51
|
Lin JM, Callon KE, Lin JS, Watson M, Empson V, Tong PC, Grey A, Naot D, Green CR, Reid IR, Cornish J. Actions of fibroblast growth factor-8 in bone cells in vitro. Am J Physiol Endocrinol Metab 2009; 297:E142-50. [PMID: 19383871 DOI: 10.1152/ajpendo.90743.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fibroblast growth factors (FGFs) are a group of at least 25 structurally related peptides that are involved in many biological processes. Some FGFs are active in bone, including FGF-1, FGF-2, and FGF-18, and recent evidence indicates that FGF-8 is osteogenic, particularly in mesenchymal stem cells. In the current study, we found that FGF-8 was expressed in rat primary osteoblasts and in osteoblastic UMR-106 and MC3T3-E1 cells. Both FGF-8a and FGF-8b potently stimulated the proliferation of osteoblastic cells, whereas they inhibited the formation of mineralized bone nodules in long-term cultures of osteoblasts and reduced the levels of osteoblast differentiation markers, osteocalcin, and bone sialoprotein. FGF-8a induced the phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK) in osteoblastic cells; however, its mitogenic actions were not blocked by either the MAPK kinase (MEK) inhibitor U-0126 or the PI 3-kinase (PI3K) inhibitor LY-294002. Interestingly, FGF-8a, unlike FGF-8b and other members of the family, inhibited osteoclastogenesis in mouse bone marrow cultures, and this was via a receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)-independent manner. However, FGF-8a did not affect osteoclastogenesis in RAW 264.7 cells (a macrophage cell line devoid of stromal cells) exogenously stimulated by RANKL, nor did it affect mature osteoclast function as assessed in rat calvarial organ cultures and isolated mature osteoclasts. In summary, we have demonstrated that FGF-8 is active in bone cells, stimulating osteoblast proliferation in a MAPK-independent pathway and inhibiting osteoclastogenesis via a RANKL/OPG-independent mechanism. These data suggest that FGF-8 may have a physiological role in bone acting in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Jian-Ming Lin
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Alam AHMK, Suzuki H, Tsukahara T. Expression analysis of Fgf8a &Fgf8b in early stage of P19 cells during neural differentiation. Cell Biol Int 2009; 33:1032-7. [PMID: 19555770 DOI: 10.1016/j.cellbi.2009.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/15/2009] [Accepted: 06/03/2009] [Indexed: 01/07/2023]
Abstract
Fgf8 is a member of the fibroblast growth factor (FGF) family that plays an important role in early neural development. Cellular aggregation and retinoic acid (RA) are needed for mouse embryonic carcinoma (EC) P19 cell neural differentiation. We have examined the Fgf8 gene in P19 cells during neural differentiation and identified 2 alternatively spliced Fgf8 isoforms, Fgf8a and Fgf8b, among the 8 known splicing isoforms in mammals. The expression of Fgf8a and Fgf8b mRNAs transiently and rapidly increased in the early stage of P19 cells during RA-induced neural differentiation, followed by a decline in expression. The relative amount of Fgf8b was clearly higher than that of Fgf8a at different time-points measured within 24h after RA treatment. Increased Fgf8b mRNA expression was cellular-aggregation dependent. The results demonstrated that cellular-aggregation-induced Fgf8b, but not Fgf8a, may play a pivotal role in early neural differentiation of P19 cells.
Collapse
Affiliation(s)
- A H M Khurshid Alam
- School of Materials Science, Japan Advanced Institute of Science and Technology, Japan
| | | | | |
Collapse
|
53
|
Yamauchi K, Mizushima S, Tamada A, Yamamoto N, Takashima S, Murakami F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J Neurosci 2009; 29:4044-55. [PMID: 19339600 PMCID: PMC6665371 DOI: 10.1523/jneurosci.4794-08.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/28/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence indicates that signaling centers controlling the dorsoventral (DV) polarization of the neural tube, the roof plate and the floor plate, play crucial roles in axon guidance along the DV axis. However, the role of signaling centers regulating the rostrocaudal (RC) polarization of the neural tube in axon guidance along the RC axis remains unknown. Here, we show that a signaling center located at the midbrain-hindbrain boundary (MHB) regulates the rostrally directed growth of axons from midbrain dopaminergic neurons (mDANs). We found that beads soaked with fibroblast growth factor 8 (FGF8), a signaling molecule that mediates patterning activities of the MHB, repelled mDAN axons that extended through the diencephalon. This repulsion may be mediated by semaphorin 3F (sema3F) because (1) FGF8-soaked beads induced an increase in expression of sema3F, (2) sema3F expression in the midbrain was essentially abolished by the application of an FGF receptor tyrosine kinase inhibitor, and (3) mDAN axonal growth was also inhibited by sema3F. Furthermore, mDAN axons expressed a sema3F receptor, neuropilin-2 (nrp2), and the removal of nrp-2 by gene targeting caused caudal growth of mDAN axons. These results indicate that the MHB signaling center regulates the growth polarity of mDAN axons along the RC axis by inducing sema3F.
Collapse
Affiliation(s)
- Kenta Yamauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shigeki Mizushima
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tamada
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| | - Nobuhiko Yamamoto
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Seiji Takashima
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Fujio Murakami
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| |
Collapse
|
54
|
Falk S, Wurdak H, Ittner LM, Ille F, Sumara G, Schmid MT, Draganova K, Lang KS, Paratore C, Leveen P, Suter U, Karlsson S, Born W, Ricci R, Götz M, Sommer L. Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell 2009; 2:472-83. [PMID: 18462697 DOI: 10.1016/j.stem.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 02/07/2008] [Accepted: 03/11/2008] [Indexed: 12/18/2022]
Abstract
Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.
Collapse
Affiliation(s)
- Sven Falk
- Institute of Cell Biology, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Li WY, Dudas M, Kaartinen V. Signaling through Tgf-beta type I receptor Alk5 is required for upper lip fusion. Mech Dev 2008; 125:874-82. [PMID: 18586087 PMCID: PMC2593738 DOI: 10.1016/j.mod.2008.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/19/2008] [Accepted: 06/03/2008] [Indexed: 12/29/2022]
Abstract
Cleft lip with or without cleft palate is one of the most common congenital malformations in newborns. While numerous studies on secondary palatogenesis exist, data regarding normal upper lip formation and cleft lip is limited. We previously showed that conditional inactivation of Tgf-beta type I receptor Alk5 in the ectomesenchyme resulted in total facial clefting. While the role of Tgf-beta signaling in palatal fusion is relatively well understood, its role in upper lip fusion remains unknown. In order to investigate a role for Tgf-beta signaling in upper lip formation, we used the Nes-Cre transgenic mouse line to delete the Alk5 gene in developing facial prominences. We show that Alk5/Nes-Cre mutants display incompletely penetrant unilateral or bilateral cleft lip. Increased cell death seen in the medial nasal process and the maxillary process may explain the hypoplastic maxillary process observed in mutants. The resultant reduced contact is insufficient for normal lip fusion leading to cleft lip. These mice also display retarded development of palatal shelves and die at E15. Our findings support a role for Alk5 in normal upper lip formation not previously reported.
Collapse
Affiliation(s)
- Wai-Yee Li
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Marek Dudas
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | | |
Collapse
|
56
|
Uchii M, Tamura T, Suda T, Kakuni M, Tanaka A, Miki I. Role of fibroblast growth factor 8 (FGF8) in animal models of osteoarthritis. Arthritis Res Ther 2008; 10:R90. [PMID: 18699993 PMCID: PMC2575604 DOI: 10.1186/ar2474] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/22/2008] [Accepted: 08/12/2008] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Fibroblast growth factor 8 (FGF8) is isolated as an androgen-induced growth factor, and has recently been shown to contribute to limb morphogenesis. The aim of the present study was to clarify the role of FGF8 in animal models of osteoarthritis (OA). METHODS The expression of FGF8 in the partial meniscectomy model of OA in the rabbit knee was examined by immunohistochemistry. The effect of intraperitoneal administration of anti-FGF8 antibody was tested in a model of OA that employed injection of monoiodoacetic acid or FGF8 into the knee joint of rats. The effect of FGF8 was also tested using cultured chondrocytes. Rabbit articular chondrocytes were treated with FGF8 for 48 hours, and the production of matrix metalloproteinase and the degradation of sulfated glycosaminoglycan in the extracellular matrix (ECM) were measured. RESULTS The expression of FGF8 in hyperplastic synovial cells and fibroblasts was induced in the meniscectomized OA model, whereas little or no expression was detected in normal synovium. Injection of FGF8 into rat knee joints induced the degradation of the ECM, which was suppressed by anti-FGF8 antibody. In the monoiodoacetic acid-induced arthritis model, anti-FGF8 antibody reduced ECM release into the synovial cavity. In cultured chondrocytes, FGF8 induced the release of matrix metalloproteinase 3 and prostaglandin E2, and caused degradation of the ECM. The combination of FGF8 and IL-1alpha accelerated the degradation of the ECM. Anti-FGF8 antibody suppressed the effects of FGF8 on the cells. CONCLUSION FGF8 is produced by injured synovium and enhances the production of protease and prostaglandin E2 from inflamed synoviocytes. Degradation of the ECM is enhanced by FGF8. FGF8 may therefore participate in the degradation of cartilage and exacerbation of osteoarthritis.
Collapse
Affiliation(s)
- Masako Uchii
- Pharmaceutical Research Center, Kyowa Hakko Kogyo Co, Ltd, Sunto, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SH, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 2008; 118:2822-31. [PMID: 18596921 PMCID: PMC2441855 DOI: 10.1172/jci34538] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 05/21/2008] [Indexed: 12/18/2022] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome; KS) or with a normal sense of smell (normosmic IHH; nIHH) are heterogeneous genetic disorders associated with deficiency of gonadotropin-releasing hormone (GnRH). While loss-of-function mutations in FGF receptor 1 (FGFR1) cause human GnRH deficiency, to date no specific ligand for FGFR1 has been identified in GnRH neuron ontogeny. Using a candidate gene approach, we identified 6 missense mutations in FGF8 in IHH probands with variable olfactory phenotypes. These patients exhibited varied degrees of GnRH deficiency, including the rare adult-onset form of hypogonadotropic hypogonadism. Four mutations affected all 4 FGF8 splice isoforms (FGF8a, FGF8b, FGF8e, and FGF8f), while 2 mutations affected FGF8e and FGF8f isoforms only. The mutant FGF8b and FGF8f ligands exhibited decreased biological activity in vitro. Furthermore, mice homozygous for a hypomorphic Fgf8 allele lacked GnRH neurons in the hypothalamus, while heterozygous mice showed substantial decreases in the number of GnRH neurons and hypothalamic GnRH peptide concentration. In conclusion, we identified FGF8 as a gene implicated in GnRH deficiency in both humans and mice and demonstrated an exquisite sensitivity of GnRH neuron development to reductions in FGF8 signaling.
Collapse
Affiliation(s)
- John Falardeau
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Wilson C.J. Chung
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Andrew Beenken
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Taneli Raivio
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Lacey Plummer
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Yisrael Sidis
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Elka E. Jacobson-Dickman
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Anna V. Eliseenkova
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jinghong Ma
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Andrew Dwyer
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Richard Quinton
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Sandra Na
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Janet E. Hall
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Celine Huot
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Natalie Alois
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Simon H.S. Pearce
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Lindsay W. Cole
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Virginia Hughes
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Moosa Mohammadi
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Pei Tsai
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Nelly Pitteloud
- Harvard Center for Reproductive Endocrine Sciences and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.
Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, USA.
Department of Pharmacology, New York University School of Medicine, New York, New York, USA.
Institute for Human Genetics and School of Clinical Medical Sciences, and
Newcastle Teaching Hospitals, Newcastle University, Newcastle upon Tyne, United Kingdom.
Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| |
Collapse
|
58
|
Abstract
Fibroblast Growth Factors (FGFs) are polypeptides with diverse activities in development and physiology. The mammalian Fgf family can be divided into the intracellular Fgf11/12/13/14 subfamily (iFGFs), the hormone-like Fgf15/21/23 subfamily (hFGFs), and the canonical Fgf subfamilies, including Fgf1/2/5, Fgf3/4/6, Fgf7/10/22, Fgf8/17/18, and Fgf9/16/20. However, all Fgfs are evolutionarily related. We propose that an Fgf13-like gene is the ancestor of the iFgf subfamily and the most likely evolutionary ancestor of the entire Fgf family. Potential ancestors of the canonical and hFgf subfamilies, Fgf4-, Fgf5-, Fgf8-, Fgf9-, Fgf10-, and Fgf15-like, appear to have derived from an Fgf13-like ancestral gene. Canonical FGFs function in a paracrine manner, while hFGFs function in an endocrine manner. We conclude that the ancestral Fgfs for these subfamilies acquired this functional diversity before the evolution of vertebrates. During the evolution of early vertebrates, the Fgf subfamilies further expanded to contain three or four members in each subfamily.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan.
| | | |
Collapse
|
59
|
Maruyama-Takahashi K, Shimada N, Imada T, Maekawa-Tokuda Y, Ishii T, Ouchi J, Kusaka H, Miyaji H, Akinaga S, Tanaka A, Shitara K. A neutralizing anti-fibroblast growth factor (FGF) 8 monoclonal antibody shows anti-tumor activity against FGF8b-expressing LNCaP xenografts in androgen-dependent and -independent conditions. Prostate 2008; 68:640-50. [PMID: 18213631 DOI: 10.1002/pros.20728] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fibroblast growth factor 8-isoform b (FGF8b) has been detected in human clinical sex-organ related cancers including hormone-refractory prostate cancer. There are, however, few relevant experimental models. A murine monoclonal anti-FGF8 antibody, KM1334, has been shown to neutralize FGF8b and inhibit the growth of androgen-dependent mouse mammary SC-3 cells in vitro and in vivo. In the present study, we evaluated the anti-tumor activity of KM1334 against androgen-dependent and -independent progression of FGF8b-expressing human prostate cancer xenografts. METHODS FGF8b cDNA was transfected into androgen-dependent human prostate cancer cell line LNCaP, and its xenograft tumors were established subcutaneously in SCID mice with or without castration. KM1334 at the dose of 400 microg/head was injected twice weekly. RESULTS FGF8b-expressing LNCaP cells secreted FGF8b, showed enhanced level of Erk1/2 phosphorylation, and showed more potent growth properties than mock-expressing cells in vitro and in vivo. KM1334 reduced these properties in vitro, inhibited tumorigenecity in vivo (T/C=0.33), and showed anti-tumor activity against established tumors (T/C=0.47) of FGF8b-expressing cells. FGF8b-expressing LNCaP tumors were androgen-dependent. However, they recurred as androgen-independent FGF8b positive tumors after castration. KM1334 also inhibited the growth of established FGF8b-expressing tumors in the androgen-independent states (T/C=0.47). CONCLUSIONS These results indicate that humanized monoclonal antibodies, conserving the paratope of KM1334, are a promising candidate for therapy of FGF8b-expressing clinical prostate cancers. Follow-up studies using xenograft models with clinical FGF8b-expressing tumors are required to validate these early findings.
Collapse
Affiliation(s)
- Kumiko Maruyama-Takahashi
- Antibody Research Laboratories, Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Valta MP, Tuomela J, Bjartell A, Valve E, Väänänen HK, Härkönen P. FGF-8 is involved in bone metastasis of prostate cancer. Int J Cancer 2008; 123:22-31. [DOI: 10.1002/ijc.23422] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
61
|
Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007; 30:1819-25. [PMID: 17917244 DOI: 10.1248/bpb.30.1819] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factors (Fgfs) were originally isolated as growth factors for fibroblasts. However, Fgfs are now recognized as polypeptide growth factors of ca. 150-250 amino acid residues with diverse biological activities and expression profiles. The Fgf signaling system has been identified in multicelluar but not in unicellular organisms. In contrast to the only two Fgf genes and one Fgf receptor (Fgfr) gene in Caenorhabditis elegans, both the human and mouse Fgf and Fgfr gene families comprise twenty-two and four members, respectively. Their evolutional processes indicate that the Fgf and Fgfr gene families greatly co-expanded during the evolution of early vertebrates. The expansion of the Fgf and Fgfr gene families has enabled this signaling system to acquire diversity of function and a nearly ubiquitous involvement in many developmental and physiological processes. The zebrafish fgf gene family comprises twenty-seven members with several paralogs generated by an additional genome duplication. The mouse and zebrafish are useful models for studying gene functions. Fgf knockout mice have been generated. Several Fgf knockout mice die in the embryonic or early postnatal stages, indicating crucial roles for these genes in various developmental processes. However, other Fgf knockout mice survive with subtle phenotypic alterations. Their functions might be redundant. Studies using zebrafish embryos with mutated or knockdown fgfs also indicate that fgfs play crucial roles in development in that species. Although most Fgfs act in development in a paracrine and/or autocrine manner, some have potential roles in metabolism in an endocrine manner. In humans, Fgf signaling disorders result in hereditary diseases and cancers.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
62
|
Ren FL, Guo X, Zhang RJ, Wang SJ, Zuo H, Zhang ZT, Geng D, Yu Y, Su M. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. Osteoarthritis Cartilage 2007; 15:1171-7. [PMID: 17490897 DOI: 10.1016/j.joca.2007.03.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/16/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of the current study was to investigate the roles of combined selenium and iodine deficiency in bone development as a possible experimental model of Kashin-Beck osteoarthropathy. METHODS Sprague-Dawley rats (n=48) were randomly divided into selenium deficiency (-Se+I), iodine deficiency (+Se-I), combined selenium and iodine deficiency (-Se-I), and selenium and iodine sufficient (+Se+I) groups. Growth of bone and cartilage, and the expression of type X collagen (ColX) and parathyroid hormone-related peptide (PTHrP) were measured in two generations of rats (F(0) and F(1)). RESULTS The tibial length in -Se-I rats was significantly shorter in F(1) generation. In +Se-I of F(1) rats, the thickness of the growth plate cartilage, and the proliferative zone was smaller, while in -Se-I rats the growth plate, and the proliferative and hypertrophic zones were also thinner in F(1) generation. In articular cartilage, ColX expression was increased in the deep zone in -Se-I rats of F(0) generation, and in -Se+I, +Se-I and -Se-I rats of F(1) generation. PTHrP expression was increased in the middle zone of -Se+I, +Se-I and -Se-I rats of both F(0) and F(1) generations. In the growth plate cartilage, ColX and PTHrP were expressed in the hypertrophic zone. ColX expression was significantly weaker in -Se+I and -Se-I rats in both F(0) and F(1) generations, while PTHrP expression was stronger in -Se+I, +Se-I and -Se-I rats in both F(0) and F(1) animals. CONCLUSIONS Combined selenium and iodine deficiency impaired the growth of bone and cartilage. The changes in the expression of ColX and PTHrP induced by combined selenium and iodine deficiency were compatible to measurements of ColX and PTHrP in Kashin-Beck osteoarthropathy.
Collapse
Affiliation(s)
- F L Ren
- Department of Public Health, Xi'an Jiaotong University School of Medicine, Xi'an, Shannxi 710061, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R. FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 2007; 305:421-9. [PMID: 17425953 DOI: 10.1016/j.ydbio.2007.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By implanting FGF 8b/8c or SU 5402 beads into the paraxial mesoderm, we show that FGF8 in addition to BMP4 from the intermediate mesoderm (IM) is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. The expression of Quek1 in the medial somite half is normally repressed by the notochord and Sfrps-expression in the neural tube. Over-expression of Wnt 1/3a also results in an up-regulation of Quek1 expression in the somites. We also show that up-regulation of FGF8/Wnt 1/3a leads to an increase in the number of endothelial cells, whereas inhibition of FGF and Wnt signaling by SU 5402 and Sfrp-2 results in a loss of endothelial cells. Our results demonstrate that the regulation of Quek1 expression in the somites is mediated by the cooperative actions of BMP4, FGF8 and Wnt-signaling pathways.
Collapse
Affiliation(s)
- Suresh Nimmagadda
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
64
|
Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci U S A 2006; 103:15103-7. [PMID: 17015842 PMCID: PMC1622783 DOI: 10.1073/pnas.0604934103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Indexed: 11/18/2022] Open
Abstract
Developmentally regulated programmed cell death sculpts the limbs and other embryonic organs in vertebrates. One intriguing example of species-specific differences in apoptotic extent is observed in the tissue between the digits. In chicks and mice, bone morphogenetic proteins (Bmps) trigger apoptosis of the interdigital mesenchyme, leading to freed digits, whereas in ducks, Bmp antagonists inhibit the apoptotic program, resulting in webbed feet. Here, we show that the phyllostomid bat Carollia perspicillata utilizes a distinct mechanism for maintaining interdigit tissue. We find that bat forelimb and hindlimb interdigital tissues express Bmp signaling components but that only bat hindlimbs undergo interdigital apoptosis. Strikingly, the retention of interdigital webbing in the bat forelimb is correlated with a unique pattern of Fgf8 expression in addition to the Bmp inhibitor Gremlin. By using a functional assay, we show that maintenance of interdigit tissue in the bat wing depends on the combined effects of high levels of Fgf signaling and inhibition of Bmp signaling. Our data also indicate that although there is not a conserved mechanism for maintaining interdigit tissue across amniotes, the expression in the bat forelimb interdigits of Gremlin and Fgf8 suggests that these key molecular changes contributed to the evolution of the bat wing.
Collapse
Affiliation(s)
- Scott D. Weatherbee
- *Department of Developmental Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021
| | - Richard R. Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - John J. Rasweiler
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, NY 11203; and
| | - Lee A. Niswander
- Department of Pediatrics, Section of Developmental Biology, and Howard Hughes Medical Institute, University of Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
65
|
Inoue F, Nagayoshi S, Ota S, Islam ME, Tonou-Fujimori N, Odaira Y, Kawakami K, Yamasu K. Genomic organization, alternative splicing, and multiple regulatory regions of the zebrafish fgf8 gene. Dev Growth Differ 2006; 48:447-62. [PMID: 16961592 DOI: 10.1111/j.1440-169x.2006.00882.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fgf8 is among the members of the fibroblast growth factor (FGF) family that play pivotal roles in vertebrate development. In the present study, the genomic DNA of the zebrafish fgf8 gene was cloned to elucidate the regulatory mechanism behind the temporally and spatially restricted expression of the gene in vertebrate embryos. Structural analysis revealed that the exon-intron organization of fgf8 is highly conserved during vertebrate evolution, from teleosts to mammals. Close inspection of the genomic sequence and reverse transcription-polymerase chain reaction analysis revealed that zebrafish fgf8 encodes two splicing variants, corresponding to Fgf8a and Fgf8b, among the four to seven splicing variants known in mammals. Misexpression of the two variants in zebrafish embryos following mRNA injection showed that both variants have dorsalizing activities on zebrafish embryos, with Fgf8b being more potent. Reporter gene analysis of the transcriptional regulation of zebrafish fgf8 suggested that its complicated expression pattern, which is considered essential for its multiple roles in development, is mediated by combinations of different regulatory regions in the upstream and downstream regions of the gene. Furthermore, comparison of the genomic sequence of fgf8 among different vertebrate species suggests that this regulatory mechanism is conserved during vertebrate evolution.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Mattila MM, Tarkkonen KM, Seppänen JA, Ruohola JK, Valve EM, Härkönen PL. Androgen and fibroblast growth factor 8 (FGF8) downregulation of thrombospondin 1 (TSP1) in mouse breast cancer cells. Mol Cell Endocrinol 2006; 253:36-43. [PMID: 16723184 DOI: 10.1016/j.mce.2006.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/12/2006] [Accepted: 04/15/2006] [Indexed: 02/04/2023]
Abstract
In the search for androgen target genes responsible for malignant growth in S115 mouse mammary tumor cells we found that thrombospondin 1 (TSP1) expression was strongly downregulated by testosterone (Te). Experiments with cycloheximide suggested that Te repression of TSP1 was dependent on de novo protein synthesis. TSP1 repression by Te was preceded by the induction of fibroblast growth factor 8 (FGF8) expression. FGF8 has previously been shown to mediate androgen effects on proliferation of S115 cells by autocrine/paracrine mechanisms. It has also been shown to increase breast cancer cell growth as tumors in nude mice and to stimulate tumor angiogenesis. We studied here the possibility that FGF8 belonged to the Te-induced de novo synthesized proteins that mediate the effect of Te on TSP1 expression in these cells. We found that addition of FGF8b to in vitro cultures or ectopic expression of FGF8b in S115 cells repressed TSP1 expression at mRNA and protein levels even in the absence of Te. FGF2, another angiogenic member of FGF family, also downregulated TSP1 mRNA level in the in vitro cultures of S115 cells. The antisense oligonucleotides for FGF8 did not, however, prevent Te-repression of TSP1 mRNA expression and a neutralizing anti-FGF8b antibody only partially opposed Te induced downregulation of TSP1. These results suggest that both androgen and FGF8 inhibit TSP1 expression independently. They also suggest that opposite to many other androgen-induced responses in S115 cells, the effect of Te on the expression TSP1 is not mediated by FGF8.
Collapse
Affiliation(s)
- Mirjami M Mattila
- Institute of Biomedicine, Department of Anatomy, University of Turku, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
The Fgf8 gene encodes a series of secreted signalling molecules important in the normal development of the face, brain and limbs. The genomic structure of the chick Fgf8 gene has been analysed and compared to the human and mouse sequences. Divergence between the chick, human and mouse genomic structure was observed. Data indicates that the long alternatively spliced form of exon 1b observed in mouse and exon 1c observed in human and mouse do not exist in the chick Fgf8 gene. RT-PCR analysis indicates that chick Fgf8, like its mouse and human counterpart is alternatively spliced. This data along with the genomic structure data indicates that in the chick there are only two isoforms of Fgf8. This is in contrast to the human and mouse, where evidence suggests that there are 4 and 8 isoforms, respectively. Approximately 400 bp of intron 1d is highly conserved between chick, human and mouse genomic sequences. Using TRANSFAC possible conserved regulatory element binding sites within this domain were identified.
Collapse
Affiliation(s)
- Kim E Haworth
- Department of Craniofacial Development, GKT Dental Institute, Kings College London, Guys Hospital, UK
| | | | | |
Collapse
|
68
|
Seo S, Kume T. Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol 2006; 296:421-36. [PMID: 16839542 DOI: 10.1016/j.ydbio.2006.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/21/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that Foxc1 and Foxc2, closely related Fox transcription factors, have interactive roles in cardiovascular development. However, little is known about their functional overlap during early heart morphogenesis. Here, we show that Foxc genes are coexpressed in a novel heart field, the second heart field, as well as the cardiac neural crest cells (NCCs), endocardium, and proepicardium. Notably, compound Foxc1; Foxc2 mutants have a wide spectrum of cardiac abnormalities, including hypoplasia or lack of the outflow tract (OFT) and right ventricle as well as the inflow tract, dysplasia of the OFT and atrioventricular cushions, and abnormal formation of the epicardium, in a dose-dependent manner. Most importantly, in the second heart field, compound mutants exhibit significant downregulation of Tbx1 and Fgf8/10 and a reduction in cell proliferation. Moreover, NCCs in compound mutants show extensive apoptosis during migration, leading to a failure of the OFT septation. Taken together, our results demonstrate that Foxc1 and Foxc2 play pivotal roles in the early processes of heart development, especially acting upstream of the Tbx1-FGF cascade during the morphogenesis of the OFT.
Collapse
Affiliation(s)
- Seungwoon Seo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 332 PRB, 2220 Pierce Ave, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
69
|
Dudas M, Kim J, Li WY, Nagy A, Larsson J, Karlsson S, Chai Y, Kaartinen V. Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol 2006; 296:298-314. [PMID: 16806156 PMCID: PMC1557652 DOI: 10.1016/j.ydbio.2006.05.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/28/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Transforming growth factor beta (TGF-beta) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-beta action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-beta type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-beta type II receptor (TGFbetaRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-beta, and (2) ALK5 acts also in conjunction with type II receptors other than TGFbetaRII.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, The Saban Research Institute of Children’s Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- Institute of Biology and Ecology, P. J. Safarik University in Kosice, Slovakia
| | - Jieun Kim
- Developmental Biology Program, The Saban Research Institute of Children’s Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Wai-Yee Li
- Developmental Biology Program, The Saban Research Institute of Children’s Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Andre Nagy
- Developmental Biology Program, The Saban Research Institute of Children’s Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Sweden
| | - Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry University of Southern California, CA 90033, USA
| | - Vesa Kaartinen
- Developmental Biology Program, The Saban Research Institute of Children’s Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- *Corresponding author. E-mail address: (V. Kaartinen)
| |
Collapse
|
70
|
Valta MP, Hentunen T, Qu Q, Valve EM, Harjula A, Seppänen JA, Väänänen HK, Härkönen PL. Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology 2006; 147:2171-82. [PMID: 16439448 DOI: 10.1210/en.2005-1502] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several members of the fibroblast growth factor (FGF) family have an important role in the development of skeletal tissues. FGF-8 is widely expressed in the developing skeleton, but its function there has remained unknown. We asked in this study whether FGF-8 could have a role in the differentiation of mesenchymal stem cells to an osteoblastic lineage. Addition of FGF-8 to mouse bone marrow cultures effectively increased initial cell proliferation as well as subsequent osteoblast-specific alkaline phosphatase production, bone nodule formation, and calcium accumulation if it was added to the cultures at an early stage of osteoblastic differentiation. Exogenous FGF-8 also stimulated the proliferation of MG63 osteosarcoma cells, which was blocked by a neutralizing antibody to FGF-8b. In addition, the heparin-binding growth factor fraction of Shionogi 115 (S115) mouse breast cancer cells, which express and secrete FGF-8 at a very high level, had an effect in bone marrow cultures similar to that of exogenous FGF-8. Interestingly, experimental nude mouse tumors of S115 cells present ectopic bone and cartilage formation as demonstrated by typical histology and expression of markers specific for cartilage (type II and IX collagen) and bone (osteocalcin). These results demonstrate that FGF-8 effectively predetermines bone marrow cells to differentiate to osteoblasts and increases bone formation in vitro. It is possible that FGF-8 also stimulates bone formation in vivo. The results suggest that FGF-8, which is expressed by a great proportion of malignant breast and prostate tumors, may, among other factors, also be involved in the formation of osteosclerotic bone metastases.
Collapse
Affiliation(s)
- Maija P Valta
- Institute of Biomedicine, Department of Anatomy, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Guo X, Zuo H, Cao CX, Zhang Y, Geng D, Zhang ZT, Zhang YG, von der Mark K, von der Mark H. Abnormal expression of Col X, PTHrP, TGF-beta, bFGF, and VEGF in cartilage with Kashin-Beck disease. J Bone Miner Metab 2006; 24:319-28. [PMID: 16816927 DOI: 10.1007/s00774-006-0690-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
The purpose of the current study was to investigate the abnormal expression of Col X, PTHrP, TGF-beta, bFGF, and VEGF in cartilage from patients with Kashin-Beck disease (KBD) to understand the pathogenesis of chondronecrosis in KBD. Articular cartilage and growth plate cartilage collected were divided into four groups: control children (8 samples, 5 cases), KBD children (19 samples, 9 cases), control adults (8 samples, 6 cases), and KBD adults (16 samples, 15 cases). The presence of PTHrP, TGF-beta1, bFGF, VEGF, and collagen X in articular cartilage and in growth plate cartilage was analyzed by immunohistochemistry. Articular cartilage and growth plate were each divided in three zones, and the rate of positive cells was counted by light microscope for cytoplasmic and pericellular staining. Results showed that (1) in KBD children, Col X expression was lower in the deep zone of growth plate cartilage than in normal children; in articular cartilage of KBD adults, however, collagen X expression was higher in the middle zone compared to the controls; (2) staining for bFGF, PTHrP, TGF-beta1, and VEGF in KBD adult patients was prominent in the chondrocyte clusters and the eroded surface of articular cartilage, and the percentage of chondrocyte staining was significantly higher than in control samples (t = 3.64-10.34, df = 12 for children and 19 for adults, P = 0.002-0.0001); and (3) the enhanced PTHrP, TGF-beta1, and VEGF staining in the deep and middle zone of KBD articular cartilage correlated with the high incidence of chondronecrosis in the middle zone (48.5% +/- 10.2%) and deep zone (70.6% +/- 27.0%) of adult KBD cartilage. In conclusion, Col X expression was reduced in areas of chondrocyte necrosis in the deep zone of KBD articular cartilage, indicating changes in terminal chondrocyte differentiation. PTHrP, TGF-beta1, and VEGF expression was significantly altered and indicated degenerative changes in KBD cartilage, which initially resemble those occurring in osteoarthritis, but lead eventually to chondronecrosis, an event not observed in osteoarthritis.
Collapse
Affiliation(s)
- Xiong Guo
- Institute of Endemic Diseases, Medical College of Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shannxi, 710061, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Kawata H, Kamiakito T, Takayashiki N, Tanaka A. Vitamin D3 suppresses the androgen-stimulated growth of mouse mammary carcinoma SC-3 cells by transcriptional repression of fibroblast growth factor 8. J Cell Physiol 2006; 207:793-9. [PMID: 16508948 DOI: 10.1002/jcp.20618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Active metabolites of vitamin A and D are well known to act as growth inhibitors in hormone-related prostate and breast cancers. When various concentrations of 1alpha,25-dihydroxyvitamin D3 (vitamin D3), all-trans-retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA) were examined, the androgen-stimulated growth of mouse mammary carcinoma SC-3 cells was inhibited by vitamin D3 alone in a dose-dependent manner. A flow cytometer analysis showed that vitamin D3 leads SC-3 cells to relative G1-growth arrest after 72 h. Characterization of vitamin D3-responsive genes using an oligonucleotide microarray demonstrated that 220 genes were upregulated at more than threefold, and 84 genes were downregulated to less than one-third, compared with the testosterone-stimulated SC-3 cells. Neither cyclin-dependent kinase inhibitors (CDKIs) nor the antiapoptotic bcl-2 gene were induced in vitamin D3-responsive genes, with the exception of a slight induction of p15(INK4B). Importantly, fgf8 was markedly repressed in response to vitamin D3. The exogenous addition of FGF8 canceled the growth suppression by vitamin D3 in SC-3 cells, suggesting that the repression of fgf8 is an indispensable step in vitamin D3-mediated growth inhibition. In reporter assays using the ARE-containing artificial construct and the natural androgen-regulated PSA promoter, co-transfection of the vitamin D receptor (VDR) and androgen receptor (AR) suppressed AR-stimulated promoter activity. In addition, vitamin D3 also suppressed androgen-stimulated promoter activity in the stably transfected SC-3 cells. Moreover, VDR repressed the core promoter activity of fgf8 in COS1 cells and in the SC-3 cells. All these findings strongly suggest that vitamin D3 serves as a negative regulator for both androgen-related and fgf8 transcriptions.
Collapse
Affiliation(s)
- Hirotoshi Kawata
- Department of Pathology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | |
Collapse
|
73
|
Olsen SK, Li JYH, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ, Joyner AL, Mohammadi M. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev 2005; 20:185-98. [PMID: 16384934 PMCID: PMC1356110 DOI: 10.1101/gad.1365406] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the "c" splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the "b" isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b(F32A) mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.
Collapse
Affiliation(s)
- Shaun K Olsen
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ding K, Lopez-Burks M, Sánchez-Duran JA, Korc M, Lander AD. Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. ACTA ACUST UNITED AC 2005; 171:729-38. [PMID: 16286510 PMCID: PMC2171561 DOI: 10.1083/jcb.200508010] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican independent, whereas those that trigger syndecan-1 shedding make initial FGF2 responses glypican dependent. We further show that syndecan-1 shedding is mediated by matrix metalloproteinase-7 (MMP7), which, being anchored to cells by HSPGs, also causes its own release in a complex with syndecan-1 ectodomains. These results support a specific role for shed syndecan-1 or MMP7-syndecan-1 complexes in tumor progression and add to accumulating evidence that syndecans and glypicans have nonequivalent functions in vivo.
Collapse
Affiliation(s)
- Kan Ding
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
| | | | | | | | | |
Collapse
|
75
|
Kawauchi S, Shou J, Santos R, Hébert JM, McConnell SK, Mason I, Calof AL. Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 2005; 132:5211-23. [PMID: 16267092 DOI: 10.1242/dev.02143] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate olfactory epithelium (OE), neurogenesis proceeds continuously, suggesting that endogenous signals support survival and proliferation of stem and progenitor cells. We used a genetic approach to test the hypothesis that Fgf8 plays such a role in developing OE. In young embryos, Fgf8 RNA is expressed in the rim of the invaginating nasal pit (NP), in a small domain of cells that overlaps partially with that of putative OE neural stem cells later in gestation. In mutant mice in which the Fgf8 gene is inactivated in anterior neural structures, FGF-mediated signaling is strongly downregulated in both OE proper and underlying mesenchyme by day 10 of gestation. Mutants survive gestation but die at birth, lacking OE, vomeronasal organ (VNO), nasal cavity, forebrain, lower jaw, eyelids and pinnae. Analysis of mutants indicates that although initial NP formation is grossly normal, cells in the Fgf8-expressing domain undergo high levels of apoptosis, resulting in cessation of nasal cavity invagination and loss of virtually all OE neuronal cell types. These findings demonstrate that Fgf8 is crucial for proper development of the OE, nasal cavity and VNO, as well as maintenance of OE neurogenesis during prenatal development. The data suggest a model in which Fgf8 expression defines an anterior morphogenetic center, which is required not only for the sustenance and continued production of primary olfactory (OE and VNO) neural stem and progenitor cells, but also for proper morphogenesis of the entire nasal cavity.
Collapse
Affiliation(s)
- Shimako Kawauchi
- Department of Anatomy and Neurobiology, and Developmental Biology Center, University of California, Irvine, CA 92697-1275, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Shimada N, Ishii T, Imada T, Takaba K, Sasaki Y, Maruyama-Takahashi K, Maekawa-Tokuda Y, Kusaka H, Akinaga S, Tanaka A, Shitara K. A neutralizing anti-fibroblast growth factor 8 monoclonal antibody shows potent antitumor activity against androgen-dependent mouse mammary tumors in vivo. Clin Cancer Res 2005; 11:3897-904. [PMID: 15897591 DOI: 10.1158/1078-0432.ccr-04-2358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fibroblast growth factor 8b (FGF8b) has been implicated in oncogenesis of sex hormone-related malignancies. A murine monoclonal anti-FGF8 antibody, KM1334, has been raised against a FGF8b-derived peptide and shown to neutralize FGF8b activity in an androgen-dependent mouse mammary cell line (SC-3) in vitro growth. The purpose of this study was to evaluate KM1334 as a therapeutic agent for FGF8-dependent cancer. EXPERIMENTAL DESIGN Specificity and neutralizing activity of KM1334 were examined in vitro. In vivo therapeutic studies were done in nude mice bearing SC-3 tumors s.c. RESULTS KM1334 recognized FGF8b and FGF8f specifically out of four human FGF8 isoforms and showed little binding to other members of FGF family. Neutralizing activity of KM1334 was confirmed by both blocking of FGF8b binding to its three receptors (FGFR2IIIc, FGFR3IIIc, and FGFR4) and FGF8b-induced phosphorylation of FGFR substrate 2alpha and extracellular signal-regulated kinase 1/2 in SC-3 cells. The in vitro inhibitory effect could be extended to in vivo tumor models, where KM1334 caused rapid regression of established SC-3 tumors in nude mice. This rapid regression of tumors after KM1334 treatment was explained by two independent mechanisms: (a) decreased DNA synthesis, as evidenced by a decrease in uptake of 5-bromo-2'-deoxyuridine, and (b) induction of apoptosis as shown by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. CONCLUSIONS KM1334 possesses strong blocking activity in vitro and antitumor activity in vivo and therefore may be an effective therapeutic candidate for the treatment of cancers that are dependent on FGF8b signaling for growth and survival.
Collapse
Affiliation(s)
- Naoki Shimada
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
78
|
Hilgers V, Pourquié O, Dubrulle J. In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo. Dev Biol 2005; 284:292-300. [PMID: 15993405 DOI: 10.1016/j.ydbio.2005.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/30/2005] [Accepted: 05/17/2005] [Indexed: 11/20/2022]
Abstract
The rate of mRNA degradation plays an important role in the control of gene expression. The mRNA stability is mainly dependent on cis-regulatory elements contained in the 3' or 5' untranslated region (UTR) of the mature mRNAs, and its regulation is an efficient way to adapt the level of a given transcript in the cell. Although this process has been well studied in cell culture, little is known about mRNA stability during embryonic development. Here, we describe an assay that combines the tetracyclin-dependent inducible system Tet-Off with in ovo electroporation to monitor mRNA stability in the chick neural tube. We show, by using the GFP intensity as an indirect reporter system, that the 3'UTR of Lunatic Fringe strongly destabilizes transcripts, while transcripts bearing the 3'UTR of Fgf8 are much more stable. This simple assay provides a powerful tool to study mRNA dynamics in vivo.
Collapse
Affiliation(s)
- Valérie Hilgers
- Stowers Institute for Medical Research, 1000E 50th, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
79
|
Buratini J, Glapinski VF, Giometti IC, Teixeira AB, Costa IB, Avellar MCW, Barros CM, Price CA. Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles. Mol Reprod Dev 2005; 70:255-61. [PMID: 15625702 DOI: 10.1002/mrd.20205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Paracrine cell signaling is thought to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family have been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR-3c and FGFR-4) are expressed in bovine preantral follicles. Reverse transcription-polymerase chain reaction was used to amplify bovine FGF-8, FGFR-3c, and FGFR-4 from preantral follicle samples and a variety of fetal and adult tissues. All three genes were widely expressed in fetal tissues, with a restricted expression pattern in adult tissues. FGF-8 and FGFR-3c were expressed in secondary follicles in 70% of fetuses examined, whereas FGFR-4 expression was significantly less frequent (20%). FGFR-3c expression frequency was significantly lower in primordial compared to secondary follicles, and FGF-8 expression showed a similar trend. FGFR-4 was only observed when all follicle classes of an individual were expressing both FGF-8 and FGFR-3c. We conclude that FGF-8 and its receptors are expressed in preantral follicles in a developmentally regulated manner.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Sãao Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Takayashiki N, Kawata H, Kamiakito T, Tanaka A. Transcriptional repression of fibroblast growth factor 8 by transforming growth factor-beta in androgen-dependent SC-3 cells. J Steroid Biochem Mol Biol 2005; 96:1-12. [PMID: 15935652 DOI: 10.1016/j.jsbmb.2005.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/10/2005] [Indexed: 01/07/2023]
Abstract
We here characterized the transcriptional profiles of TGF-beta-responsive genes using androgen-dependent mouse mammary carcinoma SC-3 cells. Compared with the testosterone-stimulated SC-3 cells, 165 genes were up-regulated at more than 5-fold, and 78 genes were down-regulated to less than one-third in response to TGF-beta. Of note, fgf8, an androgen-inducible growth factor essential to the androgen-dependent growth of SC-3 cells, was severely repressed in response to TGF-beta. Real-time PCR confirmed that the androgenic induction of the fgf8 transcripts is severely attenuated by TGF-beta. Although a considerable number of growth-suppressive genes were up-regulated in response to TGF-beta, the treatment with TGF-beta was insufficient to lead SC-3 cells to apoptosis within 24h by both the TUNEL method and the caspase 3 activity assay. Flow cytometric analysis rather indicated the cell-static effect of TGF-beta on the androgen-stimulated SC-3 cells. In addition, TGF-beta failed to suppress the FGF8-stimulated growth of SC-3 cells, suggesting that the repression of fgf8 is required for the TGF-beta-mediated growth inhibition in SC-3 cells. In a reporter assay, androgen-responsive promoter activity was suppressed by TGF-beta in SC-3 cells. Based on this finding, it is likely that some of the androgen-inducible genes are physiological targets of the TGF-beta-mediated transcriptional control, and therefore, it is strongly suggested that the repression of fgf8 might be directly or indirectly involved in this transcriptional control by TGF-beta.
Collapse
Affiliation(s)
- Norio Takayashiki
- Department of Pathology, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi, Kawachi, Tochigi 329-0498, Japan
| | | | | | | |
Collapse
|
81
|
Ishibe T, Nakayama T, Okamoto T, Aoyama T, Nishijo K, Shibata KR, Shima Y, Nagayama S, Katagiri T, Nakamura Y, Nakamura T, Toguchida J. Disruption of Fibroblast Growth Factor Signal Pathway Inhibits the Growth of Synovial Sarcomas: Potential Application of Signal Inhibitors to Molecular Target Therapy. Clin Cancer Res 2005; 11:2702-12. [PMID: 15814652 DOI: 10.1158/1078-0432.ccr-04-2057] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown. We investigated the involvement of fibroblast growth factor (FGF) signals in synovial sarcoma and evaluated the therapeutic effect of inhibiting the FGF signal. EXPERIMENTAL DESIGN The expression of 22 FGF and 4 FGF receptor (FGFR) genes in 18 primary tumors and five cell lines of synovial sarcoma were analyzed by reverse transcription-PCR. Effects of recombinant FGF2, FGF8, and FGF18 for the activation of mitogen-activated protein kinase (MAPK) and the growth of synovial sarcoma cell lines were analyzed. Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. RESULTS Synovial sarcoma cell lines expressed multiple FGF genes especially those expressed in neural tissues, among which FGF8 showed growth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38MAPK but not c-Jun NH2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR caused cell cycle arrest leading to significant growth inhibition both in vitro and in vivo. Growth inhibition by the FGFR inhibitor was associated with a down-regulation of phosphorylated ERK1/2 but not p38MAPK, and an ERK kinase inhibitor also showed growth inhibitory effects for synovial sarcoma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2. CONCLUSIONS FGF signals have an important role in the growth of synovial sarcoma, and inhibitory molecules will be of potential use for molecular target therapy in synovial sarcoma.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Female
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation/drug effects
- Protein Isoforms/genetics
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/genetics
- Recombinant Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/pathology
- Sarcoma, Synovial/prevention & control
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Urea/analogs & derivatives
- Urea/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Tatsuya Ishibe
- Institute for Frontier Medical Sciences, Departments of Orthopaedic Surgery, Surgery Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Katsuma S, Shimada T, Kobayashi M. Characterization of the baculovirus Bombyx mori nucleopolyhedrovirus gene homologous to the mammalian FGF gene family. Virus Genes 2005; 29:211-7. [PMID: 15284481 DOI: 10.1023/b:viru.0000036381.11779.dd] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We characterized a gene of the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) homologous to the mammalian fibroblast growth factor (FGF) family. We termed it vfgf, and examined its transcription and the properties of the gene product (vFGF). RT-PCR analysis showed that vfgf is one of the baculovirus early genes, although there are no consensus sequences of the baculovirus early gene promoters. 5'-RACE analysis revealed that its transcription started at 10 nucleotides upstream of the translation start codon. vFGF has a hydrophobic amino terminus (approximately 16 amino acids), which is a typical signal sequence. As expected, vFGF was efficiently secreted from BmNPV-infected BmN cells. Because possible glycosylation sites are found at positions 44 (Asn) and 171 (Asn), we examined whether BmNPV vFGF is glycosylated or not. Cleavage of recombinant vFGF with PNGase F revealed that BmNPV vFGF was glycosylated. We also found that secretion of vFGF is completely blocked by the treatment of Tunicamycin, which blocks N-linked glycosylation. This is the first report to characterize a virus-encoded FGF.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
83
|
Erdreich-Epstein A, Ganguly AK, Shi XH, Zimonjic DB, Shackleford GM. Androgen inducibility ofFgf8 in Shionogi carcinoma 115 cells correlates with an adjacent t(5;19) translocation. Genes Chromosomes Cancer 2005; 45:169-81. [PMID: 16252261 DOI: 10.1002/gcc.20280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fgf8 (fibroblast growth factor 8) was initially cloned from a mouse mammary tumor cell line derived from the androgen-dependent Shionogi carcinoma 115. The androgen-inducible expression of Fgf8 in this tumor controls its androgen-dependent phenotype, thus stimulating interest in this gene as a possible factor in human prostate cancer and other androgen-sensitive cancers. However, apart from Shionogi carcinoma 115, the androgen inducibility of Fgf8 is controversial. In the present study, having not detected androgen-inducible expression of Fgf8 in other mouse mammary cell lines or mouse prostate, we examined the Shionogi carcinoma 115-derived S115 cell line for mouse mammary tumor virus (MMTV) insertions or other nearby DNA rearrangements that might explain the androgen inducibility of Fgf8 in these cells. Southern blotting did not detect MMTV insertions near Fgf8 but did reveal a specific DNA rearrangement 3.7 kb upstream of Fgf8 in S115 cells and in other cells (SC115) independently derived from Shionogi carcinoma 115. Spectral karyotyping of S115 cells and sequencing of the cloned rearrangement junctions indicate that Fgf8 is involved in a t(5;19) translocation. The chromosome 5 sequence joined to Fgf8 is immediately adjacent to Smr2 (submaxillary gland androgen-regulated protein 2) and includes Muc10 (mucin 10), two genes that we show are testosterone inducible in S115 cells, suggesting that the androgen-dependent expression of Fgf8 in Shionogi carcinoma 115 and derivative cells results from this translocation. Together, these results suggest that androgen inducibility is not an inherent property of the Fgf8 gene, which has implications regarding this gene's proposed role in the etiology of hormone-responsive cancers.
Collapse
MESH Headings
- Androgens/physiology
- Base Sequence
- Blotting, Southern
- Cell Line, Tumor
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 5
- DNA, Neoplasm
- Fibroblast Growth Factor 8/genetics
- Humans
- Karyotyping
- Male
- Mammary Tumor Virus, Mouse/genetics
- Molecular Sequence Data
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Division of Hematology-Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
84
|
Sirén MJ, Vainiomäki M, Väänänen K, Härkönen P. α-Trinositol inhibits FGF-stimulated growth of smooth muscle and breast cancer cells. Biochem Biophys Res Commun 2004; 325:691-7. [PMID: 15541344 DOI: 10.1016/j.bbrc.2004.10.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 11/27/2022]
Abstract
alpha-Trinositol (d-myo-inositol-1,2,6-trisphosphate), an isomer of the intracellular messenger IP(3), has been studied for its anti-inflammatory and other effects in animal experiments and in human. The mechanisms of action remain unknown. Several human pathologies are associated with uncontrolled production of fibroblast growth factors (FGFs). FGF-2 induces vascular smooth muscle cell proliferation, which contributes to restenosis after coronary balloon angioplasty. The expression of several FGFs is also increased in tumors. We studied the effects of the water- and lipid-soluble derivatives of alpha-trinositol on the FGF-2- and/or FGF-8-induced proliferation of human pulmonary artery smooth muscle cells (HPASMC) and S115 mouse breast cancer cells. alpha-Trinositol decreased the FGF-mediated proliferation of HPASMC and S115 cells. Membrane permeability did not seem obligatory since the lipid-soluble form of alpha-trinositol was less effective than the water-soluble derivative. These results suggest a new biological function for certain phosphoinositides in the modulation of FGF-regulated processes.
Collapse
Affiliation(s)
- Matti J Sirén
- JGK Memorial Research Laboratory and Library, Helsinki, Finland
| | | | | | | |
Collapse
|
85
|
Andrae J, Afink G, Zhang XQ, Wurst W, Nistér M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 2004; 26:308-21. [PMID: 15207855 DOI: 10.1016/j.mcn.2004.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/02/2004] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
The platelet-derived growth factor (PDGF) and receptors are expressed in the developing central nervous system and in brain tumors. To investigate the role of PDGF during normal cerebellar development, we created transgenic mice where PDGF-B was introduced into the endogenous Engrailed1 locus (En1). These mice expressed PDGF-B in all types of cells that constitute the developing cerebellum, with localized high expression in the ventral midline of the cerebellar anlage. This affected cell migration in the midline during fusion of the cerebellar anlage and caused misplacement of midline structures. PDGFR-alpha- and laminin alpha1-positive meningeal cells migrated inwards, attracted by the ectopic transgene expression in the ventral neuroepithelium. Other cells followed the meningeal cells and in the adult mouse, cells from all cortical cell layers were found misplaced in the midline. Moreover, the transgene caused an enhancement of capillary vessels. The findings indicate that normal PDGF signaling is important for proper neural tube fusion. It also illustrates that meningeal structures can influence the process.
Collapse
Affiliation(s)
- Johanna Andrae
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
86
|
Wilm B, James RG, Schultheiss TM, Hogan BLM. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 2004; 271:176-89. [PMID: 15196959 DOI: 10.1016/j.ydbio.2004.03.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 03/15/2004] [Accepted: 03/22/2004] [Indexed: 12/24/2022]
Abstract
During vertebrate embryogenesis, the newly formed mesoderm is allocated to the paraxial, intermediate, and lateral domains, each giving rise to different cell and tissue types. Here, we provide evidence that the forkhead genes, Foxc1 and Foxc2, play a role in the specification of mesoderm to paraxial versus intermediate fates. Mouse embryos lacking both Foxc1 and Foxc2 show expansion of intermediate mesoderm markers into the paraxial domain, lateralization of somite patterning, and ectopic and disorganized mesonephric tubules. In gain of function studies in the chick embryo, Foxc1 and Foxc2 negatively regulate intermediate mesoderm formation. By contrast, their misexpression in the prospective intermediate mesoderm appears to drive cells to acquire paraxial fate, as revealed by expression of the somite markers Pax7 and Paraxis. Taken together, the data indicate that Foxc1 and Foxc2 regulate the establishment of paraxial versus intermediate mesoderm cell fates in the vertebrate embryo.
Collapse
Affiliation(s)
- Bettina Wilm
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
87
|
Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-? Cell Tissue Res 2004; 318:23-33. [PMID: 15322912 DOI: 10.1007/s00441-004-0916-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 05/10/2004] [Indexed: 12/21/2022]
Abstract
Cell-fate decisions along the dorsoventral and anterior-posterior axis of the neural tube are dictated by factors from signaling and organizing centers. According to the prevailing notion, the formation of mesencephalic dopaminergic neurons is directed by diffusable signals from the notochord, floor plate, and isthmic organizer. Sonic hedgehog (Shh), secreted by the notochord and floor plate, and fibroblast growth factor (FGF) 8, secreted by the isthmus, are thought to be key molecules involved in the development of midbrain dopaminergic neurons. During the last decade, the introduction of elegant explant culture systems and the generation of transgenic and mutant mice have greatly contributed to a better understanding of the molecular signals that direct the induction and specification of midbrain dopaminergic neurons. In this context, experimental evidence has challenged the dominant roles of Shh and FGF8 in dopaminergic neuron development. Additional molecules have been identified as being required for the generation of mesencephalic dopaminergic neurons, particularly members of the transforming growth factor beta superfamily.
Collapse
Affiliation(s)
- Eleni Roussa
- Department for Neuroanatomy, Center of Anatomy, Georg-August-University Göttingen, 37075 Göttingen, Germany.
| | | |
Collapse
|
88
|
Wiedłocha A, Sørensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 2004; 286:45-79. [PMID: 15645710 DOI: 10.1007/978-3-540-69494-6_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fibroblast growth factor (FGF) family contains 23 members in mammals including its prototype members FGF-1 and FGF-2. FGFs have been implicated in regulation of many key cellular responses involved in developmental and physiological processes. These includes proliferation, differentiation, migration, apoptosis, angiogenesis, and wound healing. FGFs bind to five related, specific cell surface receptors (FGFRs). Four of these have intrinsic tyrosine kinase activity. Dimerization of the receptor is a prerequisite for receptor transphosphorylation and activation of downstream signaling molecules. All members of the FGF family have a high affinity for heparin and for cell surface heparan sulfate proteoglycans, which participate in formation of stable and active FGF-FGFR complexes. FGF-mediated signaling is an evolutionarily conserved signaling module operative in invertebrates and vertebrates. It seems that some members of the family have a dual mode of action. FGF-1, FGF-2, FGF-3, and FGF-11-14 have been found intranuclearly as endogenous proteins. Exogenous FGF-1 and FGF-2 are internalized by receptor-mediated endocytosis, in a clathrin-dependent and -independent way. Internalized FGF-1 and FGF-2 are able to cross cellular membranes to reach the cytosol and the nuclear compartment. The role of FGF internalization and the intracellular activity of some FGFs are discussed in the context of the known signaling induced by FGF.
Collapse
Affiliation(s)
- A Wiedłocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
89
|
Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC. The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain-hindbrain boundary in mice. Mol Cell Biol 2003; 23:8216-25. [PMID: 14585979 PMCID: PMC262378 DOI: 10.1128/mcb.23.22.8216-8225.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Iroquois homeobox (Irx) genes have been implicated in the specification and patterning of several organs in Drosophila and several vertebrate species. Misexpression studies of chick, Xenopus, and zebra fish embryos have demonstrated that Irx genes are involved in the specification of the midbrain-hindbrain boundary. All six murine Irx genes are expressed in the developing heart, suggesting that they might possess distinct functions during heart development, and a role for Irx4 in normal heart development has been recently demonstrated by gene-targeting experiments. Here we describe the generation and phenotypic analysis of an Irx2-deficient mouse strain. By targeted insertion of a lacZ reporter gene into the Irx2 locus, we show that lacZ expression reproduces most of the endogenous Irx2 expression pattern. Despite the dynamic expression of Irx2 in the developing heart, nervous system, and other organs, Irx2-deficient mice are viable, are fertile, and appear to be normal. Although chick Irx2 has been implicated in the development of the midbrain-hindbrain region, we show that Irx2-deficient mice develop a normal midbrain-hindbrain boundary. Furthermore, Irx2-deficient mice have normal cardiac morphology and function. Functional compensation by other Irx genes might account for the absence of a phenotype in Irx2-deficient mice. Further studies of mutant mice of other Irx genes as well as compound mutant mice will be necessary to uncover the functional roles of these evolutionarily conserved transcriptional regulators in development and disease.
Collapse
Affiliation(s)
- Mélanie Lebel
- Program in Developmental Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Borgenström M, Jalkanen M, Salmivirta M. Sulfated derivatives of Escherichia coli K5 polysaccharides as modulators of fibroblast growth factor signaling. J Biol Chem 2003; 278:49882-9. [PMID: 14514688 DOI: 10.1074/jbc.m304208200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans are intimately involved in the regulation of fibroblast growth factor (FGF) signaling. HS and the related glycosaminoglycan heparin interact with FGFs and FGF receptors (FGFRs), and it is believed that both interactions are required for productive FGF signaling. Attempts to inhibit FGF activity have been made with modified heparin preparations, various heparin-like polysaccharide analogues and other polyanionic molecules, which may all act by interfering with the physiological HS-FGF-FGFR interactions on the cell surface. Here, we have studied the potential of sulfated derivatives of a bacterial polysaccharide (capsular polysaccharide from Escherichia coli K5 (K5PS)) in the modulation of FGF-heparin/HS interactions and FGF signaling. We demonstrate that O-sulfated and N,O-sulfated species of K5PS, with high degrees of sulfation, displaced FGF-1, FGF-2, and FGF-8b from heparin. However, only O-sulfated K5PS efficiently inhibited the FGF-induced proliferation of S115 mammary carcinoma cells and 3T3 fibroblasts, whereas N,O-sulfated K5PS had little or no inhibitory effect. Studies with CHO677 cells lacking endogenous HS, as well as with chlorate-treated S115 cells expressing undersulfated HS, indicated that whereas exogenously administered heparin and N,O-sulfated K5PS restored the cellular response toward FGF stimulation, O-sulfated K5PS was largely devoid of such stimulatory activity. Our data suggest that highly O-sulfated species of K5PS may be efficient inhibitors of FGF signaling.
Collapse
Affiliation(s)
- Marjut Borgenström
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
91
|
Kirby JL, Yang L, Labus JC, Hinton BT. Characterization of fibroblast growth factor receptors expressed in principal cells in the initial segment of the rat epididymis. Biol Reprod 2003; 68:2314-21. [PMID: 12606343 DOI: 10.1095/biolreprod.102.011270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Studies from our laboratory support a model in which growth factors produced in the testis reach the epididymis via the luminal system and play an important role in maintaining the function of epithelial cells, particularly in the initial segment. Previous work showed that gamma-glutamyl transpeptidase (GGT) mRNA IV, which is highly expressed in the rat initial segment, may be under the control of luminal fibroblast growth factor 2 (FGF-2) from the testis. The current studies were undertaken to identify which fibroblast growth factor receptors (FGFRs) are present in the principal cells of the rat initial segment and to identify other potential ligands for these receptors in rat rete testis fluid (RTF). Immunoblot analysis revealed that FGFRs 1-4 were present, and reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that both the IIIb and IIIc splice variants of FGFRs 1-3 were expressed. However, RT-PCR using RNA isolated from principal cells collected by laser capture microdissection revealed only FGFR-1 IIIc. Additional PCR analysis established that both the alpha and beta forms of FGFR-1 IIIc were expressed in principal cells. Both FGF-4 and FGF-8 were present in rat RTF, as determined by immunoblotting. Thus, FGF-2, -4, and -8, found in RTF, may act upon FGFR-1 IIIc in the principal cells of the initial segment to regulate GGT mRNA IV expression.
Collapse
Affiliation(s)
- Jennifer L Kirby
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
92
|
Cohen MM. Neoplasms associated with alterations in fibroblast growth factor receptors. Am J Med Genet A 2003; 119A:97-100. [PMID: 12749046 DOI: 10.1002/ajmg.a.10058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
93
|
Berns EMJJ, Dirkzwager-Kiel MJM, Kuenen-Boumeester V, Timmermans M, Verhoog LC, van den Ouweland AMW, Meijer-Heijboer H, Klijn JGM, van der Kwast TH. Androgen pathway dysregulation in BRCA1-mutated breast tumors. Breast Cancer Res Treat 2003; 79:121-7. [PMID: 12779088 DOI: 10.1023/a:1023347409599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Using array analysis for screening RNA from BRCA1-mutated and sporadic breast tumors, we observed that AIGF/FGF-8 expression was lost in BRCA1-mutated breast tumors. Since this growth factor is induced by androgens, we studied the androgen receptor (AR) expression in BRCA-mutated tumors and in matched sporadic breast tumors. METHODS Paraffin embedded breast tumors of carriers of a BRCA1 mutation (n=41, median age of patients at time of surgery was 41 years [range 28-59 years]) or a BRCA2 mutation (n=14, median age 41 years [range 31-85 years]) were analyzed for the presence of ER-alpha, PR, P53 and AR using standard immunohistochemical techniques. All statistical tests used, Pearson chi2 and Fisher exact, were two-sided. RESULTS The AR was only present in 12% of BRCA1-mutated tumors, with mutations located at the C-terminal half of the BRCA1-gene. The AR expression was significantly more prevalent, however, in a series of 61 sporadic breast tumors (80%) and in BRCA2-mutated tumors (50%). In contrast to an increased percentage of p53 positive cells, in 66% of the BRCA1-mutated tumors, the ER-alpha expression was observed only in 25% and the PR in 13% of these specimens. The three steroid hormone receptors were expressed in about half of the BRCA2-mutated specimens studied. CONCLUSIONS Our data add to the emerging evidence that the biological phenotype of BRCA1-associated tumors may be different from BRCA2 and non-hereditary cases. The loss of the AR expression, as shown by immunohistochemistry, together with the observed loss of other steroid hormone receptors in BRCA1-mutated tumors may lead to a hormone-independent growth or to anti-hormone resistant growth of these tumors.
Collapse
Affiliation(s)
- Els M J J Berns
- Department of Medical Oncology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Dono R. Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol 2003; 284:R867-81. [PMID: 12626354 DOI: 10.1152/ajpregu.00533.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are multifunctional signaling proteins that regulate developmental processes and adult physiology. Over the last few years, important progress has been made in understanding the function of FGFs in the embryonic and adult central nervous system. In this review, I will first discuss studies showing that FGF signaling is already required during formation of the neural plate. Next, I will describe how FGF signaling centers control growth and patterning of specific brain structures. Finally, I will focus on the function of FGF signaling in the adult brain and in regulating maintenance and repair of damaged neural tissues.
Collapse
Affiliation(s)
- Rosanna Dono
- Faculty of Biology, Department of Developmental Biology, Utrecht University, NL-3584CH Utrecht, The Netherlands.
| |
Collapse
|
95
|
Cronauer MV, Schulz WA, Seifert HH, Ackermann R, Burchardt M. Fibroblast growth factors and their receptors in urological cancers: basic research and clinical implications. Eur Urol 2003; 43:309-19. [PMID: 12600436 DOI: 10.1016/s0302-2838(03)00005-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Because therapeutical options for advanced urological cancers are limited, the understanding of key elements responsible for invasion and metastasis is very important. It has been hypothesized that progression to malignant growth is associated with a dysregulation of growth factors and/or their receptors. In the last few years, signaling pathways of the fibroblast growth factor (FGF) family have been subject to intense investigation. Fibroblast growth factors constitute one of the largest families of growth and differentiation factors for cells of mesodermal and neuroectodermal origin. The family comprises two prototypic members, acidic FGF (aFGF) and the basic FGF (bFGF), as well as 21 additionally related polypeptide growth factors that have been identified to date. FGFs are involved in many biological processes during embryonic development, wound healing, hematopoesis, and angiogenesis. In prostate, bladder, and renal cancers, FGFs regulate the induction of metalloproteinases (MMP) that degrade extracellular matrix proteins, thus facilitating tumor metastasis. Probably due to their potent angiogenic properties, aFGF and bFGF have received the most attention. However, there is increasing evidence that other FGFs also play crucial roles in tumors of the prostate, bladder, kidney, and testis. This review will discuss the different elements involved in FGF signaling and summarize the present knowledge of their biological and clinical relevance in urological cancers.
Collapse
Affiliation(s)
- M V Cronauer
- Department of Urology, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf D-40225, Germany
| | | | | | | | | |
Collapse
|
96
|
Asada N, Tanaka Y, Hayashido Y, Toratani S, Kan M, Kitamoto M, Nakanishi T, Kajiyama G, Chayama K, Okamoto T. EXPRESSION OF FIBROBLAST GROWTH FACTOR RECEPTOR GENES IN HUMAN HEPATOMA-DERIVED CELL LINES. ACTA ACUST UNITED AC 2003; 39:321-8. [PMID: 14753849 DOI: 10.1290/1543-706x(2003)039<0321:eofgfr>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fibroblast growth factor (FGF) function has been considered to contribute to various human tumors and malignant growth of neoplasm. Hepatocellular carcinoma (HCC) is a typical hypervascular tumor, and it is suggested that FGF may be involved in hepatocarcinogenesis. Therefore, the relationship between the progression of HCC and expression of FGFs and FGF receptors (FGFRs) was evaluated in this study. We investigated the expression of messenger ribonucleic acids (mRNAs) of FGFs and FGFRs by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis in eight human hepatoma-derived cell lines (Hep3B, HLE, HLF, HUH6, HUH7, KIM1, Li7, and PLC/PRF/5), one hepatoblastoma-derived cell line (HepG2), and human primary hepatocytes. In addition, effects of FGF-1, FGF-2, and FGF-7 on the growth of hepatoma-derived cell lines were studied in serum-free defined culture conditions. An RT-PCR analysis revealed that all cell lines except PLC/PRF/5 expressed all FGFR mRNAs: FGF-R1 (IIIc), -R2 (IIIb), -R2 (IIIc), -R3 (IIIb), -R3 (IIIc), and -R4 mRNAs. In contrast, human primary hepatocytes expressed FGF-R1 (IIIc), -R3 (IIIc), and -R4 mRNAs but not mRNAs of FGF-R2 (IIIb), -R2 (IIIc), and -R3 (IIIb). All cell lines except HUH6 and HUH7 expressed FGF-1 and FGF-2 mRNAs. Addition of exogenous FGF-1 or FGF-2 (or both) to culture stimulated cell proliferation in several cell lines, but FGF-7 exhibited no growth stimulation in all cells. Hepatoma cells may possess a proliferation mechanism regulated by an autocrine mechanism, a paracrine mechanism, or both, which are mediated by FGF-1/FGFR or FGF-2/FGFR (or both). In addition, a gain of FGF-R2 (IIIb), -R2 (IIIc), and -R3 (IIIb) may be associated with malignant transformation of liver tumor and may eventually serve as useful diagnostic and prognostic indicators.
Collapse
Affiliation(s)
- Nobuyuki Asada
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Aoto K, Nishimura T, Eto K, Motoyama J. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 2002; 251:320-32. [PMID: 12435361 DOI: 10.1006/dbio.2002.0811] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zinc finger transcription factor GLI3 is considered a repressor of vertebrate Hedgehog (Hh) signaling. In humans, the absence of GLI3 function causes Greig cephalopolysyndactyly syndrome, affecting the development of the brain, eye, face, and limb. Because the etiology of these malformations is not well understood, we examined the phenotype of mouse Gli3-/- mutants as a model to investigate this. We observed an up-regulation of Fgf8 in the anterior neural ridge, isthmus, eye, facial primordia, and limb buds of mutant embryos, sites coinciding with the human disease. Intriguingly, endogenous apoptosis was reduced in Fgf8-positive areas in Gli3-/- mutants. Since SHH is thought to be involved in Fgf8 regulation, we compared Fgf8 expression in Shh-/- and Gli3-/-;Shh-/- mutant embryos. Whereas Fgf8 expression was almost absent in Shh-/- mutants, it was up-regulated in Gli3-/-;Shh-/- double mutants, suggesting that SHH is not required for Fgf8 induction, and that GLI3 normally represses Fgf8 independently of SHH. In the limb bud, we provide evidence that ectopic expression of Gremlin in Gli3-/- mutants might contribute to a decrease in apoptosis. Together, our data reveal that GLI3 limits Fgf8-expression domains in multiple tissues, through a mechanism that may include the induction or maintenance of apoptosis.
Collapse
Affiliation(s)
- Kazushi Aoto
- Molecular Neuropathology Group, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
98
|
Loo BM, Salmivirta M. Heparin/Heparan sulfate domains in binding and signaling of fibroblast growth factor 8b. J Biol Chem 2002; 277:32616-23. [PMID: 12077148 DOI: 10.1074/jbc.m204961200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.
Collapse
Affiliation(s)
- Britt-Marie Loo
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University and BioTie Therapies Corporation, FIN-20520 Turku, Finland
| | | |
Collapse
|
99
|
Gnanapragasam VJ, Robson CN, Neal DE, Leung HY. Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene 2002; 21:5069-80. [PMID: 12140757 DOI: 10.1038/sj.onc.1205663] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 04/17/2002] [Accepted: 05/10/2002] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 8 (FGF8) has been shown to play a key role in prostate carcinogenesis. It was initially cloned as an androgen induced protein in mouse mammary cancer SC3 cells. In this study, we examined if FGF8 was also regulated by the androgen receptor in human prostate cancer. FGF8b protein expression in resected clinical prostate cancer correlated closely with expression of the androgen receptor (AR). In the androgen sensitive CWR22 prostate xenograft, we observed up-regulation of FGF8b immunoreactivity in testosterone supplemented mice while castration markedly reduced its signal. Furthermore, FGF8b protein expression in AR positive LNCaP cells was similarly enhanced by androgens. The proximal promoter of the human FGF8 gene was cloned into a luciferase reporter construct (FGF8.luc). FGF8.luc activity in AR positive LNCaP and SC3 cells was increased 2.5-fold by androgens. In AR negative DU145 cells, maximal induction of FGF8.luc required both co-transfection of the AR and the presence of androgens. The anti-androgen bicalutamide completely abolished AR mediated FGF8.luc induction. Deletion constructs from FGF8.luc have further defined an active promoter region and an androgen responsive region. Nucleotide analysis of this androgen responsive region has revealed putative androgen response elements. Finally, using ChIP assays we confirmed in vivo interaction between the AR and the androgen responsive region of the FGF8 promoter. Taken together these data provide first evidence that expression of the mitogen FGF8 in prostate cancer is, at least in part, regulated by the androgen receptor at the transcriptional level.
Collapse
Affiliation(s)
- Vincent J Gnanapragasam
- Prostate Research Group, School of Surgical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
100
|
Zammit C, Coope R, Gomm JJ, Shousha S, Johnston CL, Coombes RC. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br J Cancer 2002; 86:1097-103. [PMID: 11953856 PMCID: PMC2364190 DOI: 10.1038/sj.bjc.6600213] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 01/22/2002] [Accepted: 01/24/2002] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Collapse
Affiliation(s)
- C Zammit
- Cancer Research (UK) Laboratories, Department of Cancer Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|