51
|
Sheehan D, Mullan K, West TAP, Semmens E. Protecting Life and Lung: Protected Areas affect fine particulate matter and respiratory hospitalizations in the Brazilian Amazon Biome. ENVIRONMENTAL & RESOURCE ECONOMICS 2024; 87:45-87. [PMID: 39429973 PMCID: PMC11484674 DOI: 10.1007/s10640-023-00813-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/22/2024]
Abstract
There is growing recognition of the connection between ecosystem conservation and human health. For example, protection of tropical forests can affect the spread of infectious diseases, water quality, and dietary diversity, while forest loss can have important consequences for respiratory health due to the use of fire for converting land to alternative uses in many countries. Studies demonstrating links between ecosystems and health often conclude with recommendations to expand policies that protect natural ecosystems. However, there is little empirical evidence on the extent to which conservation policies actually deliver health benefits when they are implemented in real contexts. We estimate the effects of protected areas (PAs), the dominant type of conservation policy, on hospitalizations for respiratory illness in the Brazilian Amazon biome. We find that doubling upwind PAs reduces PM2.5 by 10% and respiratory hospitalizations by 7% in the months of most active biomass burning. Brazil has an extensive network of PAs, but investments in management and enforcement have declined in recent years. Forest fires have increased dramatically over the same period. We estimate that the value of the health benefits exceed current average expenditures on PA management for the 1/3 of PAs with the largest local populations, although not for PAs in more remote locations. Our findings highlight how quantifying the contributions to the wellbeing of local populations can support conservation objectives, even if global environmental benefits are not a high priority for decision makers.
Collapse
Affiliation(s)
| | | | - Thales A. P. West
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam
| | - Erin Semmens
- School of Public and Community Health Sciences, University of Montana
| |
Collapse
|
52
|
Rice RB, Boaggio K, Olson NE, Foley KM, Weaver CP, Sacks JD, McDow SR, Holder AL, LeDuc SD. Wildfires Increase Concentrations of Hazardous Air Pollutants in Downwind Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21235-21248. [PMID: 38051783 PMCID: PMC10862657 DOI: 10.1021/acs.est.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Due in part to climate change, wildfire activity is increasing, with the potential for greater public health impact from smoke in downwind communities. Studies examining the health effects of wildfire smoke have focused primarily on fine particulate matter (PM2.5), but there is a need to better characterize other constituents, such as hazardous air pollutants (HAPs). HAPs are chemicals known or suspected to cause cancer or other serious health effects that are regulated by the United States (US) Environmental Protection Agency. Here, we analyzed concentrations of 21 HAPs in wildfire smoke from 2006 to 2020 at 309 monitors across the western US. Additionally, we examined HAP concentrations measured in a major population center (San Jose, CA) affected by multiple fires from 2017 to 2020. We found that concentrations of select HAPs, namely acetaldehyde, acrolein, chloroform, formaldehyde, manganese, and tetrachloroethylene, were all significantly elevated on smoke-impacted versus nonsmoke days (P < 0.05). The largest median increase on smoke-impacted days was observed for formaldehyde, 1.3 μg/m3 (43%) higher than that on nonsmoke days. Acetaldehyde increased 0.73 μg/m3 (36%), and acrolein increased 0.14 μg/m3 (34%). By better characterizing these chemicals in wildfire smoke, we anticipate that this research will aid efforts to reduce exposures in downwind communities.
Collapse
Affiliation(s)
- R Byron Rice
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Katie Boaggio
- US EPA, Office of Air and Radiation, Durham, North Carolina 27709, United States
| | - Nicole E Olson
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Kristen M Foley
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Christopher P Weaver
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Jason D Sacks
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Stephen R McDow
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Amara L Holder
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| | - Stephen D LeDuc
- US EPA, Office of Research and Development, Durham, North Carolina 27709, United States
| |
Collapse
|
53
|
Wen J, Heft-Neal S, Baylis P, Boomhower J, Burke M. Quantifying fire-specific smoke exposure and health impacts. Proc Natl Acad Sci U S A 2023; 120:e2309325120. [PMID: 38085772 PMCID: PMC10743475 DOI: 10.1073/pnas.2309325120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 12/18/2023] Open
Abstract
Rapidly changing wildfire regimes across the Western United States have driven more frequent and severe wildfires, resulting in wide-ranging societal threats from wildfires and wildfire-generated smoke. However, common measures of fire severity focus on what is burned, disregarding the societal impacts of smoke generated from each fire. We combine satellite-derived fire scars, air parcel trajectories from individual fires, and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health impacts experienced by populations in the contiguous United States from April 2006 to 2020. We quantify fire-specific accumulated smoke exposure based on the cumulative population exposed to smoke PM2.5 over the duration of a fire and estimate excess asthma-related emergency department (ED) visits as a result of this exposure. We find that excess asthma visits attributable to each fire are only moderately correlated with common measures of wildfire severity, including burned area, structures destroyed, and suppression cost. Additionally, while recent California fires contributed nearly half of the country's smoke-related excess asthma ED visits during our study period, the most severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a majority of smoke PM2.5 comes from sources outside the local jurisdictions where the smoke is experienced, with 87% coming from fires in other counties and 60% from fires in other states. Our approach could enable broad-scale assessment of whether specific fire characteristics affect smoke toxicity or impact, inform cost-effectiveness assessments for allocation of suppression resources, and help clarify the growing transboundary nature of local air quality.
Collapse
Affiliation(s)
- Jeff Wen
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Patrick Baylis
- Department of Economics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Judson Boomhower
- Department of Economics, University of California, San Diego, CA92093
- National Bureau of Economic Research, Cambridge, MA02138
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| |
Collapse
|
54
|
Lopez AM, Pacheco JL, Fendorf S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat Commun 2023; 14:8007. [PMID: 38086795 PMCID: PMC10716285 DOI: 10.1038/s41467-023-43101-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Accentuated by climate change, catastrophic wildfires are a growing, distributed global public health risk from inhalation of smoke and dust. Underrecognized, however, are the health threats arising from fire-altered toxic metals natural to soils and plants. Here, we demonstrate that high temperatures during California wildfires catalyzed widespread transformation of chromium to its carcinogenic form in soil and ash, as hexavalent chromium, particularly in areas with metal-rich geologies (e.g., serpentinite). In wildfire ash, we observed dangerous levels (327-13,100 µg kg-1) of reactive hexavalent chromium in wind-dispersible particulates. Relatively dry post-fire weather contributed to the persistence of elevated hexavalent chromium in surficial soil layers for up to ten months post-fire. The geographic distribution of metal-rich soils and fire incidents illustrate the broad global threat of wildfire smoke- and dust-born metals to populations. Our findings provide new insights into why wildfire smoke exposure appears to be more hazardous to humans than pollution from other sources.
Collapse
Affiliation(s)
- Alandra Marie Lopez
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Juan Lezama Pacheco
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Scott Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
55
|
Zheng J. Exposure to wildfires and health outcomes of vulnerable people: Evidence from US data. ECONOMICS AND HUMAN BIOLOGY 2023; 51:101311. [PMID: 37816268 DOI: 10.1016/j.ehb.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
This paper investigates the causal effect of wildfire exposure on birth outcomes and older people's health outcomes in United States (US). The study focuses on three sub-questions for each health outcome: (1) the causal effect of each of the five largest wildfires on individual health, (2) the causal impact of multiple large wildfires on individual health outcomes, and (3) the causal influence of wildfires larger than different sizes within different distances of counties on health outcomes at the county level. The analysis exploits data from National Vital Statistics System, Behavioural Risk Factor Surveillance System and FIRESTAT. In terms of birth outcomes, the findings show that the largest wildfire slightly increased the risk of other circulatory or respiratory anomalies. Multiple large wildfires moderately raised the risk of prematurity and led to a small decline in the probability of getting omphalocele and cleft lip. The county-level analysis suggests an increased risk of macrosomia following maternal exposure to wildfires. As for the elderly aged 65 + , the results indicate that exposure to multiple massive wildfires led to frequent occurrence of asthma symptoms, while the largest wildfire led to sleeping difficulty caused by asthma symptoms. The number of days older people experienced psychological problems was increased following exposure to multiple large wildfires.
Collapse
Affiliation(s)
- Jiyuan Zheng
- Department of Economics, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
56
|
Wei J, Wang J, Li Z, Kondragunta S, Anenberg S, Wang Y, Zhang H, Diner D, Hand J, Lyapustin A, Kahn R, Colarco P, da Silva A, Ichoku C. Long-term mortality burden trends attributed to black carbon and PM 2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. Lancet Planet Health 2023; 7:e963-e975. [PMID: 38056967 DOI: 10.1016/s2542-5196(23)00235-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA. METHODS In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations. We estimated the annual PM2·5-attributable and black carbon-attributable mortality burden at each 1-km2 grid using concentration-response functions collected from a national cohort study and a meta-analysis study, respectively. We investigated the spatiotemporal linear-regressed trends in PM2·5 and black carbon pollution and their associated premature deaths from 2000 to 2020, and the impact of wildfires on air quality and public health. FINDINGS Our results showed that PM2·5 and black carbon estimates are reliable, with sample-based cross-validated coefficients of determination of 0·82 and 0·80, respectively, for daily estimates (0·97 and 0·95 for monthly estimates). Both PM2·5 and black carbon in the USA showed significantly decreasing trends overall during 2000 to 2020 (22% decrease for PM2·5 and 11% decrease for black carbon), leading to a reduction of around 4200 premature deaths per year (95% CI 2960-5050). However, since 2010, the decreasing trends of fine particles and premature deaths have reversed to increase in the western USA (55% increase in PM2·5, 86% increase in black carbon, and increase of 670 premature deaths [460-810]), while remaining mostly unchanged in the eastern USA. The western USA showed large interannual fluctuations that were attributable to the increasing incidence of wildfires. Furthermore, the black carbon-to-PM2·5 mass ratio increased annually by 2·4% across the USA, mainly due to increasing wildfire emissions in the western USA and more rapid reductions of other components in the eastern USA, suggesting a potential increase in the relative toxicity of PM2·5. 100% of populated areas in the USA have experienced at least one day of PM2·5 pollution exceeding the daily air quality guideline level of 15 μg/m3 during 2000-2020, with 99% experiencing at least 7 days and 85% experiencing at least 30 days. The recent widespread wildfires have greatly increased the daily exposure risks in the western USA, and have also impacted the midwestern USA due to the long-range transport of smoke. INTERPRETATION Wildfires have become increasingly intensive and frequent in the western USA, resulting in a significant increase in smoke-related emissions in populated areas. This increase is likely to have contributed to a decline in air quality and an increase in attributable mortality. Reducing fire risk via effective policies besides mitigation of climate warming, such as wildfire prevention and management, forest restoration, and new revenue generation, could substantially improve air quality and public health in the coming decades. FUNDING National Aeronautics and Space Administration (NASA) Applied Science programme, NASA MODIS maintenance programme, NASA MAIA satellite mission programme, NASA GMAO core fund, National Oceanic and Atmospheric Administration (NOAA) GEO-XO project, NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) programme, and NOAA Educational Partnership Program with Minority Serving Institutions.
Collapse
Affiliation(s)
- Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA.
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Shobha Kondragunta
- Center for Satellite Applications and Research, NOAA National Environmental Satellite, Data, and Information Service, College Park, MD, USA
| | - Susan Anenberg
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| | - Yi Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - Huanxin Zhang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - David Diner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Jenny Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Alexei Lyapustin
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Ralph Kahn
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Peter Colarco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Arlindo da Silva
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Charles Ichoku
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
57
|
Wu X, Sverdrup E, Mastrandrea MD, Wara MW, Wager S. Low-intensity fires mitigate the risk of high-intensity wildfires in California's forests. SCIENCE ADVANCES 2023; 9:eadi4123. [PMID: 37948522 PMCID: PMC10637742 DOI: 10.1126/sciadv.adi4123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
The increasing frequency of severe wildfires demands a shift in landscape management to mitigate their consequences. The role of managed, low-intensity fire as a driver of beneficial fuel treatment in fire-adapted ecosystems has drawn interest in both scientific and policy venues. Using a synthetic control approach to analyze 20 years of satellite-based fire activity data across 124,186 square kilometers of forests in California, we provide evidence that low-intensity fires substantially reduce the risk of future high-intensity fires. In conifer forests, the risk of high-intensity fire is reduced by 64.0% [95% confidence interval (CI): 41.2 to 77.9%] in areas recently burned at low intensity relative to comparable unburned areas, and protective effects last for at least 6 years (lower bound of one-sided 95% CI: 6 years). These findings support a policy transition from fire suppression to restoration, through increased use of prescribed fire, cultural burning, and managed wildfire, of a presuppression and precolonial fire regime in California.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Erik Sverdrup
- Graduate School of Business, Stanford University, Stanford, CA, USA
| | | | - Michael W. Wara
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Stefan Wager
- Graduate School of Business, Stanford University, Stanford, CA, USA
| |
Collapse
|
58
|
Scharadin B, Zanocco C, Chistolini J. Food retail environments, extreme weather, and their overlap: Exploratory analysis and recommendations for U.S. food policy. PLoS One 2023; 18:e0289282. [PMID: 37939027 PMCID: PMC10631631 DOI: 10.1371/journal.pone.0289282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 11/10/2023] Open
Abstract
Extreme weather events are increasing in frequency and severity due to climate change, yet many of their impacts on human populations are not well understood. We examine the relationship between prior extreme weather events and food environment characteristics. To do so, we conduct a U.S. county-level analysis that assesses the association between extreme weather events and two common food retail environment dimensions. Overall, we find a relationship between higher levels of historic extreme weather exposure and lower food availability and accessibility. In addition, we find heterogeneity in association across the distribution of the number of extreme weather events and event type. Specifically, we find that more localized extreme weather events are more associated with a reduction of access and availability than broad geographic events. Our findings suggest that as extreme weather events amplify in intensity and increase in frequency, new approaches for mitigating less acute and longer-term impacts are needed to address how extreme weather may interact with and reinforce existing disparities in food environment factors. Furthermore, our research argues that integrated approaches to improving vulnerable food retail environments will become an important component of extreme weather planning and should be a consideration in both disaster- and food-related policy.
Collapse
Affiliation(s)
- Benjamin Scharadin
- Department of Economics, Colby College, Waterville, Maine, United States of America
| | - Chad Zanocco
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, United States of America
| | - Jacqueline Chistolini
- Department of Statistics, Colby College, Waterville, Maine, United States of America
| |
Collapse
|
59
|
Ding J, Han S, Wang X, Yao Q. Impact of air pollution changes and meteorology on asthma outpatient visits in a megacity in North China Plain. Heliyon 2023; 9:e21803. [PMID: 38027642 PMCID: PMC10651508 DOI: 10.1016/j.heliyon.2023.e21803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of air pollution and meteorology on asthma is less studied in North China Plain. In the last decade, air quality in this region is markedly mitigated. This study compared the short-term effects of air pollutants on daily asthma outpatient visits (AOV) within different sex and age groups from 2014 to 2016 and 2017-2019 in Tianjin, with the application of distributed lag nonlinear model. Moreover, relative humidity (RH) and temperature as well as the synergistic impact with air pollutants were assessed. Air pollutants-associated risk with linear (different reference values were used) and non-linear assumptions were compared. In 2014-2016, PM10 and PM2.5 exhibited a larger impact on AOV, with the corresponding cumulative excess risks (ER) for every 10 μg/m3 increase at 1.04 % (95%CI:0.67-1.40 %, similarly hereafter) and 0.79 % (0.35-1.23 %), as well as increased to 43 % (26-63 %) and 20 % (10-31 %) at severe pollution. In 2017-2019, NO2 and MDA8 O3 exhibited a larger impact on AOV, with a cumulative ER for every 10 μg/m3 increase at 1.0 (0.63-1.4 %) and 0.36 % (0.15-0.57 %), with corresponding values of 7.9 % (4.8-11 %) and 5.6 % (2.3-9.0 %), at severe pollution. SO2 associated risk was only significant from 2014 to 2016. Cold effect, including extremely low temperature exposure and sharp temperature drop could generate a pronounced increase in AOV at 9.6 % (3.8-16 %) and 24 % (9.1-41 %), respectively. Moderate low temperature combined with air pollutants can enhance AOV during winter. Higher temperature in spring and autumn could trigger asthma by increasing pollen levels. Low RH resulted in AOV increase by 4.6 % (2.4-6.9), while higher RH generated AOV increase by 3.4 % (1.6-5.3). Females, children, and older adults tended to have a higher risk for air pollution, non-optimum temperature, and RH. As air pollution-associated risks on AOV tends to be weaker due to air quality improvement in recent years, the impact of extreme meteorological condition amidst climate change on asthma visits warrants further attention.
Collapse
Affiliation(s)
- Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Suqin Han
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Xiaojia Wang
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Qing Yao
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| |
Collapse
|
60
|
Jiao A, Headon K, Han T, Umer W, Wu J. Associations between short-term exposure to wildfire particulate matter and respiratory outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168134. [PMID: 39491190 DOI: 10.1016/j.scitotenv.2023.168134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND The frequency and severity of wildfires have been sharply increasing due to climate change, which largely contributes to ambient particulate matter (PM) pollution. We conducted a systematic review focusing on the short-term relationships between PM attributable to wildfires (wildfire-specific PM) and diverse respiratory endpoints, with a comparison between the effects of wildfire-specific PM vs. all-source/non-wildfire PM. METHODS A comprehensive online search for the literature published from 2000 to 2022 was conducted through PubMed, Web of Sciences, Scopus, and EMBASE. We applied search terms related to wildfire smoke and respiratory health outcomes. RESULTS In total, 3196 articles were retrieved, and 35 articles were included in this review. Most studies focused on the associations of wildfire-specific PM with an aerodynamic diameter of <2.5 μm (PM2.5) with respiratory emergency department visits or hospitalizations, with a time-series or case-crossover study design. Studies were mostly conducted in the United States, Canada, and Australia. Positive associations of wildfire-specific PM with respiratory morbidity were observed in most studies. Studies that focused on respiratory mortality were limited. Females can be more vulnerable to the respiratory impacts of wildfire PM, while the evidence of vulnerable subpopulations among different age groups was inconclusive. Few studies compared the effects of wildfire-specific vs. all-source/non-wildfire PM, and some reported higher levels of toxicity of wildfire-specific PM, potentially due to its distinct chemical and physical compositions. Asthma and chronic obstructive pulmonary disease were the most studied diseases, and both were adversely affected by wildfire-specific PM. CONCLUSION To our knowledge, this is the first review that systematically summarized the associations of wildfire-specific PM exposure with adverse respiratory outcomes and compared associations of wildfire-specific vs. all-source/non-wildfire PM. Further investigations may add to the literature by examining the impacts on respiratory mortality and the effects of specific PM components from different types of wildfires.
Collapse
Affiliation(s)
- Anqi Jiao
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Kathryne Headon
- School of Medicine, University of California, Irvine, CA, USA
| | - Tianmei Han
- Public Health Sciences, Program in Public Health, University of California, Irvine, CA, USA
| | - Wajeeha Umer
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
61
|
Walker ES, Stewart T, Jones D. Fine particulate matter infiltration at Western Montana residences during wildfire season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165238. [PMID: 37392877 PMCID: PMC10529724 DOI: 10.1016/j.scitotenv.2023.165238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND/AIMS Wildfire air pollution is a growing public health concern as wildfires increase in size, intensity, and duration in the United States. The public is often encouraged to stay indoors during wildfire smoke events to reduce exposure. However, there is limited information on how much wildfire smoke infiltrates indoors at residences and what household/behavioral characteristics contribute to higher infiltration. We assessed fine particulate matter (PM2.5) infiltration into Western Montana residences during wildfire season. METHODS We measured continuous outdoor and indoor PM2.5 concentrations from July-October 2022 at 20 residences in Western Montana during wildfire season using low-cost PM2.5 sensors. We used paired outdoor/indoor PM2.5 data from each household to calculate infiltration efficiency (Finf; range 0-1; higher values indicate more outdoor PM2.5 infiltration to the indoor environment) using previously validated methods. Analyses were conducted for all households combined and for various household subgroups. RESULTS Median (25th percentile, 75th percentile) daily outdoor PM2.5 at the households was 3.7 μg/m3 (2.1, 7.1) during the entire study period and 29.0 μg/m3 (19.0, 49.4) during a 2-week period in September impacted by wildfire smoke. Median daily indoor PM2.5 at the households was 2.5 μg/m3 (1.3, 5.5) overall and 10.4 μg/m3 (5.6, 21.0) during the wildfire period. Overall Finf was 0.34 (95 % Confidence Interval [95%CI]: 0.33, 0.35) with lower values during the wildfire period (0.32; 95%CI: 0.28, 0.36) versus non-wildfire period (0.39; 95%CI: 0.37, 0.42). Indoor PM2.5 concentrations and Finf varied substantially across household subgroups such as household income, age of the home, presence of air conditioning units, and use of portable air cleaners. CONCLUSIONS Indoor PM2.5 was substantially higher during wildfire-impacted periods versus the rest of the study. Indoor PM2.5 and Finf were highly variable across households. Our results highlight potentially modifiable behaviors and characteristics that can be used in targeted intervention strategies.
Collapse
Affiliation(s)
- Ethan S Walker
- Center for Population Health Research, University of Montana, Missoula, MT, USA.
| | - Taylor Stewart
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| | - Dave Jones
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| |
Collapse
|
62
|
Quesnel Seipp K, Maurer T, Elias M, Saksa P, Keske C, Oleson K, Egoh B, Cleveland R, Nyelele C, Goncalves N, Hemes K, Wyrsch P, Lewis D, Chung MG, Guo H, Conklin M, Bales R. A multi-benefit framework for funding forest management in fire-driven ecosystems across the Western U.S. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118270. [PMID: 37354586 DOI: 10.1016/j.jenvman.2023.118270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Forests across the Western U.S. face unprecedented risk due to historic fire exclusion, environmental degradation, and climate change. Forest management activities like ecological thinning, prescribed burning, and meadow restoration can improve landscape resilience. Resilient forests are at a lower risk of high-intensity wildfires, drought, insects, and other disturbances and provide a wide range of benefits to ecosystems and communities. However, insufficient funding limits implementation of critically needed management. To address this challenge, we propose a multi-benefit framework that leverages the diverse benefits of forest management to engage a suite of stakeholders in sharing project costs. We take a three-pronged approach to develop our conceptual model: examining existing frameworks for environmental project implementation, conducting a literature review of forest management benefits, and evaluating case studies. Through our framework, we describe the steps to engage partners, starting by identifying benefits that could accrue to potential public and private beneficiaries, and moving through an iterative and collaborative process of valuing benefits, which can accrue over different spatial and temporal scales, in close consultation with potential beneficiaries themselves. The aim of this approach is to stack funding streams associated with each valued benefit to fully fund a given forest management project. The multi-benefit framework has the potential to unlock new sources of funding to meet the exceptional challenges of climate and wildfire disturbances. We apply the framework to dry forests of the Western U.S., but opportunities exist for expanding and modifying this approach to any geography or ecosystem where management provides multiple benefits.
Collapse
Affiliation(s)
| | - Tessa Maurer
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - Micah Elias
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA; University of California Berkeley, Berkeley, CA, 94720, USA
| | - Phil Saksa
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - Catherine Keske
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Kirsten Oleson
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Benis Egoh
- University of California Irvine, Irvine, CA, 92697, USA
| | - Rachael Cleveland
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Charity Nyelele
- University of California Irvine, Irvine, CA, 92697, USA; University of Virginia, Charlottesville, VA, 22904, USA
| | - Nicolas Goncalves
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Kyle Hemes
- Stanford Woods Institute for the Environment, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Peter Wyrsch
- Blue Forest Conservation, 5960 S Land Park Dr #1387, Sacramento, CA, 95822, USA
| | - David Lewis
- University of Hawai'i at Mānoa, 2500 Campus Rd, Honolulu, HI, 96822, USA
| | - Min Gon Chung
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Han Guo
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Martha Conklin
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Roger Bales
- University of California Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| |
Collapse
|
63
|
Paul MJ, LeDuc SD, Boaggio K, Herrick JD, Kaylor SD, Lassiter MG, Nolte CG, Rice RB. Effects of Air Pollutants from Wildfires on Downwind Ecosystems: Observations, Knowledge Gaps, and Questions for Assessing Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14787-14796. [PMID: 37769297 PMCID: PMC11345788 DOI: 10.1021/acs.est.2c09061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Wildfires have increased in frequency and area burned, trends expected to continue with climate change. Among other effects, fires release pollutants into the atmosphere, representing a risk to human health and downwind terrestrial and aquatic ecosystems. While human health risks are well studied, the ecological impacts to downwind ecosystems are not, and this gap may present a constraint on developing an adequate assessment of the ecological risks associated with downwind wildfire exposure. Here, we first screened the scientific literature to assess general knowledge about pathways and end points of a conceptual model linking wildfire generated pollutants and other materials to downwind ecosystems. We found a substantial body of literature on the composition of wildfire derived pollution and materials in the atmosphere and subsequent transport, yet little observational or experimental work on their effects on downwind ecological end points. This dearth of information raises many questions related to adequately assessing the ecological risk of downwind exposure, especially given increasing wildfire trends. To guide future research, we pose eight questions within the well-established US EPA ecological risk assessment paradigm that if answered would greatly improve ecological risk assessment and, ultimately, management strategies needed to reduce potential wildfire impacts.
Collapse
Affiliation(s)
- Michael J. Paul
- Tetra Tech Inc., PO Box 14409, Durham, NC 27709 USA
- Current address: United States Environmental Protection Agency, Office of Water, 1301 Constitution Ave NW, Washington DC 20460 USA
| | - Stephen D. LeDuc
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Katie Boaggio
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Jeffrey D. Herrick
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - S. Douglas Kaylor
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Meredith G. Lassiter
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Christopher G. Nolte
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - R. Byron Rice
- United States Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| |
Collapse
|
64
|
Swain DL, Abatzoglou JT, Kolden C, Shive K, Kalashnikov DA, Singh D, Smith E. Climate change is narrowing and shifting prescribed fire windows in western United States. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:340. [PMID: 38665191 PMCID: PMC11041722 DOI: 10.1038/s43247-023-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes-including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as "prescribed fire," can reduce the risk of destructive fires and restore ecosystem resilience. Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (-17%), particularly during spring (-25%) and summer (-31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.
Collapse
Affiliation(s)
- Daniel L. Swain
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA USA
- Capacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, CO USA
- The Nature Conservancy of California, Sacramento, CA USA
| | - John T. Abatzoglou
- Management of Complex Systems Department, University of California, Merced, Merced, CA USA
| | - Crystal Kolden
- Management of Complex Systems Department, University of California, Merced, Merced, CA USA
| | - Kristen Shive
- The Nature Conservancy of California, Sacramento, CA USA
- Environmental Science, Policy and Management Department, University of California, Berkeley, Berkeley, CA USA
| | | | - Deepti Singh
- School of the Environment, Washington State University, Vancouver, WA USA
| | - Edward Smith
- The Nature Conservancy of California, Sacramento, CA USA
| |
Collapse
|
65
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
66
|
Burke M, Childs ML, de la Cuesta B, Qiu M, Li J, Gould CF, Heft-Neal S, Wara M. The contribution of wildfire to PM 2.5 trends in the USA. Nature 2023; 622:761-766. [PMID: 37730996 DOI: 10.1038/s41586-023-06522-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Collapse
Affiliation(s)
- Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA.
- National Bureau of Economic Research, Cambridge, MA, USA.
| | - Marissa L Childs
- Center for the Environment, Harvard University, Cambridge, MA, USA
| | - Brandon de la Cuesta
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jessica Li
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Carlos F Gould
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Michael Wara
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA
- Woods Institute of the Environment, Stanford University, Stanford, CA, USA
| |
Collapse
|
67
|
Darling R, Hansen K, Aguilera R, Basu R, Benmarhnia T, Letellier N. The Burden of Wildfire Smoke on Respiratory Health in California at the Zip Code Level: Uncovering the Disproportionate Impacts of Differential Fine Particle Composition. GEOHEALTH 2023; 7:e2023GH000884. [PMID: 37869264 PMCID: PMC10586090 DOI: 10.1029/2023gh000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023]
Abstract
Wildfires constitute a growing source of extremely high levels of particulate matter that is less than 2.5 microns in diameter (PM2.5). Recently, toxicologic and epidemiologic studies have shown that PM2.5 generated from wildfires may have a greater health burden than PM2.5 generated from other pollutant sources. This study examined the impact of PM2.5 on hospitalizations for respiratory diseases in California between 2006 and 2019 using a health impact assessment approach that considers differential concentration-response functions (CRF) for PM2.5 from wildfire and non-wildfire sources of emissions. We quantified the burden of respiratory hospitalizations related to PM2.5 exposure at the zip code level through two different approaches: (a) naïve (considering the same CRF for all PM2.5 emissions) and (b) nuanced (considering different CRFs for PM2.5 from wildfires and from other sources). We conducted a Geographically Weighted Regression to analyze spatially varying relationships between the delta (i.e., the difference between the naïve and nuanced approaches) and the Centers for Disease Control and Prevention's Social Vulnerability Index (SVI). A higher attributable number of respiratory hospitalizations was found when accounting for the larger health burden of wildfire PM2.5. We found that, between 2006 and 2019, the number of hospitalizations attributable to PM2.5 may have been underestimated by approximately 13% as a result of not accounting for the higher CRF of wildfire-related PM2.5 throughout California. This underestimation was higher in northern California and areas with higher SVI rankings. The relationship between delta and SVI varied spatially across California. These findings can be useful for updating future air pollution guideline recommendations.
Collapse
Affiliation(s)
- Rachel Darling
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
| | - Kristen Hansen
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
- Herbert Wertheim School of Public Health and Human Longevity ScienceUC San DiegoSan DiegoCAUSA
| | - Rosana Aguilera
- Scripps Institution of OceanographyUC San DiegoSan DiegoCAUSA
| | - Rupa Basu
- Air and Climate Epidemiology SectionCalifornia Office of Environmental Health Hazard AssessmentOaklandCAUSA
| | | | | |
Collapse
|
68
|
Siddiqi MUA, Giordono L, Zanocco C, Stelmach G, Flora J, Boudet H. Disaster preparedness and community helping behaviour in the wake of the 2020 Oregon wildfires. DISASTERS 2023; 47:1138-1172. [PMID: 37086026 DOI: 10.1111/disa.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extreme weather events are increasing in frequency and severity owing to climate change. Individual-level behavioural responses-notably, disaster preparedness and community helping actions (such as donating and volunteering)-supplement government efforts to respond to such phenomena, but rarely have they been explored together. Using data from a survey administered soon after the 2020 Oregon wildfires, this paper compares a range of socio-demographic, experiential, attitudinal, and communication-related factors associated with these two individual-level behavioural responses. Findings indicate that respondents who reported experiencing a higher degree of harm and heightened concern about climate change after the wildfires were more likely to report disaster preparedness and community helping actions. Those who reported more frequent informal discussions about the wildfires, consulting more sources to seek information on them, and higher percentages of friends, neighbours, and community members taking actions to prepare for future wildfires also reported more disaster preparedness and community helping actions. Disaster preparedness actions were also positively associated with seeking information from formal/official sources.
Collapse
Affiliation(s)
| | - Leanne Giordono
- Assistant Professor at the Department of Political Science, California Polytechnic State University, United States
| | - Chad Zanocco
- Postdoctoral Scholar at the Department of Civil and Environmental Engineering, Stanford University, Stanford, United States
| | - Greg Stelmach
- Instructor and PhD Candidate at the School of Public Policy, Oregon State University, United States
| | - June Flora
- Senior Research Scholar at the Department of Civil and Environmental Engineering, Stanford University, United States
| | - Hilary Boudet
- Associate Professor at the School of Public Policy, Oregon State University, United States
| |
Collapse
|
69
|
Fadadu RP, Chee E, Jung A, Chen JY, Abuabara K, Wei ML. Air pollution and global healthcare use for atopic dermatitis: A systematic review. J Eur Acad Dermatol Venereol 2023; 37:1958-1970. [PMID: 37184289 DOI: 10.1111/jdv.19193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is common around the world, but the impacts of outdoor air pollution exposure on atopic dermatitis (AD) are unclear. We synthesized the current global epidemiologic evidence for air pollution exposure and associated medical visits for AD among adults and children. This review followed PRISMA guidelines, and searches were conducted on PubMed, MEDLINE, Web of Science and EMBASE databases. The searches yielded 390 studies, and after screening, 18 studies around the world assessing at least 5,197,643 medical visits for AD in total were included for the final analysis. We found that exposure to particulate matter ≤2.5 μm in diameter (PM2.5 ) [(10/11) of studies], particulate matter ≤10 μm in diameter (PM10 ) (11/13), nitrogen dioxide (NO2 ) (12/14) and sulfur dioxide (SO2 ) (10/13) was positively associated with AD visits. Results were equivocal for ozone [(4/8) of studies reported positive association] and limited for carbon monoxide [(1/4) of studies reported positive association]. When stratifying results by patient age, patient sex and season, we found that the associations with particulate matter, NO2 and O3 may be affected by temperature. Exposure to selected air pollutants is associated with AD visits, and increasingly poor worldwide air quality may increase global healthcare use for AD.
Collapse
Affiliation(s)
- R P Fadadu
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - E Chee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - A Jung
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Information, University of California, Berkeley, Berkeley, California, USA
| | - J Y Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - K Abuabara
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - M L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| |
Collapse
|
70
|
Heft-Neal S, Gould CF, Childs ML, Kiang MV, Nadeau KC, Duggan M, Bendavid E, Burke M. Emergency department visits respond nonlinearly to wildfire smoke. Proc Natl Acad Sci U S A 2023; 120:e2302409120. [PMID: 37722035 PMCID: PMC10523589 DOI: 10.1073/pnas.2302409120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/28/2023] [Indexed: 09/20/2023] Open
Abstract
Air pollution negatively affects a range of health outcomes. Wildfire smoke is an increasingly important contributor to air pollution, yet wildfire smoke events are highly salient and could induce behavioral responses that alter health impacts. We combine geolocated data covering all emergency department (ED) visits to nonfederal hospitals in California from 2006 to 2017 with spatially resolved estimates of daily wildfire smoke PM[Formula: see text] concentrations and quantify how smoke events affect ED visits. Total ED visits respond nonlinearly to smoke concentrations. Relative to a day with no smoke, total visits increase by 1 to 1.5% in the week following low or moderate smoke days but decline by 6 to 9% following extreme smoke days. Reductions persist for at least a month. Declines at extreme levels are driven by diagnoses not thought to be acutely impacted by pollution, including accidental injuries and several nonurgent symptoms, and declines come disproportionately from less-insured populations. In contrast, health outcomes with the strongest physiological link to short-term air pollution increase dramatically in the week following an extreme smoke day: We estimate that ED visits for asthma, COPD, and cough all increase by 30 to 110%. Data from internet searches, vehicle traffic sensors, and park visits indicate behavioral changes on high smoke days consistent with declines in healthcare utilization. Because low and moderate smoke days vastly outweigh high smoke days, we estimate that smoke was responsible for an average of 3,010 (95% CI: 1,760-4,380) additional ED visits per year 2006 to 2017. Given the increasing intensity of wildfire smoke events, behavioral mediation is likely to play a growing role in determining total smoke impacts.
Collapse
Affiliation(s)
- Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
| | - Carlos F. Gould
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
| | | | - Mathew V. Kiang
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA94305
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard University, Cambridge, MA02138
| | - Mark Duggan
- Department of Economics, Stanford University, Stanford, CA94305
- Stanford Institute of Economic Policy Research, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| | - Eran Bendavid
- Department of Health Policy, Stanford University, Stanford, CA94305
- Department of Medicine, Stanford University, Stanford, CA94305
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, CA94305
- Doerr School of Sustainability, Stanford University, Stanford, CA94305
- National Bureau of Economic Research, Cambridge, MA02138
| |
Collapse
|
71
|
Liu F, Joo T, Ditto JC, Saavedra MG, Takeuchi M, Boris AJ, Yang Y, Weber RJ, Dillner AM, Gentner DR, Ng NL. Oxidized and Unsaturated: Key Organic Aerosol Traits Associated with Cellular Reactive Oxygen Species Production in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14150-14161. [PMID: 37699525 PMCID: PMC10538939 DOI: 10.1021/acs.est.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.
Collapse
Affiliation(s)
- Fobang Liu
- Department
of Environmental Science and Engineering, School of Energy and Power
Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taekyu Joo
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jenna C. Ditto
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Maria G. Saavedra
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Masayuki Takeuchi
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandra J. Boris
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
72
|
Molitor D, Mullins JT, White C. Air pollution and suicide in rural and urban America: Evidence from wildfire smoke. Proc Natl Acad Sci U S A 2023; 120:e2221621120. [PMID: 37695917 PMCID: PMC10515164 DOI: 10.1073/pnas.2221621120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Air pollution poses well-established risks to physical health, but little is known about its effects on mental health. We study the relationship between wildfire smoke exposure and suicide risk in the United States in 2007 to 2019 using data on all deaths by suicide and satellite-based measures of wildfire smoke and ambient fine particulate matter (PM2.5) concentrations. We identify the causal effects of wildfire smoke pollution on suicide by relating year-over-year fluctuations in county-level monthly smoke exposure to fluctuations in suicide rates and compare the effects across local areas and demographic groups that differ considerably in their baseline suicide risk. In rural counties, an additional day of smoke increases monthly mean PM2.5 by 0.41 μg/m3 and suicide deaths by 0.11 per million residents, such that a 1-μg/m3 (13%) increase in monthly wildfire-derived fine particulate matter leads to 0.27 additional suicide deaths per million residents (a 2.0% increase). These effects are concentrated among demographic groups with both high baseline suicide risk and high exposure to outdoor air: men, working-age adults, non-Hispanic Whites, and adults with no college education. By contrast, we find no evidence that smoke pollution increases suicide risk among any urban demographic group. This study provides large-scale evidence that air pollution elevates the risk of suicide, disproportionately so among rural populations.
Collapse
Affiliation(s)
- David Molitor
- Gies College of Business, University of Illinois, Champaign, IL61820
- National Bureau of Economic Research, Cambridge, MA02138
| | - Jamie T. Mullins
- Department of Resource Economics, University of Massachusetts, Amherst, MA01003
| | - Corey White
- Department of Economics, Monash University, Caulfield East, VIC3145, Australia
- IZA Institute of Labor Economics, 53113Bonn, Germany
| |
Collapse
|
73
|
Sekimoto K, Coggon MM, Gkatzelis GI, Stockwell CE, Peischl J, Soja AJ, Warneke C. Fuel-Type Independent Parameterization of Volatile Organic Compound Emissions from Western US Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13193-13204. [PMID: 37611137 PMCID: PMC10483695 DOI: 10.1021/acs.est.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).
Collapse
Affiliation(s)
- Kanako Sekimoto
- Graduate
School of Nanobioscience, Yokohama City
University, Yokohama, Kanagawa 236-0027, Japan
| | - Matthew M. Coggon
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| | - Georgios I. Gkatzelis
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Chelsea E. Stockwell
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Jeff Peischl
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Amber J. Soja
- National
Institute of Aerospace, Hampton, Virginia 23666, United States
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Carsten Warneke
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| |
Collapse
|
74
|
Alahmad B, Khraishah H, Althalji K, Borchert W, Al-Mulla F, Koutrakis P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can J Cardiol 2023; 39:1182-1190. [PMID: 37030516 PMCID: PMC11097327 DOI: 10.1016/j.cjca.2023.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, more people die from cardiovascular disease than any other cause. Climate change, through amplified environmental exposures, will promote and contribute to many noncommunicable diseases, including cardiovascular disease. Air pollution, too, is responsible for millions of deaths from cardiovascular disease each year. Although they may appear to be independent, interchangeable relationships and bidirectional cause-and-effect arrows between climate change and air pollution can eventually lead to poor cardiovascular health. In this topical review, we show that climate change and air pollution worsen each other, leading to several ecosystem-mediated effects. We highlight how increases in hot climates as a result of climate change have increased the risk of major air pollution events such as severe wildfires and dust storms. In addition, we show how altered atmospheric chemistry and changing patterns of weather conditions can promote the formation and accumulation of air pollutants: a phenomenon known as the climate penalty. We demonstrate these amplified environmental exposures and their associations to adverse cardiovascular health outcomes. The community of health professionals-and cardiologists, in particular-cannot afford to overlook the risks that climate change and air pollution bring to the public's health.
Collapse
Affiliation(s)
- Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Environmental and Occupational Health Department, College of Public Health, Kuwait University, Kuwait City, Kuwait; Dasman Diabetes Institute (DDI), Kuwait City, Kuwait.
| | - Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Khalid Althalji
- Jaber Alahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - William Borchert
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fahd Al-Mulla
- Dasman Diabetes Institute (DDI), Kuwait City, Kuwait
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Vicedo-Cabrera AM, Melén E, Forastiere F, Gehring U, Katsouyanni K, Yorgancioglu A, Ulrik CS, Hansen K, Powell P, Ward B, Hoffmann B, Andersen ZJ. Climate change and respiratory health: a European Respiratory Society position statement. Eur Respir J 2023; 62:2201960. [PMID: 37661094 DOI: 10.1183/13993003.01960-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
- Science Policy and Epidemiology Environmental Research Group King's College London, London UK
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Klea Katsouyanni
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Arzu Yorgancioglu
- Celal Bayar University Medical Faculty Department of Pulmonology, Manisa, Turkey
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Technology, Oslo, Norway
| | | | - Brian Ward
- European Respiratory Society, Brussels, Belgium
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
76
|
Sánchez-García C, Santín C, Neris J, Sigmund G, Otero XL, Manley J, González-Rodríguez G, Belcher CM, Cerdà A, Marcotte AL, Murphy SF, Rhoades CC, Sheridan G, Strydom T, Robichaud PR, Doerr SH. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. ENVIRONMENT INTERNATIONAL 2023; 178:108065. [PMID: 37562341 DOI: 10.1016/j.envint.2023.108065] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023]
Abstract
The mobilisation of potentially harmful chemical constituents in wildfire ash can be a major consequence of wildfires, posing widespread societal risks. Knowledge of wildfire ash chemical composition is crucial to anticipate and mitigate these risks. Here we present a comprehensive dataset on the chemical characteristics of a wide range of wildfire ashes (42 types and a total of 148 samples) from wildfires across the globe and examine their potential societal and environmental implications. An extensive review of studies analysing chemical composition in ash was also performed to complement and compare our ash dataset. Most ashes in our dataset had an alkaline reaction (mean pH 8.8, ranging between 6 and 11.2). Important constituents of wildfire ash were organic carbon (mean: 204 g kg-1), calcium, aluminium, and iron (mean: 47.9, 17.9 and 17.1 g kg-1). Mean nitrogen and phosphorus ranged between 1 and 25 g kg-1, and between 0.2 and 9.9 g kg-1, respectively. The largest concentrations of metals of concern for human and ecosystem health were observed for manganese (mean: 1488 mg kg-1; three ecosystems > 1000 mg kg-1), zinc (mean: 181 mg kg-1; two ecosystems > 500 mg kg-1) and lead (mean: 66.9 mg kg-1; two ecosystems > 200 mg kg-1). Burn severity and sampling timing were key factors influencing ash chemical characteristics like pH, carbon and nitrogen concentrations. The highest readily dissolvable fractions (as a % of ash dry weight) in water were observed for sodium (18 %) and magnesium (11.4 %). Although concentrations of elements of concern were very close to, or exceeded international contamination standards in some ashes, the actual effect of ash will depend on factors like ash loads and the dilution into environmental matrices such as water, soil and sediment. Our approach can serve as an initial methodological standardisation of wildfire ash sampling and chemical analysis protocols.
Collapse
Affiliation(s)
- C Sánchez-García
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | - C Santín
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Research Institute of Biodiversity (IMIB; CSIC-UniOvi-PA), Mieres, Spain
| | - J Neris
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Universidad de La Laguna, Tenerife, Spain
| | - G Sigmund
- Environmental Technology, Wageningen University & Research, Wageningen, The Netherlands; Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - X L Otero
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - J Manley
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | | | - C M Belcher
- University of Exeter, Exeter, United Kingdom
| | - A Cerdà
- Universitat de València, Valencia, Spain
| | - A L Marcotte
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - S F Murphy
- U.S. Geological Survey, Boulder, CO, USA
| | - C C Rhoades
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - G Sheridan
- The University of Melbourne, Parkville, Australia
| | - T Strydom
- South African National Parks, Skukuza, South Africa
| | - P R Robichaud
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - S H Doerr
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
77
|
Meng YY, Yu Y, Al-Hamdan MZ, Marlier ME, Wilkins JL, Garcia-Gonzales D, Chen X, Jerrett M. Short-Term total and wildfire fine particulate matter exposure and work loss in California. ENVIRONMENT INTERNATIONAL 2023; 178:108045. [PMID: 37352581 DOI: 10.1016/j.envint.2023.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Few studies investigated the impact of particulate matter (PM2.5) on some symptom exacerbations that are not perceived as severe enough to search for medical assistance. We aimed to study the association of short-term daily total PM2.5 exposure with work loss due to sickness among adults living in California. METHODS We included 44,544 adult respondents in the workforce from 2015 to 2018 California Health Interview Survey data. Daily total PM2.5 concentrations were linked to respondents' home addresses from continuous spatial surfaces of PM2.5 generated by a geostatistical surfacing algorithm. We estimated the effect of a 2-week average of daily total PM2.5 exposure on work loss using logistic regression models. RESULTS About 1.69% (weighted percentage) of adult respondents reported work loss in the week before the survey interview. The odds ratio of work loss was 1.45 (odds ratio [OR] = 1.45, 95% confidence interval [CI]: 1.03, 2.03) when a 2-week average of daily total PM2.5 exposure was higher than 12 µg/m3. The OR for work loss was 1.05 (95% CI: 0.98, 1.13) for each 2.56ug/m3 increase in the 2-week average of daily total PM2.5 exposure, and became stronger among those who were highly exposed to wildfire smoke (OR = 1.06, 95% CI: 1.00, 1.13), compared to those with lower wildfire smoke exposure (OR = 1.04, 95% CI: 0.79, 1.39). CONCLUSIONS Our findings suggest that short-term ambient PM2.5 exposure is positively associated with work loss due to sickness and the association was stronger among those with higher wildfire smoke exposure. It also indicated that the current federal and state PM2.5 standards (annual average of 12 µg/m3) could be further strengthened to protect the health of the citizens of California.
Collapse
Affiliation(s)
- Ying-Ying Meng
- UCLA Center for Health Policy Research, University of California at Los Angeles, CA, USA.
| | - Yu Yu
- UCLA Center for Health Policy Research, University of California at Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA; Department of Civil Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Miriam E Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| | - Joseph L Wilkins
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA; Interdisciplinary Studies Department, Howard University, Washington, D.C, USA
| | - Diane Garcia-Gonzales
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| | - Xiao Chen
- UCLA Center for Health Policy Research, University of California at Los Angeles, CA, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| |
Collapse
|
78
|
Anesi GL, Xiong RA, Delgado MK. Frequency and Trends of Pre-Pandemic Surge Periods in U.S. Emergency Departments, 2006-2019. Crit Care Explor 2023; 5:e0954. [PMID: 37614798 PMCID: PMC10443743 DOI: 10.1097/cce.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVES To quantify the frequency, outside of the pandemic setting, with which individual healthcare facilities faced surge periods due to severe increases in demand for emergency department (ED) care. DESIGN Retrospective cohort study. SETTING U.S. EDs. PATIENTS All ED encounters in the all-payer, nationally representative Nationwide Emergency Department Sample from the Healthcare Cost and Utilization Project, 2006-2019. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Frequency of surge periods defined as ED months in which an individual facility ED saw a greater than 50% increase in ED visits per month above facility-/calendar month-specific medians. During 2006-2019, 3,317 U.S. EDs reported 354,534,229 ED visits across 142,035 ED months. Fifty-seven thousand four hundred ninety-five ED months (40.5%) during the study period had a 0% to 50% increase in ED visits that month above facility-specific medians and 1,952 ED months (1.4%) qualified as surge periods and had a greater than 50% increase in ED visits that month above facility-specific medians. These surge months were experienced by 397 unique facility EDs (12.0%). Compared with 2006, the most proximal pre-pandemic period of 2016-2019 had a notably elevated likelihood of ED-month surge periods (odds ratios [ORs], 2.36-2.84; all p < 0.0005). Compared with the calendar month of January, the winter ED months in December through March have similar likelihood of an ED-month qualifying as a surge period (ORs, 0.84-1.03; all p > 0.05), while the nonwinter ED months in April through November have a lower likelihood of an ED-month qualifying as a surge period (ORs, 0.65-0.81; all p < 0.05). CONCLUSIONS Understanding the frequency of surges in demand for ED care-which appear to have increased in frequency even before the COVID-19 pandemic and are concentrated in winter months-is necessary to better understand the burden of potential and realized acute surge events and to inform cost-effectiveness preparedness strategies.
Collapse
Affiliation(s)
- George L Anesi
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ruiying Aria Xiong
- Penn Medicine Center for Health Care Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - M Kit Delgado
- Penn Medicine Center for Health Care Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Emergency Care Policy and Research, Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
79
|
Agay-Shay K. Invited Perspective: Air Pollution and Congenital Heart Defects (CHDs)-a Summary of Two Decades and Future Direction in Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:61305. [PMID: 37339065 DOI: 10.1289/ehp12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Affiliation(s)
- Keren Agay-Shay
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
80
|
Fernández ACG, Basilio E, Benmarhnia T, Roger J, Gaw SL, Robinson JF, Padula AM. Retrospective analysis of wildfire smoke exposure and birth weight outcomes in the San Francisco Bay Area of California. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025009. [PMID: 37324234 PMCID: PMC10261910 DOI: 10.1088/2752-5309/acd5f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Despite the occurrence of wildfires quadrupling over the past four decades, the health effects associated with wildfire smoke exposures during pregnancy remains unknown. Particulate matter less than 2.5 μms (PM2.5) is among the major pollutants emitted in wildfire smoke. Previous studies found PM2.5 associated with lower birthweight, however, the relationship between wildfire-specific PM2.5 and birthweight is uncertain. Our study of 7923 singleton births in San Francisco between January 1, 2017 and March 12, 2020 examines associations between wildfire smoke exposure during pregnancy and birthweight. We linked daily estimates of wildfire-specific PM2.5 to maternal residence at the ZIP code level. We used linear and log-binomial regression to examine the relationship between wildfire smoke exposure by trimester and birthweight and adjusted for gestational age, maternal age, race/ethnicity, and educational attainment. We stratified by infant sex to examine potential effect modification. Exposure to wildfire-specific PM2.5 during the second trimester of pregnancy was positively associated with increased risk of large for gestational age (OR = 1.13; 95% CI: 1.03, 1.24), as was the number of days of wildfire-specific PM2.5 above 5 μg m-3 in the second trimester (OR = 1.03; 95% CI: 1.01, 1.06). We found consistent results with wildfire smoke exposure in the second trimester and increased continuous birthweight-for-gestational age z-score. Differences by infant sex were not consistent. Counter to our hypothesis, results suggest that wildfire smoke exposures are associated with increased risk for higher birthweight. We observed strongest associations during the second trimester. These investigations should be expanded to other populations exposed to wildfire smoke and aim to identify vulnerable communities. Additional research is needed to clarify the biological mechanisms in this relationship between wildfire smoke exposure and adverse birth outcomes.
Collapse
Affiliation(s)
- Anna Claire G Fernández
- School of Public Health, University of California, Berkeley
- School of Medicine, University of California, San Francisco
| | - Emilia Basilio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego
| | | | - Stephanie L Gaw
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| |
Collapse
|
81
|
Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M. Effect modification of the association between fine particulate air pollution during a wildfire event and respiratory health by area-level measures of socio-economic status, race/ethnicity, and smoking prevalence. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025005. [PMID: 38332844 PMCID: PMC10852067 DOI: 10.1088/2752-5309/acc4e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fine particulate air pollution (PM2.5) is decreasing in most areas of the United States, except for areas most affected by wildfires, where increasing trends in PM2.5 can be attributed to wildfire smoke. The frequency and duration of large wildfires and the length of the wildfire season have all increased in recent decades, partially due to climate change, and wildfire risk is projected to increase further in many regions including the western United States. Increasingly, empirical evidence suggests differential health effects from air pollution by class and race; however, few studies have investigated such differential health impacts from air pollution during a wildfire event. We investigated differential risk of respiratory health impacts during the 2008 northern California wildfires by a comprehensive list of socio-economic status (SES), race/ethnicity, and smoking prevalence variables. Regardless of SES level across nine measures of SES, we found significant associations between PM2.5 and asthma hospitalizations and emergency department (ED) visits during these wildfires. Differential respiratory health risk was found by SES for ED visits for chronic obstructive pulmonary disease where the highest risks were in ZIP codes with the lowest SES levels. Findings for differential effects by race/ethnicity were less consistent across health outcomes. We found that ZIP codes with higher prevalence of smokers had greater risk of ED visits for asthma and pneumonia. Our study suggests that public health efforts to decrease exposures to high levels of air pollution during wildfires should focus on lower SES communities.
Collapse
Affiliation(s)
- C E Reid
- Department of Geography, University of Colorado Boulder, Boulder, CO, United States of America
| | - E M Considine
- Department of Applied Math, University of Colorado Boulder, Boulder, CO, United States of America
- Current address: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University., Boston, MA, United States of America
| | - G L Watson
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| | - D Telesca
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| | - G G Pfister
- National Center for Atmospheric Research, Boulder, CO, United States of America
| | - M Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
82
|
Andersen ZJ, Vicedo-Cabrera AM, Hoffmann B, Melén E. Climate change and respiratory disease: clinical guidance for healthcare professionals. Breathe (Sheff) 2023; 19:220222. [PMID: 37492343 PMCID: PMC10365076 DOI: 10.1183/20734735.0222-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/28/2023] [Indexed: 07/27/2023] Open
Abstract
Climate change is one of the major public health emergencies with already unprecedented impacts on our planet, environment and health. Climate change has already resulted in substantial increases in temperatures globally and more frequent and extreme weather in terms of heatwaves, droughts, dust storms, wildfires, rainstorms and flooding, with prolonged and altered allergen and microbial exposure as well as the introduction of new allergens to certain areas. All these exposures may have a major burden on patients with respiratory conditions, which will pose increasing challenges for respiratory clinicians and other healthcare providers. In addition, complex interactions between these different factors, along with other major environmental risk factors (e.g. air pollution), will exacerbate adverse health effects on the lung. For example, an increase in heat and sunlight in urban areas will lead to increases in ozone exposure among urban populations; effects of very high exposure to smoke and pollution from wildfires will be exacerbated by the accompanying heat and drought; and extreme precipitation events and flooding will increase exposure to humidity and mould indoors. This review aims to bring respiratory healthcare providers up to date with the newest research on the impacts of climate change on respiratory health. Respiratory clinicians and other healthcare providers need to be continually educated about the challenges of this emerging and growing public health problem and be equipped to be the key players in solutions to mitigate the impacts of climate change on patients with respiratory conditions. Educational aims To define climate change and describe major related environmental factors that pose a threat to patients with respiratory conditions.To provide an overview of the epidemiological evidence on climate change and respiratory diseases.To explain how climate change interacts with air pollution and other related environmental hazards to pose additional challenges for patients.To outline recommendations to protect the health of patients with respiratory conditions from climate-related environmental hazards in clinical practice.To outline recommendations to clinicians and patients with respiratory conditions on how to contribute to mitigating climate change.
Collapse
Affiliation(s)
- Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
83
|
Moloney K, Vickery J, Hess J, Errett N. After the fire: A qualitative study of the role of long-term recovery organizations in addressing rural communities' post-wildfire needs. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:021009. [PMID: 37260862 PMCID: PMC10227461 DOI: 10.1088/2752-5309/acd2f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
U.S. wildfire activity has increased over the past several decades, disrupting the systems and infrastructure that support community health and resilience. As the cumulative burden of wildfire damage is projected to increase, understanding an effective community recovery process is critically important. Through qualitative interviews with leaders of long-term recovery organizations (LTROs), a key component of wildfire recovery, we explored barriers and facilitators to LTROs' ability to support post-wildfire needs among rural communities. Between February-May 2022, we conducted surveys and semi-structured interviews with 18 leaders from six LTROs serving rural communities in Washington, Oregon, and California impacted by wildfires between 2015-2020. The Robert Wood Johnson Foundation's Culture of Health Framework informed the semi-structured interview guide and a priori codebook, to examine LTROs' ability to address post-wildfire community needs from a health equity perspective. Additional codes were added through an inductive approach, and emerging themes were identified. Our findings indicate that LTROs face many barriers in addressing community needs post-wildfire, including the policies governing access to and the slow arrival of recovery resources, the intertwined nature of community economic health and built environment restoration, and the challenge of forming a functional LTRO structure. However, participants also identified facilitators of LTROs' work, including the ability of LTROs and their government partners to adapt policies and procedures, and close collaboration with other community organizations. Factors both internal and external to the community and LTROs' organizational characteristics influence their ability to address community needs, essential to health, post-wildfire. This study's findings suggest the need for policy improvements to promote more equitable recovery resource access, that economic recovery should be a core LTRO function, and that recovery planning should be incorporated into community disaster preparedness activities. Future research should focus on LTROs' role in other contexts and in response to other disasters.
Collapse
Affiliation(s)
- Kathleen Moloney
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jamie Vickery
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jeremy Hess
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA, United States of America
- Department of Emergency Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
- Center for Health and the Global Environment (CHanGE), School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicole Errett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
84
|
Martenies SE, Wilson A, Hoskovec L, Bol KA, Burket TL, Podewils LJ, Magzamen S. The COVID-19-wildfire smoke paradox: Reduced risk of all-cause mortality due to wildfire smoke in Colorado during the first year of the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2023; 225:115591. [PMID: 36878268 PMCID: PMC9985917 DOI: 10.1016/j.envres.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND In 2020, the American West faced two competing challenges: the COVID-19 pandemic and the worst wildfire season on record. Several studies have investigated the impact of wildfire smoke (WFS) on COVID-19 morbidity and mortality, but little is known about how these two public health challenges impact mortality risk for other causes. OBJECTIVES Using a time-series design, we evaluated how daily risk of mortality due to WFS exposure differed for periods before and during the COVID-19 pandemic. METHODS Our study included daily data for 11 counties in the Front Range region of Colorado (2010-2020). We assessed WFS exposure using data from the National Oceanic and Atmospheric Administration and used mortality counts from the Colorado Department of Public Health and Environment. We estimated the interaction between WFS and the pandemic (an indicator variable) on mortality risk using generalized additive models adjusted for year, day of week, fine particulate matter, ozone, temperature, and a smoothed term for day of year. RESULTS WFS impacted the study area on 10% of county-days. We observed a positive association between the presence of WFS and all-cause mortality risk (incidence rate ratio (IRR) = 1.03, 95%CI: 1.01-1.04 for same-day exposures) during the period before the pandemic; however, WFS exposure during the pandemic resulted in decreased risk of all-cause mortality (IRR = 0.90, 95%CI: 0.87-0.93 for same-day exposures). DISCUSSION We hypothesize that mitigation efforts during the first year of the pandemic, e.g., mask mandates, along with high ambient WFS levels encouraged health behaviors that reduced exposure to WFS and reduced risk of all-cause mortality. Our results suggest a need to examine how associations between WFS and mortality are impacted by pandemic-related factors and that there may be lessons from the pandemic that could be translated into health-protective policies during future wildfire events.
Collapse
Affiliation(s)
- Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Lauren Hoskovec
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kirk A Bol
- Center for Health and Environmental Data, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Tori L Burket
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Denver Department of Public Health and Environment, Denver, CO, USA
| | - Laura Jean Podewils
- Center for Health Systems Research, Denver Health Office of Research, Denver, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
85
|
Cobelo I, Castelhano FJ, Borge R, Roig HL, Adams M, Amini H, Koutrakis P, Réquia WJ. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. ENVIRONMENTAL RESEARCH 2023; 224:115522. [PMID: 36813066 DOI: 10.1016/j.envres.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Forest fires cause many environmental impacts, including air pollution. Brazil is a very fire-prone region where few studies have investigated the impact of wildfires on air quality and health. We proposed to test two hypotheses in this study: i) the wildfires in Brazil have increased the levels of air pollution and posed a health hazard in 2003-2018, and ii) the magnitude of this phenomenon depends on the type of land use and land cover (e.g., forest area, agricultural area, etc.). Satellite and ensemble models derived data were used as input in our analyses. Wildfire events were retrieved from Fire Information for Resource Management System (FIRMS), provided by NASA; air pollution data from the Copernicus Atmosphere Monitoring Service (CAMS); meteorological variables from the ERA-Interim model; and land use/cover data were derived from pixel-based classification of Landsat satellite images by MapBiomas. We used a framework that infers the "wildfire penalty" by accounting for differences in linear pollutant annual trends (β) between two models to test these hypotheses. The first model was adjusted for Wildfire-related Land Use activities (WLU), considered as an adjusted model. In the second model, defined as an unadjusted model, we removed the wildfire variable (WLU). Both models were controlled by meteorological variables. We used a generalized additive approach to fit these two models. To estimate mortality associated with wildfire penalties, we applied health impact function. Our findings suggest that wildfire events between 2003 and 2018 have increased the levels of air pollution and posed a significant health hazard in Brazil, supporting our first hypothesis. For example, in the Pampa biome, we estimated an annual wildfire penalty of 0.005 μg/m3 (95%CI: 0.001; 0.009) on PM2.5. Our results also confirm the second hypothesis. We observed that the greatest impact of wildfires on PM2.5 concentrations occurred in soybean areas in the Amazon biome. During the 16 years of the study period, wildfires originating from soybean areas in the Amazon biome were associated with a total penalty of 0.64 μg/m3 (95%CI: 0.32; 0.96) on PM2.5, causing an estimated 3872 (95%CI: 2560; 5168) excess deaths. Sugarcane crops were also a driver of deforestation-related wildfires in Brazil, mainly in Cerrado and Atlantic Forest biomes. Our findings suggest that between 2003 and 2018, fires originating from sugarcane crops were associated with a total penalty of 0.134 μg/m3 (95%CI: 0.037; 0.232) on PM2.5 in Atlantic Forest biome, resulting in an estimated 7600 (95%CI: 4400; 10,800) excess deaths during the study period, and 0.096 μg/m3 (95%CI: 0.048; 0.144) on PM2.5 in Cerrado biome, resulting in an estimated 1632 (95%CI: 1152; 2112) excess deaths during the study period. Considering that the wildfire penalties observed during our study period may continue to be a challenge in the future, this study should be of interest to policymakers to prepare future strategies related to forest protection, land use management, agricultural activities, environmental health, climate change, and sources of air pollution.
Collapse
Affiliation(s)
- Igor Cobelo
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Brazil
| | | | - Rafael Borge
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Henrique L Roig
- Geoscience Institute, University of Brasilia, Brasília, Brazil
| | - Matthew Adams
- Department of Geography, University of Toronto Mississauga, Mississauga, Canada
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Petros Koutrakis
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, USA
| | - Weeberb J Réquia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Brazil
| |
Collapse
|
86
|
Hwang J, Chong NS, Zhang M, Agnew RJ, Xu C, Li Z, Xu X. Face-to-face with scorching wildfire: potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface. LANCET REGIONAL HEALTH. AMERICAS 2023; 21:100482. [PMID: 37008196 PMCID: PMC10060103 DOI: 10.1016/j.lana.2023.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
As wildfire risks have elevated due to climate change, the health risks that toxicants from fire smoke pose to wildland firefighters have been exacerbated. Recently, the International Agency for Research on Cancer (IARC) has reclassified wildland firefighters' occupational exposure as carcinogenic to humans (Group 1). Wildfire smoke contributes to an increased risk of cancer and cardiovascular disease, yet wildland firefighters have inadequate respiratory protection. The economic cost of wildland fires has risen concurrently, as illustrated by the appropriation of $45 billion for wildfire management over FYs 2011-2020 by the U.S. Congress. Occupational epidemiological studies of wildland firefighters are crucial for minimizing health risks; however, they must account for the mixture of exposures in wildfire smoke. This review focuses on four aspects of wildland firefighters' health risks at the wildland-urban interface: 1) economic costs and health impact, 2) respiratory protection, 3) multipollutant mixtures, and 4) proactive management of wildfires.
Collapse
Affiliation(s)
- Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ngee-Sing Chong
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Robert J. Agnew
- Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhuangjie Li
- Department of Chemistry and Biochemistry, California State University at Fullerton, Fullerton, CA 92831, USA
| | - Xin Xu
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
87
|
Palinkas LA, De Leon J, Yu K, Salinas E, Fernandez C, Johnston J, Rahman MM, Silva SJ, Hurlburt M, McConnell RS, Garcia E. Adaptation Resources and Responses to Wildfire Smoke and Other Forms of Air Pollution in Low-Income Urban Settings: A Mixed-Methods Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5393. [PMID: 37048007 PMCID: PMC10094253 DOI: 10.3390/ijerph20075393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Little is known about how low-income residents of urban communities engage their knowledge, attitudes, behaviors, and resources to mitigate the health impacts of wildfire smoke and other forms of air pollution. We interviewed 40 adults in Los Angeles, California, to explore their threat assessments of days of poor air quality, adaptation resources and behaviors, and the impacts of air pollution and wildfire smoke on physical and mental health. Participants resided in census tracts that were disproportionately burdened by air pollution and socioeconomic vulnerability. All participants reported experiencing days of poor air quality due primarily to wildfire smoke. Sixty percent received advanced warnings of days of poor air quality or routinely monitored air quality via cell phone apps or news broadcasts. Adaptation behaviors included remaining indoors, circulating indoor air, and wearing face masks when outdoors. Most (82.5%) of the participants reported some physical or mental health problem or symptom during days of poor air quality, but several indicated that symptom severity was mitigated by their adaptive behaviors. Although low-income residents perceive themselves to be at risk for the physical and mental health impacts of air pollution, they have also adapted to that risk with limited resources.
Collapse
Affiliation(s)
- Lawrence A. Palinkas
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jessenia De Leon
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Kexin Yu
- Department of Neurology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Erika Salinas
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Cecilia Fernandez
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Sam J. Silva
- Department of Earth Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Hurlburt
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob S. McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The increasing global prevalence of food allergy indicates that environmental exposures are likely contributing to food allergy development. This review summarizes recent studies on how specific factors within the external exposome may impact the development of food allergy. RECENT FINDINGS There is strong evidence that nonoral exposure to food allergens within the living environment is a risk factor for food sensitization and food allergy. The role of air pollution in food allergy development remains unclear, as cohort studies have not found consistent relationships between air pollutant exposure and food sensitization. Early-life microbial exposures linked to a rural lifestyle are likely protective against food allergy development, possibly through alteration of the infant microbiome. In contrast, factors associated with urbanization and decreased exposure to microbes may contribute to food allergy development. Recent studies on the role of residential greenness in food allergy development suggest either no relationship or a possible increased risk for food allergy. SUMMARY The external exposome comprises a number of exposures that can modify food allergy risk. Improved understanding of how complex environmental exposures interact with genetic factors will be necessary for developing effective interventions aimed at preventing food allergy development in children.
Collapse
Affiliation(s)
- Timothy P. Moran
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
89
|
Yu S, Hsueh L. Do wildfires exacerbate COVID-19 infections and deaths in vulnerable communities? Evidence from California. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116918. [PMID: 36529003 PMCID: PMC9705198 DOI: 10.1016/j.jenvman.2022.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Understanding whether and how wildfires exacerbate COVID-19 outcomes is important for assessing the efficacy and design of public sector responses in an age of more frequent and simultaneous natural disasters and extreme events. Drawing on environmental and emergency management literatures, we investigate how wildfire smoke (PM2.5) impacted COVID-19 infections and deaths during California's 2020 wildfire season and how public housing resources and hospital capacity moderated wildfires' effects on COVID-19 outcomes. We also hypothesize and empirically assess the differential impact of wildfire smoke on COVID-19 infections and deaths in counties exhibiting high and low social vulnerability. To test our hypotheses concerning wildfire severity and its disproportionate impact on COVID-19 outcomes in socially vulnerable communities, we construct a county-by-day panel dataset for the period April 1 to November 30, 2020, in California, drawing on publicly available state and federal data sources. This study's empirical results, based on panel fixed effects models, show that wildfire smoke is significantly associated with increases in COVID-19 infections and deaths. Moreover, wildfires exacerbated COVID-19 outcomes by depleting the already scarce hospital and public housing resources in local communities. Conversely, when wildfire smoke doubled, a one percent increase in the availability of hospital and public housing resources was associated with a 2 to 7 percent decline in COVID-19 infections and deaths. For California communities exhibiting high social vulnerability, the occurrence of wildfires worsened COVID-19 outcomes. Sensitivity analyses based on an alternative sample size and different measures of social vulnerability validate this study's main findings. An implication of this study for policymakers is that communities exhibiting high social vulnerability will greatly benefit from local government policies that promote social equity in housing and healthcare before, during, and after disasters.
Collapse
Affiliation(s)
- Suyang Yu
- School of Public Affairs, Arizona State University, 411 N Central Ave Suite 400, Phoenix, AZ, 85004, USA.
| | - Lily Hsueh
- School of Public Affairs, Arizona State University, 411 N Central Ave Suite 400, Phoenix, AZ, 85004, USA; Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA.
| |
Collapse
|
90
|
Considine EM, Hao J, deSouza P, Braun D, Reid CE, Nethery RC. Evaluation of Model-Based PM 2.5 Estimates for Exposure Assessment during Wildfire Smoke Episodes in the Western U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2031-2041. [PMID: 36693177 PMCID: PMC10288567 DOI: 10.1021/acs.est.2c06288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Investigating the health impacts of wildfire smoke requires data on people's exposure to fine particulate matter (PM2.5) across space and time. In recent years, it has become common to use machine learning models to fill gaps in monitoring data. However, it remains unclear how well these models are able to capture spikes in PM2.5 during and across wildfire events. Here, we evaluate the accuracy of two sets of high-coverage and high-resolution machine learning-derived PM2.5 data sets created by Di et al. and Reid et al. In general, the Reid estimates are more accurate than the Di estimates when compared to independent validation data from mobile smoke monitors deployed by the US Forest Service. However, both models tend to severely under-predict PM2.5 on high-pollution days. Our findings complement other recent studies calling for increased air pollution monitoring in the western US and support the inclusion of wildfire-specific monitoring observations and predictor variables in model-based estimates of PM2.5. Lastly, we call for more rigorous error quantification of machine-learning derived exposure data sets, with special attention to extreme events.
Collapse
Affiliation(s)
- Ellen M. Considine
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Jiayuan Hao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Priyanka deSouza
- Department of Urban and Regional Planning, University of Colorado Denver, University of Colorado Denver, Denver, Colorado, 80202, USA
- CU Population Center, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Colleen E. Reid
- CU Population Center, University of Colorado Boulder, Boulder, Colorado, 80309, USA
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, 80302, USA
- Earth Lab, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| | - Rachel C. Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| |
Collapse
|
91
|
Naqvi HR, Mutreja G, Shakeel A, Singh K, Abbas K, Naqvi DF, Chaudhary AA, Siddiqui MA, Gautam AS, Gautam S, Naqvi AR. Wildfire-induced pollution and its short-term impact on COVID-19 cases and mortality in California. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:30-39. [PMID: 35529075 PMCID: PMC9066963 DOI: 10.1016/j.gr.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 05/21/2023]
Abstract
Globally, wildfires have seen remarkable increase in duration and size and have become a health hazard. In addition to vegetation and habitat destruction, rapid release of smoke, dust and gaseous pollutants in the atmosphere contributes to its short and long-term detrimental effects. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a public health concern worldwide that primarily target lungs and respiratory tract, akin to air pollutants. Studies from our lab and others have demonstrated association between air pollution and COVID-19 infection and mortality rates. However, current knowledge on the impact of wildfire-mediated sudden outburst of air pollutants on COVID-19 is limited. In this study, we examined the association of air pollutants and COVID-19 during wildfires burned during August-October 2020 in California, United States. We observed an increase in the tropospheric pollutants including aerosols (particulate matter [PM]), carbon monoxide (CO) and nitrogen dioxide (NO2) by approximately 150%, 100% and 20%, respectively, in 2020 compared to the 2019. Except ozone (O3), similar proportion of increment was noticed during the peak wildfire period (August 16 - September 15, 2020) in the ground PM2.5, CO, and NO2 levels at Fresno, Los Angeles, Sacramento, San Diego and San Francisco, cities with largest active wildfire area. We identified three different spikes in the concentrations of PM2.5, and CO for the cities examined clearly suggesting wildfire-induced surge in air pollution. Fresno and Sacramento showed increment in the ground PM2.5, CO and NO2 levels, while San Diego recorded highest change rate in NO2 levels. Interestingly, we observed a similar pattern of higher COVID-19 cases and mortalities in the cities with adverse air pollution caused by wildfires. These findings provide a logical rationale to strategize public health policies for future impact of COVID-19 on humans residing in geographic locations susceptible to sudden increase in local air pollution.
Collapse
Affiliation(s)
- Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Guneet Mutreja
- Environmental Systems Research Institute, R & D Center, New Delhi, India
| | - Adnan Shakeel
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Karan Singh
- Department of Physics, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Kumail Abbas
- Department of Mechanical Engineering, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | | | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317-7544, Saudi Arabia
| | - Masood Ahsan Siddiqui
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Alok Sagar Gautam
- Department of Physics, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu 641114, India
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
92
|
Jiang X, Eum Y, Yoo EH. The impact of fire-specific PM 2.5 calibration on health effect analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159548. [PMID: 36270362 DOI: 10.1016/j.scitotenv.2022.159548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The quantification of PM2.5 concentrations solely stemming from both wildfire and prescribed burns (hereafter referred to as 'fire') is viable using the Community Multiscale Air Quality (CMAQ), although CMAQ outputs are subject to biases and uncertainties. To reduce the biases in CMAQ-based outputs, we propose a two-stage calibration strategy that improves the accuracy of CMAQ-based fire PM2.5 estimates. First, we calibrated CMAQ-based non-fire PM2.5 to ground PM2.5 observations retrieved during non-fire days using an ensemble-based model. We estimated fire PM2.5 concentrations in the second stage by multiplying the calibrated non-fire PM2.5 obtained from the first stage by location- and time-specific conversion ratios. In a case study, we estimated fire PM2.5 during the Washington 2016 fire season using the proposed calibration approach. The calibrated PM2.5 better agreed with ground PM2.5 observations with a 10-fold cross-validated (CV) R2 of 0.79 compared to CMAQ-based PM2.5 estimates with R2 of 0.12. In the health effect analysis, we found significant associations between calibrated fire PM2.5 and cardio-respiratory hospitalizations across the fire season: relative risk (RR) for cardiovascular disease = 1.074, 95% confidence interval (CI) = 1.021-1.130 in October; RR = 1.191, 95% CI = 1.099-1.291 in November; RR for respiratory disease = 1.078, 95% CI = 1.005-1.157 in October; RR = 1.153, 95% CI = 1.045-1.272 in November. However, the results were inconsistent when non-calibrated PM2.5 was used in the analysis. We found that calibration affected health effect assessments in the present study, but further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiangyu Jiang
- Georgia Environmental Protection Division, Atlanta, GA 30354, USA.
| | - Youngseob Eum
- Department of Geography, State University of New York at Buffalo, Buffalo, NY 14261, USA
| | - Eun-Hye Yoo
- Department of Geography, State University of New York at Buffalo, Buffalo, NY 14261, USA
| |
Collapse
|
93
|
Kramer AL, Liu J, Li L, Connolly R, Barbato M, Zhu Y. Environmental justice analysis of wildfire-related PM 2.5 exposure using low-cost sensors in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159218. [PMID: 36206902 DOI: 10.1016/j.scitotenv.2022.159218] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The increasing number and severity of wildfires is negatively impacting air quality for millions of California residents each year. Community exposure to PM2.5 in two main population centers (San Francisco Bay area and Los Angeles County area) was assessed using the low-cost PurpleAir sensor network for the record-setting 2020 California wildfire season. Estimated PM2.5 concentrations in each study area were compared to census tract-level environmental justice vulnerability indicators, including environmental, health, and demographic data. Higher PM2.5 concentrations were positively correlated with poverty, cardiovascular emergency department visits, and housing inequities. Sensors within 30 km of actively burning wildfires showed statistically significant increases in indoor (~800 %) and outdoor (~540 %) PM2.5 during the fires. Results indicate that wildfire emissions may exacerbate existing health disparities as well as the burden of pollution in disadvantaged communities, suggesting a need to improve monitoring and adaptive capacity among vulnerable populations.
Collapse
Affiliation(s)
- Amber L Kramer
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Jonathan Liu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Liqiao Li
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Rachel Connolly
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Michele Barbato
- Department of Civil and Environmental Engineering, University of California Davis, Davis, CA 95616, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
94
|
Hoshiko S, Buckman JR, Jones CG, Yeomans KR, Mello A, Thilakaratne R, Sergienko E, Allen K, Bello L, Rappold AG. Responses to Wildfire and Prescribed Fire Smoke: A Survey of a Medically Vulnerable Adult Population in the Wildland-Urban Interface, Mariposa County, California. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1210. [PMID: 36673971 PMCID: PMC9858942 DOI: 10.3390/ijerph20021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
California plans to substantially increase the use of prescribed fire to reduce risk of catastrophic wildfires. Although for a beneficial purpose, prescribed fire smoke may still pose a health concern, especially among sensitive populations. We sought to understand community health experience, adaptive capacity, and attitudes regarding wildland and prescribed fire smoke to inform public health guidance. We conducted a cross-sectional survey of medically vulnerable persons in a rural, high fire risk county (N = 106, 76% > 65 years) regarding wildfire and prescribed smoke health effects; health protective actions; information needs; and support for fire management policies. Qualitative comments were reviewed for context and emerging themes. More than half (58%) of participants reported health impacts from wildfire smoke; 26% experienced impacts from prescribed fire smoke. Participants expressed strong support for prescribed fire, although also concerns about safety and smoke. Respondents reported taking actions to reduce smoke exposure (average 5 actions taken per person), but many (47%) lacked confidence that they could successfully protect their health. Persons who were satisfied with the information received tended to be more confident in their ability to protect their health compared to those who were not satisfied (61% vs. 35%). More information was desired on many topics, including notifications about prescribed fire, health protection and exposure reduction. As California expands use of prescribed fire, the need for effective health protective communication regarding smoke is increasingly vital. We recommend seeking solutions that strengthen community resilience and address equity for vulnerable populations.
Collapse
Affiliation(s)
- Sumi Hoshiko
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
| | - Joseph R. Buckman
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
- California Epidemiologic Investigation Service Fellowship Program (Cal-EIS), Chronic Disease Control Branch, Center for Chronic Disease Prevention and Health Promotion, California Department of Public Health, Sacramento, CA 95834, USA
| | - Caitlin G. Jones
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
| | - Kirstin R. Yeomans
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
- California Epidemiologic Investigation Service Fellowship Program (Cal-EIS), Chronic Disease Control Branch, Center for Chronic Disease Prevention and Health Promotion, California Department of Public Health, Sacramento, CA 95834, USA
| | - Austin Mello
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
| | - Ruwan Thilakaratne
- Environmental Health Investigations Branch, Center for Healthy Communities, California Department of Public Health (CDPH), Richmond, CA 94804, USA
- California Epidemiologic Investigation Service Fellowship Program (Cal-EIS), Chronic Disease Control Branch, Center for Chronic Disease Prevention and Health Promotion, California Department of Public Health, Sacramento, CA 95834, USA
| | - Eric Sergienko
- Mariposa County Health and Human Services Agency, Mariposa, CA 95338, USA
| | - Kristina Allen
- Mariposa County Health and Human Services Agency, Mariposa, CA 95338, USA
| | - Lisa Bello
- Mariposa County Health and Human Services Agency, Mariposa, CA 95338, USA
| | - Ana G. Rappold
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
95
|
Considine EM, Braun D, Kamareddine L, Nethery RC, deSouza P. Investigating Use of Low-Cost Sensors to Increase Accuracy and Equity of Real-Time Air Quality Information. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10.1021/acs.est.2c06626. [PMID: 36623253 PMCID: PMC10329730 DOI: 10.1021/acs.est.2c06626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
U.S. Environmental Protection Agency (EPA) air quality (AQ) monitors, the "gold standard" for measuring air pollutants, are sparsely positioned across the U.S. Low-cost sensors (LCS) are increasingly being used by the public to fill in the gaps in AQ monitoring; however, LCS are not as accurate as EPA monitors. In this work, we investigate factors impacting the differences between an individual's true (unobserved) exposure to air pollution and the exposure reported by their nearest AQ instrument (which could be either an LCS or an EPA monitor). We use simulations based on California data to explore different combinations of hypothetical LCS placement strategies (e.g., at schools or near major roads), for different numbers of LCS, with varying plausible amounts of LCS device measurement errors. We illustrate how real-time AQ reporting could be improved (or, in some cases, worsened) by using LCS, both for the population overall and for marginalized communities specifically. This work has implications for the integration of LCS into real-time AQ reporting platforms.
Collapse
Affiliation(s)
- Ellen M. Considine
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Leila Kamareddine
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Rachel C. Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Priyanka deSouza
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, 80202, USA
| |
Collapse
|
96
|
Rickly PS, Coggon MM, Aikin KC, Alvarez RJ, Baidar S, Gilman JB, Gkatzelis GI, Harkins C, He J, Lamplugh A, Langford AO, McDonald BC, Peischl J, Robinson MA, Rollins AW, Schwantes RH, Senff CJ, Warneke C, Brown SS. Influence of Wildfire on Urban Ozone: An Observationally Constrained Box Modeling Study at a Site in the Colorado Front Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1257-1267. [PMID: 36607321 DOI: 10.1021/acs.est.2c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.
Collapse
Affiliation(s)
- Pamela S Rickly
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Raul J Alvarez
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Sunil Baidar
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Colin Harkins
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jian He
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Aaron Lamplugh
- Institute of Behavioral Science, University of Colorado, Boulder, Colorado80309, United States
| | - Andrew O Langford
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Michael A Robinson
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Andrew W Rollins
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Christoph J Senff
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
97
|
Pace A, Villamediana P, Rezamand P, Skibiel AL. Effects of wildfire smoke PM2.5 on indicators of inflammation, health, and metabolism of preweaned Holstein heifers. J Anim Sci 2023; 101:skad246. [PMID: 37465977 PMCID: PMC10449420 DOI: 10.1093/jas/skad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023] Open
Abstract
Wildfires are a growing concern as large, catastrophic fires are becoming more commonplace. Wildfire smoke consists of fine particulate matter (PM2.5), which can cause immune responses and disease in humans. However, the present knowledge of the effects of wildfire PM2.5 on dairy cattle is sparse. The present study aimed to elucidate the effects of wildfire-PM2.5 exposure on dairy calf health and performance. Preweaned Holstein heifers (N = 15) were assessed from birth through weaning, coinciding with the 2021 wildfire season. Respiratory rate, heart rate, rectal temperatures, and health scores were recorded and blood samples were collected weekly or twice a week for analysis of hematology, blood metabolites, and acute phase proteins. Hourly PM2.5 concentrations and meteorological data were obtained, and temperature-humidity index (THI) was calculated. Contribution of wildfires to PM2.5 fluxes were determined utilizing AirNowTech Navigator and HYSPLIT modeling. Mixed models were used for data analysis, with separate models for lags of up to 7 d, and fixed effects of daily average PM2.5, THI, and PM2.5 × THI, and calf as a random effect. THI ranged from 48 to 73, while PM2.5 reached concentrations up to 118.8 µg/m3 during active wildfires. PM2.5 and THI positively interacted to elevate respiratory rate, heart rate, rectal temperature, and eosinophils on lag day 0 (day of exposure; all P < 0.05). There was a negative interactive effect of PM2.5 and THI on lymphocytes after a 2-d lag (P = 0.03), and total white blood cells, neutrophils, hemoglobin, and hematocrit after a 3-d lag (all P < 0.02), whereas there was a positive interactive effect on cough scores and eye scores on lag day 3 (all P < 0.02). Glucose and NEFA were increased as a result of combined elevated PM2.5 and THI on lag day 1, whereas BHB was decreased (all P < 0.05). Contrarily, on lag day 3 and 6, there was a negative interactive effect of PM2.5 and THI on glucose and NEFA, but a positive interactive effect on BHB (all P < 0.03). Serum amyloid A was decreased whereas haptoglobin was increased with elevated PM2.5 and THI together on lag days 0 to 4 (all P < 0.05). These findings indicate that exposure to wildfire-derived PM2.5, along with increased THI during the summer months, elicits negative effects on preweaned calf health and performance both during and following exposure.
Collapse
Affiliation(s)
- Alexandra Pace
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Patricia Villamediana
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Pedram Rezamand
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
98
|
Fadadu RP, Green M, Grimes B, Jewell NP, Seth D, Vargo J, Wei ML. Association of Wildfire Air Pollution With Clinic Visits for Psoriasis. JAMA Netw Open 2023; 6:e2251553. [PMID: 36637821 PMCID: PMC9857436 DOI: 10.1001/jamanetworkopen.2022.51553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This cross-sectional study examines whether clinic visits and online search interest for psoriasis were associated with wildfire air pollution after a delayed lag period.
Collapse
Affiliation(s)
- Raj P. Fadadu
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Marcus Green
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Barbara Grimes
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Nicholas P. Jewell
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Divya Seth
- Department of Dermatology, University of California, San Francisco
| | - Jason Vargo
- Office of Health Equity, California Department of Public Health, Richmond
- Now with Federal Reserve Bank of San Francisco, San Francisco, California
| | - Maria L. Wei
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
99
|
Felix JD, Berner A, Wetherbee GA, Murphy SF, Heindel RC. Nitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado's Front Range urban corridor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120537. [PMID: 36332707 DOI: 10.1016/j.envpol.2022.120537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Urban ammonia (NH3) emissions contribute to poor local air quality and can be transported to rural landscapes, impacting sensitive ecosystems. The Colorado Front Range urban corridor encompasses the Denver Metropolitan Area, rural farmland/rangeland and montane forest between the city and the Rocky Mountains. Reactive nitrogen emissions from the corridor are partly responsible for increased N deposition to the wildland-urban interface (WUI) in this region. To determine the significance of individual NH3 sources to WUI ecosystems, we measured the concentration and isotopic composition (δ15N-NH3) of ambient NH3(g) from April to October 2018 across a five-site urban to rural gradient in the corridor. The urban sites had higher NH3 concentrations and δ15N-NH3 values than the rural/suburban sites. Based on isotope mixing models, NH3 emission source contributions for all sites were fertilizer (12 ± 5.7%), livestock waste (18 ± 12%), vehicles (37 ± 23%), and biomass burning (34 ± 20%). Vehicle contributions were consistent across all months with an average of 35% and summer months showed a peak in biomass burning contributions (40%). As wildfires are projected to increase due to climate change, we stress a need for constraints on the isotopic signature of NH3 emitted from wildfires. Vehicle emissions contributed the greatest amount of NH3 (40%) at the urban sites while rural/suburban sites had higher agricultural contributions (41%). Had 2018 not had an anomalously high wildfire season, 46% and 60% of the NH3 would have been attributed to vehicle emissions at the WUI site and urban sites, respectively. NH3 emissions have historically been ascribed to agricultural activities but these findings illustrate the universal significance of vehicle emissions and the potential for sustained wildfire activity to be a primary contributor to NH3. Air quality (e.g., particulate matter) and nitrogen deposition reduction plans may benefit by including management practices that address vehicle NH3 emissions.
Collapse
Affiliation(s)
- J David Felix
- Physical and Environmental Sciences Department; Center for Water Supply Studies, Texas A&M University, Corpus Christi, USA.
| | - Alexander Berner
- Physical and Environmental Sciences Department; Center for Water Supply Studies, Texas A&M University, Corpus Christi, USA
| | | | | | - Ruth C Heindel
- Environmental Studies Program, Kenyon College, Gambier, OH, USA
| |
Collapse
|
100
|
Elser H, Rowland ST, Marek MS, Kiang MV, Shea B, Do V, Benmarhnia T, Schneider ALC, Casey JA. Wildfire smoke exposure and emergency department visits for headache: A case-crossover analysis in California, 2006-2020. Headache 2023; 63:94-103. [PMID: 36651537 PMCID: PMC10066880 DOI: 10.1111/head.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the association of short-term exposure to overall fine particulate matter of <2.5 μm (PM2.5 ) and wildfire-specific PM2.5 with emergency department (ED) visits for headache. BACKGROUND Studies have reported associations between PM2.5 exposure and headache risk. As climate change drives longer and more intense wildfire seasons, wildfire PM2.5 may contribute to more frequent headaches. METHODS Our study included adult Californian members (aged ≥18 years) of a large de-identified commercial and Medicare Advantage claims database from 2006 to 2020. We identified ED visits for primary headache disorders (subtypes: tension-type headache, migraine headache, cluster headache, and "other" primary headache). Claims included member age, sex, and residential zip code. We linked daily overall and wildfire-specific PM2.5 to residential zip code and conducted a time-stratified case-crossover analysis considering 7-day average PM2.5 concentrations, first for primary headache disorders combined, and then by headache subtype. RESULTS Among 9898 unique individuals we identified 13,623 ED encounters for primary headache disorders. Migraine was the most frequently diagnosed headache (N = 5534/13,623 [47.6%]) followed by "other" primary headache (N = 6489/13,623 [40.6%]). For all primary headache ED diagnoses, we observed an association of 7-day average wildfire PM2.5 (odds ratio [OR] 1.17, 95% confidence interval [CI] 0.95-1.44 per 10 μg/m3 increase) and by subtype we observed increased odds of ED visits associated with 7-day average wildfire PM2.5 for tension-type headache (OR 1.42, 95% CI 0.91-2.22), "other" primary headache (OR 1.40, 95% CI 0.96-2.05), and cluster headache (OR 1.29, 95% CI 0.71-2.35), although these findings were not statistically significant under traditional null hypothesis testing. Overall PM2.5 was associated with tension-type headache (OR 1.29, 95% CI 1.03-1.62), but not migraine, cluster, or "other" primary headaches. CONCLUSIONS Although imprecise, these results suggest short-term wildfire PM2.5 exposure may be associated with ED visits for headache. Patients, healthcare providers, and systems may need to respond to increased headache-related healthcare needs in the wake of wildfires and on poor air quality days.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Population Health Sciences, Stanford University, Stanford, California, USA
| | - Sebastian T Rowland
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA.,PSE Healthy Energy, Oakland, New York, USA
| | - Maksym S Marek
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathew V Kiang
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Brittany Shea
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| | - Vivian Do
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Andrea L C Schneider
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joan A Casey
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| |
Collapse
|