51
|
Luna E, Flandin A, Cassan C, Prigent S, Chevanne C, Kadiri CF, Gibon Y, Pétriacq P. Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites 2020; 10:metabo10030096. [PMID: 32155921 PMCID: PMC7143431 DOI: 10.3390/metabo10030096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different methods of application result in durable protection. Here, we demonstrate that the treatment of tomato plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea, Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic microbes that present different infection strategies. Metabolomic analyses revealed major changes after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore, top-down modelling from the detected metabolic markers allowed for the accurate prediction of the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is particularly insightful for a better understanding of defence priming in fruit. Further experiments are underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming in tomato fruit.
Collapse
Affiliation(s)
- Estrella Luna
- School of Biosciences, Uni. Birmingham, Birmingham B15 2TT, UK
| | - Amélie Flandin
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Cédric Cassan
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Chloé Chevanne
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
- Correspondence:
| |
Collapse
|
52
|
Peng Q, Wang Z, Liu P, Liang Y, Zhao Z, Li W, Liu X, Xia Y. Oxathiapiprolin, a Novel Chemical Inducer Activates the Plant Disease Resistance. Int J Mol Sci 2020; 21:E1223. [PMID: 32059380 PMCID: PMC7072870 DOI: 10.3390/ijms21041223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Oxathiapiprolin was developed as a specific plant pathogenic oomycete inhibitor, previously shown to have highly curative and protective activities against the pepper Phytophthora blight disease under field and greenhouse tests. Therefore, it was hypothesized that oxathiapiprolin might potentially activate the plant disease resistance against pathogen infections. This study investigated the potential and related mechanism of oxathiapiprolin to activate the plant disease resistance using the bacterium Pseudomonas syringae pv tomato (Pst) and plant Arabidopsis interaction as the targeted system. Our results showed that oxathiapiprolin could activate the plant disease resistance against Pst DC3000, a non-target pathogen of oxathiapiprolin, in Arabidopsis, tobacco, and tomato plants. Our results also showed the enhanced callose deposition and H2O2 accumulation in the oxathiapiprolin-treated Arabidopsis under the induction of flg22 as the pathogen-associated molecular pattern (PAMP) treatment. Furthermore, increased levels of free salicylic acid (SA) and jasmonic acid (JA) were detected in the oxathiapiprolin-treated Arabidopsis plants compared to the mock-treated ones under the challenge of Pst DC3000. Besides, the gene expression results confirmed that at 24 h after the infiltration with Pst DC3000, the oxathiapiprolin-treated Arabidopsis plants had upregulated expression levels of the respiratory burst oxidase homolog D (RBOHD), JA-responsive gene (PDF1.2), and SA-responsive genes (PR1, PR2, and PR5) compared to the control. Taken together, oxathiapiprolin is identified as a novel chemical inducer which activates the plant disease resistance against Pst DC3000 by enhancing the callose deposition, H2O2 accumulation, and hormone SA and JA production.
Collapse
Affiliation(s)
- Qin Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Yinping Liang
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Wenhui Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
53
|
Liu F, Zhao Q, Jia Z, Song C, Huang Y, Ma H, Song S. N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:38. [PMID: 31992205 PMCID: PMC6986161 DOI: 10.1186/s12870-019-2228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUD Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. RESULTS In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. CONCLUSIONS Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.
Collapse
Affiliation(s)
- Fang Liu
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Yali Huang
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Hong Ma
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| |
Collapse
|
54
|
Ma XH, Xu JY, Han D, Huang WX, Dang BJ, Jia W, Xu ZC. Combination of β-Aminobutyric Acid and Ca 2+ Alleviates Chilling Stress in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:556. [PMID: 32477386 PMCID: PMC7237732 DOI: 10.3389/fpls.2020.00556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Chilling is a major abiotic factor limiting the growth, development, and productivity of plants. β-aminobutyric acid (BABA), a new environmentally friendly agent, is widely used to induce plant resistance to biotic and abiotic stress. Calcium, as a signaling substance, participates in various physiological activities in cells and plays a positive role in plant defense against cold conditions. In this study, we used tobacco as a model plant to determine whether BABA could alleviate chilling stress and further to explore the relationship between BABA and Ca2+. The results showed that 0.2 mM BABA significantly reduced the damage to tobacco seedlings from chilling stress, as evidenced by an increase in photosynthetic pigments, the maintenance of cell structure, and upregulated expression of NtLDC1, NtERD10B, and NtERD10D. Furthermore, 0.2 mM BABA combined with 10 mM Ca2+ increased the fresh and dry weights of both roots and shoots markedly. Compared to that with single BABA treatment, adding Ca2+ reduced cold injury to the plant cell membrane, decreased ROS production, and increased antioxidant enzyme activities and antioxidant contents. The combination of BABA and Ca2+ also improved abscisic acid and auxin contents in tobacco seedlings under chilling stress, whereas ethylene glycol-bis (β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) reversed the effects of BABA. These findings suggested that BABA enhances the cold tolerance of tobacco and is closely related to the state of Ca2+ signaling.
Collapse
Affiliation(s)
- Xiao-Han Ma
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jia-Yang Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Bing-Jun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Wei Jia,
| | - Zi-Cheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- Zi-Cheng Xu,
| |
Collapse
|
55
|
Ding Y, Dommel MR, Wang C, Li Q, Zhao Q, Zhang X, Dai S, Mou Z. Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:570422. [PMID: 33072146 PMCID: PMC7530841 DOI: 10.3389/fpls.2020.570422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 05/13/2023]
Abstract
Non-expressor of pathogenesis-related (PR) genes1 (NPR1) is a key transcription coactivator of plant basal immunity and systemic acquired resistance (SAR). Two mutant alleles, npr1-1 and npr1-3, have been extensively used for dissecting the role of NPR1 in various signaling pathways. However, it is unknown whether npr1-1 and npr1-3 are null mutants. Moreover, the NPR1 transcript levels are induced two- to threefold upon pathogen infection or salicylic acid (SA) treatment, but the biological relevance of the induction is unclear. Here, we used molecular and biochemical approaches including quantitative PCR, immunoblot analysis, site-directed mutagenesis, and CRISPR/Cas9-mediated gene editing to address these questions. We show that npr1-3 is a potential null mutant, whereas npr1-1 is not. We also demonstrated that a truncated npr1 protein longer than the hypothesized npr1-3 protein is not active in SA signaling. Furthermore, we revealed that TGACG-binding (TGA) factors are required for NPR1 induction, but the reverse TGA box in the 5'UTR of NPR1 is dispensable for the induction. Finally, we show that full induction of NPR1 is required for basal immunity, but not for SAR, whereas sufficient basal transcription is essential for full-scale establishment of SAR. Our results indicate that induced transcript accumulation may be differentially required for different functions of a specific gene. Moreover, as npr1-1 is not a null mutant, we recommend that future research should use npr1-3 and potential null T-DNA insertion mutants for dissecting NPR1's function in various physiopathological processes.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Matthew R. Dommel
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- *Correspondence: Zhonglin Mou,
| |
Collapse
|
56
|
Díaz-Valle A, López-Calleja AC, Alvarez-Venegas R. Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation With Rhizobium etli. FRONTIERS IN PLANT SCIENCE 2019; 10:1317. [PMID: 31695715 PMCID: PMC6818378 DOI: 10.3389/fpls.2019.01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Symbiotic Rhizobium-legume associations are mediated by exchange of chemical signals that eventually result in the development of a nitrogen-fixing nodule. Such signal interactions are thought to be at the center of the plants' capacity either to activate a defense response or to suppress the defense response to allow colonization by symbiotic bacteria. In addition, the colonization of plant roots by rhizobacteria activates an induced condition of improved defensive capacity in plants known as induced systemic resistance, based on "defense priming," which protects unexposed plant tissues from biotic stress.Here, we demonstrate that inoculation of common bean plants with Rhizobium etli resulted in a robust resistance against Pseudomonas syringae pv. phaseolicola. Indeed, inoculation with R. etli was associated with a reduction in the lesion size caused by the pathogen and lower colony forming units compared to mock-inoculated plants. Activation of the induced resistance was associated with an accumulation of the reactive oxygen species superoxide anion (O2 -) and a faster and stronger callose deposition. Transcription of defense related genes in plants treated with R. etli exhibit a pattern that is typical of the priming response. In addition, R. etli-primed plants developed a transgenerational defense memory and could produce offspring that were more resistant to halo blight disease. R. etli is a rhizobacteria that could reduce the proliferation of the virulent strain P. syringae pv. phaseolicola in common bean plants and should be considered as a potentially beneficial and eco-friendly tool in plant disease management.
Collapse
|
57
|
Li T, Fan P, Yun Z, Jiang G, Zhang Z, Jiang Y. β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to Colletotrichum gloeosporioides Infection Based on Quantitative Proteomics. Cells 2019; 8:E1029. [PMID: 31487826 PMCID: PMC6770319 DOI: 10.3390/cells8091029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 01/12/2023] Open
Abstract
β-aminobutyric acid (BABA) is a new environmentally friendly agent to induce disease resistance by priming of defense in plants. However, molecular mechanisms underlying BABA-induced priming defense are not fully understood. Here, comprehensive analysis of priming mechanism of BABA-induced resistance was investigated based on mango-Colletotrichum gloeosporioides interaction system using iTRAQ-based proteome approach. Results showed that BABA treatments effectively inhibited the expansion of anthracnose caused by C. gleosporioides in mango fruit. Proteomic results revealed that stronger response to pathogen in BABA-primed mango fruit after C. gleosporioides inoculation might be attributed to differentially accumulated proteins involved in secondary metabolism, defense signaling and response, transcriptional regulation, protein post-translational modification, etc. Additionally, we testified the involvement of non-specific lipid-transfer protein (nsLTP) in the priming acquisition at early priming stage and memory in BABA-primed mango fruit. Meanwhile, spring effect was found in the primed mango fruit, indicated by inhibition of defense-related proteins at priming phase but stronger activation of defense response when exposure to pathogen compared with non-primed fruit. As an energy-saving strategy, BABA-induced priming might also alter sugar metabolism to provide more backbone for secondary metabolites biosynthesis. In sum, this study provided new clues to elucidate the mechanism of BABA-induced priming defense in harvested fruit.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Panhui Fan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhengke Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
58
|
Seed priming with biotic agents invokes defense response and enhances plant growth in pearl millet upon infection with Magnaporthe grisea. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Wu Z, Han S, Zhou H, Tuang ZK, Wang Y, Jin Y, Shi H, Yang W. Cold stress activates disease resistance in Arabidopsis thaliana through a salicylic acid dependent pathway. PLANT, CELL & ENVIRONMENT 2019; 42:2645-2663. [PMID: 31087367 DOI: 10.1111/pce.13579] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Exposure to short-term cold stress influences disease resistance by mechanisms that remain poorly characterized. The molecular basis of cold-activated immunity was therefore investigated in Arabidopsis thaliana inoculated with the bacterial pathogen Pst DC3000, using a transcriptomic analysis. Exposure to cold stress for 10 hr was sufficient to activate immunity, as well as H2 O2 accumulation and callose deposition. Transcriptome changes induced by the 10-hr cold treatment were similar to those caused by pathogen infection, including increased expression of the salicylic acid (SA) pathway marker genes, PR2 and PR5, and genes playing positive roles in defence against (hemi)-biotrophs. In contrast, transcripts encoding jasmonic acid (JA) pathway markers such as PR4 and MYC2 and transcripts with positive roles in defence against necrotrophs were less abundant following the 10-hr cold treatment. Cold-activated immunity was dependent on SA, being partially dependent on NPR1 and ICS1/SID2. In addition, transcripts encoding SA biosynthesis enzymes such as ICS2, PAL1, PAL2, and PAL4 (but not ICS1/SID2) and MES9 were more abundant, whereas GH3.5/WES1 and SOT12 transcripts that encode components involved in SA modification were less abundant following cold stress treatment. These findings show that cold stress cross-activates innate immune responses via a SA-dependent pathway.
Collapse
Affiliation(s)
- Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Shiming Han
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, P.R. China
| | - Hedan Zhou
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Za Khai Tuang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, Texas, USA
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| |
Collapse
|
60
|
Kettles GJ, Luna E. Food security in 2044: How do we control the fungal threat? Fungal Biol 2019; 123:558-564. [PMID: 31345410 DOI: 10.1016/j.funbio.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Plant fungal pathogens place considerable strain on agricultural productivity and threaten global food security. In recent decades, advances in crop breeding, farming practice and the agrochemical industry have allowed crop yields to keep pace with food demand. In this opinion article, we speculate on which recent technological advances will allow us to maintain this situation into the future. We take inspiration that it is 25 y since the first plant disease resistance genes were cloned, and imagine if and how agricultural control of pathogens will be achieved by the year 2044. We examine which technologies are best poised to make the jump from lab bench to field application, and propose that future control measures will likely depend on effective integrated disease management.
Collapse
Affiliation(s)
- Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
61
|
Mátai A, Jakab G, Hideg É. Single-dose β-aminobutyric acid treatment modifies tobacco (Nicotiana tabacum L.) leaf acclimation to consecutive UV-B treatment. Photochem Photobiol Sci 2019; 18:359-366. [PMID: 30534744 DOI: 10.1039/c8pp00437d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
β-Aminobutyric acid (BABA) pre-treatment has been shown to alter both biotic and abiotic stress responses. The present study extends this observation to acclimative UV-B-response, which has not been explored in this context so far. A single soil application of 300 ppm BABA modified the non-enzymatic antioxidant capacities and the leaf hydrogen peroxide levels in tobacco (Nicotiana tabacum L.) leaves in response to a 9-day treatment with 5.4 kJ m-2 d-1 biologically effective supplementary UV-B radiation in a model experiment that was performed in a growth chamber. BABA decreased leaf hydrogen peroxide levels both as a single factor and in combination with UV-B, but neither BABA nor UV-B affected leaf photochemistry significantly. The total antioxidant capacities were increased by either BABA or UV-B, and this response was additive in BABA pre-treated leaves. These results together with the observed changes in hydroxyl radical neutralising ability and non-enzymatic hydrogen peroxide antioxidant capacities show that BABA pre-treatment (i) has a long-term effect on leaf antioxidants even in the absence of other factors and (ii) modifies acclimative readjustment of prooxidant-antioxidant balance in response to UV-B. BABA-inducible antioxidants do not include phenolic compounds as a UV-B-induced increase in the adaxial leaf flavonoid index and total leaf extract UV absorption were unaffected by BABA.
Collapse
Affiliation(s)
- Anikó Mátai
- Department of Plant Biology, University of Pécs, Hungary
| | - Gábor Jakab
- Department of Plant Biology, University of Pécs, Hungary
- Research Institute for Viticulture and Oenology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
62
|
Huang PY, Zhang J, Jiang B, Chan C, Yu JH, Lu YP, Chung K, Zimmerli L. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1033-1047. [PMID: 30462256 PMCID: PMC6363091 DOI: 10.1093/jxb/ery414] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) derived from invading pathogens by plant pattern recognition receptors (PRRs) initiates a subset of defense responses known as pattern-triggered immunity (PTI). Transcription factors (TFs) orchestrate the onset of PTI through complex signaling networks. Here, we characterized the function of ERF19, a member of the Arabidopsis thaliana ethylene response factor (ERF) family. ERF19 was found to act as a negative regulator of PTI against Botrytis cinerea and Pseudomonas syringae. Notably, overexpression of ERF19 increased plant susceptibility to these pathogens and repressed MAMP-induced PTI outputs. In contrast, expression of the chimeric dominant repressor ERF19-SRDX boosted PTI activation, conferred increased resistance to the fungus B. cinerea, and enhanced elf18-triggered immunity against bacteria. Consistent with a negative role for ERF19 in PTI, MAMP-mediated growth inhibition was weakened or augmented in lines overexpressing ERF19 or expressing ERF19-SRDX, respectively. Using biochemical and genetic approaches, we show that the transcriptional co-repressor Novel INteractor of JAZ (NINJA) associates with and represses the function of ERF19. Our work reveals ERF19 as a novel player in the mitigation of PTI, and highlights a potential role for NINJA in fine-tuning ERF19-mediated regulation of Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, USA
| | - Jingsong Zhang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Beier Jiang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ching Chan
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Jhong-He Yu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Pin Lu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Correspondence:
| |
Collapse
|
63
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
64
|
Zhou M, Wang W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2018; 9:1613. [PMID: 30459795 PMCID: PMC6232518 DOI: 10.3389/fpls.2018.01613] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 05/20/2023]
Abstract
Different from the conventional biocidal agrochemicals, synthetic chemical inducers of plant immunity activate, bolster, or prime plant defense machineries rather than directly acting on the pathogens. Advances in combinatorial synthesis and high-throughput screening methods have led to the discovery of various synthetic plant immune activators as well as priming agents. The availability of their structures and recent progress in the mechanistic understanding of plant immune responses have opened up the possibility of identifying new or more potent chemical inducers through rational design. In this review, we first summarize the chemical inducers identified through large-scale screening and then discuss the emerging trends in the identification and development of novel plant immune inducers including natural elicitor based chemical derivation, bifunctional combination, and computer-aided design.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
- Peking University – Tsinghua University Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
65
|
Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J, Tsuda K. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. THE PLANT CELL 2018; 30:2480-2494. [PMID: 30228125 PMCID: PMC6241261 DOI: 10.1105/tpc.18.00547] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 05/19/2023]
Abstract
Plants induce systemic acquired resistance (SAR) upon localized exposure to pathogens. Pipecolic acid (Pip) production via AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) is key for SAR establishment. Here, we report a positive feedback loop important for SAR induction in Arabidopsis thaliana We showed that local activation of the MAP kinases MPK3 and MPK6 is sufficient to trigger Pip production and mount SAR. Consistent with this, mutations in MPK3 or MPK6 led to compromised Pip accumulation upon inoculation with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pto) AvrRpt2, which triggers strong sustained MAPK activation. By contrast, P. syringae pv maculicola and Pto, which induce transient MAPK activation, trigger Pip biosynthesis and SAR independently of MPK3/6. ALD1 expression, Pip accumulation, and SAR were compromised in mutants defective in the MPK3/6-regulated transcription factor WRKY33. Chromatin immunoprecipitation showed that WRKY33 binds to the ALD1 promoter. We found that Pip triggers activation of MPK3 and MPK6 and that MAPK activation after Pto AvrRpt2 inoculation is compromised in wrky33 and ald1 mutants. Collectively, our results reveal a positive regulatory loop consisting of MPK3/MPK6, WRKY33, ALD1, and Pip in SAR induction and suggest the existence of distinct SAR activation pathways that converge at the level of Pip biosynthesis.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Schuck
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jingni Wu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ping Yang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne-Christin Döring
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
66
|
ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis. Sci Rep 2018; 8:11851. [PMID: 30087396 PMCID: PMC6081435 DOI: 10.1038/s41598-018-30304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.
Collapse
|
67
|
Buswell W, Schwarzenbacher RE, Luna E, Sellwood M, Chen B, Flors V, Pétriacq P, Ton J. Chemical priming of immunity without costs to plant growth. THE NEW PHYTOLOGIST 2018; 218:1205-1216. [PMID: 29465773 DOI: 10.1111/nph.15062] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 05/05/2023]
Abstract
β-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-β-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.
Collapse
Affiliation(s)
- Will Buswell
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland E Schwarzenbacher
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Estrella Luna
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew Sellwood
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, UK
| | - Beining Chen
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, UK
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Agricultural Science and the Natural Environment, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Pierre Pétriacq
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
68
|
Yekondi S, Liang FC, Okuma E, Radziejwoski A, Mai HW, Swain S, Singh P, Gauthier M, Chien HC, Murata Y, Zimmerli L. Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure. THE NEW PHYTOLOGIST 2018; 218:253-268. [PMID: 29250804 DOI: 10.1111/nph.14953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure.
Collapse
Affiliation(s)
- Shweta Yekondi
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Fu-Chun Liang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Amandine Radziejwoski
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsien-Wei Mai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Swadhin Swain
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Mathieu Gauthier
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsiao-Chiao Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
69
|
Functional Analogues of Salicylic Acid and Their Use in Crop Protection. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8010005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
70
|
Chuberre C, Plancot B, Driouich A, Moore JP, Bardor M, Gügi B, Vicré M. Plant Immunity Is Compartmentalized and Specialized in Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1692. [PMID: 30546372 PMCID: PMC6279857 DOI: 10.3389/fpls.2018.01692] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
Roots are important organs for plant survival. In recent years, clear differences between roots and shoots in their respective plant defense strategies have been highlighted. Some putative gene markers of defense responses usually used in leaves are less relevant in roots and are sometimes not even expressed. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in root systems. Furthermore, roots are able to activate specific defense mechanisms in response to various elicitors including Molecular/Pathogen Associated Molecular Patterns, (MAMPs/PAMPs), signal compounds (e.g., hormones) and plant defense activator (e.g., β-aminobutyric acid, BABA). This review discusses recent findings in root defense mechanisms and illustrates the necessity to discover new root specific biomarkers. The development of new strategies to control root disease and improve crop quality will also be reviewed.
Collapse
Affiliation(s)
- Coralie Chuberre
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Barbara Plancot
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- Institut Universitaire de France, Paris, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| |
Collapse
|
71
|
Yi SY, Ku SS, Sim HJ, Kim SK, Park JH, Lyu JI, So EJ, Choi SY, Kim J, Ahn MS, Kim SW, Park H, Jeong WJ, Lim YP, Min SR, Liu JR. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1965. [PMID: 29204151 PMCID: PMC5698875 DOI: 10.3389/fpls.2017.01965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/31/2017] [Indexed: 06/01/2023]
Abstract
Synechocystis salt-responsive gene 1 (sysr1) was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH) superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX) tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT) plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs) in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1-2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol) induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.
Collapse
Affiliation(s)
- So Young Yi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Seong Sub Ku
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Sang-Kyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Ji Hyun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Il Lyu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Eun Jin So
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - So Yeon Choi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jonghyun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Myung Suk Ahn
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Suk Weon Kim
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyunwoo Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jang Ryol Liu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
72
|
Baccelli I, Glauser G, Mauch-Mani B. The accumulation of β-aminobutyric acid is controlled by the plant's immune system. PLANTA 2017; 246:791-796. [PMID: 28762076 DOI: 10.1007/s00425-017-2751-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/22/2017] [Indexed: 05/18/2023]
Abstract
Endogenous levels of β-aminobutyric acid (BABA) increase after the molecular recognition of pathogen presence. BABA is accumulated differently during resistance or susceptibility to disease. The priming molecule β-aminobutyric acid has been recently shown to be a natural product of plants, and this has provided significance to the previous discovery of a perception mechanism in Arabidopsis. BABA levels were found to increase after abiotic stress or infection with virulent pathogens, but the role of endogenous BABA in defence has remained to be established. To investigate the biological significance of endogenous BABA variations during plant-pathogen interactions, we investigated how infections with virulent, avirulent (AvrRpt2), and non-pathogenic (hrpA) strains of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), as well as treatment with defence elicitors (Flg22 and AtPep2), affect the accumulation of BABA in Arabidopsis plants. We found that BABA levels increased more rapidly during resistance than susceptibility to Pst DC3000. In addition, BABA was accumulated during PAMP-triggered immunity (PTI) after infection with the non-pathogenic Pst DC3000 hrpA mutant, or treatment with elicitors. Importantly, treatment with Flg22 induced BABA rise in Columbia-0 plants but not in Wassilewskija-0 plants, which naturally possess a non-functional flagellin receptor. These results indicate that BABA levels are controlled by the plant's immune system, thus advancing the understanding of the biological role of plant produced BABA.
Collapse
Affiliation(s)
- Ivan Baccelli
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
73
|
Jalakas P, Huang YC, Yeh YH, Zimmerli L, Merilo E, Kollist H, Brosché M. The Role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis Stomatal Responses Is Beyond ABA Signaling. PLANT PHYSIOLOGY 2017; 174:665-671. [PMID: 28330935 PMCID: PMC5462056 DOI: 10.1104/pp.17.00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
Proper stomatal responses are essential for plant function in an altered environment. The core signaling pathway for abscisic acid (ABA)-induced stomatal closure involves perception of the hormone that leads to the activation of guard cell anion channels by the protein kinase OPEN STOMATA1. Several other regulators are suggested to modulate the ABA signaling pathway, including the protein ENHANCED RESPONSE TO ABA1 (ERA1), that encodes the farnesyl transferase β-subunit. The era1 mutant is hypersensitive to ABA during seed germination and shows a more closed stomata phenotype. Using a genetics approach with the double mutants era1 abi1-1 and era1 ost1, we show that while era1 suppressed the high stomatal conductance of abi1-1 and ost1, the ERA1 function was not required for stomatal closure in response to ABA and environmental factors. Further experiments indicated a role for ERA1 in blue light-induced stomatal opening. In addition, we show that ERA1 function in disease resistance was independent of its role in stomatal regulation. Our results indicate a function for ERA1 in stomatal opening and pathogen immunity.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Yi-Chun Huang
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Yu-Hung Yeh
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Laurent Zimmerli
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| | - Mikael Brosché
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (P.J., E.M., H.K., M.B.); Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (Y.-C.H., Y.-H.Y., L.Z.); and Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland (M.B.)
| |
Collapse
|
74
|
Ye M, Song YY, Baerson SR, Long J, Wang J, Pan Z, Lin WX, Zeng RS. Ratoon rice generated from primed parent plants exhibit enhanced herbivore resistance. PLANT, CELL & ENVIRONMENT 2017; 40:779-787. [PMID: 28042888 DOI: 10.1111/pce.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Rice ratooning is practiced in many rice-growing countries for achieving increased rice production with limited labour input. Here, we report that attack by insect herbivores, or treatment with a defense signaling compound in parent plants, can prime anti-herbivore defense responses in subsequent ratoon plants. We compared the defense responses of rice ratoons generated from parent plants that had been either infested by Cnaphalocrocis medinalis (rice leaffolder, LF) caterpillars or treated with methyl jasmonate (MeJA) during vegetative growth, with ratoons generated from control parent plants. Ratoon plants generated from parents receiving prior LF infestation or MeJA treatment exhibited higher jasmonic acid (JA) levels, as well as elevated levels of transcripts of defense-related genes associated with JA signaling. In addition, elevated activities of peroxidase, polyphenol oxidase and trypsin protease inhibitor were observed, as well as enhanced resistance towards subsequent LF infestation. Pre-priming of ratoon defense responses was significantly reduced in plants where expression of OsAOS (allene oxide synthase, involved in JA biosynthesis) or OsCOI1 (CORONATINE INSENSITIVE1, involved in JA perception) was inhibited by RNA interference. Our results indicate that herbivore exposure or MeJA treatment in rice parent plants enhances anti-herbivore resistance in subsequently generated ratoons through priming of JA-mediated defenses.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yuan-Yuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Scott R Baerson
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS, 38677, USA
| | - Jun Long
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS, 38677, USA
| | - Wen-Xiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ren-Sen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
75
|
Mauch-Mani B, Baccelli I, Luna E, Flors V. Defense Priming: An Adaptive Part of Induced Resistance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:485-512. [PMID: 28226238 DOI: 10.1146/annurev-arplant-042916-041132] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Priming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals. Upon stimulus perception, changes may occur in the plant at the physiological, transcriptional, metabolic, and epigenetic levels. This phase is called the priming phase. Upon subsequent challenge, the plant effectively mounts a faster and/or stronger defense response that defines the postchallenge primed state and results in increased resistance and/or stress tolerance. Priming can be durable and maintained throughout the plant's life cycle and can even be transmitted to subsequent generations, therefore representing a type of plant immunological memory.
Collapse
Affiliation(s)
- Brigitte Mauch-Mani
- Institute of Biology, Faculty of Science, University of Neuchâtel, 2000 Neuchâtel, Switzerland; ,
| | - Ivan Baccelli
- Institute of Biology, Faculty of Science, University of Neuchâtel, 2000 Neuchâtel, Switzerland; ,
| | - Estrella Luna
- Plant Production and Protection (P3) Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom;
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071 Castellón, Spain;
| |
Collapse
|
76
|
Baccelli I, Mauch-Mani B. When the story proceeds backward: The discovery of endogenous β-aminobutyric acid as the missing link for a potential new plant hormone. Commun Integr Biol 2017. [PMCID: PMC5398230 DOI: 10.1080/19420889.2017.1290019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The capacity of β-aminobutyric acid (BABA) to induce resistance in plants against biotic and abiotic stresses has been known for more than 50 y. In the beginning reports were mainly descriptive of the phenomenon, but it became clear with the discovery of BABA insensitive mutants in Arabidopsis that there was definitely a genetic basis underlying BABA-induced resistance. The study of these mutants, along with the use of regular hormone mutants, allowed establishing the defense pathways activated upon defense induction. To date it is clear that BABA potentiates the defense pathway more appropriate to counteract the upcoming stress situation, through a phenomenon termed priming. Interestingly, plants possess a receptor for BABA, but up to recently there was a general consensus on the fact that BABA was a xenobiotic molecule. The development of an accurate non-destructive assay for measuring aminobutyric acid isomers in planta and the finding of plant-produced BABA, thus seems to represent the missing link for the discovery of a novel plant hormone. Differences and similarities with some of the classical plant hormones are presented here.
Collapse
Affiliation(s)
- Ivan Baccelli
- University of Neuchâtel, Faculty of Sciences, Institute of Biology, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- University of Neuchâtel, Faculty of Sciences, Institute of Biology, Neuchâtel, Switzerland
| |
Collapse
|
77
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
78
|
Shaw AK, Bhardwaj PK, Ghosh S, Azahar I, Adhikari S, Adhikari A, Sherpa AR, Saha SK, Hossain Z. Profiling of BABA-induced differentially expressed genes of Zea mays using suppression subtractive hybridization. RSC Adv 2017. [DOI: 10.1039/c7ra06220f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study aims to identify differentially expressed transcripts in BABA-primed maize leaves using suppression subtractive hybridization (SSH) strategy. Findings shed new light on the BABA potentiated defense mechanisms in plants.
Collapse
Affiliation(s)
- Arun K. Shaw
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Pardeep K. Bhardwaj
- Plant Bioresources Division
- Institute of Bioresources and Sustainable Development
- Sikkim Centre
- India
| | - Supriya Ghosh
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ikbal Azahar
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | | | - Ayan Adhikari
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ang R. Sherpa
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Samir K. Saha
- Department of Zoology
- West Bengal State University
- Kolkata – 700126
- India
| | - Zahed Hossain
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| |
Collapse
|
79
|
Thevenet D, Pastor V, Baccelli I, Balmer A, Vallat A, Neier R, Glauser G, Mauch-Mani B. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. THE NEW PHYTOLOGIST 2017; 213:552-559. [PMID: 27782340 DOI: 10.1111/nph.14298] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 05/18/2023]
Abstract
The defense system of a plant can be primed for increased defense, resulting in an augmented stress resistance and/or tolerance. Priming can be triggered by biotic and abiotic stimuli, as well as by chemicals such as β-aminobutyric acid (BABA), a nonprotein amino acid considered so far a xenobiotic. Since the perception mechanism of BABA has been recently identified in Arabidopsis thaliana, in the present study we explored the possibility that plants do synthesize BABA. After developing a reliable method to detect and quantify BABA in plant tissues, and unequivocally separate it from its two isomers α- and γ-aminobutyric acid, we measured BABA levels in stressed and nonstressed A. thaliana plants, and in different plant species. We show that BABA is a natural product of plants and that the endogenous levels of BABA increase rapidly after infection with necrotrophic, biotrophic and hemibiotrophic pathogens, as well as after salt stress and submergence. Our results place the rise in endogenous BABA levels to a point of convergence in plant stress response and provide biological significance to the presence of a receptor in plants. These findings can explain the extremely widespread efficacy of BABA and open the way to unravel the early steps of priming.
Collapse
Affiliation(s)
- Damien Thevenet
- Department of Chemistry, Laboratory of Organic Chemistry, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Victoria Pastor
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Ivan Baccelli
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Andrea Balmer
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Reinhard Neier
- Department of Chemistry, Laboratory of Organic Chemistry, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Brigitte Mauch-Mani
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| |
Collapse
|
80
|
Vemula H, Kitase Y, Ayon NJ, Bonewald L, Gutheil WG. Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Anal Biochem 2016; 516:75-85. [PMID: 27771391 DOI: 10.1016/j.ab.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules.
Collapse
Affiliation(s)
- Harika Vemula
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yukiko Kitase
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - William G Gutheil
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
81
|
Woo JY, Jeong KJ, Kim YJ, Paek KH. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5725-5741. [PMID: 27647723 PMCID: PMC5066492 DOI: 10.1093/jxb/erw336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.
Collapse
Affiliation(s)
- Joo Yong Woo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Ju Jeong
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
82
|
Abid M, Tian Z, Ata-Ul-Karim ST, Liu Y, Cui Y, Zahoor R, Jiang D, Dai T. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:218-27. [PMID: 27179928 DOI: 10.1016/j.plaphy.2016.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 05/03/2023]
Abstract
Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Syed Tahir Ata-Ul-Karim
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yang Liu
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yakun Cui
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Rizwan Zahoor
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dong Jiang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
83
|
Baccelli I, Mauch-Mani B. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. PLANT MOLECULAR BIOLOGY 2016; 91:703-11. [PMID: 26584561 DOI: 10.1007/s11103-015-0406-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/08/2015] [Indexed: 05/26/2023]
Abstract
Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
84
|
Yeh YH, Panzeri D, Kadota Y, Huang YC, Huang PY, Tao CN, Roux M, Chien HC, Chin TC, Chu PW, Zipfel C, Zimmerli L. The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity. THE PLANT CELL 2016; 28:1701-21. [PMID: 27317676 PMCID: PMC5077175 DOI: 10.1105/tpc.16.00313] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 05/20/2023]
Abstract
Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation.
Collapse
Affiliation(s)
- Yu-Hung Yeh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Dario Panzeri
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | | | - Yi-Chun Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Nan Tao
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Milena Roux
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Hsiao-Chiao Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Chuan Chin
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Po-Wei Chu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
85
|
Martínez-Aguilar K, Ramírez-Carrasco G, Hernández-Chávez JL, Barraza A, Alvarez-Venegas R. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:653. [PMID: 27242854 PMCID: PMC4870254 DOI: 10.3389/fpls.2016.00653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 05/10/2023]
Abstract
To survive in adverse conditions, plants have evolved complex mechanisms that "prime" their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms.
Collapse
Affiliation(s)
- Keren Martínez-Aguilar
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoGuanajuato, Mexico
| | | | | | - Aarón Barraza
- Centro de Investigaciones Biológicas del NoroesteLa Paz, Mexico
| | - Raúl Alvarez-Venegas
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoGuanajuato, Mexico
| |
Collapse
|
86
|
Nie S, Xu H. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana. PLoS One 2016; 11:e0153175. [PMID: 27054585 PMCID: PMC4824526 DOI: 10.1371/journal.pone.0153175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.
Collapse
Affiliation(s)
- Shengjun Nie
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
| | - Huilian Xu
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
- * E-mail:
| |
Collapse
|
87
|
Shaw AK, Bhardwaj PK, Ghosh S, Roy S, Saha S, Sherpa AR, Saha SK, Hossain Z. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2437-53. [PMID: 26416125 DOI: 10.1007/s11356-015-5445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.
Collapse
Affiliation(s)
- Arun K Shaw
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Pardeep K Bhardwaj
- Plant Bioresources Division, Regional Centre of Institute of Bioresources and Sustainable Development, Gangtok, 737102, Sikkim, India
| | - Supriya Ghosh
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Suman Saha
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Ang R Sherpa
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Samir K Saha
- Department of Zoology, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Zahed Hossain
- Department of Botany, University of Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
88
|
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. SCIENCE ADVANCES 2016; 2:e1501340. [PMID: 26989783 PMCID: PMC4788475 DOI: 10.1126/sciadv.1501340] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
Collapse
|
89
|
Mostek A, Börner A, Weidner S. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:150-61. [PMID: 26760953 DOI: 10.1016/j.plaphy.2015.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
The non-protein amino acid β-aminobutyric acid (BABA) is known to induce plant resistance to a broad spectrum of biotic and abiotic stresses. This is the first study describing the effect of BABA seed priming on physiological and proteomic changes under salt stress conditions in barley (Hordeum vulgare). The aim of our study was to investigate the changes of fresh weight, dry weight and relative water content (RWC) as well as root proteome changes of two barley lines contrasting in salt tolerance (DH14, DH 187) in response to salt stress after seed priming in water or in 800 μM BABA. Seed priming with BABA significantly increased (p ≤ 0.05) RWC in both barley lines, which indicates considerably lower water loss in BABA-primed plants than in the non-primed control plants. Dry and fresh matter increased significantly in line DH 187, whereas no changes were detected in line DH14. BABA-primed plants of both lines showed different proteomic patterns than the non-primed control plants. The root proteins exhibiting significant abundance changes (1.75-fold change, p ≤ 0.05) were separated by two-dimensional polyacrylamide gel electrophoresis (2D- PAGE). Thirty-one spots, representing 24 proteins, were successfully identified by MALDI TOF/TOF mass spectrometry. The most prominent differences include the up-regulation of antioxidant enzymes (catalase, peroxidase and superoxide dismutase), PR proteins (chitinase, endo-1,3-β-glucosidase), and chaperones (cyclophilin, HSC 70). Our results indicate that BABA induces defence and detoxification processes which may enable faster and more effective responses to salt stress, increasing the chances of survival under adverse environmental conditions.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stanisław Weidner
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland
| |
Collapse
|
90
|
Yu Y, Jiao L, Fu S, Yin L, Zhang Y, Lu J. Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. PHYTOPATHOLOGY 2016; 106:56-64. [PMID: 26474330 DOI: 10.1094/phyto-07-15-0166-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The deposition of callose is a common plant defense response to intruding pathogens and part of the plant's innate immunity. In this study, eight grapevine callose synthase (CalS) genes were identified and characterized. To investigate biological function of CalS in grapevine against the infection of Plasmopara viticola, expression patterns of grapevine CalS family genes were analyzed among resistant/susceptible cultivars. After P. viticola infection, expression of CalS1, 3, 7, 8, 9, 10, and 11 were significantly modified among the grapevine cultivars. For example, the expression of CalS1 and CalS10 were greatly increased in downy mildew (DM)-immune Muscadinia rotundifolia 'Carlos' and 'Noble'. Transient expression assay with promoters of the CalS1 and CalS10 genes confirmed that they were regulated by the oomycete pathogen P. viticola. CalS1 promoter activity was also significantly up-regulated by ABA in DM-immune M. rotundifolia 'Noble', but down-regulated in DM-susceptible Vitis vinifera 'Chardonnay'. The CalS1 promoter, however, was also down-regulated by GA in 'Chardonnay', but not affected in 'Noble'. The promoter activity of CalS10 was significantly up-regulated by GA in 'Chardonnay', but not regulated by ABA at all. It is proposed that CalS1 and CalS10 were involved in grapevine defense against DM disease.
Collapse
Affiliation(s)
- Ying Yu
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| | - Li Jiao
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| | - Shufang Fu
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| | - Ling Yin
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| | - Yali Zhang
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| | - Jiang Lu
- First, second, third, fourth, fifth, and sixth authors: The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; first author: Institute of Genetics and Developmental Biology, China Academy of Science; and fourth author: Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences
| |
Collapse
|
91
|
Li J, Trivedi P, Wang N. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. PHYTOPATHOLOGY 2016; 106:37-46. [PMID: 26390185 DOI: 10.1094/phyto-08-15-0196-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| | - Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| |
Collapse
|
92
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
93
|
Catinot J, Huang JB, Huang PY, Tseng MY, Chen YL, Gu SY, Lo WS, Wang LC, Chen YR, Zimmerli L. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. PLANT, CELL & ENVIRONMENT 2015; 38:2721-34. [PMID: 26038230 DOI: 10.1111/pce.12583] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/26/2015] [Indexed: 05/02/2023]
Abstract
The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens.
Collapse
Affiliation(s)
- Jérémy Catinot
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Jing-Bo Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Yuan Tseng
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Long-Chi Wang
- Department of Life Science and Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
94
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M, Abramowski D. BABA-primed defense responses to Phytophthora infestans in the next vegetative progeny of potato. FRONTIERS IN PLANT SCIENCE 2015; 6:844. [PMID: 26528308 PMCID: PMC4606069 DOI: 10.3389/fpls.2015.00844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/25/2015] [Indexed: 05/27/2023]
Abstract
The transcript of the PR1 gene accumulation as an informative marker of systemic acquired resistance (SAR) was analyzed in β-aminobutyric acid (BABA) primed potato in the short-lasting (3 days) and long-lasting (28 days) time periods after induction and in the vegetative descendants of primed plants derived from tubers and from in vitro seedlings. BABA pretreatment resulted either in minimal or no PR1 gene expression, but sequential treatment with BABA followed by virulent Phytophthora infestans provided data on the imprint of post-stress information and its duration until fertilization, in the form of an enhanced PR1 transcript accumulation and a transient increase of basal resistance to the late blight disease. The primed state for defense of the susceptible potato cultivar was transmitted to its vegetative progeny as a potentiated PR1 mRNA accumulation following challenge inoculation. However, variation was observed between vegetative accessions of the BABA-primed potato genotype in responsiveness to disease. In contrast to plants derived from tubers, potato propagated through in vitro seedlings largely lost inducible resistance traits, although itretained primed PR1 gene expression.
Collapse
Affiliation(s)
| | | | - Dariusz Abramowski
- Department of Plant Physiology, Poznan University of Life SciencesPoznan, Poland
| |
Collapse
|
95
|
Li X, Jiang Y, Ji Z, Liu Y, Zhang Q. BRHIS1 suppresses rice innate immunity through binding to monoubiquitinated H2A and H2B variants. EMBO Rep 2015. [PMID: 26202491 DOI: 10.15252/embr.201440000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the absence of pathogen attack, organisms usually suppress immune responses to reduce the negative effects of disease resistance. Monoubiquitination of histone variants at specific gene loci is crucial for gene expression, but its involvement in the regulation of plant immunity remains unclear. Here, we show that a rice SWI/SNF2 ATPase gene BRHIS1 is downregulated in response to the rice blast fungal pathogen or to the defense-priming-inducing compound BIT (1,2-benzisothiazol-3(2h)-one,1, 1-dioxide). The BRHIS1-containing complex represses the expression of some disease defense-related genes, including the pathogenesis-related gene OsPBZc and the leucine-rich-repeat (LRR) receptor-like protein kinase gene OsSIRK1. This is achieved through BRHIS1 recruitment to the promoter regions of target genes through specific interaction with monoubiquitinated histone variants H2B.7 and H2A.Xa/H2A.Xb/H2A.3, in the absence of pathogen attack or BIT treatment. Our results show that rice disease defense genes are initially organized in an expression-ready state by specific monoubiquitination of H2A and H2B variants deposited on their promoter regions, but are kept suppressed by the BRHIS1 complex, facilitating the prompt initiation of innate immune responses in response to infection through the stringent regulation of BRHIS1.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanxiang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhicheng Ji
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qunyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
96
|
Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H. Jasmonates counter plant stress: A Review. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 115:49-57. [PMID: 0 DOI: 10.1016/j.envexpbot.2015.02.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
97
|
Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B. The 'prime-ome': towards a holistic approach to priming. TRENDS IN PLANT SCIENCE 2015; 20:443-52. [PMID: 25921921 DOI: 10.1016/j.tplants.2015.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/21/2023]
Abstract
Plants can be primed to respond faster and more strongly to stress and multiple pathways, specific for the encountered challenge, are involved in priming. This adaptability of priming makes it difficult to pinpoint an exact mechanism: the same phenotypic observation might be the consequence of unrelated underlying events. Recently, details of the molecular aspects of establishing a primed state and its transfer to offspring have come to light. Advances in techniques for detection and quantification of elements spanning the fields of transcriptomics, proteomics, and metabolomics, together with adequate bioinformatics tools, will soon allow us to take a holistic approach to plant defence. This review highlights the state of the art of new strategies to study defence priming in plants and provides perspectives towards 'prime-omics'.
Collapse
Affiliation(s)
- Andrea Balmer
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Victoria Pastor
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Jordi Gamir
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victor Flors
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Brigitte Mauch-Mani
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland.
| |
Collapse
|
98
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
99
|
Sangha JS, Kandasamy S, Khan W, Bahia NS, Singh RP, Critchley AT, Prithiviraj B. λ-Carrageenan Suppresses Tomato Chlorotic Dwarf Viroid (TCDVd) Replication and Symptom Expression in Tomatoes. Mar Drugs 2015; 13:2875-89. [PMID: 26006710 PMCID: PMC4446610 DOI: 10.3390/md13052875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 11/25/2022] Open
Abstract
The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(ɩ)-, lambda(λ)-, and kappa(κ)-carrageenan at 1 g·L-1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS) and lipoxygenase (LOX), were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA) dependent, and that it could be explored in plant protection against viroid infection.
Collapse
Affiliation(s)
- Jatinder S Sangha
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| | - Wajahatullah Khan
- Basic Sciences Department, King Saud Bin Abdul Aziz University for Health Sciences, P.O. Box 22490, Riyadh 11426, Saudi Arabia.
| | - Navratan Singh Bahia
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| | - Rudra P Singh
- Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada.
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, NS B3B 1X8, Canada.
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
100
|
Ji H, Kyndt T, He W, Vanholme B, Gheysen G. β-Aminobutyric Acid-Induced Resistance Against Root-Knot Nematodes in Rice Is Based on Increased Basal Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:519-33. [PMID: 25608179 DOI: 10.1094/mpmi-09-14-0260-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nonprotein amino acid β-aminobutyric acid (BABA) is known to protect plants against various pathogens. The mode of action is relatively diverse and specific in different plant-pathogen systems. To extend the analysis of the mode of action of BABA to plant-parasitic nematodes in monocot plants, we evaluated the effect of BABA against the root-knot nematode (RKN) Meloidogyne graminicola in rice. BABA treatment of rice plants inhibited nematode penetration and resulted in delayed nematode and giant cell development. BABA-induced resistance (BABA-IR) was still functional in mutants or transgenics defective in salicylic acid biosynthesis and response or abscisic acid (ABA) response. Pharmacological inhibition of jasmonic acid (JA) and ethylene (ET) biosynthesis indicated that BABA-IR against rice RKN likely occurs independent of JA and ET. However, histochemical and biochemical quantification in combination with quantitative real-time reverse transcription-polymerase chain reaction data suggest that BABA protects rice against RKN through the activation of basal defense mechanisms of the plant, such as reactive oxygen species accumulation, lignin formation, and callose deposition.
Collapse
Affiliation(s)
- Hongli Ji
- 1Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- 2Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Jingjusi road 20, 610066, Chengdu, China
| | - Tina Kyndt
- 1Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wen He
- 1Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Bartel Vanholme
- 3Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Godelieve Gheysen
- 1Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|