51
|
Hayashi M, Machida T, Ishida Y, Ogata Y, Omori T, Takasumi M, Endo Y, Suzuki T, Sekimata M, Homma Y, Ikawa M, Ohira H, Fujita T, Sekine H. Cutting Edge: Role of MASP-3 in the Physiological Activation of Factor D of the Alternative Complement Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 203:1411-1416. [DOI: 10.4049/jimmunol.1900605] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
|
52
|
Ezure T, Sugahara M, Amano S. Senescent dermal fibroblasts negatively influence fibroblast extracellular matrix-related gene expression partly via secretion of complement factor D. Biofactors 2019; 45:556-562. [PMID: 31026383 PMCID: PMC6850482 DOI: 10.1002/biof.1512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Aging is associated with a decrease of extracellular matrix and an increase of senescent cells in the dermal layer. Here, to examine whether and how senescent cells are involved in aging-related deterioration of the dermal layer, we cocultured dermal young fibroblasts (low-passage number) with senescent cells (high-passage number) in Transwells, in which the two cell types are separated by a semipermeable membrane. Young fibroblasts in coculture showed decreased collagen type I alpha 1 chain and elastin gene expression, and increased matrix metalloproteinase 1 (MMP1) gene expression. To identify causative factors, we compared gene expression of young and senescent cells and selected candidate secretory factors whose expression was increased by ≥2.5 in senescent fibroblasts. Then, we used siRNAs to knock down each of the 11 candidate genes in senescent fibroblasts in the coculture system. Knockdown of complement factor D (CFD) in senescent fibroblasts significantly reduced the increase of MMP1 in the cocultured young fibroblasts. In monocultures, treatment of young fibroblasts with CFD resulted in increased MMP1 gene expression, while knockdown of CFD in senescent fibroblasts decreased MMP1 gene expression. In addition, production of CFD was increased in culture medium of untreated senescent fibroblasts. Furthermore, CFD gene and protein expression were increased in the dermal layer of skin specimens from aged subjects (>70 years old), compared to young subjects (<20 years old). Overall, these results suggest that senescent cells negatively influence matrix production and promote degradation of nearby fibroblasts in the dermal layer, in part through secretion of CFD.
Collapse
|
53
|
Abstract
Targeted liposomes with different combinations of five ligands (for brain/amyloid targeting) were evaluated for hemocompatibility. Results reveal that all liposomes studied, caused minimum hemolysis; targeted liposomes slightly reduced blood coagulation time, but not significantly more than control liposomes; and compliment factors SC5b9 and iC3b increased when compared with the buffer, by most targeted liposomes. However, the specific amounts of both factors were similar with those induced by control liposomes. Thus, the targeted liposomes are unanticipated to cause hypersensitivity problems. Good correlations between vesicle size and produced factor amounts were observed. In conclusion, the current targeted liposomes are not expected to cause serious blood toxicity, if used in vivo.
Collapse
|
54
|
Wang JS, Lee WJ, Lee IT, Lin SY, Lee WL, Liang KW, Sheu WHH. Association Between Serum Adipsin Levels and Insulin Resistance in Subjects With Various Degrees of Glucose Intolerance. J Endocr Soc 2018; 3:403-410. [PMID: 30746502 PMCID: PMC6364621 DOI: 10.1210/js.2018-00359] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Context The association between adipsin and glucose metabolism in human subjects remains unclear. Objective We investigated the associations between adipsin and insulin resistance/β-cell function in subjects with various degrees of glucose intolerance. Design Fasting blood samples were collected for measurements of fasting plasma glucose (FPG), insulin, and adipsin. An oral glucose tolerance test was conducted in subjects with no history of diabetes. Setting This study was conducted at a medical center. Patients We enrolled 240 subjects with no history of diabetes and 80 patients with known type 2 diabetes (T2D) on diet control or metformin monotherapy. Main Outcome Measure β-cell function and insulin resistance were assessed using the homeostasis model assessment (HOMA-β and HOMA-IR, respectively). Results Levels of serum adipsin were higher in subjects with normal glucose tolerance (4.0 ± 1.1 µg/mL) or prediabetes (4.0 ± 1.5 µg/mL) compared with subjects with newly diagnosed diabetes (3.8 ± 1.1 µg/mL) or with known T2D on diet control (3.4 ± 1.0 µg/mL) or metformin monotherapy (3.0 ± 1.0 µg/mL, P < 0.001). There was no significant association between adipsin and HOMA-β. In contrast, there was an independent negative association between adipsin and HOMA-IR (β coefficient −0.414, 95% CI −0.720 to −0.109, P = 0.008). The association was more prominent in subjects with a body mass index (BMI) ≥25 kg/m2 or an FPG ≥100 mg/dL (P interaction < 0.001 and 0.014, respectively). Conclusions Serum adipsin levels were negatively associated with insulin resistance, especially in subjects with a BMI ≥25 kg/m2 or an FPG ≥100 mg/dL.
Collapse
Affiliation(s)
- Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center of Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Lieng Lee
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kae-Woei Liang
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
55
|
Valverde-Franco G, Tardif G, Mineau F, Paré F, Lussier B, Fahmi H, Pelletier JP, Martel-Pelletier J. High in vivo levels of adipsin lead to increased knee tissue degradation in osteoarthritis: data from humans and animal models. Rheumatology (Oxford) 2018; 57:1851-1860. [PMID: 29982662 DOI: 10.1093/rheumatology/key181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/02/2023] Open
Abstract
Objective This study explored the role of the adipokine adipsin in OA. Methods Control and OA articular tissues, cells and serum were obtained from human individuals. Serum adipsin levels of human OA individuals were compared with cartilage volume loss as assessed by MRI at 48 months. Human adipsin expression was determined by PCR, its production in tissues by immunohistochemistry, and in SF and serum by a specific assay. OA was surgically induced in wild-type (Df+/+) and adipsin-deficient (Df-/-) mice, and synovial membrane and cartilage processed for histology and immunohistochemistry. Results Adipsin levels were significantly increased in human OA serum, SF, synovial membrane and cartilage compared with controls, but the expression was similar in chondrocytes, synoviocytes and osteoblasts. Multivariate analysis demonstrated that human serum adipsin levels were significantly associated (P = 0.045) with cartilage volume loss in the lateral compartment of the knee. Destabilization of the medial meniscus-Df-/- mice showed a preservation of the OA synovial membrane and cartilage lesions (P ⩽ 0.026), the latter corroborated by the decreased production of cartilage degradation products and proteases (P ⩽ 0.047). The adipsin effect is likely due to a deficient alternative complement pathway (P ⩽ 0.036). Conclusion In human OA, higher serum adipsin levels were associated with greater cartilage volume loss in the lateral compartment, and adipsin deficiency led to a preservation of knee structure. Importantly, we documented an association between adipsin and OA synovial membrane and cartilage degeneration through the activation of the complement pathway. This study highlights the clinical relevance of adipsin as a valuable biomarker and potential therapeutic target for OA.
Collapse
Affiliation(s)
- Gladys Valverde-Franco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - François Mineau
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Bertrand Lussier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
56
|
Zhou Q, Ge Q, Ding Y, Qu H, Wei H, Wu R, Yao L, Wei Q, Feng Z, Long J, Deng H. Relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig 2018; 9:1128-1134. [PMID: 29432659 PMCID: PMC6123022 DOI: 10.1111/jdi.12819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
AIMS/INTRODUCTION To detect serum adipsin levels in individuals with different glucose tolerance, and investigate the relationship between adipsisn and the first phase of insulin secretion. MATERIALS AND METHODS A total of 56 patients with newly diagnosed type 2 diabetes mellitus, 36 patients with impaired glucose tolerance (IGT) and 45 individuals with normal glucose tolerance were enrolled. Intravenous glucose tolerance tests were carried out to evaluate pancreatic β-cell function. The serum levels of adipsin, interleukin-1β and high-sensitivity C-reactive protein were assayed. RESULTS Serum adipsin levels were significantly lower in the type 2 diabetes mellitus and the IGT patients than those in the normal glucose tolerance group (P < 0.05). The acute insulin response and area under the curve showed a progressive decrease in the normal glucose tolerance and IGT groups, and decreased to the lowest levels in the type 2 diabetes mellitus group (P < 0.05). Adipsin was found to be negatively correlated with waist-to-hip ratio, free fatty acid, fasting plasma glucose, 2-h postprandial plasma glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, interleukin-1β and high-sensitivity C-reactive protein (P < 0.05 or P < 0.001), and positively correlated with homeostasis model assessment of β-cell function, high-density lipoprotein cholesterol, the area under the curve of the first phase insulin secretion and acute insulin response (P < 0.05 or P < 0.001). Stepwise multiple regression analysis showed that homeostasis model assessment for β-cell function and acute insulin response were independently related to adipsin (P < 0.05). CONCLUSIONS Serum adipsin levels were lower in type 2 diabetes mellitus and IGT patients, and correlated with the first phase of insulin secretion. Adipsin might be involved in the pathology of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qing Zhou
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Ge
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yao Ding
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hua Qu
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huili Wei
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Rui Wu
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yao
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qianping Wei
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhengping Feng
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jian Long
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huacong Deng
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
57
|
McCullough RL, McMullen MR, Sheehan MM, Poulsen KL, Roychowdhury S, Chiang DJ, Pritchard MT, Caballeria J, Nagy LE. Complement Factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol 2018; 315:G66-G79. [PMID: 29597356 PMCID: PMC6109707 DOI: 10.1152/ajpgi.00334.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 03/04/2018] [Indexed: 01/31/2023]
Abstract
Complement plays a crucial role in microbial defense and clearance of apoptotic cells. Emerging evidence suggests complement is an important contributor to alcoholic liver disease. While complement component 1, Q subcomponent (C1q)-dependent complement activation contributes to ethanol-induced liver injury, the role of the alternative pathway in ethanol-induced injury is unknown. Activation of complement via the classical and alternative pathways was detected in alcoholic hepatitis patients. Female C57BL/6J [wild type (WT)], C1q-deficient ( C1qa-/-, lacking classical pathway activation), complement protein 4-deficient ( C4-/-, lacking classical and lectin pathway activation), complement factor D-deficient ( FD-/-, lacking alternative pathway activation), and C1qa/FD-/- (lacking classical and alternative pathway activation) mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 or 25 days. Following chronic ethanol exposure, liver injury, steatosis, and proinflammatory cytokine expression were increased in WT but not C1qa-/-, C4-/-, or C1qa/FD-/- mice. In contrast, liver injury, steatosis, and proinflammatory mediators were robustly increased in ethanol-fed FD-/- mice compared with WT mice. Complement activation, assessed by hepatic accumulation of C1q and complement protein 3 (C3) cleavage products (C3b/iC3b/C3c), was evident in livers of WT mice in response to both short-term and chronic ethanol. While C1q accumulated in ethanol-fed FD-/- mice (short term and chronic), C3 cleavage products were detected after short-term but not chronic ethanol. Consistent with impaired complement activation, chronic ethanol induced the accumulation of apoptotic cells and fibrogenic responses in the liver of FD-/- mice. These data highlight the protective role of complement factor D (FD) and suggest that FD-dependent amplification of complement is an adaptive response that promotes hepatic healing and recovery in response to chronic ethanol. NEW & NOTEWORTHY Complement, a component of the innate immune system, is an important pathophysiological contributor to ethanol-induced liver injury. We have identified a novel role for factor D, a component of the alternative pathway, in protecting the liver from ethanol-induced inflammation, accumulation of apoptotic hepatocytes, and profibrotic responses. These data indicate a dual role of complement with regard to inflammatory and protective responses and suggest that accumulation of apoptotic cells impairs hepatic healing/recovery during alcoholic liver disease.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan R McMullen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan M Sheehan
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Dian J Chiang
- Division of Gastroenterology, Swedish Medical Group , Seattle, Washington
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas
| | - Juan Caballeria
- Institut d'Investigacions Biomediques August Pi iSunyer, Hospital Clinic of Barcelona , Barcelona , Spain
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
58
|
Triebwasser MP, Wu X, Bertram P, Hourcade DE, Nelson DM, Atkinson JP. Timing and mechanism of conceptus demise in a complement regulatory membrane protein deficient mouse. Am J Reprod Immunol 2018; 80:e12997. [PMID: 29924462 PMCID: PMC6160323 DOI: 10.1111/aji.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
PROBLEM Crry is a widely expressed type 1 transmembrane complement regulatory protein in rodents which protects self-tissue by downregulating C3 activation. Crry-/- concepti produced by Crry+/- × Crry+/- matings are attacked by maternal complement system leading to loss before day 10. The membrane attack complex is not the mediator of this death. We hypothesized that the ability of C3b to engage the alternative pathway's feedback loop relatively unchecked on placental membranes induces the lesion yielding the demise of the Crry-/- mouse. METHOD OF STUDY We investigated the basis of Crry-/- conceptus demise by depleting maternal complement with cobra venom factor and blocking antibodies. We monitored their effects primarily by genotyping and histologic analyses. RESULTS We narrowed the critical period of the complement effect from 6.5 to 8.5 days post-coitus (dpc), which is immediately after the conceptus is exposed to maternal blood. Deposition by 5.5 dpc of maternal C3b on the placental vasculature lacking Crry-/- yielded loss of the conceptus by 8.5 dpc. Fusion of the allantois to the chorion during placental assembly did not occur, fetal vessels originating in the allantois did not infiltrate the chorioallantoic placenta, the chorionic plate failed to develop, and the labyrinthine component of the placenta did not mature. CONCLUSION Our data are most consistent with the deposition of C3b being responsible for the failure of the allantois to fuse to the chorion leading to subsequent conceptus demise.
Collapse
Affiliation(s)
- Michael P Triebwasser
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Bertram
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hourcade
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donald Michael Nelson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ultrasound and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
59
|
Wu X, Hutson I, Akk AM, Mascharak S, Pham CTN, Hourcade DE, Brown R, Atkinson JP, Harris CA. Contribution of Adipose-Derived Factor D/Adipsin to Complement Alternative Pathway Activation: Lessons from Lipodystrophy. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531168 DOI: 10.4049/jimmunol.1701668] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Factor D (FD) is an essential component of the complement alternative pathway (AP). It is an attractive pharmaceutical target because it is an AP-specific protease circulating in blood. Most components of the complement activation pathways are produced by the liver, but FD is highly expressed by adipose tissue. Two critical questions are: 1) to what degree does adipose tissue contribute to circulating FD levels and 2) what quantity of FD is sufficient to maintain a functional AP? To address these issues, we studied a novel mouse strain with complete lipodystrophy (LD), the fld mouse with partial LD, an FD-deficient mouse, and samples from lipodystrophic patients. FD was undetectable in the serum of LD mice, which also showed minimal AP function. Reconstitution with purified FD, serum mixing experiments, and studies of partial LD mice all demonstrated that a low level of serum FD is sufficient for normal AP activity in the mouse system. This conclusion was further supported by experiments in which wild-type adipose precursors were transplanted into LD mice. Our results indicate that almost all FD in mouse serum is derived from adipose tissue. In contrast, FD levels were reduced ∼50% in the sera of patients with congenital generalized LD. Our studies further demonstrate that a relatively small amount of serum FD is sufficient to facilitate significant time-dependent AP activity in humans and in mice. Furthermore, this observation highlights the potential importance of obtaining nearly complete inhibition of FD in treating alternative complement activation in various autoimmune and inflammatory human diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| | - Irina Hutson
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Antonina M Akk
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Smita Mascharak
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Section of Rheumatology, Department of Medicine, St. Louis Veterans Affairs Medical Center, St. Louis, MO 63106
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Rebecca Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814; and
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Section of Endocrinology, Department of Medicine, St. Louis Veterans Affairs Medical Center, St. Louis, MO 63106
| |
Collapse
|
60
|
Abstract
The complement system is a group of proteins, which function in plasma to assist the innate immunity in rapid clearance of pathogens. The complement system also contributes to coordination of the adaptive immune response. Complement Activation Related Pseudo Allergy or CARPA is a life-threatening condition commonly reported with certain types of drugs and nanotechnology-based combination products. While CARPA symptoms are similar to that of anaphylaxis, the mechanism behind this pathology does not involve IgE and is mediated by the complement system. In vitro assays using serum or plasma derived from healthy donor volunteers correlate with the in vivo complement-mediated reactions, and therefore are helpful in understanding the propensity of a given drug formulation to cause CARPA in patients. In the first edition of this book, we have described an in vitro method for qualitative assessment of the complement activation by nanomaterials using western blotting. Herein, we present a similar method utilizing enzyme-linked immunoassay for quantitative analysis of the complement activation, and we compare the performance of this approach to that of the qualitative western blotting technique. The revised chapter also includes new details about nanoparticle sample preparation.
Collapse
Affiliation(s)
- Barry W Neun
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Anna N Ilinskaya
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Marina A Dobrovolskaia
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
61
|
Longitudinal associations of the alternative and terminal pathways of complement activation with adiposity: The CODAM study. Obes Res Clin Pract 2017; 12:286-292. [PMID: 29174517 DOI: 10.1016/j.orcp.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate longitudinal associations of components of the alternative (C3, C3a, Bb, factor D [FD], factor H [FH], and properdin) and the terminal complement pathway (C5a, sC5b-9) with adiposity. METHODS A prospective human cohort study (n=574 at baseline, n=489 after 7 years follow-up) was analyzed. Generalized estimating equations were used to evaluate the longitudinal associations between complement components (standardized values) and adiposity (main outcome BMI [kg/m2]). Multiple linear regression models were used to investigate the associations between change in complement levels and change in BMI. Analyses were adjusted for age, sex, medication and lifestyle. RESULTS Over the 7-year period, baseline C3 was positively associated with BMI (β=1.72 [95% confidence interval (CI): 1.35; 2.09]). Positive associations were also observed for C3a (β=0.64 [0.31; 0.97]), FD (β=1.00 [0.59; 1.42]), FH (β=1.17 [0.82; 1.53]), and properdin (β=0.60 [0.28; 0.92]), but not for Bb, C5a or sC5b-9. Moreover, changes in C3 (β=0.52 [0.34; 0.71]) and FH (β=0.51 [0.32; 0.70]) were significantly associated with changes in BMI. CONCLUSIONS The complement system, particularly activation of the alternative pathway, may be involved in development of adiposity. Whether individual aspects of alternative pathway activation have a causal role in human obesity, remains to be investigated.
Collapse
|
62
|
Korman BD, Marangoni RG, Hinchcliff M, Shah SJ, Carns M, Hoffmann A, Ramsey-Goldman R, Varga J. Brief Report: Association of Elevated Adipsin Levels With Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol 2017. [PMID: 28651038 DOI: 10.1002/art.40193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Adipose tissues secrete adipokines, peptides with potent effects modulating fibrosis, inflammation, and vascular homeostasis. Dysregulated adipose tissue biology and adipokine balance have recently been implicated in systemic sclerosis (SSc). This study was undertaken to determine whether altered circulating adipokine levels correlate with SSc disease subsets or clinical manifestations. METHODS Multiplex assays were used to measure circulating adipokine levels in 198 patients with SSc and 33 healthy controls. Data were evaluated for correlations between serum adipokine levels and demographic and clinical features, including pulmonary arterial hypertension (PAH). To assess the relevance of adipsin, an adipokine involved in complement pathway activation, in SSc, we analyzed publicly available genetic and transcriptomic data. RESULTS Levels of adiponectin and adipsin differed significantly between controls and patients. Adipsin was significantly elevated in patients with limited cutaneous SSc (odds ratio [OR] 28.3 [95% confidence interval (95% CI) 7.0-113.8]; P < 0.0001), and its levels were associated with serum autoantibody status, pulmonary function and cardiovascular parameters, and PAH (OR 3.3 [95% CI 1.3-8.7]; P = 0.02). Elevated adipsin was more strongly associated with PAH than B-type natriuretic peptide was. Moreover, in SSc patients, adipsin gene single-nucleotide polymorphisms were associated with PAH. Transcriptome data set analysis demonstrated elevated adipsin expression in patients with SSc-related PAH. CONCLUSION We identify adipsin as a novel adipose tissue-derived marker of SSc-related PAH. Circulating adipsin levels might serve as predictive biomarkers in SSc. Mechanistically, adipsin might represent a pathogenic link between adipocyte dysfunction and complement pathway activation and play an important role in the pathogenesis of SSc-related PAH.
Collapse
MESH Headings
- Adiponectin/metabolism
- Adult
- Aged
- Autoantibodies/immunology
- Complement Factor D/genetics
- Complement Factor D/metabolism
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Leptin/metabolism
- Male
- Middle Aged
- Natriuretic Peptide, Brain/metabolism
- Nicotinamide Phosphoribosyltransferase/metabolism
- Odds Ratio
- Polymorphism, Single Nucleotide
- Resistin/metabolism
- Scleroderma, Diffuse/complications
- Scleroderma, Diffuse/genetics
- Scleroderma, Diffuse/immunology
- Scleroderma, Diffuse/metabolism
- Scleroderma, Limited/complications
- Scleroderma, Limited/genetics
- Scleroderma, Limited/immunology
- Scleroderma, Limited/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Mary Carns
- Northwestern University, Chicago, Illinois
| | | | | | - John Varga
- Northwestern University, Chicago, Illinois
| |
Collapse
|
63
|
Pihl R, Jensen L, Hansen AG, Thøgersen IB, Andres S, Dagnæs-Hansen F, Oexle K, Enghild JJ, Thiel S. Analysis of Factor D Isoforms in Malpuech-Michels-Mingarelli-Carnevale Patients Highlights the Role of MASP-3 as a Maturase in the Alternative Pathway of Complement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2158-2170. [PMID: 28794230 DOI: 10.4049/jimmunol.1700518] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022]
Abstract
Factor D (FD), which is also known as adipsin, is regarded as the first-acting protease of the alternative pathway (AP) of complement. It has been suggested that FD is secreted as a mature enzyme that does not require subsequent activation. This view was challenged when it was shown that mice lacking mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1) and MASP-3 contain zymogenic FD (pro-FD), and it is becoming evident that MASP-3 is implicated in pro-FD maturation. However, the necessity of MASP-3 for pro-FD cleavage has been questioned, because AP activity is still observed in sera from MASP-1/3-deficient Malpuech-Michels-Mingarelli-Carnevale (3MC) patients. The identification of a novel 3MC patient carrying a previously unidentified MASP-3 G665S mutation prompted us to develop an analytical isoelectric focusing technique that resolves endogenous FD variants in complex samples. This enabled us to show that although 3MC patients predominantly contain pro-FD, they also contain detectable levels of mature FD. Moreover, using isoelectric focusing analysis, we show that both pro-FD and FD are present in the circulation of healthy donors. We characterized the naturally occurring 3MC-associated MASP-3 mutants and found that they all yielded enzymatically inactive proteins. Using MASP-3-depleted human serum, serum from 3MC patients, and Masp1/3-/- mice, we found that lack of enzymatically active MASP-3, or complete MASP-3 deficiency, compromises the conversion of pro-FD to FD. In summary, our observations emphasize that MASP-3 acts as an important maturase in the AP of complement, while also highlighting that there exists MASP-3-independent pro-FD maturation in 3MC patients.
Collapse
Affiliation(s)
- Rasmus Pihl
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark;
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Annette G Hansen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stephanie Andres
- Institute of Human Genetics, Technical University Munich, D-81675 München, Germany; and
| | | | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum Munich, D-85764 Neuherberg, Germany
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
64
|
Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev 2017; 274:9-15. [PMID: 27782327 DOI: 10.1111/imr.12474] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement system is an evolutionarily ancient component of immunity that revolves around the central component C3. With the recent description of intracellular C3 stores in many types of human cells, our view of the complement system has expanded. In this article, we hypothesize that a primitive version of C3 comprised the first element of the original complement system and initially functioned intracellularly and on the membrane of single-celled organisms. With increasing specialization and multicellularity, C3 evolved a secretory capacity that allowed it to play a protective role in the interstitial space. Upon development of a pumped circulatory system, C3 was synthesized in large amounts and secreted by the liver to protect the intravascular space. Recent discoveries of intracellular C3 activation, a C3-based recycling pathway and C3 being a driver and programmer of cell metabolism suggest that the complement system utilizes C3 to guard not only extracellular but also the intracellular environment. We predict that the major functions of C3 in all four locations (i.e. intracellular, membrane, interstitium and circulation) are similar: opsonization, membrane perturbation, triggering inflammation, and metabolic reprogramming.
Collapse
Affiliation(s)
- Michelle Elvington
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - M Kathryn Liszewski
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John P Atkinson
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
65
|
Elekofehinti OO, Ejelonu OC, Kamdem JP, Akinlosotu OB, Adanlawo IG. Saponins as adipokines modulator: A possible therapeutic intervention for type 2 diabetes. World J Diabetes 2017; 8:337-345. [PMID: 28751956 PMCID: PMC5507830 DOI: 10.4239/wjd.v8.i7.337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/03/2017] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Development of type 2 diabetes has been linked to β-cell failure coupled with insulin resistance and obesity. Adipose tissue, known as the fat store, secretes a number of hormones and proteins collectively termed adipokines some of which regulate insulin sensitivity. Dysregulation in the secretion of adipokines has been linked to insulin resistance and type 2 diabetes. In this review, we summarized evidence of the role of adipokines with focus on leptin, adiponectin, adipsin, visfatin and apelin in the pathogenesis of type 2 diabetes and discussed the potential of saponins to modify the ill-regulated adipokines secretions, which could promote the use of this class of phytochemicals as potential antidiabetics agents.
Collapse
|
66
|
Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 2017; 129:1184-1196. [PMID: 28057640 DOI: 10.1182/blood-2016-07-728253] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/22/2016] [Indexed: 01/07/2023] Open
Abstract
Complement plays a key role in host defense, but its dysregulation can cause autologous tissue injury. Complement activation is normally controlled by regulatory proteins, including factor H (FH) in plasma and membrane cofactor protein (MCP) on the cell surface. Mutations in FH and MCP are linked to atypical hemolytic uremic syndrome, a type of thrombotic microangiopathy (TMA) that causes renal failure. We describe here that disruption of FH function on the cell surface can also lead to disseminated complement-dependent macrovascular thrombosis. By gene targeting, we introduced a point mutation (W1206R) into murine FH that impaired its interaction with host cells but did not affect its plasma complement-regulating activity. Homozygous mutant mice carrying this mutation developed renal TMA as well as systemic thrombophilia involving large blood vessels in multiple organs, including liver, lung, spleen, and kidney. Approximately 30% of mutant mice displayed symptoms of stroke and ischemic retinopathy, and 48% died prematurely. Genetic deficiency of complement C3 and factor D prevented both the systemic thrombophilia and renal TMA phenotypes. These results demonstrate a causal relationship between complement dysregulation and systemic angiopathy and suggest that complement activation may contribute to various human thrombotic disorders involving both the micro- and macrovasculature.
Collapse
|
67
|
Banda NK, Acharya S, Scheinman RI, Mehta G, Coulombe M, Takahashi M, Sekine H, Thiel S, Fujita T, Holers VM. Mannan-Binding Lectin-Associated Serine Protease 1/3 Cleavage of Pro-Factor D into Factor D In Vivo and Attenuation of Collagen Antibody-Induced Arthritis through Their Targeted Inhibition by RNA Interference-Mediated Gene Silencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3680-3694. [PMID: 27707997 PMCID: PMC5113144 DOI: 10.4049/jimmunol.1600719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022]
Abstract
The complement system is proposed to play an important role in the pathogenesis of rheumatoid arthritis (RA). The complement system mannan-binding lectin-associated serine proteases (MASP)-1/3 cleave pro-factor D (proDf; inactive) into Df (active), but it is unknown where this cleavage occurs and whether inhibition of MASP-1/3 is a relevant therapeutic strategy for RA. In the present study, we show that the cleavage of proDf into Df by MASP-1/3 can occur in the circulation and that inhibition of MASP-1/3 by gene silencing is sufficient to ameliorate collagen Ab-induced arthritis in mice. Specifically, to examine the cleavage of proDf into Df, MASP-1/3-producing Df-/- liver tissue (donor) was transplanted under the kidney capsule of MASP-1/3-/- (recipient) mice. Five weeks after the liver transplantation, cleaved Df was present in the circulation of MASP-1/3-/- mice. To determine the individual effects of MASP-1/3 and Df gene silencing on collagen Ab-induced arthritis, mice were injected with scrambled, MASP-1/3-targeted, or Df-targeted small interfering RNAs (siRNAs). The mRNA levels for MASP-1 and -3 decreased in the liver to 62 and 58%, respectively, in mice injected with MASP-1/3 siRNAs, and Df mRNA decreased to 53% in the adipose tissue of mice injected with Df siRNAs; additionally, circulating MASP-1/3 and Df protein levels were decreased. In mice injected with both siRNAs the clinical disease activity, histopathologic injury scores, C3 deposition, and synovial macrophage/neutrophil infiltration were significantly decreased. Thus, MASP-1/3 represent a new therapeutic target for the treatment of RA, likely through both direct effects on the lectin pathway and indirectly through the alternative pathway.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Sumitra Acharya
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Robert I Scheinman
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Gaurav Mehta
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marilyne Coulombe
- Colorado Center for Transplantation Care, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - V Michael Holers
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
68
|
Small-molecule factor D inhibitors targeting the alternative complement pathway. Nat Chem Biol 2016; 12:1105-1110. [PMID: 27775713 DOI: 10.1038/nchembio.2208] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/15/2016] [Indexed: 01/17/2023]
Abstract
Complement is a key component of the innate immune system, recognizing pathogens and promoting their elimination. Complement component 3 (C3) is the central component of the system. Activation of C3 can be initiated by three distinct routes-the classical, the lectin and the alternative pathways-with the alternative pathway also acting as an amplification loop for the other two pathways. The protease factor D (FD) is essential for this amplification process, which, when dysregulated, predisposes individuals to diverse disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinuria (PNH). Here we describe the identification of potent and selective small-molecule inhibitors of FD. These inhibitors efficiently block alternative pathway (AP) activation and prevent both C3 deposition onto, and lysis of, PNH erythrocytes. Their oral administration inhibited lipopolysaccharide-induced AP activation in FD-humanized mice. These data demonstrate the feasibility of inhibiting the AP with small-molecule antagonists and support the development of FD inhibitors for the treatment of complement-mediated diseases.
Collapse
|
69
|
Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T. In vitrotoxicology studies of extracellular vesicles. J Appl Toxicol 2016; 37:310-318. [DOI: 10.1002/jat.3362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sayantan Maji
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Irene K. Yan
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Mansi Parasramka
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Swathi Mohankumar
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Akiko Matsuda
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Tushar Patel
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| |
Collapse
|
70
|
Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L. An Evaluation of Blood Compatibility of Silver Nanoparticles. Sci Rep 2016; 6:25518. [PMID: 27145858 PMCID: PMC4857076 DOI: 10.1038/srep25518] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) have tremendous potentials in medical devices due to their excellent antimicrobial properties. Blood compatibility should be investigated for AgNPs due to the potential blood contact. However, so far, most studies are not systematic and have not provided insights into the mechanisms for blood compatibility of AgNPs. In this study, we have investigated the blood biological effects, including hemolysis, lymphocyte proliferation, platelet aggregation, coagulation and complement activation, of 20 nm AgNPs with two different surface coatings (polyvinyl pyrrolidone and citrate). Our results have revealed AgNPs could elicit hemolysis and severely impact the proliferation and viability of lymphocytes at all investigated concentrations (10, 20, 40 μg/mL). Nevertheless, AgNPs didn't show any effect on platelet aggregation, coagulation process, or complement activation at up to ~40 μg/mL. Proteomic analysis on AgNPs plasma proteins corona has revealed that acidic and small molecular weight blood plasma proteins were preferentially adsorbed onto AgNPs, and these include some important proteins relevant to hemostasis, coagulation, platelet, complement activation and immune responses. The predicted biological effects of AgNPs by proteomic analysis are mostly consistent with our experimental data since there were few C3 components on AgNPs and more negative than positive factors involving platelet aggregation and thrombosis.
Collapse
Affiliation(s)
- He Huang
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Wenjia Lai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Menghua Cui
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ling Liang
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuchen Lin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qiaojun Fang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ying Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Liming Xie
- Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
71
|
Pavan Kumar N, Nair D, Banurekha VV, Dolla C, Kumaran P, Sridhar R, Babu S. Type 2 diabetes mellitus coincident with pulmonary or latent tuberculosis results in modulation of adipocytokines. Cytokine 2016; 79:74-81. [PMID: 26771473 PMCID: PMC4729624 DOI: 10.1016/j.cyto.2015.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as major risk factor for the progress of active pulmonary tuberculosis (PTB), although the mechanistic link between diabetes and tuberculosis remains poorly characterized. Moreover, the influence of poorly controlled diabetes on the baseline levels of adipocytokines in the context of tuberculosis has not been explored in detail. To characterize the influence of coexistent DM on adipocytokine levels in pulmonary or latent TB (LTB), we examined circulating levels of adipocytokines in the plasma of individuals with PTB-DM or LTB-DM and compared them with those without DM (PTB or LTB). PTB-DM or LTB-DM is characterized by diminished circulating levels of adiponectin and adipsin and/or heightened circulating levels of leptin, visfatin and PAI-1. In addition, adiponectin and adipsin exhibit a significant negative correlation, whereas leptin, visfatin and PAI-1 display a significant positive correlation with HbA1C levels and random blood glucose levels. Therefore, our data reveal that PTB-DM or LTB-DM is characterized by alterations in the systemic levels of adipocytokines, indicating that altered adipose tissue inflammation underlying Type 2 diabetes potentially contributes to pathogenesis of TB disease.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-International Center for Excellence in Research, Chennai, India; National Institute for Research in Tuberculosis, Chennai, India.
| | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | - V V Banurekha
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Subash Babu
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
72
|
Schmid A, Hochberg A, Berghoff M, Schlegel J, Karrasch T, Kaps M, Schäffler A. Quantification and regulation of adipsin in human cerebrospinal fluid (CSF). Clin Endocrinol (Oxf) 2016; 84:194-202. [PMID: 26186410 DOI: 10.1111/cen.12856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/03/2015] [Accepted: 07/10/2015] [Indexed: 02/01/2023]
Abstract
CONTEXT Data on quantification and regulation of adipsin in human cerebrospinal fluid (CSF) are sparse, and the physiological role of adipsin as an adipokine crossing the blood-brain barrier (BBB) is uncertain. OBJECTIVES This study quantified adipsin concentrations in paired serum and CSF samples of patients undergoing neurological evaluation and spinal puncture. DESIGN A total of 270 consecutive patients with specified neurological diagnosis were included in this study without prior selection. MAIN OUTCOME MEASURES Adipsin serum and CSF concentrations were measured by ELISA. A variety of serum and CSF routine parameters were measured by standard procedures. Anthropometric data, medication and patient history were available. RESULTS Adipsin concentrations ranged between 467 and 5148 ng/ml in serum and between 4·2 and 133·5 ng/ml in CSF. Serum adipsin concentrations were correlated positively with respective CSF concentrations and were approximately 40-fold higher when compared to CSF. The mean CSF/serum ratio for adipsin was 27 ± 22 × 10-3 . Serum and CSF adipsin levels were independent of gender and significantly higher in overweight/obese individuals. Serum and CSF adipsin levels correlated significantly with age and were higher in patients suffering from diabetes mellitus or hypertension. CSF adipsin concentrations showed a significant correlation with markers of inflammation in CSF, but not with CSF total cell count or the presence of oligoclonal bands. Patients suffering from infectious diseases had higher CSF levels of adipsin than multiple sclerosis patients. CONCLUSIONS Adipsin is present in human CSF under pathophysiological conditions. The positive correlation between serum and CSF concentrations, the positive correlation between the CSF/serum ratios for adipsin and total protein and the lack of association with CSF cell count argue against an autochthonous production in the central nervous system. In contrast, the present data argue for a significant BBB permeability to adipsin.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Alexandra Hochberg
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Martin Berghoff
- Department of Neurology, Giessen University Hospital, Giessen, Germany
| | - Jutta Schlegel
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Giessen University Hospital, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| |
Collapse
|
73
|
Noel OF, Still CD, Argyropoulos G, Edwards M, Gerhard GS. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery. J Obes 2016; 2016:4390254. [PMID: 27006824 PMCID: PMC4783581 DOI: 10.1155/2016/4390254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 01/02/2023] Open
Abstract
Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.
Collapse
Affiliation(s)
- Olivier F. Noel
- Temple University School of Medicine, Philadelphia, PA 19140, USA
- Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael Edwards
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Glenn S. Gerhard
- Temple University School of Medicine, Philadelphia, PA 19140, USA
- *Glenn S. Gerhard:
| |
Collapse
|
74
|
Vassal-Stermann E, Lacroix M, Gout E, Laffly E, Pedersen CM, Martin L, Amoroso A, Schmidt RR, Zähringer U, Gaboriaud C, Di Guilmi AM, Thielens NM. Human L-ficolin recognizes phosphocholine moieties of pneumococcal teichoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5699-708. [PMID: 25344472 DOI: 10.4049/jimmunol.1400127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Human L-ficolin is a soluble protein of the innate immune system able to sense pathogens through its fibrinogen (FBG) recognition domains and to trigger activation of the lectin complement pathway through associated serine proteases. L-Ficolin has been previously shown to recognize pneumococcal clinical isolates, but its ligands and especially its molecular specificity remain to be identified. Using solid-phase binding assays, serum and recombinant L-ficolins were shown to interact with serotype 2 pneumococcal strain D39 and its unencapsulated R6 derivative. Incubation of both strains with serum triggered complement activation, as measured by C4b and C3b deposition, which was decreased by using ficolin-depleted serum. Recombinant L-ficolin and its FBG-like recognition domain bound to isolated pneumococcal cell wall extracts, whereas binding to cell walls depleted of teichoic acid (TA) was decreased. Both proteins were also shown to interact with two synthetic TA compounds, each comprising part structures of the complete lipoteichoic acid molecule with two PCho residues. Competition studies and direct interaction measurements by surface plasmon resonance identified PCho as a novel L-ficolin ligand. Structural analysis of complexes of the FBG domain of L-ficolin and PCho revealed that the phosphate moiety interacts with amino acids previously shown to define an acetyl binding site. Consequently, binding of L-ficolin to immobilized acetylated BSA was inhibited by PCho and synthetic TA. Binding of serum L-ficolin to immobilized synthetic TA and PCho-conjugated BSA triggered activation of the lectin complement pathway, thus further supporting the hypothesis of L-ficolin involvement in host antipneumococcal defense.
Collapse
Affiliation(s)
- Emilie Vassal-Stermann
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Monique Lacroix
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Evelyne Gout
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Emmanuelle Laffly
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | | | - Lydie Martin
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liege, B4000 Liege, Belgium
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany; Chemistry Department, King Abdulaziz University of Jeddah, 21589 Jeddah, Saudi Arabia; and
| | - Ulrich Zähringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Christine Gaboriaud
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne-Marie Di Guilmi
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France;
| | - Nicole M Thielens
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
75
|
Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2014; 83:591-603. [PMID: 25404032 DOI: 10.1128/iai.02811-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.
Collapse
|
76
|
Cresci GA, Allende D, McMullen MR, Nagy LE. Alternative complement pathway component Factor D contributes to efficient clearance of tissue debris following acute CCl₄-induced injury. Mol Immunol 2014; 64:9-17. [PMID: 25467802 DOI: 10.1016/j.molimm.2014.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
Complement, part of the innate immune system, is involved with immune protection against invading pathogens as well as cell survival and tissue regeneration. It is known that complement activation is required for timely hepatocyte recovery following an acute toxic injury, but which pathway of complement activation is involved in response to hepatocyte injury has not been identified. In these studies we utilize mice deficient in C1qa, C4 and Factor D, lacking the classical, classical/MBL, and alternative pathways of complement activation, respectively, to identify an essential role for Factor D in the ability of the liver to recover from acute toxic injury. Here we demonstrate that following an acute CCl4-induced injury, the involvement of the alternative complement pathway is essential for efficient liver recovery.
Collapse
Affiliation(s)
- Gail A Cresci
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela Allende
- Department of Pathology Cleveland Clinic, Cleveland, OH 44195, USA
| | - Megan R McMullen
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E Nagy
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
77
|
Mathews JA, Wurmbrand AP, Ribeiro L, Neto FL, Shore SA. Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D. Front Immunol 2014; 5:440. [PMID: 25309539 PMCID: PMC4164008 DOI: 10.3389/fimmu.2014.00440] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/30/2014] [Indexed: 12/31/2022] Open
Abstract
Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique) was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A(+) γδ T cells and IL-17A(+) CD4(+) T (Th17) cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin), a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFα, MIP-1α, and MIP-1β, and classical markers of systemic inflammation of obesity were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided temporally with the development of AHR suggest that systemic inflammation may be one of these factors.
Collapse
Affiliation(s)
- Joel A Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Allison P Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Luiza Ribeiro
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Felippe Lazar Neto
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| |
Collapse
|
78
|
|
79
|
Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, Kelly ME, Chatterjee Bhowmick D, Murano I, Cohen P, Banks AS, Khandekar MJ, Dietrich A, Flier JS, Cinti S, Blüher M, Danial NN, Berggren PO, Spiegelman BM. Adipsin is an adipokine that improves β cell function in diabetes. Cell 2014; 158:41-53. [PMID: 24995977 PMCID: PMC4128197 DOI: 10.1016/j.cell.2014.06.005] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic β cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining β cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with β cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to β cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.
Collapse
Affiliation(s)
- James C Lo
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sanda Ljubicic
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Molly E Kelly
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Diti Chatterjee Bhowmick
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Incoronata Murano
- Department of Experimental and Clinical Medicine, University of Ancona, 60020 Ancona, Italy
| | - Paul Cohen
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander S Banks
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melin J Khandekar
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig 04103, Germany
| | | | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona, 60020 Ancona, Italy
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Nika N Danial
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Ruseva MM, Takahashi M, Fujita T, Pickering MC. C3 dysregulation due to factor H deficiency is mannan-binding lectin-associated serine proteases (MASP)-1 and MASP-3 independent in vivo. Clin Exp Immunol 2014; 176:84-92. [PMID: 24279761 PMCID: PMC3958157 DOI: 10.1111/cei.12244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/28/2022] Open
Abstract
Uncontrolled activation of the complement alternative pathway is associated with complement-mediated renal disease. Factor B and factor D are essential components of this pathway, while factor H (FH) is its major regulator. In complete FH deficiency, uncontrolled C3 activation through the alternative pathway results in plasma C3 depletion and complement-mediated renal disease. These are dependent on factor B. Mannan-binding lectin-associated serine proteases 1 and 3 (MASP-1, MASP-3) have been shown recently to contribute to alternative pathway activation by cleaving pro-factor D to its active form, factor D. We studied the contribution of MASP-1 and MASP-3 to uncontrolled alternative pathway activation in experimental complete FH deficiency. Co-deficiency of FH and MASP-1/MASP-3 did not ameliorate either the plasma C3 activation or glomerular C3 accumulation in FH-deficient mice. Our data indicate that MASP-1 and MASP-3 are not essential for alternative pathway activation in complete FH deficiency.
Collapse
Affiliation(s)
- M M Ruseva
- Centre for Complement & Inflammation Research, Imperial College London, London, UK
| | | | | | | |
Collapse
|
81
|
Zou L, Feng Y, Li Y, Zhang M, Chen C, Cai J, Gong Y, Wang L, Thurman JM, Wu X, Atkinson JP, Chao W. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5625-35. [PMID: 24154627 PMCID: PMC3906719 DOI: 10.4049/jimmunol.1301903] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of TLRs mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. In this article, we show that activation of TLR2, TLR3, and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture in a mouse model, augmented cfB levels in the serum, peritoneal cavity, and major organs including the kidney and heart. Cecal ligation and puncture also led to the alternative pathway activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum alternative pathway via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 upregulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production, and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis.
Collapse
Affiliation(s)
- Lin Zou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yan Li
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ming Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chan Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jiayan Cai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yu Gong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Larry Wang
- Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | - Xiaobo Wu
- Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - John P. Atkinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
82
|
Beazley KE, Reckard S, Nurminsky D, Lima F, Nurminskaya M. Two sides of MGP null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin. J Biol Chem 2013; 288:31400-8. [PMID: 24036114 PMCID: PMC3829453 DOI: 10.1074/jbc.m113.495556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/02/2013] [Indexed: 01/04/2023] Open
Abstract
Mutations in matrix Gla protein (MGP) have been correlated with vascular calcification. In the mouse model, MGP null vascular disease presents as calcifying cartilaginous lesions and mineral deposition along elastin lamellae (elastocalcinosis). Here we examined the mechanisms underlying both of these manifestations. Genetic ablation of enzyme transglutaminase 2 (TG2) in Mgp(-/-) mice dramatically reduced the size of cartilaginous lesions in the aortic media, attenuated calcium accrual more than 2-fold, and doubled longevity as compared with control Mgp(-/-) animals. Nonetheless, the Mgp(-/-);Tgm2(-/-) mice still died prematurely as compared with wild-type and retained the elastocalcinosis phenotype. This pathology in Mgp(-/-) animals was developmentally preceded by extensive fragmentation of elastic lamellae and associated with elevated serine elastase activity in aortic tissue and vascular smooth muscle cells. Systematic gene expression analysis followed by an immunoprecipitation study identified adipsin as the major elastase that is induced in the Mgp(-/-) vascular smooth muscle even in the TG2 null background. These results reveal a central role for TG2 in chondrogenic transformation of vascular smooth muscle and implicate adipsin in elastin fragmentation and ensuing elastocalcinosis. The importance of elastin calcification in MGP null vascular disease is highlighted by significant residual vascular calcification and mortality in Mgp(-/-);Tgm2(-/-) mice with reduced cartilaginous lesions. Our studies identify two potential therapeutic targets in vascular calcification associated with MGP dysfunction and emphasize the need for a comprehensive approach to this multifaceted disorder.
Collapse
Affiliation(s)
- Kelly E. Beazley
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Steven Reckard
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Dmitry Nurminsky
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Florence Lima
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Maria Nurminskaya
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
83
|
Christaki E, Giamarellos-Bourboulis EJ. The complex pathogenesis of bacteremia: from antimicrobial clearance mechanisms to the genetic background of the host. Virulence 2013; 5:57-65. [PMID: 24067507 PMCID: PMC3916384 DOI: 10.4161/viru.26514] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteremia develops when bacteria manage to escape the host immune mechanisms or when the otherwise well-orchestrated immune response fails to control bacterial spread due to inherent or acquired immune defects that are associated with susceptibility to infection. The pathogenesis of bacteremia has some characteristic features that are influenced by the genetic signature of the host. In this review, the host defense mechanisms that help prevent bacteremia will be described and the populations who are at risk because of congenital or acquired deficiencies in such mechanisms will be defined. A special mention will be made to novel insights regarding host immune defense against the most commonly isolated organisms from patients with community-acquired bloodstream infections.
Collapse
Affiliation(s)
- Eirini Christaki
- Third Department of Internal Medicine; Aristotle University of Thessaloniki; Papageorgiou General Hospital; Thessaloniki, Greece; Infectious Diseases Division; Warren Alpert Medical School of Brown University; Providence, RI USA
| | - Evangelos J Giamarellos-Bourboulis
- Fourth Department of Internal Medicine; Medical School; University of Athens; Athens, Greece; Integrated Research and Treatment Center; Center for Sepsis Control and Care; Jena University Hospital; Jena, Germany
| |
Collapse
|
84
|
Ho AW, Garg AV, Monin L, Simpson-Abelson MR, Kinner L, Gaffen SL. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS One 2013; 8:e70168. [PMID: 23922952 PMCID: PMC3726431 DOI: 10.1371/journal.pone.0070168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/15/2013] [Indexed: 12/14/2022] Open
Abstract
IL-17 is the founding member of a family of cytokines and receptors with unique structures and signaling properties. IL-17 is the signature cytokine of Th17 cells, a relatively new T cell population that promotes inflammation in settings of infection and autoimmunity. Despite advances in understanding Th17 cells, mechanisms of IL-17-mediated signal transduction are less well defined. IL-17 signaling requires contributions from two receptor subunits, IL-17RA and IL-17RC. Mutants of IL-17RC lacking the cytoplasmic domain are nonfunctional, indicating that IL-17RC provides essential but poorly understood signaling contributions to IL-17-mediated signaling. To better understand the role of IL-17RC in signaling, we performed a yeast 2-hybrid screen to identify novel proteins associated with the IL-17RC cytoplasmic tail. One of the most frequent candidates was the anaphase promoting complex protein 7 (APC7 or AnapC7), which interacted with both IL-17RC and IL-17RA. Knockdown of AnapC7 by siRNA silencing exerted no detectable impact on IL-17 signaling. However, AnapC5, which associates with AnapC7, was also able to bind IL-17RA and IL-17RC. Moreover, AnapC5 silencing enhanced IL-17-induced gene expression, suggesting an inhibitory activity. Strikingly, AnapC5 also associated with A20 (TNFAIP3), a recently-identified negative feedback regulator of IL-17 signal transduction. IL-17 signaling was not impacted by knockdown of Itch or TAXBP1, scaffolding proteins that mediate A20 inhibition in the TNFα and IL-1 signaling pathways. These data suggest a model in which AnapC5, rather than TAX1BP1 and Itch, is a novel adaptor and negative regulator of IL-17 signaling pathways.
Collapse
Affiliation(s)
- Allen W. Ho
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Abhishek V. Garg
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Simpson-Abelson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lauren Kinner
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
85
|
Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 2013; 81:2606-15. [PMID: 23649097 DOI: 10.1128/iai.00491-13] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system.
Collapse
|
86
|
Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 2013; 27:2177-86. [PMID: 23538751 DOI: 10.1038/leu.2013.91] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/22/2013] [Indexed: 02/03/2023]
Abstract
The molecular bases of myelodysplastic syndromes (MDS) are not fully understood. Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed genes and has been shown to be involved in hematopoietic differentiation. We performed a genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole genome sequencing) analysis of primary MDS bone marrow (BM) CD34+ cells. This resulted in the identification of 36 genes marked by distinct higher levels of promoter H3K4me3 in MDS. A majority of these genes are involved in nuclear factor (NF)-κB activation and innate immunity signaling. We then analyzed expression of histone demethylases and observed significant overexpression of the JmjC-domain histone demethylase JMJD3 (KDM6b) in MDS CD34+ cells. Furthermore, we demonstrate that JMJD3 has a positive effect on transcription of multiple CHIP-Seq identified genes involved in NF-κB activation. Inhibition of JMJD3 using shRNA in primary BM MDS CD34+ cells resulted in an increased number of erythroid colonies in samples isolated from patients with lower-risk MDS. Taken together, these data indicate the deregulation of H3K4me3 and associated abnormal activation of innate immunity signals have a role in the pathogenesis of MDS and that targeting these signals may have potential therapeutic value in MDS.
Collapse
|
87
|
Berezhna LG, Ivanov AE, Leistner A, Lehmann A, Viloria-Cols M, Jungvid H. Structure and biocompatibility of poly(vinyl alcohol)-based and agarose-based monolithic composites with embedded divinylbenzene-styrene polymeric particles. Prog Biomater 2013; 2:4. [PMID: 29470682 PMCID: PMC5151119 DOI: 10.1186/2194-0517-2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/07/2013] [Indexed: 11/26/2022] Open
Abstract
Macroporous monolithic composites with embedded divinylbenzene-styrene (DVB-ST) polymeric particles were prepared by cryogelation techniques using poly(vinyl alcohol) or agarose solutions. Scanning electron microscopy images showed multiple interconnected pores with an average diameter in the range of 4 to 180 μm and quite homogeneous distribution of DVB-ST particles in the composites. Biocompatibility of the composites was assessed by estimation of the C5a fragment of complement in the blood serum and concentration of fibrinogen in the blood plasma which contacted the composites. A time-dependent generation of C5a fragment indicated weak activation of the complement system. At the same time, the difference in fibrinogen concentration, one of the most important proteins in the coagulation system of the blood, between the pristine blood plasma and the plasma, circulated through the monolithic columns, was insignificant.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans Jungvid
- Protista Biotechnology AB, Bjuv, SE-26722, Sweden
| |
Collapse
|
88
|
The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 2013; 121:1760-8. [PMID: 23299310 DOI: 10.1182/blood-2012-06-440214] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in the regulation of the immune response. MDSC expansion occurs in many circumstances, including cancer, inflammation, stresses, and transplant tolerance. Liver transplants in mice are spontaneously accepted, but hepatocyte transplants are acutely rejected, suggesting the immunoregulatory activities of liver nonparenchymal cells. We have reported that hepatic stellate cells (HpSCs), the stromal cells in the liver, are immensely immunosuppressive and can effectively protect islet transplants via induction of MDSCs. The present study shows that the addition of HpSCs into dendritic cell (DC) culture promoted development of MDSCs, instead of DCs, which was highly dependent on complement component 3 (C3) from HpSCs. The C3(-/-) HpSCs lost their ability to induce MDSCs and, consequently, failed to protect the cotransplanted islet allografts. HpSCs produced complement activation factor B and factor D which then enhanced C3 cleavage to activation products iC3b and C3d. Addition of exogenous iC3b, but not C3d, into the DC culture led to the differentiation of MDSCs with potent immune-inhibitory function. These findings provide novel mechanistic insights into the differentiation of myeloid cells mediated by local tissue cells, and may assist in the development of MDSC-based therapy in clinical settings.
Collapse
|
89
|
Endo Y, Takahashi M, Iwaki D, Ishida Y, Nakazawa N, Kodama T, Matsuzaka T, Kanno K, Liu Y, Tsuchiya K, Kawamura I, Ikawa M, Waguri S, Wada I, Matsushita M, Schwaeble WJ, Fujita T. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5860-6. [PMID: 23150716 DOI: 10.4049/jimmunol.1200836] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are complexed with MBL-associated serine proteases, key enzymes of complement activation via the lectin pathway, and act as soluble pattern recognition molecules in the innate immune system. Although numerous reports have revealed the importance of MBL in infectious diseases and autoimmune disorders, the role of ficolin is still unclear. To define the specific role of ficolin in vivo, we generated model mice deficient in ficolins. The ficolin A (FcnA)-deficient (Fcna(-/-)) and FcnA/ficolin B double-deficient (Fcna(-/-)b(-/-)) mice lacked FcnA-mediated complement activation in the sera, because of the absence of complexes comprising FcnA and MBL-associated serine proteases. When the host defense was evaluated by transnasal infection with a Streptococcus pneumoniae strain, which was recognized by ficolins, but not by MBLs, the survival rate was significantly reduced in all three ficolin-deficient (Fcna(-/-), Fcnb(-/-), and Fcna(-/-)b(-/-)) mice compared with wild-type mice. Reconstitution of the FcnA-mediated lectin pathway in vivo improved survival rate in Fcna(-/-) but not in Fcna(-/-)b(-/-) mice, suggesting that both FcnA and ficolin B are essential in defense against S. pneumoniae. These results suggest that ficolins play a crucial role in innate immunity against pneumococcal infection through the lectin complement pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Chandler-Temple A, Kingshott P, Wentrup-Byrne E, Cassady AI, Grøndahl L. Surface chemistry of grafted expanded poly(tetrafluoroethylene) membranes modifies thein vitroproinflammatory response in macrophages. J Biomed Mater Res A 2012; 101:1047-58. [DOI: 10.1002/jbm.a.34408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
|
91
|
Degn SE, Jensen L, Hansen AG, Duman D, Tekin M, Jensenius JC, Thiel S. Mannan-binding lectin-associated serine protease (MASP)-1 is crucial for lectin pathway activation in human serum, whereas neither MASP-1 nor MASP-3 is required for alternative pathway function. THE JOURNAL OF IMMUNOLOGY 2012; 189:3957-69. [PMID: 22966085 DOI: 10.4049/jimmunol.1201736] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The lectin pathway of complement is an important component of innate immunity. Its activation has been thought to occur via recognition of pathogens by mannan-binding lectin (MBL) or ficolins in complex with MBL-associated serine protease (MASP)-2, followed by MASP-2 autoactivation and cleavage of C4 and C2 generating the C3 convertase. MASP-1 and MASP-3 are related proteases found in similar complexes. MASP-1 has been shown to aid MASP-2 convertase generation by auxiliary C2 cleavage. In mice, MASP-1 and MASP-3 have been reported to be central also to alternative pathway function through activation of profactor D and factor B. In this study, we present functional studies based on a patient harboring a nonsense mutation in the common part of the MASP1 gene and hence deficient in both MASP-1 and MASP-3. Surprisingly, we find that the alternative pathway in this patient functions normally, and is unaffected by reconstitution with MASP-1 and MASP-3. Conversely, we find that the patient has a nonfunctional lectin pathway, which can be restored by MASP-1, implying that this component is crucial for complement activation. We show that, although MASP-2 is able to autoactivate under artificial conditions, MASP-1 dramatically increases lectin pathway activity at physiological conditions through direct activation of MASP-2. We further demonstrate that MASP-1 and MASP-2 can associate in the same MBL complex, and that such cocomplexes are found in serum, providing a scenario for transactivation of MASP-2. Hence, in functional terms, it appears that MASP-1 and MASP-2 act in a manner analogous to that of C1r and C1s of the classical pathway.
Collapse
Affiliation(s)
- Søren E Degn
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
92
|
Husain M, Golovan S, Rupa P, Mine Y, Boermans H, Karrow N. Spleen transcriptome profiles of BALB/c mouse in response to egg ovomucoid sensitisation and challenge. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2011.615062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
93
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
94
|
Hyams C, Opel S, Hanage W, Yuste J, Bax K, Henriques-Normark B, Spratt BG, Brown JS. Effects of Streptococcus pneumoniae strain background on complement resistance. PLoS One 2011; 6:e24581. [PMID: 22022358 PMCID: PMC3192701 DOI: 10.1371/journal.pone.0024581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/15/2011] [Indexed: 01/04/2023] Open
Abstract
Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.
Collapse
Affiliation(s)
- Catherine Hyams
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Sophia Opel
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - William Hanage
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Katie Bax
- Department of Anatomy, University College London, London, United Kingdom
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and the Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, St. Mary's Hospital Campus, Imperial College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Iwaki D, Kanno K, Takahashi M, Endo Y, Matsushita M, Fujita T. The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:3751-8. [PMID: 21865552 DOI: 10.4049/jimmunol.1100280] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.
Collapse
Affiliation(s)
- Daisuke Iwaki
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Sebastian BM, Roychowdhury S, Tang H, Hillian AD, Feldstein AE, Stahl GL, Takahashi K, Nagy LE. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J Biol Chem 2011; 286:35989-35997. [PMID: 21856753 DOI: 10.1074/jbc.m111.254201] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic, heavy alcohol exposure results in inflammation in adipose tissue, insulin resistance, and liver injury. Here we have identified a CYP2E1/Bid/C1q-dependent pathway that is activated in response to chronic ethanol and is required for the development of inflammation in adipose tissue. Ethanol feeding for 25 days to wild-type (C57BL/6J) mice increased expression of multiple markers of adipose tissue inflammation relative to pair-fed controls independent of increased body weight or adipocyte size. Ethanol feeding increased the expression of CYP2E1 in adipocytes, but not stromal vascular cells, in adipose tissue and Cyp2e1(-/-) mice were protected from adipose tissue inflammation in response to ethanol. Ethanol feeding also increased the number of TUNEL-positive nuclei in adipose tissue of wild-type mice but not in Cyp2e1(-/-) or Bid (-/-) mice. Apoptosis contributed to adipose inflammation, as the expression of multiple inflammatory markers was decreased in mice lacking the Bid-dependent apoptotic pathway. The complement protein C1q binds to apoptotic cells, facilitating their clearance and activating complement. Making use of C1q-deficient mice, we found that activation of complement via C1q provided the critical link between CYP2E1/Bid-dependent apoptosis and onset of adipose tissue inflammation in response to chronic ethanol. In summary, chronic ethanol increases CYP2E1 activity in adipose, leading to Bid-mediated apoptosis and activation of complement via C1q, finally resulting in adipose tissue inflammation. Taken together, these data identify a novel mechanism for the development of adipose tissue inflammation that likely contributes to the pathophysiological effects of ethanol.
Collapse
Affiliation(s)
- Becky M Sebastian
- Liver Disease Research Center, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sanjoy Roychowdhury
- Liver Disease Research Center, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hui Tang
- Liver Disease Research Center, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Antoinette D Hillian
- Liver Disease Research Center, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ariel E Feldstein
- Liver Disease Research Center, Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio 44195; Liver Disease Research Center, Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Ohio, 44190
| | - Gregory L Stahl
- Department of Anesthesiology, Peroperative, and Pain Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Kazue Takahashi
- Laboratory of Developmental Immunology, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura E Nagy
- Liver Disease Research Center, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Ohio, 44190; Liver Disease Research Center, Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
97
|
Essential role of factor B of the alternative complement pathway in complement activation and opsonophagocytosis during acute pneumococcal otitis media in mice. Infect Immun 2011; 79:2578-85. [PMID: 21502587 DOI: 10.1128/iai.00168-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We recently reported that the complement system plays a pivotal role in innate immune defense against Streptococcus pneumoniae during acute otitis media (OM) in mice. The current study was designed to determine which of the complement pathways are activated during acute pneumococcal OM and whether components of complement are expressed in the middle ear epithelium. Gene expression was determined by quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. We found that S. pneumoniae induced increased gene expression of factor B of the alternative complement pathway and C3 in mouse middle ear epithelium. Activation of factor B and C3 in the middle ear lavage fluids was significantly greater than in simultaneously obtained serum samples as determined by Western blotting. Using mice deficient in complement C1qa, factor B, and factor B/C2, we found that complement C3 activation and opsonophagocytosis of S. pneumoniae were greatly attenuated in factor B- and factor B/C2-deficient mice. These findings support the concept that local complement activation is an important host innate immune response and that activation of the alternative complement pathway represents one of the innate immune defense mechanisms against pneumococcal infection during the early stage of acute OM.
Collapse
|
98
|
Dahlke K, Wrann CD, Sommerfeld O, Sossdorf M, Recknagel P, Sachse S, Winter SW, Klos A, Stahl GL, Ma YX, Claus RA, Reinhart K, Bauer M, Riedemann NC. Distinct different contributions of the alternative and classical complement activation pathway for the innate host response during sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3066-75. [PMID: 21263075 DOI: 10.4049/jimmunol.1002741] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.
Collapse
Affiliation(s)
- Katja Dahlke
- Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Neun BW, Dobrovolskaia MA. Qualitative analysis of total complement activation by nanoparticles. Methods Mol Biol 2011; 697:237-45. [PMID: 21116973 DOI: 10.1007/978-1-60327-198-1_25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter describes a method for qualitative detection of complement activation by western blot. This method uses the cleavage product of the C3 component as a marker for complement activation by any pathway. In this protocol, human plasma is exposed to nanoparticles and then analyzed by polyacrylamide gel electrophoresis (PAGE) followed by western blot with anti-C3-specific antibodies. These antibodies recognize both the native C3 component of complement and its cleavage products. The amounts of C3 and the C3 cleavage products are compared to the amounts in control (untreated) plasma and to plasma treated with a positive control to provide a quick and inexpensive qualitative assessment of complement activation.
Collapse
Affiliation(s)
- Barry W Neun
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| | | |
Collapse
|
100
|
Banda NK, Takahashi M, Levitt B, Glogowska M, Nicholas J, Takahashi K, Stahl GL, Fujita T, Arend WP, Holers VM. Essential role of complement mannose-binding lectin-associated serine proteases-1/3 in the murine collagen antibody-induced model of inflammatory arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5598-606. [PMID: 20870940 PMCID: PMC3157645 DOI: 10.4049/jimmunol.1001564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene-targeted mice deficient in the complement mannose-binding lectin-associated serine protease-1 and -3 (MASP1/3(-/-)) express only the zymogen of factor D (pro-factor D [pro-Df]), a necessary component of the alternative pathway (AP). We used the murine collagen Ab-induced arthritis (CAIA) model, in which the AP is unique among complement pathways in being both necessary and sufficient for disease induction, to determine whether MASP-1/3 are required in vivo for the development of tissue injury. Disease activity scores, complement C3 tissue deposition in the joint, and histopathologic injury scores were markedly decreased in MASP1/3(-/-) as compared with wild-type (WT) mice. MASP-1 protein was immunochemically localized to synovial cells of knees of WT mice with arthritis. Pro-Df was present in both synovial cells and chondrocytes of knees of WT and MASP1/3(-/-) mice without arthritis, with increased amounts present in synovial cells of WT mice with CAIA. No conversion of pro-Df to mature Df was detectable in the serum of MASP1/3(-/-) mice during the evolution of CAIA. C3 activation and deposition as well as C5a generation induced in vitro by adherent anti-type II collagen mAbs were absent using sera from MASP1/3(-/-) mice under conditions in which only the AP was active. The addition of human Df fully reconstituted in vitro C3 activation and C5a generation using sera from MASP1/3(-/-) mice. Our studies demonstrate for the first time, to our knowledge, the absolute requirement for the activity of MASP-1 protein in autoimmune-associated inflammatory tissue injury in vivo through activation of the AP of complement by cleavage of pro-Df to mature Df.
Collapse
Affiliation(s)
- Nirmal K. Banda
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Brandt Levitt
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Magdalena Glogowska
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jessica Nicholas
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kazue Takahashi
- Developmental Immunology, Massachusetts General Hospital for Children, Boston, MA 02114
| | - Gregory L. Stahl
- Center of Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital, Boston, MA 02115
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - William P. Arend
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|