51
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
52
|
Abstract
UNLABELLED Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when activity helps to define neural pathways.
Collapse
|
53
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
54
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
55
|
Eira J, Silva CS, Sousa MM, Liz MA. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 2016; 141:61-82. [PMID: 27095262 DOI: 10.1016/j.pneurobio.2016.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease.
Collapse
Affiliation(s)
- Jessica Eira
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Catarina Santos Silva
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Mónica Mendes Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal; Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal
| | - Márcia Almeida Liz
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal.
| |
Collapse
|
56
|
Li H, Aksenova M, Bertrand SJ, Mactutus CF, Booze R. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons. J Vis Exp 2016:e53697. [PMID: 26889716 DOI: 10.3791/53697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.
Collapse
Affiliation(s)
- Hailong Li
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Marina Aksenova
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Sarah J Bertrand
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Charles F Mactutus
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Rosemarie Booze
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina;
| |
Collapse
|
57
|
Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization. Neural Plast 2016; 2016:2819107. [PMID: 26881098 PMCID: PMC4736993 DOI: 10.1155/2016/2819107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.
Collapse
|
58
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
59
|
Bertrand SJ, Hu C, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat and cocaine mediated synaptopathy in cortical and midbrain neurons is prevented by the isoflavone Equol. Front Microbiol 2015; 6:894. [PMID: 26441850 PMCID: PMC4561964 DOI: 10.3389/fmicb.2015.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
Illicit drugs, such as cocaine, are known to increase the likelihood and severity of HIV-1 associated neurocognitive disorders (HAND). In the current studies synaptic integrity was assessed following exposure to low concentrations of the HIV-1 viral protein Tat 1-86B, with or without cocaine, by quantifying filamentous actin (F-actin) rich structures (i.e., puncta and dendritic spines) on neuronal dendrites in vitro. In addition, the synapse-protective effects of either R-Equol (RE) or S-Equol (SE; derivatives of the soy isoflavone, daidzein) were determined. Individually, neither low concentrations of HIV-1 Tat (10 nM) nor low concentrations of cocaine (1.6 μM) had any significant effect on F-actin puncta number; however, the same low concentrations of HIV-1 Tat + cocaine in combination significantly reduced dendritic synapses. This synaptic reduction was prevented by pre-treatment with either RE or SE, in an estrogen receptor beta dependent manner. In sum, targeted therapeutic intervention with SE may prevent HIV-1 + drug abuse synaptopathy, and thereby potentially influence the development of HAND.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Calvin Hu
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Marina V Aksenova
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Charles F Mactutus
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Rosemarie M Booze
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| |
Collapse
|
60
|
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 2015; 74:28-36. [PMID: 25993604 PMCID: PMC4573337 DOI: 10.1016/j.yhbeh.2015.05.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes.
Collapse
Affiliation(s)
- Maya Frankfurt
- Department of Science Education, Hofstra-North Shore LIJ School of Medicine, USA.
| | | |
Collapse
|
61
|
Newell-Litwa KA, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz AR. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol 2015; 210:225-42. [PMID: 26169356 PMCID: PMC4508895 DOI: 10.1083/jcb.201504046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front-back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front-back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mathilde Badoual
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), UMR 8165, Centre National de la Recherche Scientifique, University Paris-Sud and University Paris Diderot, 91405 Orsay, France
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Heather Patel
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Leanna Whitmore
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
62
|
Llano O, Smirnov S, Soni S, Golubtsov A, Guillemin I, Hotulainen P, Medina I, Nothwang HG, Rivera C, Ludwig A. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. J Cell Biol 2015; 209:671-86. [PMID: 26056138 PMCID: PMC4460141 DOI: 10.1083/jcb.201411008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses.
Collapse
Affiliation(s)
- Olaya Llano
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sergey Smirnov
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Shetal Soni
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Andrey Golubtsov
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Isabelle Guillemin
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pirta Hotulainen
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Igor Medina
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Anastasia Ludwig
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
63
|
Evans JC, Robinson CM, Shi M, Webb DJ. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting. J Biol Chem 2015; 290:10295-308. [PMID: 25750125 DOI: 10.1074/jbc.m114.605543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Indexed: 11/06/2022] Open
Abstract
Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses.
Collapse
Affiliation(s)
- J Corey Evans
- From the Department of Biological Sciences and the Kennedy Center for Research on Human Development and
| | - Cristina M Robinson
- From the Department of Biological Sciences and the Kennedy Center for Research on Human Development and
| | - Mingjian Shi
- From the Department of Biological Sciences and the Kennedy Center for Research on Human Development and
| | - Donna J Webb
- From the Department of Biological Sciences and the Kennedy Center for Research on Human Development and the Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
64
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
65
|
Guven K, Gunning P, Fath T. TPM3 and TPM4 gene products segregate to the postsynaptic region of central nervous system synapses. BIOARCHITECTURE 2014; 1:284-289. [PMID: 22545181 PMCID: PMC3337131 DOI: 10.4161/bioa.1.6.19336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synaptic function in the central nervous system (CNS) is highly dependent on a dynamic actin cytoskeleton in both the pre- and the postsynaptic compartment. Remodelling of the actin cytoskeleton is controlled by tropomyosins, a family of actin-associated proteins which define distinct actin filament populations. Here we show that TPM3 and TPM4 gene products localize to the postsynaptic region in mouse hippocampal neurons. Furthermore our data confirm previous findings of isoform segregation to the pre- and postsynaptic compartments at CNS synapses. These data provide fundamental insights in the formation of functionally distinct actin filament populations at the pre- and post-synapse.
Collapse
|
66
|
Osuna CE, Grandjean P, Weihe P, El-Fawal HAN. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in Faroese children. Toxicol Sci 2014; 142:158-66. [PMID: 25124724 DOI: 10.1093/toxsci/kfu163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylmercury, polychlorinated biphenyls (PCBs), and perfluorinated compounds (PFCs) are ubiquitous and persistent environmental chemicals with known or suspected toxic effects on the nervous system and the immune system. Animal studies have shown that tissue damage can elicit production of autoantibodies. However, it is not known if autoantibodies similarly will be generated and detectable in humans following toxicant exposures. Therefore, we conducted a pilot study to investigate if autoantibodies specific for neural and non-neural antigens could be detected in children at age 7 years who have been exposed to environmental chemicals. Both prenatal and age-7 exposures to mercury, PCBs, and PFCs were measured in 38 children in the Faroe Islands who were exposed to widely different levels of these chemicals due to their seafood-based diet. Concentrations of IgM and IgG autoantibodies specific to both neural (neurofilaments, cholineacetyltransferase, astrocyte glial fibrillary acidic protein, and myelin basic protein) and non-neural (actin, desmin, and keratin) antigens were measured and the associations of these autoantibody concentrations with chemical exposures were assessed using linear regression. Age-7 blood-mercury concentrations were positively associated with titers of multiple neural- and non-neural-specific antibodies, mostly of the IgM isotype. Additionally, prenatal blood-mercury and -PCBs were negatively associated with anti-keratin IgG and prenatal PFOS was negatively associated with anti-actin IgG. These exploratory findings demonstrate that autoantibodies can be detected in the peripheral blood following exposure to environmental chemicals. The unexpected association of exposures with antibodies specific for non-neural antigens suggests that these chemicals may have toxicities that have not yet been recognized.
Collapse
Affiliation(s)
- Christa E Osuna
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215 Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Philippe Grandjean
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215 Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Winsloewparken 17, DK-5000 Odense, Denmark
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| | - Hassan A N El-Fawal
- Neurotoxicology Laboratory, Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
67
|
Srivastava AK, Schwartz CE. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev 2014; 46 Pt 2:161-74. [PMID: 24709068 DOI: 10.1016/j.neubiorev.2014.02.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common developmental disorders present in humans. Combined, they affect between 3 and 5% of the population. Additionally, they can be found together in the same individual thereby complicating treatment. The causative factors (genes, epigenetic and environmental) are quite varied and likely interact so as to further complicate the assessment of an individual patient. Nonetheless, much valuable information has been gained by identifying candidate genes for ID or ASD. Understanding the etiology of either ID or ASD is of utmost importance for families. It allows a determination of the risk of recurrence, the possibility of other comorbidity medical problems, the molecular and cellular nature of the pathobiology and hopefully potential therapeutic approaches.
Collapse
Affiliation(s)
- Anand K Srivastava
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| | - Charles E Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA.
| |
Collapse
|
68
|
Yan X, Yadav R, Gao M, Weng HR. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia 2014; 62:1093-109. [PMID: 24677092 DOI: 10.1002/glia.22665] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/01/2023]
Abstract
Excessive activation of glutamate receptors in spinal dorsal horn neurons is a key mechanism leading to abnormal neuronal activation in pathological pain conditions. Previous studies have shown that activation of glutamate receptors in the spinal dorsal horn is enhanced by impaired glial glutamate transporter functions and proinflammatory cytokines including interleukin-1 beta (IL-1β). In this study, we for the first time revealed that spinal glial glutamate transporter activities in the neuropathic animals are attenuated by endogenous IL-1β. Specifically, we demonstrated that nerve injury results in an increased expression of IL-1β and activation of PKC in the spinal dorsal horn as well as suppression of glial glutamate uptake activities. We provided evidence that the nerve-injury induced suppression of glial glutamate uptake is at least in part ascribed to endogenous IL-1β and activation of PKC in the spinal dorsal horn. IL-1β reduces glial glutamate transporter activities through enhancing the endocytosis of both GLT-1 and GLAST glial glutamate transporters. The IL-1β induced trafficking of glial glutamate transporters is through the calcium/PKC signaling pathway, and the dynamin-dependent endocytosis, which is dependent on the integrity of actin filaments. The signaling pathway regulating glial glutamate transporters revealed in this study provides novel targets to attenuate aberrant activation of glutamate receptors in the spinal dorsal horn, which could ultimately help the development of analgesics.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia; Department of Cardiovascular Medicine, The Third Hospital of Wuhan, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
69
|
Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci 2014; 34:527-38. [PMID: 24403152 DOI: 10.1523/jneurosci.2838-13.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Learned associations between environmental cues and morphine use play an important role in the maintenance and/or relapse of opioid addiction. Although previous studies suggest that context-dependent morphine treatment alters glutamatergic transmission and synaptic plasticity in the hippocampus, their role in morphine conditioned place preference (CPP) and reinstatement remains unknown. We investigated changes in synaptic plasticity and NMDAR expression in the hippocampus after the expression, extinction, and reinstatement of morphine CPP. Here we report that morphine CPP is associated with increased basal synaptic transmission, impaired hippocampal long-term potentiation (LTP), and increased synaptic expression of the NR1 and NR2b NMDAR subunits. Changes in synaptic plasticity, synaptic NR1 and NR2b expression, and morphine CPP were absent when morphine was not paired with a specific context. Furthermore, hippocampal LTP was impaired and synaptic NR2b expression was increased after extinction of morphine CPP, indicating that these alterations in plasticity may be involved in the mechanisms underlying the learning of drug-environment associations. After extinction of morphine CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with LTP that was indistinguishable from saline control groups. In contrast, morphine CPP extinguished mice that received a saline priming dose did not show CPP and had disrupted hippocampal LTP. Finally, we found that reinstatement of morphine CPP was prevented by the selective blockade of the NR2b subunit in the hippocampus. Together, these data suggest that alterations in synaptic plasticity and glutamatergic transmission play an important role in the reinstatement of morphine CPP.
Collapse
|
70
|
Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, Glennon JC, Buitelaar JK. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology (Berl) 2014; 231:1063-78. [PMID: 24292384 DOI: 10.1007/s00213-013-3334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes. OBJECTIVES In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at clinicaltrials.gov with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems. CONCLUSIONS An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.
Collapse
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, A001.468, University Medical Center Utrecht, Heidelberglaan 100, 3485 CX, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2014; 24:471-84. [PMID: 24077615 DOI: 10.1515/revneuro-2013-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.
Collapse
|
72
|
Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites. J Neurosci 2014; 33:19143-53. [PMID: 24305811 DOI: 10.1523/jneurosci.2634-13.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.
Collapse
|
73
|
Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology 2014; 76 Pt B:276-86. [PMID: 23639436 PMCID: PMC3762905 DOI: 10.1016/j.neuropharm.2013.04.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Chronic use of addictive drugs produces enduring neuroadaptations in the corticostriatal glutamatergic brain circuitry. The nucleus accumbens (NAc), which integrates cortical information and regulates goal-directed behavior, undergoes long-term morphological and electrophysiological changes that may underlie the increased susceptibility for relapse in drug-experienced individuals even after long periods of withdrawal. Additionally, it has recently been shown that exposure to cues associated with drug use elicits rapid and transient morphological and electrophysiological changes in glutamatergic synapses in the NAc. This review highlights these dynamic drug-induced changes in this pathway that are specific to a drug seeking neuropathology, as well as how these changes impair normal information processing and thereby contribute to the uncontrollable motivation to relapse. Future directions for relapse prevention and pharmacotherapeutic targeting of the rapid, transient synaptic plasticity in relapse are discussed. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., BSB 403, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
74
|
Papadopulos A, Tomatis VM, Kasula R, Meunier FA. The cortical acto-Myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 2013; 4:153. [PMID: 24155741 PMCID: PMC3800816 DOI: 10.3389/fendo.2013.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/05/2013] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Ravikiran Kasula
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
- *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail:
| |
Collapse
|
75
|
Affiliation(s)
- Beat Ludin
- Friedrich Miescher Institute, Basel, Switzerland
| | - Andrew Matus
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
76
|
Bertrand SJ, Mactutus CF, Aksenova MV, Espensen-Sturges TD, Booze RM. Synaptodendritic recovery following HIV Tat exposure: neurorestoration by phytoestrogens. J Neurochem 2013; 128:140-51. [PMID: 23875777 DOI: 10.1111/jnc.12375] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/22/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022]
Abstract
HIV-1 infects the brain and, despite antiretroviral therapy, many infected individuals suffer from HIV-1-associated neurocognitive disorders (HAND). HAND is associated with dendritic simplification and synaptic loss. Prevention of synaptodendritic damage may ameliorate or forestall neurocognitive decline in latent HIV-1 infections. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain and may cause synaptodendritic damage. This study examined the integrity of the dendritic network after exposure to HIV-1 Tat by labeling filamentous actin (F-actin)-rich structures (puncta) in primary neuronal cultures. After 24 h of treatment, HIV-1 Tat was associated with the dendritic arbor and produced a significant reduction of F-actin-labeled dendritic puncta as well as loss of dendrites. Pre-treatment with either of two plant-derived phytoestrogen compounds (daidzein and liquiritigenin), significantly reduced synaptodendritic damage following HIV-1 Tat treatment. In addition, 6 days after HIV-1 Tat treatment, treatment with either daidzein, or liquiritigenin enhanced recovery, via the estrogen receptor, from HIV-1 Tat-induced synaptodendritic damage. These results suggest that either liquiritigenin or daidzein may not only attenuate acute synaptodendritic injury in HIV-1 but may also promote recovery from synaptodendritic damage. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain. Treatment with either daidzein or liquiritigenin restored the loss of synaptic connectivity produced by HIV-1 Tat. This neurorestoration was mediated by estrogen receptors (ER). These results suggest that plant-derived phytoestrogens may promote recovery from HIV-1-induced synaptodendritic damage.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | |
Collapse
|
77
|
Shi M, Majumdar D, Gao Y, Brewer B, Goodwin CR, McLean JA, Li D, Webb DJ. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. LAB ON A CHIP 2013; 13:3008-21. [PMID: 23736663 PMCID: PMC3712871 DOI: 10.1039/c3lc50249j] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37235
| | - Devi Majumdar
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37235
| | - Yandong Gao
- Department of Mechanical Engineering, Vanderbilt University, Nashville TN 37235
| | - Bryson Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville TN 37235
| | - Cody R. Goodwin
- Department of Chemistry, Vanderbilt University, Nashville TN 37235
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville TN 37235
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville TN 37235
| | - Donna J. Webb
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37235
- Department of Cancer Biology, Vanderbilt University, Nashville TN 37235
| |
Collapse
|
78
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
79
|
The small GTPase RhoA, but not Rac1, is essential for conditioned aversive memory formation through regulation of actin rearrangements in rat dorsal hippocampus. Acta Pharmacol Sin 2013; 34:811-8. [PMID: 23564082 DOI: 10.1038/aps.2013.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM Actin rearrangements are induced in the dorsal hippocampus after conditioned morphine withdrawal, and involved in the formation of conditioned place aversion. In the present study, we investigated the mechanisms underlying the actin rearrangements in rat dorsal hippocampus induced by conditioned morphine withdrawal. METHODS The RhoA-ROCK pathway inhibitor Y27632 (8.56 μg/1 μL per side) or the Rac1 inhibitor NSC23766 (25 μg/1 μL per side) was microinjected into the dorsal hippocampus of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal was assessed. Crude synaptosomal fraction of hippocampus was prepared, and the amount of F-actin and G-actin was measured with an Actin Polymerization Assay Kit. RESULTS Conditioned morphine withdrawal significantly increased actin polymerization in the dorsal hippocampus at 1 h following the naloxone injection. Preconditioning with microinjection of Y27632, but not NSC23766, attenuated CPA, and blocked the increase in actin polymerization in the dorsal hippocampus. CONCLUSION Our results suggest that the small GTPase RhoA, but not Rac1, in the dorsal hippocampus is responsible for CPA formation, mainly through its regulation of actin rearrangements.
Collapse
|
80
|
Mikati MA, Grintsevich EE, Reisler E. Drebrin-induced stabilization of actin filaments. J Biol Chem 2013; 288:19926-38. [PMID: 23696644 DOI: 10.1074/jbc.m113.472647] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drebrin is a mammalian neuronal protein that binds to and organizes filamentous actin (F-actin) in dendritic spines, the receptive regions of most excitatory synapses that play a crucial role in higher brain functions. Here, the structural effects of drebrin on F-actin were examined in solution. Depolymerization and differential scanning calorimetry assays show that F-actin is stabilized by the binding of drebrin. Drebrin inhibits depolymerization mainly at the barbed end of F-actin. Full-length drebrin and its C-terminal truncated constructs were used to clarify the domain requirements for these effects. The actin binding domain of drebrin decreases the intrastrand disulfide cross-linking of Cys-41 (in the DNase I binding loop) to Cys-374 (C-terminal) but increases the interstrand disulfide cross-linking of Cys-265 (hydrophobic loop) to Cys-374 in the yeast mutants Q41C and S265C, respectively. We also demonstrate, using solution biochemistry methods and EM, the rescue of filament formation by drebrin in different cases of longitudinal interprotomer contact perturbation: the T203C/C374S yeast actin mutant and grimelysin-cleaved skeletal actin (between Gly-42 and Val-43). Additionally, we show that drebrin rescues the polymerization of V266G/L267G, a hydrophobic loop yeast actin mutant with an impaired lateral interface formation between the two filament strands. Overall, our data suggest that drebrin stabilizes actin filaments through its effect on their interstrand and intrastrand contacts.
Collapse
Affiliation(s)
- Mouna A Mikati
- Department of Chemistry and Biochemistry, of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
81
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
82
|
Roppongi RT, Kojima N, Hanamura K, Yamazaki H, Shirao T. Selective reduction of drebrin and actin in dendritic spines of hippocampal neurons by activation of 5-HT(2A) receptors. Neurosci Lett 2013; 547:76-81. [PMID: 23684573 DOI: 10.1016/j.neulet.2013.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 01/10/2023]
Abstract
Abnormal architecture of dendritic spines is associated with neurodevelopmental and neurodegenerative diseases. The 5-HT(2A) receptor is a potential therapeutic target for mental illnesses and it is functionally and genetically associated with many types of psychiatric disorders. It has been reported that 5-HT(2A) receptor activation alters spine architecture. Although actin cytoskeleton has a key role in the regulation of spine architecture, it is not clarified whether 5-HT(2A)+ receptor activation affect the actin cytoskeleton in dendritic spines. In the present study, we examined the effect of 5-HT(2A) receptor activation on the actin cytoskeleton in dendritic spines of mature hippocampal neurons in low-density culture. Immunocytochemical analysis showed that 15 min exposure of 5-HT(2A) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) significantly decreased the cluster densities of drebrin (control, 37.0±6.9 per 100 μm, DOI, 12.5±2.9) and F-actin (control, 18.3±4.9; DOI, 7.7±2.1) at dendritic spines without any detectable changes in the cluster densities of synapsin I and PSD-95. At the same time period DOI exposure did not affect spine architecture (spine density: control, 38.3±5.1 per 100 μm; DOI, 25.6±3.5; spine length: control, 1.99±0.18; DOI, 2.00±0.29; spine width: control, 0.72±0.06; DOI, 0.77±0.11). Thus, it is indicated that decrease of drebrin and F-actin can occur at the dendritic spines without morphological changes. Together our data suggest that 5-HT(2A) receptors activation is involved in the regulation of distribution of cytoskeleton in the dendritic spines.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
83
|
Corena-McLeod M, Walss-Bass C, Oliveros A, Gordillo Villegas A, Ceballos C, Charlesworth CM, Madden B, Linser PJ, Van Ekeris L, Smith K, Richelson E. New model of action for mood stabilizers: phosphoproteome from rat pre-frontal cortex synaptoneurosomal preparations. PLoS One 2013; 8:e52147. [PMID: 23690912 PMCID: PMC3653908 DOI: 10.1371/journal.pone.0052147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/09/2012] [Indexed: 01/11/2023] Open
Abstract
Background Mitochondrial short and long-range movements are necessary to generate the energy needed for synaptic signaling and plasticity. Therefore, an effective mechanism to transport and anchor mitochondria to pre- and post-synaptic terminals is as important as functional mitochondria in neuronal firing. Mitochondrial movement range is regulated by phosphorylation of cytoskeletal and motor proteins in addition to changes in mitochondrial membrane potential. Movement direction is regulated by serotonin and dopamine levels. However, data on mitochondrial movement defects and their involvement in defective signaling and neuroplasticity in relationship with mood disorders is scarce. We have previously reported the effects of lithium, valproate and a new antipsychotic, paliperidone on protein expression levels at the synaptic level. Hypothesis Mitochondrial function defects have recently been implicated in schizophrenia and bipolar disorder. We postulate that mood stabilizer treatment has a profound effect on mitochondrial function, synaptic plasticity, mitochondrial migration and direction of movement. Methods Synaptoneurosomal preparations from rat pre-frontal cortex were obtained after 28 daily intraperitoneal injections of lithium, valproate and paliperidone. Phosphorylated proteins were identified using 2D-DIGE and nano LC-ESI tandem mass spectrometry. Results Lithium, valproate and paliperidone had a substantial and common effect on the phosphorylation state of specific actin, tubulin and myosin isoforms as well as other proteins associated with neurofilaments. Furthermore, different subunits from complex III and V of the electron transfer chain were heavily phosphorylated by treatment with these drugs indicating selective phosphorylation. Conclusions Mood stabilizers have an effect on mitochondrial function, mitochondrial movement and the direction of this movement. The implications of these findings will contribute to novel insights regarding clinical treatment and the mode of action of these drugs.
Collapse
|
84
|
Sogn CJL, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin--a postembedding immunogold study in the healthy rat brain. Eur J Neurosci 2013; 38:2030-40. [PMID: 23590220 DOI: 10.1111/ejn.12213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/24/2023]
Abstract
Although microglia is recognised as the cell-mediating innate immunity in the brain, emerging evidence suggests a role of microglia in synaptic communication and modulation. The ability of microglia to move in the neuropil and contact synapses is crucial for such a function. However, the frequency of microglial contact with synapses is not known. Microglia motility is regulated by actin polymerisation and its interaction with ionising calcium-binding adaptor protein 1 (Iba1). In order to move and make contact with synapses, delicate microglial processes should contain high levels of actin and Iba1. To study this we refined an electron microscopic postembedding immunogold method enabling us to identify and quantitatively study different microglial constituents in intact brain tissue. We show that Iba1 and actin were colocalised at high densities in delicate processes in the rat frontal cortex, and that these delicate processes of microglia contact synaptic elements. About 3.5% of the synapses received direct contact from microglia. There was a marked inverse correlation between the densities of Iba1/actin gold particles and the area of the microglial processes, suggesting that the most delicate processes possess the machinery to provide movement in the neuropil. The low frequency of microglia interaction with synaptic elements suggests that microglia have a limited role in overall regulation of synaptic activity.
Collapse
Affiliation(s)
- Carl J L Sogn
- Glio- and Neurotransmitter Group, Department of Anatomy, Centre for Molecular Biology and Neuroscience, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
85
|
Ueda S, Negishi M, Katoh H. Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation. Mol Biol Cell 2013; 24:1602-13. [PMID: 23536706 PMCID: PMC3655820 DOI: 10.1091/mbc.e12-11-0782] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rac GEF Dock4, recently reported as a candidate genetic risk factor for autism, dyslexia, and schizophrenia, is highly concentrated in dendritic spines in hippocampal neurons and is implicated in spine formation through interaction with the actin-binding protein cortactin. In neuronal development, dendritic spine formation is important for the establishment of excitatory synaptic connectivity and functional neural circuits. Developmental deficiency in spine formation results in multiple neuropsychiatric disorders. Dock4, a guanine nucleotide exchange factor (GEF) for Rac, has been reported as a candidate genetic risk factor for autism, dyslexia, and schizophrenia. We previously showed that Dock4 is expressed in hippocampal neurons. However, the functions of Dock4 in hippocampal neurons and the underlying molecular mechanisms are poorly understood. Here we show that Dock4 is highly concentrated in dendritic spines and implicated in spine formation via interaction with the actin-binding protein cortactin. In cultured neurons, short hairpin RNA (shRNA)–mediated knockdown of Dock4 reduces dendritic spine density, which is rescued by coexpression of shRNA-resistant wild-type Dock4 but not by a GEF-deficient mutant of Dock4 or a truncated mutant lacking the cortactin-binding region. On the other hand, knockdown of cortactin suppresses Dock4-mediated spine formation. Taken together, the results show a novel and functionally important interaction between Dock4 and cortactin for regulating dendritic spine formation via activation of Rac.
Collapse
Affiliation(s)
- Shuhei Ueda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
86
|
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. ACTA ACUST UNITED AC 2012; 199:985-1001. [PMID: 23209303 PMCID: PMC3518221 DOI: 10.1083/jcb.201205041] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
87
|
Luine V, Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 2012; 239:34-45. [PMID: 23079626 DOI: 10.1016/j.neuroscience.2012.10.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/17/2023]
Abstract
Several lines of evidence have converged to indicate that memory formation involves plasticity of dendritic spines in the medial prefrontal cortex (PFC) and the hippocampus. Memory varies with estrogen levels throughout the lifespan of the female. Generally, increased levels of estrogen are related to greater dendritic spine density on pyramidal cells in the PFC and the hippocampus and to improved memory function. Brain-derived neurotrophic factor (BDNF) is a growth factor which increases dendritic spines and enhances memory function. Estrogens increase BDNF levels in the PFC and the hippocampus. In the present review we provide evidence that estradiol and BDNF may work in concert to enhance cognition. In adult females, fluctuations in recognition memory following ovariectomy and estradiol replacement, during the estrous cycle, in pregnancy and with aging are accompanied by similar changes in circulating estradiol, BDNF levels and spine density alterations in the PFC and the hippocampus. In addition, both estradiol and BDNF induce spine plasticity via rapid membrane effects and slower transcriptional regulation via the CREB pathway. Moreover, estradiol increases BDNF levels through action on nuclear receptors. While the exact mechanism(s) for the influence of estrogens and BDNF on memory remain unclear, this combination may provide the basis for new and more effective strategies for treating age-related and neurodegenerative memory loss.
Collapse
Affiliation(s)
- V Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
88
|
Luine VN, Frankfurt M. Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 2012; 33:388-402. [PMID: 22981654 PMCID: PMC3496031 DOI: 10.1016/j.yfrne.2012.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 01/27/2023]
Abstract
Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats shows that estrogens enhance memory consolidation within 1h. 17α-Estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
89
|
Chen YK, Chen CY, Hu HT, Hsueh YP. CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol Biol Cell 2012; 23:4383-92. [PMID: 23015759 PMCID: PMC3496612 DOI: 10.1091/mbc.e12-05-0365] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cortactin-binding protein 2 (CTTNBP2) interacts with cortactin to regulate cortactin mobility and control dendritic spine formation. CTTNBP2 has also been associated with autistic spectrum disorder. The regulation of dendritic spinogenesis could explain the association of CTTNBP2 with autism. Sequence comparison has indicated that CTTNBP2 N-terminal-like protein (CTTNBP2NL) is a CTTNBP2 homologue. To confirm the specific effect of CTTNBP2 on dendritic spinogenesis, here we investigate whether CTTNBP2NL has a similar function to CTTNBP2. Although both CTTNBP2 and CTTNBP2NL interact with cortactin, CTTNBP2NL is associated with stress fibers, whereas CTTNBP2 is distributed to the cortex and intracellular puncta. We also provide evidence that CTTNBP2, but not CTTNBP2NL, is predominantly expressed in the brain. CTTNBP2NL does not show any activity in the regulation of dendritic spinogenesis. In addition to spine morphology, CTTNBP2 is also found to regulate the synaptic distribution of striatin and zinedin (the regulatory B subunits of protein phosphatase 2A [PP2A]), which interact with CTTNBP2NL in HEK293 cells. The association between CTTNBP2 and striatin/zinedin suggests that CTTNBP2 targets the PP2A complex to dendritic spines. Thus we propose that the interactions of CTTNBP2 and cortactin and the PP2A complex regulate spine morphogenesis and synaptic signaling.
Collapse
Affiliation(s)
- Yi-Kai Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
90
|
Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 2012; 7:e45270. [PMID: 23024813 PMCID: PMC3443223 DOI: 10.1371/journal.pone.0045270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP) was induced at 12, 16, or 21 days postinfection (dpi), at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.
Collapse
Affiliation(s)
- Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Eri Tokunaga
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumiko Ozawa
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Akiko Murayama
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
- * E-mail:
| |
Collapse
|
91
|
Moon IS, Lee H, Walikonis RS. Septin 6 localizes to microtubules in neuronal dendrites. Cytotechnology 2012; 65:179-86. [PMID: 22717660 DOI: 10.1007/s10616-012-9477-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/23/2012] [Indexed: 02/01/2023] Open
Abstract
In neuronal dendrites, septins localize to the base of the spine, a unique position which is sandwiched between the microtubule (MT)-rich dendritic shaft and the actin filament-rich spine. Here, we provide evidence for the association of SEPT6 with MTs in cultured rat hippocampal neurons. In normal cultures, SEPT6 clusters localized to MTs, but not to actin clusters. Only MT-disrupting agents (vincristine and nocodazole), but not microfilament-disrupting one (latrunculin A), induced the redistribution of SEPT6 to the disrupted MTs. The nascent MT fibers that were recovered from vincristine or nocodazole treatments also accompanied SEPT6. Blocking MT disruption by Taxol prevented such phenomena, proving that the redistribution of SEPT6 was due to the MT disruption. Our results indicate that SEPT6 complexes at the base of the dendritic spine are associated with MTs.
Collapse
Affiliation(s)
- Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, College of Medicine, Dongguk University, Gyeongju, 780-714, Korea,
| | | | | |
Collapse
|
92
|
Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia. PLoS One 2012; 7:e38211. [PMID: 22675524 PMCID: PMC3365879 DOI: 10.1371/journal.pone.0038211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
Collapse
|
93
|
Milroy LG, Rizzo S, Calderon A, Ellinger B, Erdmann S, Mondry J, Verveer P, Bastiaens P, Waldmann H, Dehmelt L, Arndt HD. Selective chemical imaging of static actin in live cells. J Am Chem Soc 2012; 134:8480-6. [PMID: 22475347 DOI: 10.1021/ja211708z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have characterized rationally designed and optimized analogues of the actin-stabilizing natural products jasplakinolide and chondramide C. Efficient actin staining was achieved in fixed permeabilized and non-permeabilized cells using different combinations of dye and linker length, thus highlighting the degree of molecular flexibility of the natural product scaffold. Investigations into synthetically accessible, non-toxic analogues have led to the characterization of a powerful cell-permeable probe to selectively image static, long-lived actin filaments against dynamic F-actin and monomeric G-actin populations in live cells, with negligible disruption of rapid actin dynamics.
Collapse
Affiliation(s)
- Lech-Gustav Milroy
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
The cytoskeleton forms the backbone of neuronal architecture, sustaining its form and size, subcellular compartments and cargo logistics. The synaptic cytoskeleton can be categorized in the microtubule-based core cytoskeleton and the cortical membrane skeleton. While central microtubules form the fundamental basis for the construction of elaborate neuronal processes, including axons and synapses, cortical actin filaments are generally considered to function as mediators of synapse dynamics and plasticity. More recently, the submembranous network of spectrin and ankyrin molecules has been involved in the regulation of synaptic stability and maintenance. Disruption of the synaptic cytoskeleton primarily affects the stability and maturation of synapses but also secondarily disturbs neuronal communication. Consequently, a variety of inherited diseases are accompanied by cytoskeletal malfunctions, including spastic paraplegias, spinocerebellar ataxias, and mental retardation. Since the primary reasons for many of these diseases are still unknown model organisms with a conserved repertoire of cytoskeletal elements help to understand the underlying biological mechanisms. The astonishing technical as well as genetic accessibility of synapses in Drosophila has shown that loss of the cytoskeletal architecture leads to axonal transport defects, synaptic maturation deficits, and retraction of synaptic boutons, before synaptic terminals finally detach from their target cells, suggesting that similar processes could be involved in human neuronal diseases.
Collapse
Affiliation(s)
- Bernd Goellner
- Heinrich-Heine-University Düsseldorf, Functional Cell Morphology Lab, Düsseldorf, Germany
| | | |
Collapse
|
95
|
Potential role of drebrin a, an f-actin binding protein, in reactive synaptic plasticity after pilocarpine-induced seizures: functional implications in epilepsy. Int J Cell Biol 2012; 2012:474351. [PMID: 22611398 PMCID: PMC3349265 DOI: 10.1155/2012/474351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/23/2011] [Indexed: 12/29/2022] Open
Abstract
Several neurological disorders characterized by cognitive deficits, including Alzheimer's disease, down syndrome, and epilepsy exhibit abnormal spine density and/or morphology. Actin-based cytoskeleton network dynamics is critical for the regulation of spine morphology and synaptic function. In this paper, I consider the functions of drebrin A in cell shaping, spine plasticity, and synaptic function. Developmentally regulated brain protein (drebrin A) is one of the most abundant neuron-specific binding proteins of F-actin and its expression is increased in parallel with synapse formation. Drebrin A is particularly concentrated in dendritic spines receiving excitatory inputs. Our recent findings point to a critical role of DA in dendritic spine structural integrity and stabilization, likely via regulation of actin cytoskeleton dynamics, and glutamatergic synaptic function that underlies the development of spontaneous recurrent seizures in pilocarpine-treated animals. Further research into this area may provide useful insights into the pathology of status epilepticus and epileptogenic mechanisms and ultimately may provide the basis for future treatment options.
Collapse
|
96
|
Membrane-initiated estradiol signaling induces spinogenesis required for female sexual receptivity. J Neurosci 2012; 31:17583-9. [PMID: 22131419 DOI: 10.1523/jneurosci.3030-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens have profound actions on the structure of the nervous system during development and in adulthood. One of the signature actions of estradiol is to alter the morphology of neural processes. In the hippocampus, estradiol modulates spines and cellular excitability that affect cognitive behaviors. In the hypothalamus, estradiol increases spine density in mediobasal hypothalamic nuclei that regulate reproduction. The hypothalamic arcuate nucleus (ARH), an important site for modulation of female sexual receptivity, has a sexual dimorphism in dendritic spine density that favors females. In the present study, we used both β-actin immunostaining and Golgi staining to visualize estradiol-induced changes in spine density in Long-Evans rats. Golgi impregnation was used to visualize spine shape, and then β-actin immunoreactivity was used as a semiquantitative measure of spine plasticity since actin forms the core of dendritic spines. At 4 h after estradiol treatment, both β-actin immunofluorescence and filopodial spines were increased (from 70.57 ± 1.09% to 78.01 ± 1.05%, p < 0.05). Disruption of estradiol-induced β-actin polymerization with cytochalasin D attenuated lordosis behavior, indicating the importance of estradiol-mediated spinogenesis for female sexual receptivity (81.43 ± 7.05 to 35.00 ± 11.76, p < 0.05). Deactivation of cofilin, an actin depolymerizing factor is required for spinogenesis. Membrane-initiated estradiol signaling involving the metabotropic glutamate receptor 1a was responsible for the phosphorylation and thereby deactivation of cofilin. These data demonstrate that estradiol-induced spinogenesis in the ARH is an important cellular mechanism for the regulation of female sexual behavior.
Collapse
|
97
|
Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine. J Neurosci 2012; 31:16279-91. [PMID: 22072679 DOI: 10.1523/jneurosci.3835-11.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.
Collapse
|
98
|
Bertling E, Ludwig A, Koskinen M, Hotulainen P. Methods for three-dimensional analysis of dendritic spine dynamics. Methods Enzymol 2012; 506:391-406. [PMID: 22341234 DOI: 10.1016/b978-0-12-391856-7.00043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic spines are small bulbous expansions that receive input from a single excitatory synapse. Although spines are often characterized by a mushroom-like morphology, they come in a wide range of sizes and shapes, even within the same dendrite. In a developing brain, spines exhibit a high degree of structural and functional plasticity, reflecting the formation and elimination of synapses during the maturation of neuronal circuits. The morphology of spines in developing neurons is affected by synaptic activity, hence contributing to the experience-dependent refinement of neuronal circuits, learning, and memory. Thus, understanding spine dynamics and its regulation is of central importance to studies of synaptic plasticity in the brain. The challenge has been to develop a computer-based assay that will quantitatively assess the three-dimensional change in spine movements caused by various stimuli and experimental conditions. Here, we provide detailed protocols for cell plating, transient transfections, and time-lapse imaging of dendritic spines. For the analysis of dendritic spine dynamics, we present two methods based on quantitative three-dimensional measurements.
Collapse
Affiliation(s)
- Enni Bertling
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
99
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
100
|
Görlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sassoè-Pognetto M, Witke W, Friauf E, Rust MB. N-cofilin can compensate for the loss of ADF in excitatory synapses. PLoS One 2011; 6:e26789. [PMID: 22046357 PMCID: PMC3203908 DOI: 10.1371/journal.pone.0026789] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022] Open
Abstract
Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin family. While analyses of mouse mutants revealed the importance of LIMK1 for both pre- and postsynaptic mechanisms, the ADF/cofilin family member n-cofilin appears to be relevant merely for postsynaptic plasticity, and not for presynaptic physiology. By means of immunogold electron microscopy and immunocytochemistry, we here demonstrate the presence of ADF (actin depolymerizing factor), a close homolog of n-cofilin, in excitatory synapses, where it is particularly enriched in presynaptic terminals. Surprisingly, genetic ablation of ADF in mice had no adverse effects on synapse structure or density as assessed by electron microscopy and by the morphological analysis of Golgi-stained hippocampal pyramidal cells. Moreover, a series of electrophysiological recordings in acute hippocampal slices revealed that presynaptic recruitment and exocytosis of synaptic vesicles as well as postsynaptic plasticity were unchanged in ADF mutant mice. The lack of synaptic defects may be explained by the elevated n-cofilin levels observed in synaptic structures of ADF mutants. Indeed, synaptic actin regulation was impaired in compound mutants lacking both ADF and n-cofilin, but not in ADF single mutants. From our results we conclude that n-cofilin can compensate for the loss of ADF in excitatory synapses. Further, our data suggest that ADF and n-cofilin cooperate in controlling synaptic actin content.
Collapse
Affiliation(s)
- Andreas Görlich
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Wolf
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anika-Maria Zimmermann
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine and National Institute of Neuroscience-Italy, University of Turin, Turin, Italy
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Eckhard Friauf
- Animal Physiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | - Marco B. Rust
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|