yang Y, Weber RJ, Dillner AM, Gentner DR, Ng NL. Oxidized and Unsaturated: Key Organic Aerosol Traits Associated with Cellular Reactive Oxygen Species Production in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14150-14161. [PMID: 37699525 PMCID: PMC10538939 DOI: 10.1021/acs.est.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.
Collapse
Affiliation(s)
- Fobang Liu
- Department
of Environmental Science and Engineering, School of Energy and Power
Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taekyu Joo
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jenna C. Ditto
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Maria G. Saavedra
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Masayuki Takeuchi
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandra J. Boris
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
99
|
Molitor D, Mullins JT, White C. Air pollution and suicide in rural and urban America: Evidence from wildfire smoke. Proc Natl Acad Sci U S A 2023; 120:e2221621120. [PMID: 37695917 PMCID: PMC10515164 DOI: 10.1073/pnas.2221621120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Air pollution poses well-established risks to physical health, but little is known about its effects on mental health. We study the relationship between wildfire smoke exposure and suicide risk in the United States in 2007 to 2019 using data on all deaths by suicide and satellite-based measures of wildfire smoke and ambient fine particulate matter (PM2.5) concentrations. We identify the causal effects of wildfire smoke pollution on suicide by relating year-over-year fluctuations in county-level monthly smoke exposure to fluctuations in suicide rates and compare the effects across local areas and demographic groups that differ considerably in their baseline suicide risk. In rural counties, an additional day of smoke increases monthly mean PM2.5 by 0.41 μg/m3 and suicide deaths by 0.11 per million residents, such that a 1-μg/m3 (13%) increase in monthly wildfire-derived fine particulate matter leads to 0.27 additional suicide deaths per million residents (a 2.0% increase). These effects are concentrated among demographic groups with both high baseline suicide risk and high exposure to outdoor air: men, working-age adults, non-Hispanic Whites, and adults with no college education. By contrast, we find no evidence that smoke pollution increases suicide risk among any urban demographic group. This study provides large-scale evidence that air pollution elevates the risk of suicide, disproportionately so among rural populations.
Collapse
Affiliation(s)
- David Molitor
- Gies College of Business, University of Illinois, Champaign, IL61820
- National Bureau of Economic Research, Cambridge, MA02138
| | - Jamie T. Mullins
- Department of Resource Economics, University of Massachusetts, Amherst, MA01003
| | - Corey White
- Department of Economics, Monash University, Caulfield East, VIC3145, Australia
- IZA Institute of Labor Economics, 53113Bonn, Germany
| |
Collapse
|
100
|
Sekimoto K, Coggon MM, Gkatzelis GI, Stockwell CE, Peischl J, Soja AJ, Warneke C. Fuel-Type Independent Parameterization of Volatile Organic Compound Emissions from Western US Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13193-13204. [PMID: 37611137 PMCID: PMC10483695 DOI: 10.1021/acs.est.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).
Collapse
Affiliation(s)
- Kanako Sekimoto
- Graduate
School of Nanobioscience, Yokohama City
University, Yokohama, Kanagawa 236-0027, Japan
| | - Matthew M. Coggon
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| | - Georgios I. Gkatzelis
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Chelsea E. Stockwell
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Jeff Peischl
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Amber J. Soja
- National
Institute of Aerospace, Hampton, Virginia 23666, United States
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Carsten Warneke
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| |
Collapse
|