51
|
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16:393-405. [PMID: 26122615 DOI: 10.1038/nrm4007] [Citation(s) in RCA: 817] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.
Collapse
Affiliation(s)
- Flore Kruiswijk
- 1] Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK. [2]
| | | | - Karen H Vousden
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
52
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
53
|
Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:23. [PMID: 25152696 PMCID: PMC4142057 DOI: 10.1186/1476-9255-11-23] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism.
Collapse
Affiliation(s)
- Srabani Pal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | | | - Subhash C Mandal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
54
|
Kochhar A, Kopelovich L, Sue E, Guttenplan JB, Herbert BS, Dannenberg AJ, Subbaramaiah K. p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling. Cancer Prev Res (Phila) 2014; 7:596-606. [PMID: 24736433 PMCID: PMC4074578 DOI: 10.1158/1940-6207.capr-14-0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (Hsp90), is a ligand-activated transcription factor that plays a role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke activates AhR signaling leading to increased transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to mutagens. Recently, p53 was found to regulate Hsp90 ATPase activity via effects on activator of Hsp90 ATPase (Aha1). It is possible, therefore, that AhR-dependent expression of CYP1A1 and CYP1B1 might be affected by p53 status. The main objective of this study was to determine whether p53 modulated AhR-dependent gene expression and PAH metabolism. Here, we show that silencing p53 led to elevated Aha1 levels, increased Hsp90 ATPase activity, and enhanced CYP1A1 and CYP1B1 expression. Overexpression of wild-type p53 suppressed levels of CYP1A1 and CYP1B1. The significance of Aha1 in mediating these p53-dependent effects was determined. Silencing of Aha1 led to reduced Hsp90 ATPase activity and downregulation of CYP1A1 and CYP1B1. In contrast, overexpressing Aha1 was associated with increased Hsp90 ATPase activity and elevated levels of CYP1A1 and CYP1B1. Using p53 heterozygous mutant epithelial cells from patients with Li-Fraumeni syndrome, we show that monoallelic mutation of p53 was associated with elevated levels of CYP1A1 and CYP1B1 under both basal conditions and following treatment with benzo[a]pyrene. Treatment with CP-31398, a p53 rescue compound, suppressed benzo[a]pyrene-mediated induction of CYP1A1 and CYP1B1 and the formation of DNA adducts. Collectively, our results suggest that p53 affects AhR-dependent gene expression, PAH metabolism, and possibly carcinogenesis.
Collapse
Affiliation(s)
- Amit Kochhar
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Levy Kopelovich
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erika Sue
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph B Guttenplan
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brittney-Shea Herbert
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Dannenberg
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kotha Subbaramaiah
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
55
|
Antitumor activity of ethanolic extract of Dendrobium formosum in T-cell lymphoma: an in vitro and in vivo study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:753451. [PMID: 24959588 PMCID: PMC4052125 DOI: 10.1155/2014/753451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 01/28/2023]
Abstract
Dendrobium, a genus of orchid, was found to possess useful therapeutic activities like anticancer, hypoglycaemic, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and neuroprotective activities. The study was aimed to evaluate the anticancer property of the ethanolic extract of Dendrobium formosum on Dalton's lymphoma. In vitro cytotoxicity was determined by MTT assay, apoptosis was determined by fluorescence microscopy, and cell cycle progression was analysed using flow cytometry; in vivo antitumor activity was performed in Dalton's lymphoma bearing mice. The IC50 value of ethanolic extract was obtained at 350 μg/mL in Dalton's lymphoma cells. Fluorescence microscopy analysis showed significant increase in apoptotic cell death in dose- and time-dependent manner which was further confirmed through the resulting DNA fragmentation. Further, flow cytometry analysis showed that the ethanolic extract arrests the cells in G2/M phase of the cell cycle. The in vivo anticancer activity study illustrates significant increase in the survival time of Dalton's lymphoma bearing mice on treatment with ethanolic extract when compared to control. These results substantiate the antitumor properties of ethanolic extract of Dendrobium formosum and suggest an alternative in treatment of cancer. Further studies are required regarding the isolation and characterization of bioactive components along with the analysis of molecular mechanism involved.
Collapse
|
56
|
Queiroz CJDS, Nakata CMDAG, Solito E, Damazo AS. Relationship between HPV and the biomarkers annexin A1 and p53 in oropharyngeal cancer. Infect Agent Cancer 2014; 9:13. [PMID: 24782913 PMCID: PMC4003510 DOI: 10.1186/1750-9378-9-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background Human papillomavirus (HPV) is often present in oropharyngeal cancers. Head and neck tumors have been examined for other molecular markers including p53 and annexin A1 (ANXA1). Here, we investigated the prevalence of HPV and its relationship with p53 and ANXA1 in patients with oropharyngeal cancer. Methods We have analyzed tumor and adjacent mucosa from 22 patients with squamous cell carcinoma of the oropharynx in addition to samples of the oropharyngeal epithelium in subjects without cancer. We evaluated the presence of the HPV (subtypes 16/18 and 31/33) by chromogenic in situ hybridization. Additionally, we used immunofluorescence to examine the expression of p16, p53, ANXA1 and the phosphorylation of the ANXA1 residues Ser27 (ANXA1-SER) and Tyr21 (ANXA1-TYR). Results We have detected the presence of HPV genome in 59% of the 22 tumors. Of those, 92% were also positive for p16 immunostaining. Furthermore, we demonstrated a reduction in the expression of p53 in HPV + compared to HPV- tumors. Also, a reduction was observed in the expression of ANXA1 in tumors compared to epithelium from the margins and from controls. We also noted a reduction in ANXA1-TYR in tumors. However, the expression of both ANXA1 and ANXA1-SER were elevated in the margins of the HPV + versus HPV- tumors. Conclusions Our results confirm a high prevalence of HPV in oropharyngeal cancer and a reduction in p53 expression in HPV + tumors. We observed a hypoexpression of ANXA1 and ANXA1-TYR in oropharyngeal cancer. The increase in ANXA1-SER in the margins of HPV + tumors suggests that the epithelium in these cases had been activated by an infectious agent. Those findings indicate that ANXA1 and its phosphorylated forms can play important roles in the response to HPV infection and the carcinogenesis of the oropharynx.
Collapse
Affiliation(s)
- Cleberson Jean Dos Santos Queiroz
- Post-Graduation in Health Science, Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil ; Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK ; Henry Wellcome Laboratory, University of Liverpool, 1st Floor, Nuffield Building, Liverpool L69 3GE, UK
| | - Cíntia Mara de Amorim Gomes Nakata
- Post-Graduation in Health Science, Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil
| | - Egle Solito
- William Harvey Research Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Amílcar Sabino Damazo
- Post-Graduation in Health Science, Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil ; Department of Basic Science in Health; Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil
| |
Collapse
|
57
|
Hamada T, Niki T, Ishida N. Role of p53 in the entrainment of mammalian circadian behavior rhythms. Genes Cells 2014; 19:441-8. [DOI: 10.1111/gtc.12144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Hamada
- Applied Molecular-Imaging Physics; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido 060-8638 Japan
- Ishida Group of Clock Gene; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Tomoko Niki
- Ishida Group of Clock Gene; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
| | - Norio Ishida
- Ishida Group of Clock Gene; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8566 Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8566 Japan
| |
Collapse
|
58
|
Kitazono M, Shinchi H, Ishigami S, Ueno S, Natsugoe S. Effects of a histone deacetylase inhibitor, sodium butyrate, on 53-kDa protein expression and sensitivity to anticancer drugs of pancreatic cancer cells. Curr Ther Res Clin Exp 2014; 71:162-72. [PMID: 24683262 DOI: 10.1016/j.curtheres.2010.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Several tumor-suppressor genes, such as 53-kDa protein (p53), are inactivated in some pancreatic cancers. The lack of a functional p53 has been proposed to be a component of resistance to chemotherapy, resulting in the inhibition of apoptosis. Therefore, reintroduction of wild-type p53 is a commonly used gene therapy strategy for the treatment of various types of cancer, including pancreatic cancer. OBJECTIVE The aim of this study was to examine the ability of the histone deacetylase inhibitor, sodium butyrate (NaB), to modulate the expression of p53. METHODS Five human pancreatic carcinoma cell lines (SW-1990, BxPC-3, PANC-1, MIA PaCa-2, JHP-1) were utilized. Two of the cell lines (SW-1990 and JHP-1) lacked p53 expression, as determined by Western blot analysis, and were investigated further. Expression of p53 was determined by densitometry of all bands present in the Western blot. Drug sensitivity was measured with a tetrazolium-based assay by exposing the cells to graded concentrations of NaB and/or anticancer drugs (cisplatin, fluorouracil, SN-38, and paclitaxel). Apoptosis was observed using gel electrophoresis. RESULTS In the SW-1990 and JHP-1 cell lines, use of 1 mM NaB was found to induce histone acetylation and p53 expression compared with those not treated with NaB (P = 0.01 and P = 0.018, respectively). Sensitivity to cisplatin (P = 0.021), fluorouracil (P = 0.046), and SN-38 (P = 0.039) was significantly enhanced by NaB treatment compared with nontreatment. However, sensitivity to paclitaxel was not significantly different between untreated and NaB-treated cells. A higher frequency of apoptosis was observed in NaB-treated cells compared with that of control cells. CONCLUSION This in vitro study found that NaB induced p53 expression in 2 pancreatic cancer cell lines (SW-1990 and JHP-1). Moreover, NaB acted on a biochemical modulator for antieuplastic therapy. Future research is necessary to assess the value of these findings.
Collapse
Affiliation(s)
- Masaki Kitazono
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan
| | - Hiroyuki Shinchi
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan
| | - Sumiya Ishigami
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan
| | - Shinichi Ueno
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan
| |
Collapse
|
59
|
Palanisamy AP, Cheng G, Sutter AG, Liu J, Lewin DN, Chao J, Chavin K. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice. PLoS One 2014; 9:e93304. [PMID: 24667691 PMCID: PMC3965553 DOI: 10.1371/journal.pone.0093304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023] Open
Abstract
Hepatic ischemia/reperfusion (l/R) injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS) over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS) was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.
Collapse
Affiliation(s)
- Arun P. Palanisamy
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gang Cheng
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alton G. Sutter
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John Liu
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - David N. Lewin
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Julie Chao
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth Chavin
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
60
|
Sane S, Abdullah A, Boudreau DA, Autenried RK, Gupta BK, Wang X, Wang H, Schlenker EH, Zhang D, Telleria C, Huang L, Chauhan SC, Rezvani K. Ubiquitin-like (UBX)-domain-containing protein, UBXN2A, promotes cell death by interfering with the p53-Mortalin interactions in colon cancer cells. Cell Death Dis 2014; 5:e1118. [PMID: 24625977 PMCID: PMC3973214 DOI: 10.1038/cddis.2014.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
Mortalin (mot-2) induces inactivation of the tumor suppressor p53's transcriptional and apoptotic functions by cytoplasmic sequestration of p53 in select cancers. The mot-2-dependent cytoprotective function enables cancer cells to support malignant transformation. Abrogating the p53-mot-2 interaction can control or slow down the growth of cancer cells. In this study, we report the discovery of a ubiquitin-like (UBX)-domain-containing protein, UBXN2A, which binds to mot-2 and consequently inhibits the binding between mot-2 and p53. Genetic analysis showed that UBXN2A binds to mot-2's substrate binding domain, and it partly overlaps p53's binding site indicating UBXN2A and p53 likely bind to mot-2 competitively. By binding to mot-2, UBXN2A releases p53 from cytosolic sequestration, rescuing the tumor suppressor functions of p53. Biochemical analysis and functional assays showed that the overexpression of UBXN2A and the functional consequences of unsequestered p53 trigger p53-dependent apoptosis. Cells expressing shRNA against UBXN2A showed the opposite effect of that seen with UBXN2A overexpression. The expression of UBXN2A and its apoptotic effects were not observed in normal colonic epithelial cells and p53-/- colon cancer cells. Finally, significant reduction in tumor volume in a xenograft mouse model in response to UBXN2A expression was verified in vivo. Our results introduce UBXN2A as a home defense response protein, which can reconstitute inactive p53-dependent apoptotic pathways. Inhibition of mot-2-p53 interaction by UBXN2A is an attractive therapeutic strategy in mot-2-elevated tumors.
Collapse
Affiliation(s)
- S Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - A Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D A Boudreau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - R K Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - B K Gupta
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - X Wang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - H Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - E H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - C Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - L Huang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - S C Chauhan
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - K Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| |
Collapse
|
61
|
Okayama S, Kopelovich L, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ, Subbaramaiah K. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression. J Biol Chem 2014; 289:6513-6525. [PMID: 24451373 PMCID: PMC3945316 DOI: 10.1074/jbc.m113.532523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
The p53 tumor suppressor gene encodes a homotetrameric transcription factor which is activated in response to a variety of cellular stressors, including DNA damage and oncogene activation. p53 mutations occur in >50% of human cancers. Although p53 has been shown to regulate Wnt signaling, the underlying mechanisms are not well understood. Here we show that silencing p53 in colon cancer cells led to increased expression of Aha1, a co-chaperone of Hsp90. Heat shock factor-1 was important for mediating the changes in Aha1 levels. Increased Aha1 levels were associated with enhanced interactions with Hsp90, resulting in increased Hsp90 ATPase activity. Moreover, increased Hsp90 ATPase activity resulted in increased phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), leading to enhanced expression of Wnt target genes. Significantly, levels of Aha1, Hsp90 ATPase activity, Akt, and GSK3β phosphorylation and expression of Wnt target genes were increased in the colons of p53-null as compared with p53 wild type mice. Using p53 heterozygous mutant epithelial cells from Li-Fraumeni syndrome patients, we show that a monoallelic mutation of p53 was sufficient to activate the Aha1/Hsp90 ATPase axis leading to stimulation of Wnt signaling and increased expression of Wnt target genes. Pharmacologic intervention with CP-31398, a p53 rescue agent, inhibited recruitment of Aha1 to Hsp90 and suppressed Wnt-mediated gene expression in colon cancer cells. Taken together, this study provides new insights into the mechanism by which p53 regulates Wnt signaling and raises the intriguing possibility that p53 status may affect the efficacy of anticancer therapies targeting Hsp90 ATPase.
Collapse
Affiliation(s)
- Sachiyo Okayama
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gabriel Balmus
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065.
| |
Collapse
|
62
|
Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int J Oncol 2014; 44:1309-15. [PMID: 24481553 DOI: 10.3892/ijo.2014.2281] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/09/2014] [Indexed: 11/05/2022] Open
Abstract
Carnosol, an active constituent of rosemary, has been reported to possess anti-inflammatory and anticancer activities. However, the molecular mechanisms underlying the anticancer effects of carnosol remain poorly understood. In the present study, we found that carnosol significantly reduced the viability of human colon cancer (HCT116) cells in a concentration- and time-dependent manner. Treatment of cells with carnosol induced apoptosis, which was associated with activation of caspase-9 and -3 and the cleavage of poly-(ADP-ribose) polymerase (PARP). Incubation with carnosol elevated the expression of Bax and inhibited the levels of Bcl-2 and Bcl-xl. Carnosol induced expression of p53 and inhibited that of murine-double minute-2 (Mdm2). Moreover, carnosol generated reactive oxygen species (ROS), and pretreatment with N-acetyl cysteine abrogated carnosol-induced cleavage of caspase-3 and PARP. The constitutive phosphorylation, the DNA binding and reporter gene activity of signal transducer and activator of transcription-3 (STAT3) was diminished by treatment with carnosol. To further elucidate the molecular mechanisms of STAT3 inactivation, we found that carnosol attenuated the phosphorylation of Janus-activated kinase-2 (Jak2) and Src kinase. Pharmacological inhibition of Jak2 and Src inhibited STAT3 phosphorylation. Furthermore, carnosol attenuated the expression of STAT3 target gene products, such as survivin, cyclin-D1, -D2, and -D3. Taken together, our study provides the first report that carnosol induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases and inhibition of STAT3 signaling pathway.
Collapse
|
63
|
Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2014; 34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- J Chen
- 1] Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA [2] Department of Neurology, University of California, San Francisco, CA, USA
| | - W A Weiss
- 1] Department of Neurology, University of California, San Francisco, CA, USA [2] Department of Neurological Surgery and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
64
|
Abstract
The roles of p53 as "guardian of the genome" are extensive, encompassing regulation of the cell cycle, DNA repair, apoptosis, cellular metabolism, and senescence - ultimately steering cells through a balance of death and proliferation. The majority of sporadic cancers exhibit loss of p53 activity due to mutations or deletions of TP53, and alterations in its signaling pathway. Germline TP53 mutations have been identified in a group of families exhibiting a rare but highly penetrant familial cancer syndrome, called the Li-Fraumeni syndrome (LFS). Between 60-80% of 'classic' LFS families carry mutant Trp53. The most frequent cancers observed are premenopausal breast cancer, bone and soft-tissue sarcomas, adrenal cortical carcinomas, and brain tumors. Penetrance is nearly 100% by age 70. Although TP53 is currently the only validated susceptibility locus recognized for LFS, recent studies have focused on the identification of genetic modifiers that may explain the wide phenotypic variability observed in LFS patients. Analyses of single nucleotide polymorphisms (SNPs), genome-wide copy number and telomere length have provided greater insight into the potential genetic modifiers of LFS. Moreover, the study of Trp53 mutant heterozygous mouse models has elucidated novel functions of p53, and offers insight into the mechanisms governing tumorigenesis in LFS. The key findings outlined in this chapter provide an overview of the molecular basis of LFS and the role of p53 in this unique heritable cancer syndrome.
Collapse
Affiliation(s)
- Diana Merino
- Division of Hematology/Oncology, Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, M5G 1X8, Toronto, ON, Canada
| | | |
Collapse
|
65
|
Malekinejad H, Moradi M, Fink-Gremmels J. Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid- Induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 gene. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2014; 13:191-8. [PMID: 24734071 PMCID: PMC3985263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 μM. The reactive oxygen species (ROS) generation following exposing the cells to MPA showed a significant (p < 0.05) increase in the ROS production and in a concentration-dependent fashion. Involvement of Caspase 3/7 proteases and Cytochrome C release in the induction of DNA fragmentation are all hallmarks of MPA-induced apoptosis in PTO cells. Our data suggest that MPA exerts an apoptotic effect on PTO cells. Moreover, the apoptotic effect of MPA attribute to the elevation of ROS generation by which might trigger the cytochrome C release and the activation of Caspase 3/7 that ultimately results in DNA fragmentation.
Collapse
Affiliation(s)
- Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. ,Corresponding author:
E-mail:
| | - Masumeh Moradi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Johanna Fink-Gremmels
- Department of Veterinary, Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands .
| |
Collapse
|
66
|
Zhang J, Wang C, Chen M, Cao J, Zhong Y, Chen L, Shen HM, Xia D. Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer 2013; 13:601. [PMID: 24330717 PMCID: PMC3878668 DOI: 10.1186/1471-2407-13-601] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
Background Glutaminase 2 (Gls2) is a p53 target gene and is known to play an important role in energy metabolism. Gls2 has been reported to be downregulated in human hepatocellular carcinomas (HCC). However, the underlying mechanism responsible for its downregulation is still unclear. Here, we investigated Gls2 expression and its promoter methylation status in human liver and colon cancers. Methods mRNA expression of Gls2 was determined in human liver and colon cancer cell lines and HCC tissues by real-time PCR and promoter methylation was analyzed by methylation-specific PCR (MSP) and validated by bisulfite genome sequencing (BGS). Cell growth was determined by colony formation assay and MTS assay. Statistical analysis was performed by Wilcoxon matched-pairs test or non-parametric t test. Results First, we observed reduced Gls2 mRNA level in a selected group of liver and colon cancer cell lines and in the cancerous tissues from 20 HCC and 5 human colon cancer patients in comparison to their non-cancerous counter parts. Importantly, the lower level of Gls2 in cancer cells was closely correlated to its promoter hypermethylation; and chemical demethylation treatment with 5-aza-2′-deoxycytidine (Aza) increased Gls2 mRNA level in both liver and colon cancer cells, indicating that direct epigenetic silencing suppressed Gls2 expression by methylation. Next, we further examined this correlation in human HCC tissues, and 60% of primary liver tumor tissues had higher DNA methylation levels when compared with adjacent non-tumor tissues. Detailed methylation analysis of 23 CpG sites at a 300-bp promoter region by bisulfite genomic sequencing confirmed its methylation. Finally, we examined the biological function of Gls2 and found that restoring Gls2 expression in cancer cells significantly inhibited cancer cell growth and colony formation ability through induction of cell cycle arrest. Conclusions We provide evidence showing that epigenetic silencing of Gls2 via promoter hypermethylation is common in human liver and colon cancers and Gls2 appears to be a functional tumor suppressor involved in the liver and colon tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dajing Xia
- School of Public Health, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
67
|
Kumar S, Tomar MS, Acharya A. HSF1-mediated regulation of tumor cell apoptosis: a novel target for cancer therapeutics. Future Oncol 2013; 9:1573-86. [PMID: 24106905 DOI: 10.2217/fon.13.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Programmed cell death/apoptosis is a genetically conserved phenomenon involved in many biological processes including reconstruction of multicellular organisms and elimination of old or damaged cells. It is regulated by the activation/deactivation of PKC in response to exogenous and endogenous stimuli. PKC is activated under stress by a series of downstream signaling cascades, which ultimately induce HSF1 activation, which results in overexpression of heat shock proteins. Overexpression of heat shock proteins interferes in the apoptotic pathway, while their blocking results in apoptosis. Therefore, HSF1 could be a novel therapeutic target against a variety of tumors. Several pharmacological inhibitors of PKC have been demonstrated to exert inhibitory effects on the activation of HSF1 and, therefore, induce apoptosis in tumor cells. However, studies regarding the role of pharmacological inhibitors in the regulation of apoptosis and possible anti-tumor therapeutic intervention are still unknown or in their infancy. Therefore, an attempt has been made to delineate the precise role of HSF1 in the regulation of apoptosis and its prospects in cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Munendra Singh Tomar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| |
Collapse
|
68
|
de Assis LVM, Isoldi MC. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumour Biol 2013; 35:889-901. [PMID: 24081673 DOI: 10.1007/s13277-013-1210-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16(INK4A), p14(ARF), and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.
Collapse
|
69
|
Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci 2013; 14:15931-58. [PMID: 23912235 PMCID: PMC3759894 DOI: 10.3390/ijms140815931] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022] Open
Abstract
Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment.
Collapse
|
70
|
|
71
|
Elias A, Wu J, Chen T. Tumor suppressor protein p53 negatively regulates human pregnane X receptor activity. Mol Pharmacol 2013; 83:1229-36. [PMID: 23536728 PMCID: PMC3657101 DOI: 10.1124/mol.113.085092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/27/2013] [Indexed: 11/22/2022] Open
Abstract
The human pregnane X receptor (PXR) regulates genes involved in drug metabolism and disposition. PXR associates with multiple corepressors that attenuate and coactivators that enhance its activity. PXR plays a vital role in the drug metabolism pathway, and a comprehensive examination of PXR-associated proteins will provide greater insight into the regulation of the receptor and possible therapeutic implications. We performed a mass spectrometric screen to identify PXR-associated proteins. Here we report that the tumor suppressor protein p53 can associate with PXR and downregulate its activity. A loss-of-function p53 mutant (R175H) interacts with PXR but does not repress its activity. Mutant p53 can relieve the suppressive effect of wild-type p53 by competing with its interaction with PXR, suggesting that protein-protein interaction is required but not sufficient for p53 to repress PXR activity. Interestingly, a PXR variant with a naturally occurring deletion of a conserved, unique sequence in the ligand binding domain (PXR174-210) did not interact with p53, indicating that the PXR-p53 interaction is specific. Using a chromatin immunoprecipitation assay, we showed that p53 inhibits the binding of PXR to the CYP3A4 promoter. The loss of p53 function in tumor cells leads to aberrant cell proliferation, apoptosis, carcinogenesis, and altered sensitivity to chemotherapeutic drugs, whereas PXR contributes to chemoresistance in many cancer cells. Our findings show for the first time that wild-type p53 can negatively regulate PXR by physically associating with it. Thus, PXR and p53 appear to play important yet opposing roles in the sensitivity of tumor cells to chemotherapy.
Collapse
Affiliation(s)
- Ayesha Elias
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | |
Collapse
|
72
|
Ethayathulla AS, Nguyen HT, Viadiu H. Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements. J Biol Chem 2012; 288:4744-54. [PMID: 23243311 DOI: 10.1074/jbc.m112.408039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How cells choose between developmental pathways remains a fundamental biological question. In the case of the p53 protein family, its three transcription factors (p73, p63, and p53) each trigger a gene expression pattern that leads to specific cellular pathways. At the same time, these transcription factors recognize the same response element (RE) consensus sequences, and their transactivation of target genes overlaps. We aimed to understand target gene selectivity at the molecular level by determining the crystal structures of the p73 DNA-binding domain (DBD) in complex with full-site REs that vary in sequence. We report two structures of the p73 DBD bound as a tetramer to 20-bp full-site REs based on two distinct quarter-sites: GAACA and GAACC. Our study confirms that the DNA-binding residues are conserved within the p53 family, whereas the dimerization and tetramerization interfaces diverge. Moreover, a conserved lysine residue in loop L1 of the DBD senses the presence of guanines in positions 2 and 3 of the quarter-site RE, whereas a conserved arginine in loop 3 adapts to changes in position 5. Sequence variations in the RE elicit a p73 conformational response that might explain target gene specificity.
Collapse
Affiliation(s)
- Abdul S Ethayathulla
- Laboratory of Structural Biochemistry, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
73
|
Abstract
Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of lethal DNA adducts, and the latter enabling the cell to repair or tolerate the damage. The role in the pre-target mechanisms of reduced drug accumulation and the increased detoxification or activation systems (such as DT-diaphorase, metallothionein, GST/GSH system, etc...) are discussed. In the post-target mechanisms the different DNA repair pathways, tolerance to alkylation damage and the 'downstream' effects (cell cycle arrest and/or apoptosis) are examined.
Collapse
Affiliation(s)
- G Damia
- Department of Oncology, Instituto di Ricerche Farmacologiche 'Mario Negri', Via Eritrea 62, 20157, Milan, Italy.,
| | | |
Collapse
|
74
|
Abstract
During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972) introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.
Collapse
|
75
|
The effect of enterovirus 71 immunization on neuropathogenesis and protein expression profiles in the thalamus of infected rhesus neonates. Virology 2012; 432:417-26. [PMID: 22819834 DOI: 10.1016/j.virol.2012.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is a major pathogen that causes hand-foot-mouth disease (HFMD). Our previous studies have demonstrated that the complete process of pathogenesis, which may include tissue damage induced by host inflammatory responses and direct tissue damage caused by viral infection, can be observed in the central nervous system (CNS) of animals infected in the laboratory with EV71. Based on these observations, the neuropathogenesis and protein expression profiles in the thalamic tissues of EV71-infected animals were further analyzed in the present study. Changes in protein expression profiles following immunization with the inactivated EV71 vaccine followed by virus challenge were observed and evaluated, and their physiological roles in viral pathogenesis are discussed. Taken together, the results of these experiments provide evidence regarding the neuropathogenesis and molecular mechanisms associated with EV71 infection and identify several protein indicators of pathogenic changes during viral infection.
Collapse
|
76
|
Weige CC, Allred KF, Armstrong CM, Allred CD. P53 mediates estradiol induced activation of apoptosis and DNA repair in non-malignant colonocytes. J Steroid Biochem Mol Biol 2012; 128:113-20. [PMID: 22100717 DOI: 10.1016/j.jsbmb.2011.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 02/07/2023]
Abstract
Clinical and animal studies have shown a strong link between estrogen status in women and decreased risk of colon cancer. However, little research has been done into the mechanism of protection that estrogen provides. Our laboratory has demonstrated that estradiol (E₂) inhibits the development of pre-neoplastic lesions through an estrogen receptor β (ERβ) mediated mechanism in mice. Our data also suggest that the primary protective role of E₂ treatment is increased apoptosis in non-malignant colonocytes that are damaged and at risk of becoming cancerous. The p53 protein plays a crucial role in the cellular response to stress by inducing cell cycle arrest, DNA repair mechanisms, and/or apoptosis. Due to the observed induction of apoptosis in response to E₂, we are investigating the role of p53 in this chemo-protective mechanism. E₂ suppressed growth of young adult mouse colonocytes (YAMCs) by inducing apoptosis and these physiological responses were completely lost in YAMCs lacking a functional p53 protein. Western blot analysis demonstrated increases in p53 protein levels in YAMCs after treatment with E₂ likely due to protein stabilization. E₂ was shown to enhance the transcriptional activity of p53, resulting in up-regulation of pro-apoptotic p53 target genes (Bax, Noxa, and PUMA). Finally, repair of DNA double stranded breaks was shown to be increased by E₂ treatment. Collectively, these data are the first to demonstrate that p53 is a primary mediator of the protective actions of E₂ in the colon.
Collapse
Affiliation(s)
- Charles C Weige
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, United States
| | | | | | | |
Collapse
|
77
|
Malekinejad H, Bull S, Rahmani F, Fink-Gremmels J. Cytotoxic Effects of Serum from Equine Grass Sickness Cases on Neuro-2a and PC12 Tet-Off Cell Lines: Implication for Using In Vitro Methods as Antemortem Diagnostic Tools. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2011.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
78
|
Abstract
The p53 tumor suppressor protein is a key transcription factor that regulates several signaling pathways involved in the cell's response to stress. Through stress-induced activation, p53 accumulates and triggers the expression of target genes that protect the genetic integrity of all cells including hematopoietic stem cells (HSCs). These protective mechanisms include cell-cycle arrest, DNA repair, induction of apoptosis, or initiation of senescence. In addition to its function under stress conditions, p53 has important functions during steady-state hematopoiesis, regulating HSC quiescence and self-renewal. In addition, it appears that p53 levels affect HSC competition for the hematopoietic niche, with the less p53 activated HSCs preferentially surviving. The specific genes and precise mechanisms underlying p53's effects on normal HSCs are slowly being clarified. p53 also plays an important role in leukemia stem cell (LSC) behavior, with p53 loss affecting drug resistance and disease progression. Pharmacologic activation of p53 function could overcome the adverse impact of p53 inactivation in LSCs. Thus, understanding the p53 regulatory mechanisms active in HSCs and LSCs may promote the development of new therapeutic strategies that could eliminate the population of largely quiescent LSCs.
Collapse
Affiliation(s)
- Takashi Asai
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| | - Yan Liu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| | - Narae Bae
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| | - Stephen D Nimer
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| |
Collapse
|
79
|
Kotipatruni RR, Dasari VR, Veeravalli KK, Dinh DH, Fassett D, Rao JS. p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem Res 2011; 36:2063-74. [PMID: 21748659 DOI: 10.1007/s11064-011-0530-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/07/2023]
Abstract
Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2'-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser³⁹². Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.
Collapse
Affiliation(s)
- Ramaprasada Rao Kotipatruni
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61656, USA
| | | | | | | | | | | |
Collapse
|
80
|
Downregulation of ASPP1 in gestational trophoblastic disease: correlation with hypermethylation, apoptotic activity and clinical outcome. Mod Pathol 2011; 24:522-32. [PMID: 21102414 DOI: 10.1038/modpathol.2010.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational trophoblastic disease encompasses a spectrum of trophoblastic lesions including true neoplasms such as choriocarcinomas and the potentially malignant hydatidiform moles, which may develop persistent disease requiring chemotherapy. ASPP1, a member of apoptosis-stimulating proteins of p53 (ASPPs), is a proapoptotic protein that can stimulate apoptosis through its interaction with p53. We evaluated the promoter methylation and expression profiles of ASPP1 in different trophoblastic tissues and its in vitro functional effect on two choriocarcinoma cell lines, namely JEG-3 and JAR. Significant downregulation of ASPP1 mRNA and protein levels was demonstrated in hydatidiform moles and choriocarcinomas, when compared with normal placentas by quantitative-PCR and immunohistochemistry. The ASPP1 mRNA level was significantly correlated with its hypermethylation status, evaluated with methylation-specific PCR, in placenta and gestational trophoblastic disease samples (P=0.024). Moreover, lower ASPP1 immunoreactivity was shown in hydatidiform moles that progressed to persistent gestational trophoblastic neoplasms than in those that regressed (P=0.045). A significant correlation was also found between expression of ASPP1 and proliferative indices (assessed by Ki67 and MCM7), apoptotic activity (M30 CytoDeath antibody), p53 and caspase-8 immunoreactivities. An in vitro study showed that ectopic expression of ASPP1 could trigger apoptosis through intrinsic and extrinsic pathways as indicated by an increase in cleaved caspase-9 and Fas ligand protein expression. The latter suggests a hitherto unreported novel link between ASPP1 and the extrinsic pathway of apoptosis. Our findings suggest that downregulation of ASPP1 by hypermethylation may be involved in the pathogenesis and progress of gestational trophoblastic disease, probably through its effect on apoptosis.
Collapse
|
81
|
A partially degraded product of phytate suppresses the proliferation of HCT116 colorectal cancer cells. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
83
|
p53-Dependent anticancer effects of leptomycin B on lung adenocarcinoma. Cancer Chemother Pharmacol 2010; 67:1369-80. [PMID: 20803015 DOI: 10.1007/s00280-010-1434-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/13/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE Leptomycin B (LMB) and/or its derivatives are considered a novel class of cancer therapeutics through blocking chromosome maintenance region 1, which mediates p53 nuclear export. The objectives of the present study were to first evaluate the cytotoxic effects of LMB on a normal human lung epithelial cell line (BEAS-2B) and three human lung adenocarcinoma cell lines with various p53 status (wild type: A549, mutant: NCI-H522, and null: NCI-H358) and then to identify LMB-induced gene expression alterations in human p53 signaling pathway. METHODS Cells were treated with 0.01-100 nM LMB or 0.1% ethanol (vehicle control) for 4-72 h. Gene expression analyses using gene array for 84 genes involved in p53-mediated signaling pathways were performed in A549 and NCI-H358 after treatment with 20 nM LMB or vehicle control for 24 h. RESULTS Cytotoxic results from MTS assays revealed a significant dose- and time-dependent effect of LMB on all cell lines. However, this effect was more pronounced in cancer cells than in normal cells, and cancer cells with p53 wild type tended to be less sensitive than those with p53 mutant or null. A total of 23 genes, predominantly involved in apoptosis and cell cycle/proliferation, were significantly altered in A549 after LMB treatment, while no strong modulating effects were observed in NCI-H358. The protein expression of two selected genes, p21 and survivin, was further confirmed by Western blots. CONCLUSION Our results suggest that LMB has anti-cancer potential and provides a new regimen of individualized therapy for lung cancer treatment.
Collapse
|
84
|
Scott N, Martin I, Jack AS, Dixon MF, Quirke P. Genes mediating programmed cell death: an immunohistochemical study of bcl-2, c-myc and p53 expression in colorectal neoplasia. Mol Pathol 2010; 49:M151-8. [PMID: 16696064 PMCID: PMC408042 DOI: 10.1136/mp.49.3.m151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims-To describe the expression of three genes involved in the regulation of cell proliferation and programmed cell death (apoptosis) in normal, dysplastic and malignant large bowel epithelium, and to relate any alterations to important biological and clinical variables.Methods-Immunohistochemistry was used to assess bcl-2, c-myc and p53 gene expression in 70 colorectal carcinomas, 36 adenomas and three samples of normal mucosa.Results-Bcl-2 and c-myc protein were detected in all samples of normal mucosa and most adenomas. P53 was never found in normal mucosa and was expressed in only 5% of adenomas. Sixty nine of 70 carcinomas expressed c-myc protein; p53 was found in 46% and bcl-2 was present in 35%. Bcl-2 expression correlated with a higher degree of tumour differentiation whereas the opposite was true for c-myc. Strong staining for c-myc protein predicted survival in univariate analysis. No correlation was found between p53 and bcl-2 expression.Conclusions-While c-myc and bcl-2 proteins are overexpressed at an early stage of the large bowel adenoma-carcinoma sequence, alterations to the p53 protein level only occur as a late event in large, highly dysplastic adenomas and carcinomas. Bcl-2 may therefore protect the growing adenoma against excessive programmed cell death and mutated p53 may play a similar role in carcinomas. In vitro there is a reciprocal relation between p53 and bcl-2 expression. This could not be confirmed in vivo. Similarly, there was no relation between bcl-2 and c-myc status, despite evidence that these proteins cooperate to cause neoplastic transformation. C-myc may be a prognostic indicator in large bowel cancer. There is no evidence in the present series that bcl-2 status will affect survival.
Collapse
Affiliation(s)
- N Scott
- Department of Histopathology, Centre for Digestive Diseases
| | | | | | | | | |
Collapse
|
85
|
Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2:a000893. [PMID: 20463001 DOI: 10.1101/cshperspect.a000893] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thirty years of research on the p53 family of genes has generated almost fifty thousand publications. The first of these papers detected the p53 protein associated with a viral oncogene product in transformed cells and tumors and focused the field on cancer biology. Subsequent manuscripts have shown a wide variety of functions for the p53 family of genes and their proteins. These proteins are involved in reproduction, genomic repair, fidelity and recombination, the regulation of metabolic processes, longevity, surveillance of the stability of development, the production of stem cells and changes in epigenetic marks, the development of the nervous system (p73), the immune system (p73) and skin (p63), as well as the better known roles for the family in tumor suppression. The p53 family of genes has been found in the modern day ancestors of organisms with over one billion years of evolutionary history where they play a role in germ-line fidelity over that time span. As the body plan of the vertebrates emerged with the regeneration of tissues by stem cells over a lifetime, the p53 gene and its protein were adapted to be a tumor suppressor of somatic stem and progenitor cells complementing its' past functions in the germ line. Because the p53 family of genes has played a role in germ-line fidelity and preservation of the species, even in times of stress, these genes have been under constant selection pressure to change and adapt to new situations. This has given rise to this diversity of functions all working to preserve homeostatic processes that permit growth and reproduction in a world that is constantly challenging the fidelity of information transfer at each generation. The p53 family of gene products has influenced the rates of evolutionary change, just as evolutionary changes have altered the p53 family and its functions.
Collapse
Affiliation(s)
- David Lane
- p53 Laboratory (A-Star) 8A Biomedical Grove Immunos Singapore 138648
| | | |
Collapse
|
86
|
Ranganathan S, Bowser R. p53 and Cell Cycle Proteins Participate in Spinal Motor Neuron Cell Death in ALS. THE OPEN PATHOLOGY JOURNAL 2010; 4:11-22. [PMID: 21572928 PMCID: PMC3092395 DOI: 10.2174/1874375701004010011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis has been implicated in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We previously demonstrated a role for G1 to S phase cell cycle regulators in ALS with increased levels of hyperphosphorylated retinoblastoma (ppRb) and E2F-1 in ALS spinal cord motor neurons. In this study we examined the levels of the cell cycle checkpoint tumor suppressor protein p53 with concurrent changes in cell death markers during ALS. Expression and subcellular distribution of p53, retinoblastoma, Bax, Fas, and caspases were explored by immunoblot, immunohistochemistry and double-label confocal microscopy in the spinal cord and motor cortex of ALS and control subjects. We identified elevated levels of p53 in ALS spinal cord motor neurons but not neurons in the motor cortex. In addition, there was an increase in Bax, Fas, caspases-8 and -3 proteins in ALS spinal motor neurons. While caspase-3 and TUNEL labeled neurons were positive for ppRb, E2F-1 and p53 in spinal motor neurons, and Fas co-localized with caspase-8 in spinal motor neurons, we failed to observe these results in large neurons in the motor cortex of ALS subjects. We have linked p53 and activation of G1 to S phase cell cycle regulators to an apoptotic mode of cell death ALS spinal cord motor neurons.
Collapse
Affiliation(s)
| | - Robert Bowser
- Department of Pathology, Pittsburgh, PA, USA
- Center for ALS Research, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, USA
| |
Collapse
|
87
|
Wolf B, Kührer I, Akan B, Teleky B, Kappel S, Schmid R, Wrba F, Mittlböck M, Kandioler D. PART 1 – p53 adapted preoperative radiotherapy for T2 and T3 rectal cancer. A study of the p53 research group. Eur Surg 2010. [DOI: 10.1007/s10353-010-0514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
88
|
Tageja N, Padheye S, Dandawate P, Al-Katib A, Mohammad RM. New targets for the treatment of follicular lymphoma. J Hematol Oncol 2009; 2:50. [PMID: 20030851 PMCID: PMC2805680 DOI: 10.1186/1756-8722-2-50] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/23/2009] [Indexed: 11/29/2022] Open
Abstract
The last two decades have witnessed striking advances in our understanding of the biological factors underlying the development of Follicular lymphoma (FL). Development of newer treatment approaches have improved the outlook for many individuals with these disorders; however, with these advances come new questions. Given the long-term survival of patients with FL, drugs with favourable side-effect profile and minimal long-term risks are desired. FL is incurable with current treatment modalities. It often runs an indolent course with multiple relapses and progressively shorter intervals of remission. The identification of new targets and development of novel targeted therapies is imperative to exploit the biology of FL while inherently preventing relapse and prolonging survival. This review summarizes the growing body of knowledge regarding novel therapeutic targets, enabling the concept of individualized targeted therapy for the treatment of FL.
Collapse
Affiliation(s)
- Nishant Tageja
- Department of Internal Medicine, Division of Hematology/Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
We have established a novel production process which allows up to fourfold higher production of a model secreted protein, the human secreted alkaline phosphatase (SEAP), in Chinese hamster ovary (CHO) cells. A cytostatic production phase is established in which cell proliferation is inhibited or completely abolished. Such a cytostatic production phase is established by overexpression of the tumor suppressor genes p21, p27, or p53175P (a p53 mutant showing specific loss of apoptotic function) under transcriptional control of a tetracycline-repressible promoter (P(hCMV*-1)). In order to minimize complications due to possible clonal variation of selected, stable cell lines, our investigations are based on transiently transfected subpopulations, that have become a useful tool in industrial R&D. These subpopulations have been selected by flow cytometry for the expression of genes encoded on a dicistronic expression vector. These vectors contain a dicistronic expression unit consisting of the genes encoding the green fluorescent protein (GFP) or SEAP, followed by one of the cytostatic genes p21, p27 or p53175P encoded by the second cistron. p21, p27 as well as p53175P block the cell cycle of CHO cells in the G1-phase for a prolonged period. However, these G1-arrested cells remain viable and proliferation proficient upon repression of expression of the cytostatic gene. All three of the cytostatic genes studied provided similar regulation of proliferation, and also similar enhancements in SEAP production, suggesting that higher productivity may be a general and intrinsic feature of G1-phase arrested CHO cells. Overall productivity is most likely enhanced because growth-arrested cells do not need to devote cellular resources to biomass production.
Collapse
Affiliation(s)
- M Fussenegger
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
90
|
Abstract
Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus. The first decade of p53 research saw the cloning of p53 DNA and the realization that p53 is not an oncogene but a tumour suppressor that is very frequently mutated in human cancer. In the second decade of research, the function of p53 was uncovered: it is a transcription factor induced by stress, which can promote cell cycle arrest, apoptosis and senescence. In the third decade after its discovery new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation. The fourth decade of research may see new p53-based drugs to treat cancer. What is next is anybody's guess.
Collapse
Affiliation(s)
- Arnold J Levine
- Arnold J. Levine is at the Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, New Jersey 08540, USA.
| | | |
Collapse
|
91
|
Geatrell JC, Mui (Iryn) Gan P, Mansergh FC, Kisiswa L, Jarrin M, Williams LA, Evans MJ, Boulton ME, Wride MA. Apoptosis gene profiling reveals spatio-temporal regulated expression of the p53/Mdm2 pathway during lens development. Exp Eye Res 2009; 88:1137-51. [PMID: 19450442 PMCID: PMC2706329 DOI: 10.1016/j.exer.2009.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/15/2009] [Accepted: 01/30/2009] [Indexed: 01/19/2023]
Abstract
Evidence is emerging for apoptosis gene expression in the lens during development. Therefore, here we used a filter array to assess expression of 243 apoptosis-related genes in the developing postnatal mouse lens using (33)P labelled cDNA synthesized from p7 and p14 mouse lenses. We demonstrated that 161 apoptosis-related genes were expressed at levels significantly above background and 20 genes were potentially significantly differentially expressed (P<0.05) by at least 2-fold between p7 and p14. We used RT-PCR to confirm expression of these genes in newborn, p7, p14 and 4 wk mouse lens cDNA samples. Expression of 19/20 of the genes examined was confirmed, while 5 genes (Huntingtin, Mdm2, Dffa, galectin-3 and Mcl-1) were confirmed as differentially regulated between p7 and p14. RT-PCR was also used to examine the expression of the chick homologues of the most-highly expressed and/or potentially differentially regulated genes in chick embryo lenses at E6-E16. The majority of genes expressed in the postnatal mouse lens were also expressed in the chick embryo lens. Western blotting confirmed developmentally regulated expression of Axl and Mcl-1 during mouse lens development and of Mdm2, Mdm4/X and p53 during mouse and chick lens development. Western blotting also revealed the presence of p53 and Mdm4/X splice variants and/or proteolytic cleavage products in the developing lens. Since Mdm2 is a regulator of the tumour suppressor gene p53, we chose to thoroughly investigate the spatio-temporal expression patterns of p53, Mdm2 and the functionally related Mdm4/X in mouse lens development at E12.5-E16.5 using immunocytochemistry. We also examined Mdm2 expression patterns during chick lens development at E6-E16 and Mdm4/X and p53 at E14. Expression of Mdm2, Mdm4/X and p53 was spatio-temporally regulated in various compartments of the developing lens in both mouse and chick, including lens epithelial and lens fibre cells, indicating potential roles for these factors in regulation of lens epithelial cell proliferation and/or lens fibre cell differentiation This study provides a thorough initial analysis of apoptosis gene expression in the postnatal mouse lens and provides a resource for further investigation of the roles in lens development of the apoptosis genes identified. Furthermore, building on the array studies, we present the first spatio-temporal analysis of expression of p53 pathway molecules (p53, Mdm2 and Mdm4/X) in both developing mouse and chick lenses, suggesting a potential role for the p53/Mdm2 pathway in lens development, which merits further functional analysis.
Collapse
Affiliation(s)
- Jenny C. Geatrell
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Peng Mui (Iryn) Gan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Fiona C. Mansergh
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Lilian Kisiswa
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Miguel Jarrin
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Mason Eye Institute, One Hospital Drive, Columbia, Columbia University, MO 65212, USA
| | - Llinos A. Williams
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Martin J. Evans
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | - Mike E. Boulton
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Michael A. Wride
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
92
|
Suzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T. Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 2009; 100:759-69. [PMID: 19298224 PMCID: PMC11158019 DOI: 10.1111/j.1349-7006.2009.01096.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 12/05/2008] [Accepted: 12/07/2008] [Indexed: 11/27/2022] Open
Abstract
The selective elimination of tumor cells by inducing apoptosis is one of the most important issues in cancer therapy. In this context, artificial expression of the p53 tumor-suppressor gene has been an attractive approach and numerous studies have shown its efficacy in combination with other therapies such as radiation or chemotherapy. One of the critical issues for current cancer gene therapy is how to induce apoptosis in cancer cells without affecting normal cells. In the present study, we examined the potential of Noxa, a BH3-only protein with proapoptotic activity that functions downstream of the p53-mediated apoptotic pathway, to selectively induce apoptosis in tumor cells. We found that upon infection of a recombinant adenovirus contrived to express the Noxa gene, apoptosis was induced in vitro in several human breast cancer cell lines, but not in normal mammary epithelial cell lines. Furthermore, intratumoral injection of the Noxa-expressing adenovirus resulted in marked shrinkage of the transplanted tumor derived from breast cancer cells without any notable adverse effect on the surrounding normal tissue. In contrast, the expression of Puma, another BH3-only protein that also functions downstream of the p53 pathway, induced apoptosis in both cancer and normal cells. Thus, our results suggest a mechanism wherein Noxa, but not Puma, selectively induces apoptosis in human tumor cells. These data provide a new prospect for cancer therapy by the Noxa-mediated selective elimination of malignant cells.
Collapse
Affiliation(s)
- Saori Suzuki
- Department of Immunology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
93
|
Ryu SY, Kim K, Lee WS, Kwon HC, Lee KH, Kim CM, Kang SB. Synergistic growth inhibition by combination of adenovirus mediated p53 transfer and cisplatin in ovarian cancer cell lines. J Gynecol Oncol 2009; 20:48-54. [PMID: 19471670 PMCID: PMC2676500 DOI: 10.3802/jgo.2009.20.1.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE This study was to investigate the synergistic growth inhibitory effect by combination of adenovirus mediated p53 gene transfer and cisplatin in ovarian cancer cell lines with different p53 gene mutation patterns. METHODS Three ovarian cancer cell lines, p53 deleted SKOV3, p53 mutated OVCAR-3, and PA-1 with wild-type p53 were transduced with human adenovirus vectors carrying p53 gene (Ad-p53) and treated with a sublethal concentration of cisplatin before and after Ad-p53. The cell number was counted daily for 5 days after Ad-p53 transduction. Western blotting was used to identify p53 and p21 protein expressions, and flow cytometric analysis was performed to investigate any change of DNA ploidy after Ad-p53 transfer. RESULTS Ad-p53 transduced cells successfully expressed p53 and p21 proteins after 48 hours of Ad-p53 transduction. Synergistic growth inhibition by combination of Ad-p53 and cisplatin was detected only in SKOV3 and OVCAR-3 cells, but not in PA-1 cells. In p53 deleted SKOV3 cells, cisplatin treatment after Ad-p53 showed higher growth inhibition than the treatment before Ad-p53 transduction, and reverse relationship was observed in p53 mutated OVCAR-3 cells. In SKOV3 cells, the fraction of cells at G2/M phase increased after cisplatin treatment, however, it decreased dramatically with Ad-p53 transduction. CONCLUSION The synergistic growth inhibition by combination of Ad-p53 and cisplatin may depend on the p53 status and the temporal sequence of cisplatin treatment, suggesting judicious selective application of this strategy in clinical trials.
Collapse
Affiliation(s)
- Sang Young Ryu
- Department of Obstetrics and Gynecology, Korea Cancer Center Hospital, Seoul, Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Korea Cancer Center Hospital, Seoul, Korea
| | - Woo Sik Lee
- Department of Laboratory of Molecular Biology, Korea Cancer Center Hospital, Seoul, Korea
| | - Hee Chung Kwon
- Department of Laboratory of Molecular Biology, Korea Cancer Center Hospital, Seoul, Korea
| | - Kee Ho Lee
- Department of Laboratory of Molecular Biology, Korea Cancer Center Hospital, Seoul, Korea
| | - Chang Min Kim
- Department of Internal Medicine, National Cancer Center, Goyang, Korea
| | - Soon-Beom Kang
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
94
|
Jiang B, Kumar SD, Loh WT, Manikandan J, Ling EA, Tay SSW, Dheen ST. Global gene expression analysis of cranial neural tubes in embryos of diabetic mice. J Neurosci Res 2009; 86:3481-93. [PMID: 18655203 DOI: 10.1002/jnr.21800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal diabetes causes congenital malformations in various organs including the neural tube in fetuses. In this study, we have analyzed the differential gene expression profiling in the cranial neural tube of embryos from diabetic and control mice by using the oligonucleotide microarray. Expression patterns of genes and proteins that are differentially expressed in the cranial neural tube were further examined by the real-time reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistochemistry. Proliferation index and apoptosis were examined by BrdU (5-bromo-2-deoxyuridine) labeling and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay, respectively. Embryos (E11.5) of diabetic pregnancies displayed distortion in neuroepithelia of the cranial neural tube. Microarray analysis revealed that a total of 390 genes exhibited more than twofold changes in expression level in the cranial neural tube of embryos from diabetic mice. Several genes involving apoptosis, proliferation, migration, and differentiation of neurons in the cranial neural tube were differentially expressed in embryos of diabetic pregnancy. In addition, maternal diabetes perturbed the development of choroid plexus and ventricular systems and reduced the production of proteins such as Ttr and Igf2 in the developing brain, indicating that these changes could impair the survival and proliferation of neuroepithelial cells and neurogenesis in embryos of diabetic mice. It is concluded that altered expression of a variety of genes involved in brain development is associated with cranial neural tube dysmorphogenesis that may subsequently contribute to intellectual impairment of the offspring of a diabetic mother.
Collapse
Affiliation(s)
- Boran Jiang
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
95
|
Welle MM, Bley CR, Howard J, Rüfenacht S. Canine mast cell tumours: a review of the pathogenesis, clinical features, pathology and treatment. Vet Dermatol 2009; 19:321-39. [PMID: 18980632 DOI: 10.1111/j.1365-3164.2008.00694.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells (MCs) are well known for their neoplastic transformation in solitary and multiple cutaneous mast cell tumours (MCTs), as well as visceral and systemic mastocytosis. Dogs have a unique risk of developing cutaneous MCTs, and they account for 7% to 21% of all canine skin tumours. The aetiology of canine MCTs is unknown but is probably multifactorial. This article reviews up-to-date knowledge on the pathogenesis, the clinical presentation, the clinical prognostic factors, the diagnostic workup including clinical staging, cytological findings, histological findings and the various grading systems which have been evaluated based on morphology, the assessment of proliferation markers and other factors such as vessel density. Furthermore, detailed information about current treatment protocols for canine cutaneous MCTs is provided.
Collapse
Affiliation(s)
- Monika M Welle
- Institute of Animal Pathology, Vetsuisse Faculty and University of Berne, Berne, Switzerland.
| | | | | | | |
Collapse
|
96
|
O-charoenrat P, Sarkaria I, Talbot SG, Reddy P, Dao S, Ngai I, Shaha A, Kraus D, Shah J, Rusch V, Ramanathan Y, Singh B. SCCRO (DCUN1D1) induces extracellular matrix invasion by activating matrix metalloproteinase 2. Clin Cancer Res 2008; 14:6780-9. [PMID: 18980971 DOI: 10.1158/1078-0432.ccr-08-0719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ectopic expression of squamous cell carcinoma-related oncogene (SCCRO or DCUN1D1) in NIH-3T3 cells induces invasion in vitro and produces highly invasive xenografts in nude mice with a propensity for regional lymphatical metastasis. The aim of this study was to identify the molecular mechanism underlying SCCRO-induced invasion and metastasis. EXPERIMENTAL DESIGN The molecular mechanism of SCCRO-mediated effects on matrix metalloproteinase-2 (MMP2) levels and activity were assessed using a combination of cell biological and molecular methods, including real-time PCR, reporter assay, RNA interference, and chromatin immunoprecipitation assay. Tumor specimens from primary upper aerodigestive tract carcinomas (n = 89) were examined for levels of SCCRO, MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA by real-time PCR. RESULTS Overexpression of SCCRO increases MMP2 levels and activity, which is required for SCCRO-induced invasion. Modified McKay assays reveal that SCCRO does not bind to the MMP2 promoter, suggesting that its transcriptional effects are indirect. Deletion or mutation of the activator protein-2 (AP2) and p53 binding element within the MMP2 promoter abrogates SCCRO-driven activation. Ectopic expression of SCCRO increases AP2 levels and promotes the binding of p53 to the MMP2 promoter. Consistent with these findings, SCCRO and MMP2 are coexpressed (P<0.0001; r(2)=0.58; 95% confidence interval, 0.46-0.69) in primary (upper aerodigestive tract) carcinomas (n=89), and this coexpression is associated with an increased prevalence of regional nodal metastasis (P=0.04; relative risk, 1.53). CONCLUSIONS SCCRO-induced invasion involves activation of MMP2 transcription in an AP2- and p53-dependent manner. SCCRO is a potential marker for metastatic progression in affected cancers.
Collapse
Affiliation(s)
- Pornchai O-charoenrat
- The Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hori M, Suzuki K, Udono MU, Yamauchi M, Mine M, Watanabe M, Kondo S, Hozumi Y. Establishment of ponasterone A-inducible the wild-type p53 protein-expressing clones from HSC-1 cells, cell growth suppression by p53 expression and the suppression mechanism. Arch Dermatol Res 2008; 301:631-46. [PMID: 19009304 DOI: 10.1007/s00403-008-0915-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/09/2008] [Accepted: 10/20/2008] [Indexed: 01/21/2023]
Abstract
Gene therapy for a variety of human cancers containing the mutant p53 (mt-p53) gene has been performed by direct injection of a retroviral or adenoviral vector containing the wild-type p53 (wt-p53) gene. Because many individuals with skin squamous cell carcinoma (SCC) have been shown to carry the p53 gene mutation, these patients are candidates for p53 gene therapy. For this reason, we established ponasterone A-inducible the wild-type p53 (wt-p53) protein-expressing clones by transfecting a ponasterone-inducible vector containing the wt-p53 gene into HSC-1 cells, which harbor the mutated p53 (m/w) at codon 173 (GTG --> TTG in one allele). Upon the induction of the wt-p53 protein, severe growth suppression was observed. Based on the results of the expression patterns of the p21, p16, RB, BAX and Bcl-2 proteins, as well as on the results of senescence-associated beta-galactosidase staining, the suppression was caused by senescence-like growth arrest of the cells. Although it is generally accepted that the suppression of tumor cell growth is caused by p53-induced apoptosis, permanent G1 arrest induced by p53 is also an important part of the growth-suppression mechanism in p53 gene therapy. The present results should expand the possibilities for p53 gene therapy for human skin SCCs containing the mutant p53 gene.
Collapse
Affiliation(s)
- Makoto Hori
- Hori Dermatology Clinic, Nagasaki 852-8134, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Liu YX, Wang J, Guo J, Wu J, Lieberman HB, Yin Y. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res 2008; 6:624-33. [PMID: 18403641 DOI: 10.1158/1541-7786.mcr-07-2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 controls the cellular response to genotoxic stress through multiple mechanisms. We report here that p53 regulates DUSP1, a dual-specific threonine and tyrosine phosphatase with stringent substrate specificity for mitogen-activated protein kinase (MAPK). DUSP1 is a potent inhibitor of MAPK activity through dephosphorylation of MAPK. In a colon cancer cell line containing inducible ectopic p53, DUSP1 protein level is significantly increased upon activation of p53, leading to cell death in response to nutritional stress. In mouse embryo fibroblast cells, DUSP1 protein abundance is greatly increased after oxidative stress in a p53-dependent manner and also when apoptosis is triggered. We show that p53 induces the activity of a human DUSP1 regulatory region. Furthermore, p53 can physically interact with the DUSP1 regulatory region in vivo, and p53 binds to a 10-bp perfect palindromic site in this DUSP1 regulatory region. We show that overexpression of DUSP1 or inhibition of MAPK activity significantly increases cellular susceptibility to oxidative damage. These findings indicate that p53 is a transcriptional regulator of DUSP1 in stress responses. Our results reveal a mechanism whereby p53 selectively regulates target genes and suggest a way in which subgroups of those target genes might be controlled independently.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
99
|
Samanta S, Swamy V, Suresh D, Rajkumar M, Rana B, Rana A, Chatterjee M. Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: Removal of O6-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 650:123-31. [DOI: 10.1016/j.mrgentox.2007.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 12/18/2022]
|
100
|
Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. CANCER THERAPY 2008; 6:495-510. [PMID: 19018291 PMCID: PMC2583426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Over many centuries humans have been mining the bounties of nature for discovering substances that have been used for the treatment of all human diseases; many such remedies are useful even today as modern day medicine. Emerging evidence also suggests that the search is still continuing for harnessing active compounds from nature in combating human illnesses although pharmaceutical industries are equally active for synthesizing small molecule compounds as novel therapeutics. The lesson learned over many centuries clearly suggests that further sophisticated search for finding compounds from natural resources together with robust characterization and chemical synthesis will lead to the discovery of novel drugs that may have high therapeutic efficacy against all human diseases including cancer. Black cumin seed (Nigella sativa) oil extracts have been used for many centuries for the treatment of many human illnesses, and more recently the active compound found in black seed oil, viz. thymoquinone (TQ) has been tested for its efficacy against several diseases including cancer. However, further research is needed in order to assess the full potential of TQ as a chemopreventive and/or therapeutic agent against cancers. Here, we have summarized what is known regarding the value of black seed oil and its active compound TQ, and how this knowledge will help us to advance further research in this field by creating awareness among scientists and health professionals in order to appreciate the medicinal value of TQ and beyond.
Collapse
Affiliation(s)
- Subhash Padhye
- Department of Pathology and Division of Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI- 48201, USA
| | | | | | | | | |
Collapse
|