51
|
The potential roles of aquaporin 4 in amyotrophic lateral sclerosis. Neurol Sci 2019; 40:1541-1549. [PMID: 30980198 DOI: 10.1007/s10072-019-03877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Aquaporin 4 (AQP4) is a primary water channel found on astrocytes in the central nervous system (CNS). Besides its function in water and ion homeostasis, AQP4 has also been documented to be involved in a myriad of acute and chronic cerebral pathologies, including autoimmune neurodegenerative diseases. AQP4 has been postulated to be associated with the incidence of a progressive neurodegenerative disorder known as amyotrophic lateral sclerosis (ALS), a disease that targets the motor neurons, causing muscle weakness and eventually paralysis. Raised AQP4 levels were noted in association with vessels surrounded with swollen astrocytic processes as well as in the brainstem, cortex, and gray matter in patients with terminal ALS. AQP4 depolarization may lead to motor neuron degeneration in ALS via GLT-1. Besides, alterations in AQP4 expression in ALS may result in the loss of blood-brain barrier (BBB) integrity. Changes in AQP4 function may also disrupt K+ homeostasis and cause connexin dysregulation, the latter of which is associated to ALS disease progression. Furthermore, AQP4 suppression augments recovery in motor function in ALS, a phenomenon thought to be associated to NGF. No therapeutic drug targeting AQP4 has been developed to date. Nevertheless, the plethora of suggestive experimental results underscores the significance of further exploration into this area.
Collapse
|
52
|
Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of Mammalian Aquaporin Water Channels. Int J Mol Sci 2019; 20:ijms20071589. [PMID: 30934923 PMCID: PMC6480248 DOI: 10.3390/ijms20071589] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Collapse
Affiliation(s)
- Mohammed Abir-Awan
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Matthew T Conner
- Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
53
|
Rao SB, Katoozi S, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Targeted deletion of β1-syntrophin causes a loss of K ir 4.1 from Müller cell endfeet in mouse retina. Glia 2019; 67:1138-1149. [PMID: 30803043 DOI: 10.1002/glia.23600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
Abstract
Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with β1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.
Collapse
Affiliation(s)
- Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Chmelova M, Sucha P, Bochin M, Vorisek I, Pivonkova H, Hermanova Z, Anderova M, Vargova L. The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur J Neurosci 2019; 50:1685-1699. [PMID: 30633415 DOI: 10.1111/ejn.14338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
The proper function of the nervous system is dependent on the balance of ions and water between the intracellular and extracellular space (ECS). It has been suggested that the interaction of aquaporin-4 (AQP4) and the transient receptor potential vaniloid isoform 4 (TRPV4) channels play a role in water balance and cell volume regulation, and indirectly, of the ECS volume. Using the real-time iontophoretic method, we studied the changes of the ECS diffusion parameters: ECS volume fraction α (α = ECS volume fraction/total tissue volume) and tortuosity λ (λ2 = free/apparent diffusion coefficient) in mice with a genetic deficiency of AQP4 or TRPV4 channels, and in control animals. The used models of cytotoxic edema included: mild and severe hypotonic stress or oxygen-glucose deprivation (OGD) in situ and terminal ischemia/anoxia in vivo. This study shows that an AQP4 or TRPV4 deficit slows down the ECS volume shrinkage during severe ischemia in vivo. We further demonstrate that a TRPV4 deficit slows down the velocity and attenuates an extent of the ECS volume decrease during OGD treatment in situ. However, in any of the cytotoxic edema models in situ (OGD, mild or severe hypotonic stress), we did not detect any alterations in the cell swelling or volume regulation caused by AQP4 deficiency. Overall, our results indicate that the AQP4 and TRPV4 channels may play a crucial role in severe pathological states associated with their overexpression and enhanced cell swelling. However, detailed interplay between AQP4 and TRPV4 channels requires further studies and additional research.
Collapse
Affiliation(s)
- Martina Chmelova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Petra Sucha
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Marcel Bochin
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Helena Pivonkova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Lydia Vargova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| |
Collapse
|
55
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Socha JK, Saito N, Wolak D, Sechman A, Hrabia A. Expression of aquaporin 4 in the chicken oviduct following tamoxifen treatment. Reprod Domest Anim 2018; 53:1339-1346. [PMID: 30028042 DOI: 10.1111/rda.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/10/2018] [Indexed: 12/26/2022]
Abstract
This study was designed to examine whether aquaporin 4 (AQP4) is present in the chicken oviduct, and if so, whether its expression changes during pause in laying induced by tamoxifen (TMX; oestrogen receptor modulator) treatment. The control chickens were injected with a vehicle (ethanol) and the experimental ones with TMX at a dose of 6 mg/kg of body weight. Birds were treated daily until complete cessation of egg laying. The oviductal parts, that is the infundibulum, magnum, isthmus, shell gland and vagina were isolated from hens on day 8 of the experiment, and subsequently, the gene and protein expressions of AQP4 in tissues were examined by real-time PCR and Western blot, respectively. Immunohistochemical localization of AQP4 in the wall of the chicken oviduct was also investigated. Both mRNA and protein of AQP4 were found in all segments of the chicken oviduct. The relative expression [RQ] of AQP4 was the highest in the infundibulum and the vagina and the lowest, less detectable, in the magnum and isthmus. The pattern of AQP4 protein expression was similar to that of mRNA. Treatment of hens with TMX decreased the mRNA and protein levels of AQP4 in the oviduct. Immunohistochemistry demonstrated tissue and cell-dependent localization of AQP4 protein in the oviductal wall. The intensity of the immunopositive reaction was as follows: the infundibulum > vagina > shell gland ≥ isthmus >˃ magnum. In the control chickens, the immunoreactivity for AQP4 in all oviductal segments was stronger compared with the TMX-treated hens. The results obtained indicate that AQP4 takes part in the regulation of water transport required for the formation of egg in the chicken oviduct. Moreover, a relationship between oestrogen action and AQP4 gene and protein expression is suggested.
Collapse
Affiliation(s)
- Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Noboru Saito
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Sciences, Okayama University, Okayama, Japan
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
57
|
Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist 2018; 25:155-166. [PMID: 29799313 PMCID: PMC6416706 DOI: 10.1177/1073858418775027] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The discovery of the water specific channel, aquaporin, and abundant expression
of its isoform, aquaporin-4 (AQP-4), on astrocyte endfeet brought about
significant advancements in the understanding of brain fluid dynamics. The brain
is protected by barriers preventing free access of systemic fluid. The same
barrier system, however, also isolates brain interstitial fluid from the
hydro-dynamic effect of the systemic circulation. The systolic force of the
heart, an essential factor for proper systemic interstitial fluid circulation,
cannot be propagated to the interstitial fluid compartment of the brain. Without
a proper alternative mechanism, brain interstitial fluid would stay stagnant.
Water influx into the peri-capillary Virchow-Robin space (VRS) through the
astrocyte AQP-4 system compensates for this hydrodynamic shortage essential for
interstitial flow, introducing the condition virtually identical to systemic
circulation, which by virtue of its fenestrated capillaries creates appropriate
interstitial fluid motion. Interstitial flow in peri-arterial VRS constitutes an
essential part of the clearance system for β-amyloid, whereas interstitial flow
in peri-venous VRS creates bulk interstitial fluid flow, which, together with
the choroid plexus, creates the necessary ventricular cerebrospinal fluid (CSF)
volume for proper CSF circulation.
Collapse
Affiliation(s)
- Tsutomu Nakada
- 1 Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L Kwee
- 2 Department of Neurology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
58
|
Rein-Fischboeck L, Haberl EM, Pohl R, Schmid V, Feder S, Krautbauer S, Liebisch G, Buechler C. Alpha-syntrophin null mice are protected from non-alcoholic steatohepatitis in the methionine-choline-deficient diet model but not the atherogenic diet model. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:526-537. [PMID: 29474931 DOI: 10.1016/j.bbalip.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/23/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA-/- mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA-/- animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed. SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Verena Schmid
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
59
|
Anzabi M, Ardalan M, Iversen NK, Rafati AH, Hansen B, Østergaard L. Hippocampal Atrophy Following Subarachnoid Hemorrhage Correlates with Disruption of Astrocyte Morphology and Capillary Coverage by AQP4. Front Cell Neurosci 2018; 12:19. [PMID: 29445328 PMCID: PMC5797792 DOI: 10.3389/fncel.2018.00019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Despite successful management of ruptured intracranial aneurysm following subarachnoid hemorrhage (SAH), delayed cerebral ischemia (DCI) remains the main cause of high mortality and morbidity in patients who survive the initial bleeding. Astrocytes play a key role in neurovascular coupling. Therefore, changes in the neurovascular unit including astrocytes following SAH may contribute to the development of DCI and long-term complications. In this study, we characterized morphological changes in hippocampal astrocytes following experimental SAH, with special emphasis on glia-vascular cross-talk and hippocampal volume changes. Four days after induction of SAH or sham-operation in mice, their hippocampal volumes were determined by magnetic resonance imaging (MRI) and histological/stereological methods. Glial fibrillary acid protein (GFAP) immunostained hippocampal sections were examined by stereological techniques to detect differences in astrocyte morphology, and global spatial sampling method was used to quantify the length density of Aquaporin-4 (AQP4) positive capillaries. Our results indicated that hippocampal volume, as measured both by MRI and by histological approaches, was significantly lower in SAH animals than in the sham-operated group. Accordingly, in this animal model of SAH, hippocampal atrophy existed already at the time of DCI onset in humans. SAH induced retraction of GFAP positive astrocyte processes, accompanied by a significant reduction in the length density of AQP4 positive capillaries as well as narrowing of hippocampal capillaries. Meanwhile, astrocyte volume was higher in SAH mice compared with the sham-operated group. Morphological changes in hippocampal astrocytes seemingly disrupt glia-vascular interactions early after SAH and may contribute to hippocampal atrophy. We speculate that astrocytes and astrocyte-capillary interactions may provide targets for the development of therapies to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Maryam Anzabi
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Nina K Iversen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Ali H Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.,Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
60
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
61
|
Hubbard JA, Binder DK. Unaltered Glutamate Transporter-1 Protein Levels in Aquaporin-4 Knockout Mice. ASN Neuro 2017; 9:1759091416687846. [PMID: 28078912 PMCID: PMC5315234 DOI: 10.1177/1759091416687846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maintenance of glutamate and water homeostasis in the brain is crucial to healthy brain activity. Astrocytic glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) are the main regulators of extracellular glutamate and osmolarity, respectively. Several studies have reported colocalization of GLT1 and AQP4, but the existence of a physical interaction between the two has not been well studied. Therefore, we used coimmunoprecipitation to determine whether a strong interaction exists between these two important molecules in mice on both a CD1 and C57BL/6 background. Furthermore, we used Western blot and immunohistochemistry to examine GLT1 levels in AQP4 knockout (AQP4−/−) mice. An AQP4-GLT1 precipitate was not detected, suggesting the lack of a strong physical interaction between AQP4 and GLT1. In addition, GLT1 protein levels remained unaltered in tissue from CD1 and C57BL/6 AQP4−/− mice. Finally, immunohistochemical analysis revealed that AQP4 and GLT1 do colocalize, but only in a region-specific manner. Taken together, these findings suggest that AQP4 and GLT1 do not have a strong physical interaction between them and are, instead, differentially regulated.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Devin K Binder
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
62
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
63
|
Suzuki K, Yamada K, Nakada K, Suzuki Y, Watanabe M, Kwee IL, Nakada T. MRI characteristics of the glia limitans externa: A 7T study. Magn Reson Imaging 2017; 44:140-145. [PMID: 28870515 DOI: 10.1016/j.mri.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE To perform a systematic analysis of the intrinsic contrast parameters of the FLAIR hyperintense rim (FHR), a thin layer of high intensity covering the entire surface of the cerebral cortex detected on fluid-attenuated inversion recovery (FLAIR) sequence T2 weighted imaging performed on a 7T system, in an attempt to identify its anatomical correlate. METHODS Fast spin echo inversion recovery (FSE-IR) and cardiac-gated fast spin echo (FSE) images were obtained with defined parameters in eight normal volunteers on a 7 T MRI system to determine T2 and proton density, T1 characteristics. K-means clustering analysis of parameter sets was performed using MATLAB version R2015b for the purpose of identifying the cluster reflecting FHR. The results were subsequently confirmed by independent component analysis (ICA) based on T1 behavior on FSE-IR using a MATLAB script of FastICA algorithm. RESULTS The structure giving rise to FHR was found to have a unique combination of intrinsic contrast parameters of low proton density, long T2, and disproportionally short T1. The findings are in strong agreement with the functional and structural specifics of the glia limitans externa (GLE), a structure composed of snuggled endfeet of astrocytes containing abundant aquaporin-4 (AQP-4), the main water channel of the brain. CONCLUSION Intrinsic contrast parameters of FHR reflect structural and functional specifics of the GLE, and their values are highly dependent on the physiologic functionality of AQP-4. Microscopic imaging on a 7T system and analysis of GLE contrast parameters can be developed into a method for evaluating AQP-4 functionality.
Collapse
Affiliation(s)
- Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kazunori Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan; Department of Neurology, University of California, Davis, USA
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan; Department of Neurology, University of California, Davis, USA.
| |
Collapse
|
64
|
Opdal SH, Vege Å, Stray-Pedersen A, Rognum TO. The gene encoding the inwardly rectifying potassium channel Kir4.1 may be involved in sudden infant death syndrome. Acta Paediatr 2017; 106:1474-1480. [PMID: 28520217 DOI: 10.1111/apa.13928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Abstract
AIM Disturbances in brain function and development may play a role in sudden infant death syndrome (SIDS). This Norwegian study aimed to test the hypothesis that specific variants of genes involved in water transport and potassium homeostasis would be predisposing factors for SIDS. METHODS Genetic variation in the genes encoding aquaporin-4 (AQP4), Kir4.1 (KCNJ10) and α-syntrophin was analysed in 171 SIDS cases (62.6% male) with a median age of 15.5 (2-52) weeks and 398 adult controls (70.6% male) with a median age of 44 (11-91) years. All the subjects were Caucasians who were autopsied from 1988 to 2013. RESULTS The CC genotype of rs72878794 in the AQP4 gene and a combination of the CC genotype in rs17375748, rs1130183, rs12133079 and rs1186688 in KCNJ10 (4xCC) were found to be associated with SIDS. The SIDS cases with the 4xCC SNP combination were younger than the SIDS cases with other genotype combinations (p = 0.006). CONCLUSION This study indicates that genetic variations in KCNJ10 and AQP4 may be predisposing factors for SIDS. Alterations in the expression of the AQP4/Kir4.1 complex can disrupt water and ion homeostasis, which may influence brain development and facilitate brain oedema formation This may be especially unfavourable during the first weeks of life.
Collapse
Affiliation(s)
- Siri H. Opdal
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
| | - Åshild Vege
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| | - Arne Stray-Pedersen
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| | - Torleiv O. Rognum
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
65
|
Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci 2017; 18:E1798. [PMID: 28820467 PMCID: PMC5578185 DOI: 10.3390/ijms18081798] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| |
Collapse
|
66
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
67
|
Dai J, Lin W, Zheng M, Liu Q, He B, Luo C, Lu X, Pei Z, Su H, Yao X. Alterations in AQP4 expression and polarization in the course of motor neuron degeneration in SOD1G93A mice. Mol Med Rep 2017. [PMID: 28627708 PMCID: PMC5562093 DOI: 10.3892/mmr.2017.6786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The disease progression is associated with the astrocytic environment. Aquaporin-4 (AQP4) water channels are the most abundant AQPs expressed in astrocytes, exerting important influences on central nervous system homeostasis. The present study aimed to characterize the alterations in AQP4 expression and localization in superoxide dismutase 1 (SOD1) G93A transgenic mice. SOD1G93A mice were sacrificed during the presymptomatic, disease onset and end stages and immunostaining was performed on spinal cord sections to investigate neuronal loss, glial activation and AQP4 expression in the spinal cord. It was observed that global AQP4 expression increased in the spinal cord of SOD1G93A mice as the disease progressed. However, AQP4 polarization decreased as the disease progressed, and AQP4 polarized localization at the endfeet of astrocytes was decreased in the spinal ventral horn of SOD1G93A mice at the disease onset and end stages. Meanwhile, motor neuron degeneration and decreased glutamate transporter 1 expression in astrocytes in SOD1G93A mice were observed as the disease progressed. The results of the present study demonstrated that AQP4 depolarization is a widespread pathological condition and may contribute to motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Jiaying Dai
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weihao Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Baixuan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Xilin Lu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
68
|
Tong J, Wu Z, Briggs MM, Schulten K, McIntosh TJ. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness. Biophys J 2017; 111:90-9. [PMID: 27410737 DOI: 10.1016/j.bpj.2016.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Zhe Wu
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Margaret M Briggs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Klaus Schulten
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois.
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
69
|
Osmotherapy With Hypertonic Saline Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4. Crit Care Med 2017; 44:e702-10. [PMID: 27035238 DOI: 10.1097/ccm.0000000000001671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES We tested the hypothesis that osmotherapy with hypertonic saline attenuates cerebral edema following experimental cardiac arrest and cardiopulmonary resuscitation by exerting its effect via the perivascular pool of aquaporin-4. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn) that demonstrate diminished perivascular aquaporin-4 pool but retain the non-endfoot and ependymal pools. DESIGN Laboratory animal study. SETTING University animal research laboratory. INTERVENTIONS Isoflurane-anesthetized adult male wild-type C57B/6 or α-Syn mice were subjected to cardiac arrest/cardiopulmonary resuscitation and treated with either a continuous IV infusion of 0.9% saline or various concentrations of hypertonic saline. Serum osmolality, regional brain water content, blood-brain barrier disruption, and aquaporin-4 protein expression were determined at 24 hours after cardiac arrest/cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS Hypertonic saline (7.5%) treatment significantly attenuated water content in the caudoputamen complex and cortex compared with 0.9% saline treatment in wild-type mice subjected to cardiac arrest/cardiopulmonary resuscitation. In contrast, in α-Syn mice subjected to cardiac arrest/cardiopulmonary resuscitation, 7.5% hypertonic saline treatment did not attenuate water content. Treatment with 7.5% hypertonic saline attenuated blood-brain barrier disruption at 24 hours following cardiac arrest/cardiopulmonary resuscitation in wild-type mice but not in α-Syn mice. Total aquaporin-4 protein expression was not different between 0.9% saline and hypertonic saline-treated wild-type mice. CONCLUSIONS Following experimental cardiac arrest/cardiopulmonary resuscitation: 1) continuous hypertonic saline therapy maintained to achieve serum osmolality of ≈ 350 mOsm/L is beneficial for the treatment of cerebral edema; 2) perivascular pool of aquaporin-4 plays a critical role in water egress from brain; and 3) hypertonic saline attenuates blood-brain barrier disruption via perivascular aquaporin-4 pool.
Collapse
|
70
|
Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions. Brain Struct Funct 2017; 222:3959-3972. [DOI: 10.1007/s00429-017-1448-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
71
|
Marino M, Frisullo G, Di Sante G, Samengo DM, Provenzano C, Mirabella M, Pani G, Ria F, Bartoccioni E. Low reliability of anti-KIR4.1 83-120 peptide auto-antibodies in multiple sclerosis patients. Mult Scler 2017; 24:910-918. [PMID: 28548026 DOI: 10.1177/1352458517711275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease for which auto-antibodies fully validated as diagnostic and prognostic biomarkers are widely desired. Recently, an immunoreactivity against the inward rectifying potassium channel 4.1 (KIR4.1) has been reported in a large proportion of a group of MS patients, with amino acids 83-120 being the major epitope. Moreover, a strong correlation between anti-KIR4.183-120 and anti-full-length-protein auto-antibodies titer was reported. However, this finding received limited confirmation. OBJECTIVE Validation of the diagnostic potential of anti-KIR4.183-120 antibodies in 78 MS patients, 64 healthy blood donors, and 42 individuals with other neurological diseases. METHODS Analysis of anti-KIR4.183-120 antibodies by enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum we produced as a new ELISA reliability control. Additionally, evaluation of reactivity against 293-T cells transiently transfected with full-length KIR4.1 by flow cytometry. RESULTS We found antibodies to KIR4.183-120 only in 13 out of 78 (16.6%) MS patients; among these, only 2 were positive for anti-full-length KIR4.1 antibodies. CONCLUSION Employing a new reliability control and a new cytofluorometric assay, we cannot support anti-KIR4.183-120 auto-antibodies as a reliable biomarker in MS.
Collapse
Affiliation(s)
- Mariapaola Marino
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Frisullo
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Maria Samengo
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Provenzano
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Mirabella
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy/Department of Laboratory Medicine, School of Medicine, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Emanuela Bartoccioni
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy/Department of Laboratory Medicine, School of Medicine, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| |
Collapse
|
72
|
Nowak M, Grzesiak M, Saito N, Kwaśniewska M, Sechman A, Hrabia A. Expression of aquaporin 4 in the chicken ovary in relation to follicle development. Reprod Domest Anim 2017; 52:857-864. [PMID: 28512792 DOI: 10.1111/rda.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
In the mammalian ovary, aquaporins (AQPs) are thought to be involved in the regulation of fluid transport within the follicular wall and antrum formation. Data concerning the AQPs in the avian ovary is very limited. Therefore, the present study was designed to examine whether the AQP4 is present in the chicken ovary, and if so, what is its distribution in the ovarian compartment of the laying hen. Localization of AQP4 in the ovarian follicles at different stage of development was also investigated. After decapitation of hens the stroma with primordial follicles and white (1-4 mm), yellowish (4-8 mm), small yellow and the three largest yellow pre-ovulatory follicles F3-F1 (F3 < F2 < F1; 20-36 mm) were isolated from the ovary. The granulosa and theca layers were separated from the pre-ovulatory follicles. The AQP4 mRNA and protein were detected in all examined ovarian compartments by the real-time PCR and Western blot analyses, respectively. The relative expression of AQP4 was depended on follicular size and the layer of follicular wall. It was the lowest in the granulosa layer of pre-ovulatory follicles and the highest in the ovarian stroma as well as white and yellowish follicles. Along with approaching of the largest follicle to ovulation the gradual decrease in AQP4 protein level in the granulosa layer was observed. Immunoreactivity for AQP4 was present in the granulosa and theca cells (theca interna ≥ theca externa > granulosa). The obtained results suggest that AQP4 may take part in the regulation of water transport required for follicle development in the chicken ovary.
Collapse
Affiliation(s)
- M Nowak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - M Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - N Saito
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Sciences, Okayama University, Okayama, Japan
| | - M Kwaśniewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
73
|
Turning down the volume: Astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol Dis 2017; 104:24-32. [PMID: 28438505 DOI: 10.1016/j.nbd.2017.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 1% of the global population suffers from epilepsy, a class of disorders characterized by recurrent and unpredictable seizures. Of these cases roughly one-third are refractory to current antiepileptic drugs, which typically target neuronal excitability directly. The events leading to seizure generation and epileptogenesis remain largely unknown, hindering development of new treatments. Some recent experimental models of epilepsy have provided compelling evidence that glial cells, especially astrocytes, could be central to seizure development. One of the proposed mechanisms for astrocyte involvement in seizures is astrocyte swelling, which may promote pathological neuronal firing and synchrony through reduction of the extracellular space and elevated glutamate concentrations. In this review, we discuss the common conditions under which astrocytes swell, the resultant effects on neural excitability, and how seizure development may ultimately be influenced by these effects.
Collapse
|
74
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
75
|
Conivaptan, a Selective Arginine Vasopressin V1a and V2 Receptor Antagonist Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4. Neurocrit Care 2017; 24:273-82. [PMID: 26732270 DOI: 10.1007/s12028-015-0236-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cerebral edema is a major cause of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Arginine vasopressin (AVP) and water channel aquaporin-4 (AQP4) have been implicated in the pathogenesis of CA-evoked cerebral edema. In this study, we examined if conivaptan, a V1a and V2 antagonist, attenuates cerebral edema following CA/CPR in wild type (WT) mice as well as mice with targeted disruption of the gene encoding α-syntrophin (α-syn(-/-)) that demonstrate diminished perivascular AQP4 pool. METHODS Isoflurane-anesthetized adult male WT C57Bl/6 and α-syn(-/-) mice were subjected to 8 min CA/CPR and treated with either bolus IV injection (0.15 or 0.3 mg/kg) followed by continuous infusion of conivaptan (0.15 mg/kg/day or 0.3 mg/kg/day), or vehicle infusion for 48 h. Serum osmolality, regional brain water content, and blood-brain barrier (BBB) disruption were determined at the end of the experiment. Sham-operated mice in both strains served as controls. RESULTS Treatment with conivaptan elevated serum osmolality in a dose-dependent manner. In WT mice, conivaptan at 0.3 mg dose significantly attenuated regional water content in the caudoputamen (81.0 ± 0.5 vs. 82.5 ± 0.4% in controls; mean ± SEM) and cortex (78.8 ± 0.2 vs. 79.4 ± 0.2% in controls), while conivaptan at 0.15 mg was not effective. In α-syn(-/-) mice, conivaptan at 0.3 mg dose did not attenuate water content compared with controls. Conivaptan (0.3 mg/kg/day) attenuated post-CA BBB disruption at 48 h in WT mice but not in α-syn(-/-) mice. CONCLUSIONS Continuous IV infusion of conivaptan attenuates cerebral edema and BBB disruption following CA. These effects of conivaptan that are dependent on the presence of perivascular pool of AQP4 appear be mediated via its dual effect on V1 and V2 receptors.
Collapse
|
76
|
Abstract
Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
|
77
|
Enger R, Dukefoss DB, Tang W, Pettersen KH, Bjørnstad DM, Helm PJ, Jensen V, Sprengel R, Vervaeke K, Ottersen OP, Nagelhus EA. Deletion of Aquaporin-4 Curtails Extracellular Glutamate Elevation in Cortical Spreading Depression in Awake Mice. Cereb Cortex 2017; 27:24-33. [PMID: 28365776 PMCID: PMC5939213 DOI: 10.1093/cercor/bhw359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 12/20/2022] Open
Abstract
Cortical spreading depression (CSD) is a phenomenon that challenges the homeostatic mechanisms on which normal brain function so critically depends. Analyzing the sequence of events in CSD holds the potential of providing new insight in the physiological processes underlying normal brain function as well as the pathophysiology of neurological conditions characterized by ionic dyshomeostasis. Here, we have studied the sequential progression of CSD in awake wild-type mice and in mice lacking aquaporin-4 (AQP4) or inositol 1,4,5-triphosphate type 2 receptor (IP3R2). By the use of a novel combination of genetically encoded sensors that a novel combination - an unprecedented temporal and spatial resolution, we show that CSD leads to brisk Ca2+ signals in astrocytes and that the duration of these Ca2+ signals is shortened in the absence of AQP4 but not in the absence of IP3R2. The decrease of the astrocytic, AQP4-dependent Ca2+ signals, coincides in time and space with a decrease in the duration of extracellular glutamate overflow but not with the initial peak of the glutamate release suggesting that in CSD, extracellular glutamate accumulation is extended through AQP4-dependent glutamate release from astrocytes. The present data point to a salient glial contribution to CSD and identify AQP4 as a new target for therapy.
Collapse
Affiliation(s)
- Rune Enger
- Department of Neurology, Oslo University Hospital, N-0027 Oslo, Norway
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Didrik B. Dukefoss
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Wannan Tang
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Klas H. Pettersen
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Daniel M. Bjørnstad
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - P. Johannes Helm
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Vidar Jensen
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
- Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Koen Vervaeke
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Erlend A. Nagelhus
- Department of Neurology, Oslo University Hospital, N-0027 Oslo, Norway
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
78
|
Pavlin T, Nagelhus EA, Brekken C, Eyjolfsson EM, Thoren A, Haraldseth O, Sonnewald U, Ottersen OP, Håberg AK. Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice. Neurochem Res 2016; 42:77-91. [DOI: 10.1007/s11064-016-2139-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/27/2022]
|
79
|
Peixoto-Santos JE, Kandratavicius L, Velasco TR, Assirati JA, Carlotti CG, Scandiuzzi RC, Salmon CEG, Santos ACD, Leite JP. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia 2016; 58:149-159. [PMID: 27864825 DOI: 10.1111/epi.13620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Increased T2 relaxation time is often seen in temporal lobe epilepsy (TLE) with hippocampal sclerosis. Water content directly affects the effective T2 in a voxel. Our aim was to evaluate the relation between T2 values and two molecules associated with brain water homeostasis aquaporin 4 (AQP4) and chondroitin sulfate proteoglycan (CSPG), as well as cellular populations in the hippocampal region of patients with TLE. METHODS Hippocampal T2 imaging and diffusion tensor imaging (DTI) were obtained from 42 drug-resistant patients with TLE and 20 healthy volunteers (radiologic controls, RCs). A similar protocol (ex vivo) was applied to hippocampal sections from the same TLE cases and 14 autopsy control hippocampi (histologic and radiologic controls, HRCs), and each hippocampal subfield was evaluated. Hippocampal sections from TLE cases and HRC controls were submitted to immunohistochemistry for neurons (neuron nuclei [NeuN]), reactive astrocytes (glial fibrillary acidic protein [GFAP]), activated microglia (human leukocyte antigen-D-related [HLA-DR]), polarized AQP4, and CSPG. RESULTS Patients with TLE had higher in vivo and ex vivo hippocampal T2 relaxation time. Hippocampi from epilepsy cases had lower neuron density, higher gliosis, decreased AQP4 polarization, and increased CSPG immunoreactive area. In vivo relaxation correlated with astrogliosis in the subiculum and extracellular CSPG in the hilus. Ex vivo T2 relaxation time correlated with astrogliosis in the hilus, CA4, and subiculum, and with microgliosis in CA1. The difference between in vivo and ex vivo relaxation ratio correlated with mean diffusivity and with the immunopositive area for CSPG in the hilus. SIGNIFICANCE Our data indicate that astrogliosis, microgliosis, and CSPG expression correlate with the increased T2 relaxation time seen in the hippocampi of patients with TLE.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
80
|
Zhang J, Gao G, Begum G, Wang J, Khanna AR, Shmukler BE, Daubner GM, de los Heros P, Davies P, Varghese J, Bhuiyan MIH, Duan J, Zhang J, Duran D, Alper SL, Sun D, Elledge SJ, Alessi DR, Kahle KT. Functional kinomics establishes a critical node of volume-sensitive cation-Cl - cotransporter regulation in the mammalian brain. Sci Rep 2016; 6:35986. [PMID: 27782176 PMCID: PMC5080614 DOI: 10.1038/srep35986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl--sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl- uptake and stimulation of KCC3-mediated Cl- extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought "Cl-/volume-sensitive kinase" of the cation-Cl- cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Geng Gao
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Arjun R. Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Boris E. Shmukler
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Gerrit M. Daubner
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paola de los Heros
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | - Jinjing Duan
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Jin Zhang
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Daniel Duran
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Seth L. Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115 USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Kristopher T. Kahle
- Departments of Pediatrics and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
81
|
Factors determining the density of AQP4 water channel molecules at the brain-blood interface. Brain Struct Funct 2016; 222:1753-1766. [PMID: 27629271 PMCID: PMC5406442 DOI: 10.1007/s00429-016-1305-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/04/2016] [Indexed: 10/27/2022]
Abstract
Perivascular endfeet of astrocytes are enriched with aquaporin-4 (AQP4)-a water channel that is critically involved in water transport at the brain-blood interface and that recently was identified as a key molecule in a system for waste clearance. The factors that determine the size of the perivascular AQP4 pool remain to be identified. Here we show that the size of this pool differs considerably between brain regions, roughly mirroring regional differences in Aqp4 mRNA copy numbers. We demonstrate that a targeted deletion of α-syntrophin-a member of the dystrophin complex responsible for AQP4 anchoring-removes a substantial and fairly constant proportion (79-94 %) of the perivascular AQP4 pool across the central nervous system (CNS). Quantitative immunogold analyses of AQP4 and α-syntrophin in perivascular membranes indicate that there is a fixed stoichiometry between these two molecules. Both molecules occur at higher densities in endfoot membrane domains facing pericytes than in endfoot membrane domains facing endothelial cells. Our data suggest that irrespective of region, endfoot targeting of α-syntrophin is the single most important factor determining the size of the perivascular AQP4 pool and hence the capacity for water transport at the brain-blood interface.
Collapse
|
82
|
Aquaporin-4 and Cerebrovascular Diseases. Int J Mol Sci 2016; 17:ijms17081249. [PMID: 27529222 PMCID: PMC5000647 DOI: 10.3390/ijms17081249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target.
Collapse
|
83
|
Chen XF, Li CF, Lü L, Mei ZC. Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma. Mol Med Rep 2016; 13:5283-9. [PMID: 27121567 DOI: 10.3892/mmr.2016.5184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/13/2016] [Indexed: 11/06/2022] Open
Abstract
Aquaglyceroporins (AQPs) are a subset of the aquaporin family, and are permeable to water and glycerol. The aim of the present study was to determine the expression and clinical significance of three AQPs, AQP3, 7 and 9 in hepatocellular carcinoma (HCC). Fresh HCC and adjacent non‑tumorous liver tissues were collected from 68 patients diagnosed with HCC. The expression levels of AQP3, 7 and 9 were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis. The association between the expression of AQPs and clinicopathological parameters of HCC were investigated. Compared with non‑tumorous liver tissue, HCC tissues exhibited a significant (P<0.05) increase in the expression of AQP3 and a concomitant reduction in the expression levels of AQP7 and AQP9, at both the mRNA and protein levels. Immunohistochemistry revealed that AQP9 was dominantly localized on the plasma membrane of hepatocytes, while AQP3 and AQP7 exhibited a predominantly cytoplasmic and nuclear distribution. High expression of AQP3 was significantly (P<0.05) associated with low expression levels of AQP7 and AQP9. High expression of AQP3 was correlated with tumor grade (P=0.017), tumor stage (P=0.010) and lymphatic metastasis (P=0.031). Low expression of AQP7 was correlated with tumor grade (P=0.043). AQP3 was upregulated, and AQP7 and AQP9 were downregulated in HCC. A high expression of AQP3 and low expression of AQP7 was significantly associated with the aggressive features of HCC.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chuan-Fei Li
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lin Lü
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhe-Chuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
84
|
Hsu Y, Tran M, Linninger AA. Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 2016; 56:401-21. [PMID: 26526878 PMCID: PMC4655926 DOI: 10.3325/cmj.2015.56.401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution.
Collapse
Affiliation(s)
| | | | - Andreas A Linninger
- Andreas Linninger, 851 S Morgan St., SEO 218, MC 063, Chicago, IL 60607, USA,
| |
Collapse
|
85
|
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC. The multifaceted role of astrocytes in regulating myelination. Exp Neurol 2016; 283:541-9. [PMID: 26988764 PMCID: PMC5019113 DOI: 10.1016/j.expneurol.2016.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influence myelination in the context of specific secreted factors, cytokines and other neural cell targets within the CNS. In particular, we focus on how astrocytes provide energy and cholesterol to neurons, influence synaptogenesis, affect oligodendrocyte biology and instigate cross-talk between the many cellular components of the CNS.
Collapse
Affiliation(s)
- Hülya Kıray
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Sara Hosseinzadeh
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom..
| |
Collapse
|
86
|
Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res 2016; 72:15-21. [PMID: 26519765 PMCID: PMC5813495 DOI: 10.1016/j.jpsychires.2015.10.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Glial cells are essential in maintaining synaptic function. In glutamatergic synapses astrocytes remove the products of neural activity, (i.e. potassium, glutamate and excess water) from the synaptic cleft and redistribute them across the glial network; these products of neural activity can then be recycled for neuronal use or released into the vascular compartment. This type of highly coupled cell network -or syncytium-maintains the balance of synaptic activity by restoring the basal levels of such molecules in the synaptic cleft. Previous studies have reported alterations of glia related genes in Major Depressive Disorder, including some genes related to syncytial function. METHODS We used RNA isolated from hippocampal tissues of 13 MDD subjects and 10 healthy controls to broadly examine gene expression using microarrays. Hippocampal RNA samples were isolated by laser capture microdissection from human tissue sections carefully avoiding contamination from neighboring structures. Once RNA quality was validated RNA was labeled and hybridized to microarrays. RESULTS Analysis of microarray data identified mRNA transcripts involved in glial syncytial function that were downregulated in MDD subjects compared to controls, including potassium and water channels (KCNJ10, AQP4), gap junction proteins (GJA1) and glutamate transporters (SLC1A2, SLC1A3). These gene expression differences were confirmed by qPCR. CONCLUSIONS The downregulation of these genes related to the syncytial network activity of glial cells is consistent with the hypothesis that synaptic homeostasis is disrupted thereby disrupting hippocampal synaptic function in MDD patients. Such glial gene expression changes could contribute either to the onset or perpetuation of depressive symptoms and hence, represent targets for novel therapeutics.
Collapse
|
87
|
Volman V, Ng LJ. Perinodal glial swelling mitigates axonal degradation in a model of axonal injury. J Neurophysiol 2015; 115:1003-17. [PMID: 26683073 DOI: 10.1152/jn.00912.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been associated with the damage to myelinated axons in white matter tracts. Animal models and in vitro studies suggest that axonal degradation develops during a latent period following a traumatic event. This delay has been attributed to slowly developing axonal membrane depolarization that is initiated by injury-induced ionic imbalance and in turn, leads to the activation of Ca(2+) proteases via pathological accumulation of Ca(2+). However, the mechanisms mitigating the transition to axonal degradation after injury remain elusive. We addressed this question in a detailed biophysical model of axonal injury that incorporated ion exchange and glial swelling mechanisms. We show that glial swelling, which often co-occurs with mTBI, promotes axonal survival by regulating extracellular K(+) dynamics, extending the range of injury parameters in which axons exhibit stable membrane potential postinjury. In addition, glial swelling was instrumental in reducing axonal sensitivity to repetitive stretch injury that occurred several minutes following the first one. Results of this study suggest that acute post-traumatic swelling of perinodal astrocytes helps prevent or postpone axonal degradation by maintaining physiologically relevant levels of extracellular K(+).
Collapse
Affiliation(s)
- Vladislav Volman
- Simulation, Engineering, and Testing, L-3 Applied Technologies Incorporated, San Diego, California
| | - Laurel J Ng
- Simulation, Engineering, and Testing, L-3 Applied Technologies Incorporated, San Diego, California
| |
Collapse
|
88
|
Vargová L, Syková E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130608. [PMID: 25225101 DOI: 10.1098/rstb.2013.0608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
Collapse
Affiliation(s)
- Lýdia Vargová
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic Department of Neuroscience, Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Eva Syková
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic Department of Neuroscience, Institute of Experimental Medicine AS CR, Prague, Czech Republic
| |
Collapse
|
89
|
The Potential Roles of Aquaporin 4 in Alzheimer's Disease. Mol Neurobiol 2015; 53:5300-9. [PMID: 26433375 DOI: 10.1007/s12035-015-9446-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/16/2015] [Indexed: 01/28/2023]
Abstract
Aquaporin 4 (AQP4) is the major water channel expressed in the central nervous system (CNS), and it is primarily expressed in astrocytes. It has been studied in various brain pathological conditions. However, the potential for AQP4 to influence Alzheimer's disease (AD) is still unclear. Research regarding AQP4 functions related to AD can be traced back several years and has gradually progressed toward a better understanding of the potential mechanisms. Currently, it has been suggested that AQP4 influences synaptic plasticity, and AQP4 deficiency may impair learning and memory, in part, through glutamate transporter-1 (GLT-1). AQP4 may mediate the clearance of amyloid beta peptides (Aβ). In addition, AQP4 may influence potassium (K(+)) and calcium (Ca(2+)) ion transport, which could play decisive roles in the pathogenesis of AD. Furthermore, AQP4 knockout is involved in neuroinflammation and interferes with AD. To date, no specific therapeutic agents have been developed to inhibit or enhance AQP4. However, experimental results strongly emphasize the importance of this topic for future investigations.
Collapse
|
90
|
Yao X, Smith AJ, Jin BJ, Zador Z, Manley GT, Verkman A. Aquaporin-4 regulates the velocity and frequency of cortical spreading depression in mice. Glia 2015; 63:1860-9. [PMID: 25944186 PMCID: PMC4743984 DOI: 10.1002/glia.22853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K(+) concentration ([K(+)]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K(+)]e and ECS volume affect the velocity, frequency, and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4(+/+)) and AQP4-deficient (AQP4(-/-)) mice. In contrast to initial expectations, both the velocity and the frequency of CSD were significantly reduced in AQP4(-/-) mice when compared with AQP4(+/+) mice, by 22% and 32%, respectively. Measurement of [K(+)]e with K(+)-selective microelectrodes demonstrated an increase to ∼35 mM during spreading depolarizations in both AQP4(+/+) and AQP4(-/-) mice, but the rates of [K(+)]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4(-/-) mice. ECS volume fraction measured by tetramethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4(+/+) mice, and 0.23 to 0.063 in AQP4(-/-) mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4(-/-) mice was primarily a consequence of the slowed increase in [K(+)]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K(+)]e and ECS volume dynamics accelerate CSD propagation.
Collapse
Affiliation(s)
- Xiaoming Yao
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Alex J. Smith
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | - Byung-Ju Jin
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | - Zsolt Zador
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - A.S. Verkman
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
91
|
Vella J, Zammit C, Di Giovanni G, Muscat R, Valentino M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci 2015; 9:108. [PMID: 25904843 PMCID: PMC4389728 DOI: 10.3389/fncel.2015.00108] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022] Open
Abstract
Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K(+)-channels (Kir4.1) and glial K(+) uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke.
Collapse
Affiliation(s)
| | | | | | | | - Mario Valentino
- Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
92
|
Abstract
Astrocytes express ion channels, transmitter receptors, and transporters and, thus, are endowed with the machinery to sense and respond to neuronal activity. Recent studies have implicated that astrocytes play important roles in physiology, but these cells also emerge as crucial actors in epilepsy. Astrocytes are abundantly coupled through gap junctions allowing them to redistribute elevated K(+) and transmitter concentrations from sites of enhanced neuronal activity. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization, and function of astroglial K(+) and water channels. In addition, malfunction of glutamate transporters and the astrocytic glutamate-converting enzyme, glutamine synthetase, has been observed in epileptic tissue. These findings suggest that dysfunctional astrocytes are crucial players in epilepsy and should be considered as promising targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Douglas A Coulter
- Departments of Pediatrics and Neuroscience, Perelman School of Medicine, University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
93
|
Xu J, Qiu GP, Huang J, Zhang B, Sun SQ, Gan SW, Lu WT, Wang KJ, Huang SQ, Zhu SJ. Internalization of aquaporin-4 after collagenase-induced intracerebral hemorrhage. Anat Rec (Hoboken) 2015; 298:554-61. [PMID: 25257965 DOI: 10.1002/ar.23055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/21/2014] [Indexed: 11/11/2022]
Abstract
Brain edema formation following intracerebral hemorrhage (ICH) appears to be related with aquaporin-4 (AQP4), which is critically involved in brain volume homeostasis and water balance. Despite its importance, the regulation of AQP4 expression involved in transmembrane water movements still remains rudimentary. Many studies suggest that the internalization of several membrane-bound proteins, including AQP4, may occur with or without lysosomal degradation. Previously, we investigated the internalization of AQP4 in retinal ischemic-reperfusion model. Here, we test the hypothesis that AQP4 is internalized post-ICH and then degraded in the lysosome. The results demonstrated that both AQP4 and the mannose-6-phosphate receptor (MPR) co-localized in perihematomal region at 6 hr post-ICH. In addition, AQP4 and lysosomal-associated membrane protein 1 (LAMP1) also co-localized in perihematomal region, with co-expression increasing followed by a gradual decrease at different time windows post-ICH (6, 12, 24, 48, and 72 hr). After ICH, the Evans blue leakage happened very early at 1 hr and the brain swelling occurred at 3 hr. Moreover, we also found the AQP4 mRNA and AQP4 protein were increased post-ICH. These results suggest that AQP4 is internalized and the lysosome is involved in degrading the internalized AQP4 post-ICH. Both the AQP4 internalization and lysosomal degradation may provide biophysical insights regarding the potential of new treatments for brain edema.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kandratavicius L, Peixoto-Santos JE, Monteiro MR, Scandiuzzi RC, Carlotti CG, Assirati JA, Hallak JE, Leite JP. Mesial temporal lobe epilepsy with psychiatric comorbidities: a place for differential neuroinflammatory interplay. J Neuroinflammation 2015; 12:38. [PMID: 25889039 PMCID: PMC4347571 DOI: 10.1186/s12974-015-0266-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/10/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite the strong association between epilepsy and psychiatric comorbidities, few biological substrates are currently described. We have previously reported neuropathological alterations in mesial temporal lobe epilepsy (MTLE) patients with major depression and psychosis that suggest a morphological and neurochemical basis for psychopathological symptoms. Neuroinflammatory-related structures and molecules might be part of the altered neurochemical milieu underlying the association between epilepsy and psychiatric comorbidities, and such features have not been previously investigated in humans. METHODS MTLE hippocampi of subjects without psychiatric history (MTLEW), MTLE + major depression (MTLE + D), and MTLE + interictal psychosis (MTLE + P) derived from epilepsy surgery and control necropsies were investigated for reactive astrocytes (glial fibrillary acidic protein (GFAP)), activated microglia (human leukocyte antigen, MHC class II (HLA-DR)), glial metallothionein-I/II (MT-I/II), and aquaporin 4 (AQP4) immunohistochemistry. RESULTS We found an increased GFAP immunoreactive area in the molecular layers, granule cell layer, and cornus ammonis region 2 (CA2) and cornus ammonis region 1 (CA1) of MTLEW and MTLE + P, respectively, compared to MTLE + D. HLA-DR immunoreactive area was higher in cornus ammonis region 3 (CA3) of MTLE + P, compared to MTLE + D and MTLEW, and in the hilus, when compared to MTLEW. MTLEW cases showed increased MT-I/II area in the granule cell layer and CA1, compared to MTLE + P, and in the parasubiculum, when compared to MTLE + D and MTLE + P. Differences between MTLE and control, such as astrogliosis, microgliosis, increased MT-I/II, and decreased perivascular AQP4 in the epileptogenic hippocampus, were in agreement to what is currently described in the literature. CONCLUSIONS Neuroinflammatory-related molecules in MTLE hippocampus show a distinct pattern of expression when patients present with a comorbid psychiatric diagnosis, similar to what is found in the pure forms of schizophrenia and major depression. Future studies focusing on inflammatory characteristics of MTLE with psychiatric comorbidities might help in the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | - Mariana Raquel Monteiro
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil.
| | | | | | - Jaime Eduardo Hallak
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil. .,National Institute of Science and Technology in Translational Medicine (INCT-TM - CNPq), Ribeirao Preto, Brazil.
| | - Joao Pereira Leite
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| |
Collapse
|
95
|
The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier. J Neurosci 2015; 34:15260-80. [PMID: 25392494 DOI: 10.1523/jneurosci.3678-13.2014] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Laminins are major constituents of the gliovascular basal lamina of the blood-brain barrier (BBB); however, the role of laminins in BBB development remains unclear. Here we report that Lama2(-/-) mice, lacking expression of the laminin α2 subunit of the laminin-211 heterotrimer expressed by astrocytes and pericytes, have a defective BBB in which systemically circulated tracer leaks into the brain parenchyma. The Lama2(-/-) vascular endothelium had significant abnormalities, including altered integrity and composition of the endothelial basal lamina, inappropriate expression of embryonic vascular endothelial protein MECA32, substantially reduced pericyte coverage, and tight junction abnormalities. Additionally, astrocytic endfeet were hypertrophic and lacked appropriately polarized aquaporin4 channels. Laminin-211 appears to mediate these effects at least in part by dystroglycan receptor interactions, as preventing dystroglycan expression in neural cells led to a similar set of BBB abnormalities and gliovascular disturbances, which additionally included perturbed vascular endothelial glucose transporter-1 localization. These findings provide insight into the cell and molecular changes that occur in congenital muscular dystrophies caused by Lama2 mutations or inappropriate dystroglycan post-translational modifications, which have accompanying brain abnormalities, including seizures. Our results indicate a novel role for laminin-dystroglycan interactions in the cooperative integration of astrocytes, endothelial cells, and pericytes in regulating the BBB.
Collapse
|
96
|
Assentoft M, Larsen BR, MacAulay N. Regulation and Function of AQP4 in the Central Nervous System. Neurochem Res 2015; 40:2615-27. [PMID: 25630715 DOI: 10.1007/s11064-015-1519-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/09/2023]
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. Based on studies on AQP4(-/-) mice, AQP4 has been assigned physiological roles in stimulus-induced K(+) clearance, paravascular fluid flow, and brain edema formation. Conflicting data have been presented on the role of AQP4 in K(+) clearance and associated extracellular space shrinkage and on the stroke-induced alterations of AQP4 expression levels during edema formation, raising questions about the functional importance of AQP4 in these (patho)physiological aspects. Phosphorylation-dependent gating of AQP4 has been proposed as a regulatory mechanism for AQP4-mediated osmotic water transport. This paradigm was, however, recently challenged by experimental evidence and molecular dynamics simulations. Regulatory patterns and physiological roles for AQP4 thus remain to be fully explored.
Collapse
Affiliation(s)
- Mette Assentoft
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark.
| |
Collapse
|
97
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
98
|
Anderova M, Benesova J, Mikesova M, Dzamba D, Honsa P, Kriska J, Butenko O, Novosadova V, Valihrach L, Kubista M, Dmytrenko L, Cicanic M, Vargova L. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice. PLoS One 2014; 9:e113444. [PMID: 25426721 PMCID: PMC4245134 DOI: 10.1371/journal.pone.0113444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/24/2014] [Indexed: 11/30/2022] Open
Abstract
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+.
Collapse
Affiliation(s)
- Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
- * E-mail:
| | - Jana Benesova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Mikesova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vendula Novosadova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lesia Dmytrenko
- Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Michal Cicanic
- Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Lydia Vargova
- Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
99
|
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2014; 40:317-28. [PMID: 24996934 DOI: 10.1007/s11064-014-1374-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4-dependent edema formation.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | | | | | | |
Collapse
|
100
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|