51
|
Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl Stroke Res 2011; 2:474-91. [PMID: 22448202 PMCID: PMC3296011 DOI: 10.1007/s12975-011-0109-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/20/2011] [Accepted: 09/25/2011] [Indexed: 02/06/2023]
Abstract
Spinal cord injuries (SCI) can result in devastating paralysis, for which there is currently no robustly efficacious neuroprotective/neuroregenerative treatment. When the spinal cord is subjected to a traumatic injury, the local vasculature is disrupted and the blood–spinal cord barrier is compromised. Subsequent inflammation and ischemia may then contribute to further secondary damage, exacerbating neurological deficits. Therefore, understanding the vascular response to SCI and the molecular elements that regulate angiogenesis has considerable relevance from a therapeutic standpoint. In this paper, we review the nature of vascular damage after traumatic SCI and what is known about the role that angiogenic proteins—angiopoietin 1 (Ang1), angiopoietin 2 (Ang2) and angiogenin—may play in the subsequent response. To this, we add recent work that we have conducted in measuring these proteins in the cerebrospinal fluid (CSF) and serum after acute SCI in human patients. Intrathecal catheters were installed in 15 acute SCI patients within 48 h of injury. CSF and serum samples were collected over the following 3–5 days and analysed for Ang1, Ang2 and angiogenin protein levels using a standard ELISA technique. This represents the first description of the endogenous expression of these proteins in an acute human SCI setting.
Collapse
|
52
|
Chen J, Ye X, Yan T, Zhang C, Yang XP, Cui X, Cui Y, Zacharek A, Roberts C, Liu X, Dai X, Lu M, Chopp M. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke 2011; 42:3551-8. [PMID: 21940967 DOI: 10.1161/strokeaha.111.627174] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Cell therapy with bone marrow stromal cells (BMSCs) improves functional recovery after stroke in nondiabetic rats. However, its effect on diabetics with stroke is unknown. This study investigated the effect of BMSCs on stroke outcome in Type 1 diabetic (T1DM) rats. METHODS T1DM was induced in adult male Wistar rats by injecting streptozotocin. Nondiabetic and T1DM rats were subjected to 2 hours of middle cerebral artery occlusion (MCAO), treated with or without BMSCs (3×10(6)) at 24 hours after MCAO, and monitored for 14 days. RESULTS Functional benefit was not detected in T1DM-MCAO treated with BMSC rats compared with corresponding T1DM-MCAO controls. BMSC treatment in T1DM-MCAO rats had increased mortality, blood-brain barrier leakage, brain hemorrhage, and angiogenesis. Internal carotid artery neointimal formation and cerebral arteriole narrowing/occlusion were also observed in T1DM-MCAO+BMSCs rats compared with T1DM-MCAO controls (P<0.05), but not in nondiabetic stroke rats. We further studied the underlying mechanisms responsible for BMSC-induced blood-brain barrier leakage and accelerated vascular damage in T1DM-MCAO rats. We found that the expression of angiogenin (an angiogenic factor) and ED1 (a marker for macrophages) was significantly increased in the T1DM-MCAO+BMSC rats in the ischemic brain and internal carotid artery compared with nontreated T1DM-MCAO rats, but not in nondiabetic stroke rats. CONCLUSIONS BMSC therapy in T1DM-MCAO rats does not improve functional outcome. On the contrary, it increases blood-brain barrier leakage and cerebral artery neointimal formation, and arteriosclerosis, which possibly is due to increased expression of angiogenin. Thus, BMSC treatment starting 24 hours after MCAO may not be beneficial for diabetic subjects with stroke.
Collapse
Affiliation(s)
- Jieli Chen
- Henry Ford Hospital, E&R Building, 3091, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dziankowska-Bartkowiak B, Gerlicz-Kowalczuk Z, Waszczykowska E. Angiogenin and SDF-1α serum concentration in patients with systemic sclerosis in relation to clinical status. Arch Med Sci 2011; 7:92-6. [PMID: 22291739 PMCID: PMC3258685 DOI: 10.5114/aoms.2011.20610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/07/2009] [Accepted: 12/12/2009] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a connective tissue disorder characterized by tissue hypoxia due to vascular changes and excessive fibrosis of the skin and internal organs. Damage to blood vessels and endothelium, as well as imbalance of vascular homeostasis, impairment of angiogenesis and vasculogenesis are observed in the course of the disease. The aim of the study was to investigate the pro-angiogenic factors angiogenin and SDF-1α in patients with SSc. MATERIAL AND METHODS Serum samples were collected from 50 patients with dSSc (diffuse SSc) and lSSc (limited SSc) and from 38 patients used as a healthy control group. We explored: 1) how the serum concentrations of SDF-1α and angiogenin differ in the investigated groups; 2) the correlation among chemokines in SSc and the duration of the disease, Raynaud's phenomenon, sclerosis of the skin and TSS (total skin score). RESULTS Patients with SSc showed statistically significantly higher serum angiogenin concentration and there was no correlation between duration of the disease and Raynaud's phenomenon, skin sclerosis or TSS. There was also no difference or no correlation between serum level of SDF-1α and the investigated groups. CONCLUSIONS The increase in angiogenin concentration in the serum in patients with SSc may confirm endothelial damage caused by hypoxia and reduced vascular perfusion due to the course of SSc without contributing to compensatory revascularization.
Collapse
|
54
|
Trouillon R, Kang DK, Chang SI, O'Hare D. Angiogenin induces nitric oxide release independently from its RNase activity. Chem Commun (Camb) 2011; 47:3421-3. [DOI: 10.1039/c0cc04527f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
55
|
Steidinger TU, Standaert DG, Yacoubian TA. A neuroprotective role for angiogenin in models of Parkinson's disease. J Neurochem 2010; 116:334-41. [PMID: 21091473 DOI: 10.1111/j.1471-4159.2010.07112.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously observed marked down-regulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson's disease (PD) based on over-expression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins 1-methyl-4-phenylpyridinium and rotenone and reduces the activation of caspase 3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD.
Collapse
Affiliation(s)
- Trent U Steidinger
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
56
|
Chen L, Hu GF. Angiogenin-mediated ribosomal RNA transcription as a molecular target for treatment of head and neck squamous cell carcinoma. Oral Oncol 2010; 46:648-53. [PMID: 20656548 PMCID: PMC2932836 DOI: 10.1016/j.oraloncology.2010.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is the eighth most common disease, affecting approximately 640,000 patients worldwide each year. Despite recent advances in surgery, radiotherapy, and chemotherapy, the overall cure for patients with HNSCC has remained at less than 50% for many decades. Patients with recurrent and metastatic disease have a median survival of only 6-10 months. Systemic chemotherapy is the only treatment option for those patients. New treatment options are thus desperately needed to supplement, complement, or replace currently available therapies. New agents that target molecular and cellular pathways of the disease pathogenesis of HNSCC are promising candidates. One class of these new agents is angiogenesis inhibitors that have been proven effective in the treatment of advanced colorectal, breast, and non-small cell lung cancers. Similar to other solid tumors, angiogenesis plays an important role in the pathogenesis of HNSCC. A number of angiogenic factors including vascular endothelial growth factor (VEGF) and angiogenin (ANG) have been shown to be significantly upregulated in HNSCC. Among them, ANG is unique in which it is a ribonuclease that regulates ribosomal RNA (rRNA) transcription. ANG-stimulated rRNA transcription has been shown to be a general requirement for angiogenesis induced by other angiogenic factors. ANG inhibitors have been demonstrated to inhibit angiogenesis and tumor growth induced not only by ANG but also by other angiogenic factors. As the role of ANG in HNSCC is being unveiled, the therapeutic potential of ANG inhibitors in HNSCC is expected.
Collapse
Affiliation(s)
- Lili Chen
- Department of Stomatology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guo-fu Hu
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
57
|
Siebert J, Reiwer-Gostomska M, Mysliwska J, Marek N, Raczynska K, Glasner L. Glycemic control influences serum angiogenin concentrations in patients with type 2 diabetes. Diabetes Care 2010; 33:1829-30. [PMID: 20484129 PMCID: PMC2909070 DOI: 10.2337/dc10-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Because diabetes is the most frequent factor responsible for microvascular and macrovascular disease, we investigated angiogenin serum levels within the diabetic patient group. RESEARCH DESIGN AND METHODS We investigated 49 patients who met the criteria to be in the diabetic group. Forty nondiabetic patients were included in the control group. We set A1C <7% as well-controlled diabetes. Serum angiogenin level was measured using the enzyme-linked immunosorbent assay method. RESULTS Serum angiogenin levels of poorly controlled patients with type 2 diabetes were significantly lower than those of group with well-controlled diabetes (361.23 +/- 126.03 ng/ml vs. 446.37 +/- 134.10 ng/ml; P = 0.001). Moreover, they were characterized by a significantly longer duration of the disease (P = 0.006), higher BMI (P = 0.0003), and higher systolic blood pressure (P = 0.01). Levels of total cholesterol, triglycerides, LDL, and HDL were not significantly different in both groups. CONCLUSIONS Patients with poorly controlled type 2 diabetes (A1C >7%) have lower angiogenin levels than patients with well-controlled diabetes.
Collapse
Affiliation(s)
- Janusz Siebert
- Department of Family Medicine, University Centre for Cardiology, Medical University of Gdansk, Gdansk, Poland.
| | | | | | | | | | | |
Collapse
|
58
|
Trouillon R, Kang DK, Park H, Chang SI, O’Hare D. Angiogenin Induces Nitric Oxide Synthesis in Endothelial Cells through PI-3 and Akt Kinases. Biochemistry 2010; 49:3282-8. [DOI: 10.1021/bi902122w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphaël Trouillon
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dong-Ku Kang
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Park
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
59
|
Cho GW, Kang BY, Kim SH. Human angiogenin presents neuroprotective and migration effects in neuroblastoma cells. Mol Cell Biochem 2010; 340:133-41. [PMID: 20174961 DOI: 10.1007/s11010-010-0410-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 02/10/2010] [Indexed: 12/21/2022]
Abstract
Human angiogenin (ANG) has been highlighted as an angiogenic factor which supports primary and metastatic tumor growth. Recent genetic studies have shown that ANG is presented as a susceptibility gene for amyotrophic lateral sclerosis (ALS) and ALS-frontotemporal dementia (ALS-FTD). They found several missense mutations, including K40I, which present the weakest functional activity in ANG variants. In this study, we investigate whether human wild type ANG (wANG) and its variant K40I (mANG) maintain their divergent functional capacities in neuronal cells. To evaluate this, SH-SY5Y neuroblastoma cells were transfected with wANG and mANG DNA and identified both wild and mutant ANG are localized to nuclei and have no effects on proliferation. We have shown that human wANG prevented cell death under H(2)O(2)-induced oxidative stress in both SH-SY5Y and NSC-34 cells, tested by MTT assay. These effects were more enhanced in motor neuron cell NSC-34. wANG also played a role in cell migration, while mANG decreased these functional activities. Immunoblot analysis revealed that the intracellular signaling of ERK1/2 (at Thr183/Tyr185) was increased following transfection of the wANG gene, and significantly decreased by mANG in neuronal cells. These findings suggest that human ANG plays a critical role in cell protection and migration following alterations in ERK1/2 signaling in SH-SY5Y cells. This may provide the possible relationship between mutations in hANG and other neurodegenerative diseases as well as ALS.
Collapse
Affiliation(s)
- Goang-Won Cho
- Department of Neurology, College of Medicine, Hanyang University, #17 Haengdang-dong, Seongdong-gu, Seoul 139-791, Korea
| | | | | |
Collapse
|
60
|
Binding of human angiogenin inhibits actin polymerization. Arch Biochem Biophys 2010; 495:74-81. [PMID: 20045391 DOI: 10.1016/j.abb.2009.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/25/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
Abstract
Angiogenin is a potent inducer of angiogenesis, a process of blood vessel formation. It interacts with endothelial and other cells and elicits a wide range of cellular responses including migration, proliferation, and tube formation. One important target of angiogenin is endothelial cell-surface actin and their interaction might be one of essential steps in angiogenin-induced neovascularization. Based on earlier indications that angiogenin promotes actin polymerization, we studied the binding interactions between angiogenin and actin in a wide range of conditions. We showed that at subphysiological KCl concentrations, angiogenin does not promote, but instead inhibits polymerization by sequestering G-actin. At low KCl concentrations angiogenin induces formation of unstructured aggregates, which, as shown by NMR, may be caused by angiogenin's propensity to form oligomers. Binding of angiogenin to preformed F-actin does not cause depolymerization of actin filaments though it causes their stiffening. Binding of tropomyosin and angiogenin to F-actin is not competitive at concentrations sufficient for saturation of actin filaments. These observations suggest that angiogenin may cause changes in the cell cytoskeleton by inhibiting polymerization of G-actin and changing the physical properties of F-actin.
Collapse
|
61
|
Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, Leguern E, Duyckaerts C. Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol 2009; 118:561-73. [PMID: 19449021 DOI: 10.1007/s00401-009-0545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 12/11/2022]
Abstract
A K17I mutation in the ANG gene encoding angiogenin has been identified in a case that we previously published as ALS with neuronal intranuclear protein inclusions (Seilhean et al. in Acta Neuropathol 108:81-87, 2004). These inclusions were immunoreactive for smooth muscle alpha-actin but not for angiogenin. Moreover, they were not labeled by anti-TDP-43 antibodies, while numerous cytoplasmic inclusions immunoreactive for ubiquitin, p62 and TDP-43 were detected in both oligodendrocytes and neurons in various regions of the central nervous system. In addition, expression of smooth muscle alpha-actin was increased in the liver where severe steatosis was observed. This is the first neuropathological description of a case with an ANG mutation. Angiogenin is known to interact with actin. Like other proteins involved in ALS pathogenesis, such as senataxin, TDP-43 and FUS/TLS, it plays a role in RNA maturation.
Collapse
Affiliation(s)
- Danielle Seilhean
- Département de Neuropathologie, UPMC Université Paris 06, AP-HP, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, INSERM UMR-S 546 (DS) and UMR-S 679 (CD), 47-83 boulevard de l'Hôpital, Paris cedex 13, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
INTRODUCTION Angiogenesis is known to be a critical and closely regulated step during bone formation and fracture healing driven by a complex interaction of various cytokines. Delays in bone healing or even nonunion might therefore be associated with altered concentrations of specific angiogenic factors. These alterations might in turn be reflected by changes in serum concentrations. METHOD To determine physiological time courses of angiogenic cytokines during fracture healing as well as possible changes associated with failed consolidation, we prospectively collected serum samples from patients who had sustained surgical treatment for a long bone fracture. Fifteen patients without fracture healing 4 months after surgery (nonunion group) were matched to a collective of 15 patients with successful healing (union group). Serum concentrations of angiogenin (ANG), angiopoietin 2 (Ang-2), basic fibroblast growth factor (bFGF), platelet derived growth factor AB (PDGF-AB), pleiotrophin (PTN) and vascular endothelial growth factor (VEGF) were measured using enzyme linked immunosorbent assays over a period of 24 weeks. RESULTS Compared to reference values of healthy uninjured controls serum concentrations of VEGF, bFGF and PDGF were increased in both groups. Peak concentrations of these cytokines were reached during early fracture healing. Serum concentrations of bFGF and PDGF-AB were significantly higher in the union group at 2 and 4 weeks after the injury when compared to the nonunion group. Serum concentrations of ANG and Ang-2 declined steadily from the first measurement in normal healing fractures, while no significant changes over time could be detected for serum concentrations of these factures in nonunion patients. PTN serum levels increased asymptotically over the entire investigation in timely fracture healing while no such increase could be detected during delayed healing. CONCLUSION We conclude that fracture healing in human subjects is accompanied by distinct changes in systemic levels of specific angiogenic factors. Significant alterations of these physiologic changes in patients developing a fracture nonunion over time could be detected as early as 2 (bFGF) and 4 weeks (PDGF-AB) after initial trauma surgery.
Collapse
|
63
|
Monti DM, Yu W, Pizzo E, Shima K, Hu MG, Di Malta C, Piccoli R, D'Alessio G, Hu GF. Characterization of the angiogenic activity of zebrafish ribonucleases. FEBS J 2009; 276:4077-90. [PMID: 19549190 DOI: 10.1111/j.1742-4658.2009.07115.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribonucleases identified from zebrafish possess angiogenic and bactericidal activities. Zebrafish RNases have three intramolecular disulfide bonds, a characteristic structural feature of angiogenin, different from the typical four disulfide bonds of the other members of the RNase A superfamily. They also have a higher degree of sequence homology to angiogenin than to RNase A. It has been proposed that all RNases evolved from these angiogenin-like progenitors. In the present study, we characterize, in detail, the function of zebrafish RNases in various steps in the process of angiogenesis. We report that zebrafish RNase-1, -2 and -3 bind to the cell surface specifically and are able to compete with human angiogenin. Similar to human angiogenin, all three zebrafish RNases are able to induce phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. They also undergo nuclear translocation, accumulate in the nucleolus and stimulate rRNA transcription. However, zebrafish RNase-3 is defective in cleaving rRNA precursor, even though it has been reported to have an open active site and has higher enzymatic activity toward more classic RNase substrates such as yeast tRNA and synthetic oligonucleotides. Taken together with the findings that zebrafish RNase-3 is less angiogenic than zebrafish RNase-1 and -2 as well as human angiogenin, these results suggest that zebrafish RNase-1 is the ortholog of human angiogenin and that the ribonucleolytic activity of zebrafish RNases toward the rRNA precursor substrate is functionally important for their angiogenic activity.
Collapse
Affiliation(s)
- Daria M Monti
- Department of Structural and Functional Biology, University of Naples Federico II, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Dickson KA, Kang DK, Kwon YS, Kim JC, Leland PA, Kim BM, Chang SI, Raines RT. Ribonuclease inhibitor regulates neovascularization by human angiogenin. Biochemistry 2009; 48:3804-6. [PMID: 19354288 DOI: 10.1021/bi9005094] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human angiogenin (ANG) is a homologue of bovine pancreatic ribonuclease (RNase A) that induces neovascularization. ANG is the only human angiogenic factor that possesses ribonucleolytic activity. To stimulate blood vessel growth, ANG must be transported to the nucleus and must retain its catalytic activity. Like other mammalian homologues of RNase A, ANG forms a femtomolar complex with the cytosolic ribonuclease inhibitor protein (RI). To determine whether RI affects ANG-induced angiogenesis, we created G85R/G86R ANG, which possesses 10(6)-fold lower affinity for RI but retains wild-type ribonucleolytic activity. The neovascularization of rabbit corneas by G85R/G86R ANG was more pronounced and more rapid than by wild-type ANG. These findings provide the first direct evidence that RI serves to regulate the biological activity of ANG in vivo.
Collapse
Affiliation(s)
- Kimberly A Dickson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A 2009; 14:1775-85. [PMID: 18950270 DOI: 10.1089/ten.tea.2007.0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial dermis lacks a vascular network, and angiogenesis is slow in vivo. Controlled delivery of angiogenin (ANG), a potent inducer of angiogenesis, should promote angiogenesis in artificial dermis. In this study, a porous collagen-chitosan scaffold was fabricated and heparinized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) with a freeze-drying method. Using radioiodine labeling, the effect of heparin on the binding of ANG to the scaffold was studied. The release of ANG from the heparinized scaffold was investigated using a radioiodine labeling method or an enzyme-linked immunosorbent assay method. In vivo angiogenesis of the scaffold was studied for 28 days. All scaffolds possess three-dimensional porous structures, and their mean pore sizes increase upon EDC-NHS cross-linking. The binding of ANG to the scaffold showed a linear correlation with ANG concentration. With ANG concentrations of 160 ng/mL, the binding of ANG to the heparinized scaffold was 36.5%. In vitro, ANG was released from the heparinized scaffold in a controlled manner. The presence of ANG enhanced the angiogenesis of the heparinized scaffold after subcutaneous implantation into rabbits. The results of this study indicate that a porous collagen-chitosan scaffold loaded with ANG may be valuable in the development of artificial dermis requiring enhanced angiogenesis.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Burn, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
66
|
Abstract
Angiogenesis, the recruitment of new blood vessels, is an essential component of tumor progression. Malignant brain tumors are highly vascularized and their growth is angiogenesis-dependent. As such, inhibition of the sprouting of new capillaries from pre-existing blood vessels is one of the most promising antiglioma therapeutic approaches. Numerous classes of molecules have been implicated in regulating angiogenesis and, thus, novel agents that target and counteract angiogenesis are now being developed. The therapeutic trials of a number of angiogenesis inhibitors as antiglioma drugs are currently under intense investigation. Preliminary studies of angiogenic blockade in glioblastoma have been promising and several clinical trials are now underway to develop optimum treatment strategies for antiangiogenic agents. This review will cover state-of-the-art antiangiogenic targets for brain tumor treatment and discuss future challenges. An increased understanding of the angiogenic process, the diversity of its inducers and mediators, appropriate drug schedules and the use of these agents with other modalities may lead to radically new treatment regimens to achieve maximal efficacy.
Collapse
Affiliation(s)
- Sajani S Lakka
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, 1 Illini Drive, Peoria, IL 61605, USA
| | | |
Collapse
|
67
|
Kishikawa H, Wu D, Hu GF. Targeting angiogenin in therapy of amyotropic lateral sclerosis. Expert Opin Ther Targets 2008; 12:1229-42. [PMID: 18781822 DOI: 10.1517/14728222.12.10.1229] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Missense heterozygous mutations in the coding region of angiogenin (ANG) gene, encoding a 14 kDa angiogenic RNase, were recently found in patients of amyotropic lateral sclerosis (ALS). Functional analyses have shown that these are loss-of-function mutations, implying that angiogenin deficiency is associated with ALS pathogenesis and that increasing ANG expression or angiogenin activity could be a novel approach for ALS therapy. OBJECTIVE Review the evidence showing the involvement of angiogenin in motor neuron physiology and function, and provide a rationale for targeting angiogenin in ALS therapy. METHODS Review the current understanding of the mechanism of angiogenin action in connection with ALS genetics, pathogenesis and therapy. CONCLUSION ANG is the first gene whose loss-of-function mutations are associated with ALS pathogenesis. Therapeutic modulation of angiogenin level and activity in the spinal cord, either by systemic delivery of angiogenin protein or through retrograde transport of ANG-encoding viral particles, may be beneficial for ALS patients.
Collapse
Affiliation(s)
- Hiroko Kishikawa
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
68
|
Abstract
Angiogenin induces angiogenesis by activating vessel endothelial and smooth muscle cells and triggering a number of biological processes, including cell migration, invasion, proliferation, and formation of tubular structures. It has been reported that angiogenin plays its functions mainly through four pathways: (1) exerting its ribonucleolytic activity; (2) binding to membrane actin and then inducing basement membrane degradation; (3) binding to a putative 170-kDa protein and subsequently transducing signal into cytoplasm; and (4) translocating into the nucleus of target cells directly and then enhancing ribosomal RNA transcription. Angiogenin can also translocate into the nucleus of cancer cells and induces the corresponding cell proliferation. Furthermore, angiogenin has neuroprotective activities in the central nervous system and the loss of its function may be related to amyotrophic lateral sclerosis. This review intends to conclude the mechanisms underlying these actions of angiogenin and give a perspective on future research.
Collapse
Affiliation(s)
- Xiangwei Gao
- Research Center for Environmental Genomics, Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | |
Collapse
|
69
|
Li W, Yang X, Wang K, Tan W, He Y, Guo Q, Tang H, Liu J. Real-time imaging of protein internalization using aptamer conjugates. Anal Chem 2008; 80:5002-8. [PMID: 18533682 DOI: 10.1021/ac800930q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Angiogenin is a potent angiogenic factor that is known to play an important role in tumor angiogenesis. In this paper, we investigate the cellular internalization of angiogenin conjugated with its highly specific aptamer. By using fluorophore-labeled aptamer and confocal laser scanning microscopy, we have developed a novel and simple method by which to visualize the real-time process of angiogenin internalization. Specifically, when aptamer-angiogenin conjugates were added into cell cultures, conjugates could be selectively bound to HUVE cells (human umbilical vein endothelial cells) and MCF-7 cells (human breast cancer cells). Nuclear staining and Z-axis scanning studies demonstrated that the aptamer-angiogenin conjugates were internalized to intracellular organelles, and dynamic confocal imaging studies indicated that the conjugates were quickly internalized. These results provide the first evidence that a fluorophore-labeled aptamer can be used as a fluorescent probe to visualize the spatiotemporal process of protein internalization in real time.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Chemical Engineering, Engineering Center for Biomedicine, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Lymphatic vessel density in radical prostatectomy specimens. Hum Pathol 2008; 39:610-5. [DOI: 10.1016/j.humpath.2007.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 11/18/2022]
|
71
|
Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC. Extracellular matrix-dependent regulation of angiogenin expression in human placenta. J Cell Biochem 2008; 96:36-46. [PMID: 15988760 DOI: 10.1002/jcb.20507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Knowledge of the rapidly developing hierarchy of controls affecting vascular development in placenta is required to understand how the growth factors and their receptor-mediated signals actually produce vessels. At the cell biological level, these events clearly require stable interactions between the cells, and cells with the surrounding ECM. The objective of the study was to understand the role of integrins and ECM on the expression and secretion of angiogenin in placentas and from trophoblasts in culture. Functionally active term placental explant culture and trophoblast cultures were used to demonstrate the differential secretion profile of angiogenin and real-time quantitative RT-PCR to demonstrate the mRNA expression in the presence or absence of ECM proteins. In this study, a significant increase in expression and secretion of angiogenin occurred in the presence of vitronectin (VN) and fibronectin (FN). Using antibody-blocking experiments it was also demonstrated that the angiogenin secretion is mediated by placental integrins, alpha(V)beta3 and alpha5beta1. In addition, exposure to hypoxic conditions resulted in diminished angiogenin secretion in the presence of both ECMs suggesting that angiogenin expression in the presence of ECM is modulated by local O2 concentration. In conclusion, this study provides evidence for the regulatory role of ECM and integrins on the mRNA expression and secretion of angiogenin in human placenta. ECMs may have a pivotal role in enhancing secretion of this peptide necessary for placental angiogenesis and provides the impetus as additional targets for the control of angiogenesis in pathological pregnancy.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Singapore 119074
| | | | | | | | | |
Collapse
|
72
|
Siebert J, Reiwer-Gostomska M, Babińska Z, Myśliwska J, Myśliwski A, Skopińska-Rózewska E, Sommer E, Skopiński P. Low serum angiogenin concentrations in patients with type 2 diabetes. Diabetes Care 2007; 30:3086-7. [PMID: 17878246 DOI: 10.2337/dc07-0629] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Janusz Siebert
- University Centre for Cardiology, Department of Family Medicine, Medical University of Gdask, Gdask, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Schwartz B, Shoseyov O, Melnikova VO, McCarty M, Leslie M, Roiz L, Smirnoff P, Hu GF, Lev D, Bar-Eli M. ACTIBIND, a T2 RNase, Competes with Angiogenin and Inhibits Human Melanoma Growth, Angiogenesis, and Metastasis. Cancer Res 2007; 67:5258-66. [PMID: 17545605 DOI: 10.1158/0008-5472.can-07-0129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma is a very aggressive and highly angiogenic tumor in which standard treatments have had only limited success. Patients with advanced disease have a 5-year survival rate of 5%. In search for alternatives, we identified a natural product extracted from the fungus Aspergillus niger, termed ACTIBIND, that inhibits tumor growth and metastasis of melanoma in vivo. ACTIBIND, a T2 RNase, exerts antitumorigenic and antiangiogenic activities by competing with the angiogenic factor angiogenin (itself an RNase homologue). Thus, there was decreased expression and activity of the matrix metalloproteinase 2 in melanoma and vascular endothelial cells, decreased vascularization, and increased tumor cell apoptosis in vivo. ACTIBIND significantly inhibited angiogenesis in an in vivo angiogenesis assay with sponges containing angiogenin. In vitro, ACTIBIND was internalized by both melanoma and human umbilical vein endothelial cells, reached the cell nuclei, and inhibited the activity of angiogenin response elements in a dose-dependent manner. Collectively, our data indicate that ACTIBIND should be tested for its potential as a new antiangiogenic modality for the treatment of melanoma.
Collapse
Affiliation(s)
- Betty Schwartz
- The Institute of Biochemistry, Food Science, and Nutrition, Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Subramanian V, Feng Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 2007; 16:1445-53. [PMID: 17468498 DOI: 10.1093/hmg/ddm095] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in human angiogenin (hANG), an angiogenic member of the RNase A superfamily, have been recently reported in patients with amyotrophic lateral sclerosis (ALS), a progressive late-onset neurodegenerative disorder. However, very little is known about the expression and subcellular distribution of ANG in the nervous system or its role in differentiation. Here we report that mouse angiogenin-1 (mAng-1) is strongly expressed in the developing nervous system during mouse embryogenesis and neuroectodermal differentiation of pluripotent P19 embryonal carcinoma cells. mAng1 is strongly expressed in motor neurons (MNs) in the spinal cord and dorsal root ganglia as well as in post-mitotic MNs derived from P19 cells. We also show for the first time that ANG expression is in the growth cones and neurites. NCI 65828, an inhibitor of the ribonucleolytic activity of hANG, affected pathfinding by P19-derived neurons but not neuronal differentiation. Our findings clearly show that ANG plays an important role in neurite pathfinding and this has implications for ALS.
Collapse
Affiliation(s)
- Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|
75
|
Kim HM, Kang DK, Kim HY, Kang SS, Chang SI. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun 2006; 352:509-13. [PMID: 17125737 DOI: 10.1016/j.bbrc.2006.11.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.
Collapse
Affiliation(s)
- Hye-Mi Kim
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
76
|
Tello-Montoliu A, Patel JV, Lip GYH. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006; 4:1864-74. [PMID: 16961595 DOI: 10.1111/j.1538-7836.2006.01995.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Angiogenin is a member of the ribonuclease (RNase) superfamily: enzymes of innate substrate specificity, but divergent functional capacities. Angiogenin is a normal constituent of the circulation and contained in a vasculature that rarely undergoes proliferation, but in some physiological and pathological conditions its levels increase in blood, promoting neovascularization. Hence, angiogenesis is a common pathophysiological attribute of angiogenin. In malignant disease, the most studied pathological state in regard to angionenin, abnormally high levels are seen, which may be of prognostic significance. Angiogenin has also been studied in other non-malignant pathological states. The aim of this review article is to provide an overview of the biochemistry and physiology of angiogenin, specifically in relation to the human pathological states where angiogenin has been implicated and finally, its potential clinical applications.
Collapse
Affiliation(s)
- A Tello-Montoliu
- Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK
| | | | | |
Collapse
|
77
|
Chen Y, Zhang S, Chen YP, Lin JY. Increased expression of angiogenin in gastric carcinoma in correlation with tumor angiogenesis and proliferation. World J Gastroenterol 2006; 12:5135-9. [PMID: 16937522 PMCID: PMC4088009 DOI: 10.3748/wjg.v12.i32.5135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the implication of angiogenin (ANG) in the neovascularizaton and growth of human gastric carcinoma (HGC).
METHODS: ANG mRNA expression in HGC specimens obtained by surgical resection from patients with HGC were examined by RT-PCR. ANG, Ki-67, VEGF protein expression and microvessel density (MVD) in HGC specimens were detected by immunohistochemistry.
RESULTS: RT-PCR showed significantly higher ANG mRNA expression (0.482 ± 0.094) in HGC tissues than in the surrounding nontumorous tissues (0.276 ± 0.019, P = 0.03). MVD within tumorous tissues increased significantly with ANG mRNA expression (r = 0.380, P = 0.001) and ANG protein expression (P < 0.01). The ANG expression levels of cancer tissues were positively correlated with VEGF (P < 0.01) and the proliferation index of cancer cells (P < 0.01).
CONCLUSION: ANG is one of the neovascularization factors of HGC. ANG may work in coordination with VEGF, and promote the proliferation of HGC cells.
Collapse
Affiliation(s)
- Yu Chen
- Department of Physiology and Pathophysiology, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | | | | | | |
Collapse
|
78
|
Song J, Wang J, Yang J, Jiang C, Shen W, Wang L. Influence of angiogenin on the growth of A375 human melanoma cells and the expression of basic fibroblast growth factor. Melanoma Res 2006; 16:119-26. [PMID: 16567967 DOI: 10.1097/01.cmr.0000215029.62199.4c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angiogenin was isolated as a tumor angiogenic factor solely on the basis of its angiogenic activity. Its expression is essential for melanoma progression and metastasis. Many studies have mainly focused on how it induces angiogenesis, which allows further melanoma growth and metastasis. Here, we investigated the effects of angiogenin on melanoma cell growth and studied its influence on the expression and function of the basic fibroblast growth factor. We transfected the angiogenin gene in the sense and antisense orientation into A375 cells, and obtained stable angiogenin under-expressing and over-expressing transfectants. We found that in the angiogenin antisense transfectants, the cell proliferation was decreased and the basic fibroblast growth factor-induced cell proliferation was inhibited, but the expression of basic fibroblast growth factor was increased. In contrast, in the angiogenin sense transfectants, the cell proliferation was increased, and the basic fibroblast growth factor-induced cell proliferation was also increased. The expression of basic fibroblast growth factor, however, was decreased. In conclusion, we demonstrated that, besides its angiogenic activity, angiogenin also directly contributes to A375 cell proliferation and is required for the basic fibroblast growth factor to induce cell proliferation. We also demonstrated that the endogenous angiogenin expression levels affect the expression of basic fibroblast growth factor in A375 cells. By targeting angiogenin, therefore, one may find a potential therapeutic approach to human malignant melanoma.
Collapse
Affiliation(s)
- Jinna Song
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, PR China
| | | | | | | | | | | |
Collapse
|
79
|
Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC. Hypoxia up-regulated angiogenin and down-regulated vascular cell adhesion molecule-1 expression and secretion in human placental trophoblasts. ACTA ACUST UNITED AC 2006; 12:310-9. [PMID: 15979542 DOI: 10.1016/j.jsgi.2005.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many processes that are involved in cellular invasion, including blastocyst implantation, placental development, and rapidly growing tumors, occur in reduced oxygen environments. It has been surmised that oxygen tension could regulate the cytotrophoblast ability to differentiate and, as a consequence, to express proteins that are critical for placentation. The objective of the current investigation was therefore to test the hypothesis that placental tissues and trophoblast cells in culture, under low oxygen tension, release angiogenic factors that could affect vascular behavior and invasive potential, thus providing a link between abnormal placentation and maternal vascular abnormality. METHODS Functionally active term placental explant culture and trophoblast cultures were used to demonstrate the secretion profiles of angiogenin and vascular cell adhesion molecule-1 (VCAM-1), and the real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) technique was employed to demonstrate the mRNA expression under both normoxic and hypoxic conditions. RESULTS A significant increase in the secretion (P <.01) and mRNA expression (P <.01) of angiogenin and a significant decrease in the secretion (P <.04) and mRNA expression (P <.03) of VCAM-1 from both term placental explants and trophoblast cultures subjected to hypoxia in vitro were observed. CONCLUSION Because the primary defect in uteroplacental insufficiency is placental maldevelopment probably associated with hypoxia in situ, this study provides molecular evidence to indicate that the differential expression and secretion of angiogenic factors may play an important role in these pathologic conditions.
Collapse
Affiliation(s)
- G Rajashekhar
- Department of Obstetrics and Gynaecology, National University Hospital, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
80
|
Katona TM, Neubauer BL, Iversen PW, Zhang S, Baldridge LA, Cheng L. Elevated expression of angiogenin in prostate cancer and its precursors. Clin Cancer Res 2006; 11:8358-63. [PMID: 16322296 DOI: 10.1158/1078-0432.ccr-05-0962] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiogenin is a polypeptide involved in the formation and establishment of new blood vessels necessary for growth and metastasis of numerous malignant neoplasms, including prostatic adenocarcinoma. Antiangiogenin therapy inhibits the establishment, growth, and metastasis of prostatic adenocarcinoma in animal studies. In this study, we have investigated the expression of angiogenin in prostatic adenocarcinoma, high-grade prostatic intraepithelial neoplasia, and adjacent benign prostatic epithelium in a large cohort of prostatectomy specimens. METHODS We have studied the expression of angiogenin by immunohistochemistry in prostatic adenocarcinoma, high-grade prostatic intraepithelial neoplasia, and adjacent benign prostatic tissue in 107 human total prostatectomy specimens. RESULTS The percentage of cells staining positively for angiogenin in benign prostatic glandular epithelium (mean = 17%) was significantly less than for high-grade prostatic intraepithelial neoplasia (mean = 58%, P < 0.001) and prostatic adenocarcinoma (mean = 60%, P < 0.001). Compared with adjacent benign prostatic epithelium, the staining intensity was significantly greater in high-grade prostatic intraepithelial neoplasia (P < 0.001) and prostatic adenocarcinoma (P < 0.001). Furthermore, staining intensity has significantly stronger in prostatic adenocarcinoma versus high-grade prostatic intraepithelial neoplasia (P = 0.0023). However, there was no correlation of angiogenin expression with various clinical and pathologic variables examined, including age at surgery, Gleason scores, pathologic stage, tumor extent, angiolymphatic invasion, extraprostatic extension, seminal vesical invasion, lymph node metastasis, surgical margin status, presence of prostatic intraepithelial neoplasia, and perineural invasion. CONCLUSION Angiogenin expression in prostatic tissue increases as prostatic epithelial cells evolve from a benign to an invasive phenotype. The increasing expression of prostatic adenocarcinoma in the progression from benign prostate to high-grade prostatic intraepithelial neoplasia and ultimately to prostatic adenocarcinoma are consistent with previous studies showing the influential role that angiogenin plays in the growth, invasion, and metastasis of prostatic adenocarcinoma and many other malignant tumors.
Collapse
Affiliation(s)
- Terrence M Katona
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine and Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
81
|
Roiz L, Smirnoff P, Bar-Eli M, Schwartz B, Shoseyov O. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics. Cancer 2006; 106:2295-308. [PMID: 16586499 DOI: 10.1002/cncr.21878] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND ACTIBIND is an Aspergillus niger extracellular ribonuclease (T2-ribonuclease [RNase]) that possesses actin-binding activity. In plants, ACTIBIND inhibits the elongation and alters the orientation of pollen tubes by interfering with the intracellular actin network. The question rose whether ACTIBIND can also affect mammalian cancer development. METHODS Cell colony formation was performed in human colon (HT-29, Caco-2, RSB), breast (ZR-75-1), and ovarian (2780) cancer cells in the presence or absence of 1 muM ACTIBIND. In HT-29 and ZR-75-1 cells, the effect of ACTIBIND on cell migration was studied by microscopic observations and by invasion assay through Matrigel. Tube formation was assessed in human umbilical vein endothelial cells (HUVEC) in the presence of angiogenin or basic fibroblast growth factor (bFGF) (1 microg/mL each) following overnight incubation with 1 or 10 microM ACTIBIND. In an athymic mouse xenograft model, HT-29 cells were injected subcutaneously, followed by subcutaneous (0.4-8 mg/mouse/injection) or intraperitoneal (0.001-1 mg/mouse/injection) injections of ACTIBIND. In a rat dimethylhydrazine (DMH)-colorectal carcinogenesis model, ACTIBIND was released directly into the colon via osmotic micropumps (250 microg/rat/day) or given orally via microcapsules (1.6 mg/rat/day). Aberrant crypt foci, tumors in the distal colon, and tumor blood vessels were examined. RESULTS ACTIBIND had an anticlonogenic effect unrelated to its ribonuclease activity. It also inhibited angiogenin-induced HUVEC tube formation in a dose-responsive manner. ACTIBIND was found to bind actin in vitro. It also bound to cancer cell surfaces, leading to disruption of the internal actin network and inhibiting cell motility and invasiveness through Matrigel-coated filters. In mice, ACTIBIND inhibited HT-29 xenograft tumor development, given either as a subcutaneous or intraperitoneal treatment. In rats, ACTIBIND exerted preventive and therapeutic effects on developing colonic tumors induced by DMH. It also reduced the degree of tumor observation. CONCLUSIONS This study indicated that ACTIBIND is an effective antiangiogenic and anticarcinogenic factor.
Collapse
Affiliation(s)
- Levava Roiz
- Institute of Plant Science and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
82
|
Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, Hu GF. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 2005; 65:1352-60. [PMID: 15735021 DOI: 10.1158/0008-5472.can-04-2058] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenin is an angiogenic protein known to play a role in rRNA transcription in endothelial cells. Nuclear translocation of angiogenin in endothelial cells decreases as cell density increases and ceases when cells are confluent. Here we report that angiogenin is constantly translocated to the nucleus of HeLa cells in a cell density-independent manner. Down-regulation of angiogenin expression by antisense and RNA interference results in a decrease in rRNA transcription, ribosome biogenesis, proliferation, and tumorigenesis both in vitro and in vivo. Exogenous angiogenin rescues the cells from antisense and RNA interference inhibition. The results showed that angiogenin is constitutively translocated into the nucleus of HeLa cells where it stimulates rRNA transcription. Thus, besides its angiogenic activity, angiogenin also plays a role in cancer cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/physiology
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Antisense/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- HeLa Cells
- Humans
- Mice
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA Interference
- RNA, Ribosomal/genetics
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/physiology
- Ribosomes/genetics
- Ribosomes/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Takanori Tsuji
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 2005; 24:445-56. [PMID: 15558023 DOI: 10.1038/sj.onc.1208223] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Angiogenin is an angiogenic protein that undergoes nuclear translocation in endothelial cells where it accumulates in the nucleolus and stimulates rRNA transcription, a rate-limiting step in ribosome biogenesis, protein translation, and cell growth. Here, we report that angiogenin is required for cell proliferation induced by various other angiogenic proteins including acidic and basic fibroblast growth factors (aFGF and bFGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF). Downregulation of angiogenin in endothelial cells by small interfering RNA (siRNA) and antisense results in a decrease in rRNA transcription, ribosome biogenesis, and cell proliferation induced by these angiogenic factors. Inhibitors of the nuclear translocation of angiogenin abolish the angiogenic activities of these factors. Stable angiogenin antisense transfection in HeLa cells reduces tumor angiogenesis in athymic mice despite the elevated expression level of bFGF and VEGF. Thus, nuclear angiogenin assumes an essential role in endothelial cell proliferation and is necessary for angiogenesis induced by other angiogenic factors. Angiogenin-stimulated rRNA transcription in endothelial cells may thus serve as a crossroad in the process of angiogenesis induced by various angiogenic factors.
Collapse
MESH Headings
- Angiogenesis Inducing Agents
- Base Sequence
- Cell Division/physiology
- Cells, Cultured
- DNA Primers
- Endothelium, Vascular/cytology
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Oligonucleotides, Antisense
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/physiology
- Transcription, Genetic
- Umbilical Veins
Collapse
Affiliation(s)
- Koji Kishimoto
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 930, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
84
|
Pavlov N, Hatzi E, Bassaglia Y, Frendo JL, Evain-Brion D, Badet J. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells. Angiogenesis 2004; 6:317-30. [PMID: 15166501 PMCID: PMC1997312 DOI: 10.1023/b:agen.0000029412.95244.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences.
Collapse
Affiliation(s)
- Nadine Pavlov
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | | | - Yann Bassaglia
- Laboratoire de recherche sur la croissance cellulaire, la réparation et la régénération tissulaires
CNRS : FRE2412Université Paris XII Val de MarneFaculté des sciences
61 Av du général de Gaulle
94000 CRETEIL,FR
| | - Jean-Louis Frendo
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Danièle Evain-Brion
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Josette Badet
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Josette Badet
| |
Collapse
|
85
|
Philp D, Huff T, Gho YS, Hannappel E, Kleinman HK. The actin binding site on thymosin beta4 promotes angiogenesis. FASEB J 2003; 17:2103-5. [PMID: 14500546 DOI: 10.1096/fj.03-0121fje] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thymosin beta4 is a ubiquitous 43 amino acid, 5 kDa polypeptide that is an important mediator of cell proliferation, migration, and differentiation. It is the most abundant member of the beta-thymosin family in mammalian tissue and is regarded as the main G-actin sequestering peptide. Thymosin beta4 is angiogenic and can promote endothelial cell migration and adhesion, tubule formation, aortic ring sprouting, and angiogenesis. It also accelerates wound healing and reduces inflammation when applied in dermal wound-healing assays. Using naturally occurring thymosin beta4, proteolytic fragments, and synthetic peptides, we find that a seven amino acid actin binding motif of thymosin beta4 is essential for its angiogenic activity. Migration assays with human umbilical vein endothelial cells and vessel sprouting assays using chick aortic arches show that thymosin beta4 and the actin-binding motif of the peptide display near-identical activity at ~50 nM, whereas peptides lacking any portion of the actin motif were inactive. Furthermore, adhesion to thymosin beta4 was blocked by this seven amino acid peptide demonstrating it as the major thymosin beta4 cell binding site on the molecule. The adhesion and sprouting activity of thymosin beta4 was inhibited with the addition of 5-50 nM soluble actin. These results demonstrate that the actin binding motif of thymosin beta4 is an essential site for its angiogenic activity.
Collapse
Affiliation(s)
- Deborah Philp
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Recently, the binding of renin and prorenin to cellular receptors with the subsequent generation of second messengers and the production of physiological effects has been demonstrated. In addition, the internalization of prorenin by target cells has been associated with increased cellular synthesis of angiotensin and cardiac pathology. Also, a renin transcript lacking the sequences encoding a secretory signal has been reported, and this transcript appears to produce a renin that acts in the cell that synthesized it. Some years ago, we coined the term intracrine for a peptide hormone or factor that acts in the intracellular space either after internalization or retention in its cell of synthesis. Thus defined, a wide variety of peptides display intracrine functionality, including hormones, growth factors, transcription factors, and enzymes. For example, considerable evidence indicates that angiotensin II is an intracrine. Also, general principles of intracrine functionality have been developed. Thus, recent evidence demonstrates that the prorenin/renin molecule is an intracrine enzyme. Here, the actions of intracrine enzymes (angiogenin, phosphoglucose isomerase, phospholipase A2, granzyme A and B, thioredoxin, platelet-derived endothelial growth factor, and serine protease inhibitors) are reviewed. The relation of prorenin/renin to other intracrine enzymes, and to intracrines in general, is discussed.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
87
|
Shimoyama S, Kaminishi M. Angiogenin in sera as an independent prognostic factor in gastric cancer. J Cancer Res Clin Oncol 2003; 129:239-44. [PMID: 12684892 DOI: 10.1007/s00432-003-0422-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Accepted: 01/16/2003] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study is to elucidate an increased expression of angiogenin (ANG) as a prognostic factor of gastric cancer (GC), against the background of our previous observations of the increased expression of ANG in the more progressed GC. METHODS We investigated serum ANG concentrations in 123 GC patients and 63 healthy volunteers as well as the distributions of ANG gene message in 52 GC tissues by in situ hybridization. The prognostic significance of ANG was investigated by the Cox proportional hazards model including variable selection and by survival analysis. RESULTS The mean serum ANG concentrations in GC patients (378.3+/-95.5 ng/ml) were significantly higher (P=0.0001) than those in the healthy volunteers (334.1+/-58.2 ng/ml). Either strong, moderate, weak, or no ANG gene message expression was seen in 25, 22, 4, and 1 patients, respectively, in GC cells as well as in interstitial cells in the vicinity of cancer cells, a finding in accord with our previous results of ANG protein localization. The variable selection method selected increased (> or =400 ng/ml) serum ANG concentration (P=0.02), undifferentiated histological type (P=0.01), cancer depth (P=0.001), and third-tier lymph node involvement (P=0.0005) as an independent prognostic factor by the Cox proportional hazards model. A significant correlation was seen between higher serum ANG concentrations (> or =400 ng/ml) and worse disease-free (P=0.003) or disease-specific (P=0.03) survivals. CONCLUSIONS. These results suggest that serum levels of ANG are an independent prognostic factor that could be a predictor of postoperative outcomes of GC patients.
Collapse
Affiliation(s)
- Shouji Shimoyama
- Department of Gastrointestinal Surgery, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, 113-8655, Tokyo, Japan.
| | | |
Collapse
|
88
|
Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3:219-31. [PMID: 12676581 DOI: 10.1016/s1535-6108(03)00030-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate that the critical step in establishing the angiogenic capability of human cells is the repression of the critical anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. We have uncovered the signaling pathway leading from Ras to Tsp-1 repression. Ras induces the sequential activation of PI3 kinase, Rho, and ROCK, leading to activation of Myc through phosphorylation; phosphorylation of Myc via this mechanism enables it to repress Tsp-1 expression. We thus describe a novel mechanism by which the cooperative activity of the oncogenes, ras and myc, leads directly to angiogenesis and tumor formation.
Collapse
|
89
|
Glenjen N, Mosevoll KA, Bruserud Ø. Serum levels of angiogenin, basic fibroblast growth factor and endostatin in patients receiving intensive chemotherapy for acute myelogenous leukemia. Int J Cancer 2002; 101:86-94. [PMID: 12209593 DOI: 10.1002/ijc.10566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiogenesis seems to be important both in the pathogenesis of acute myelogenous leukemia (AML) and for the susceptibility of AML blasts to chemotherapy. Recent clinical studies even suggest that antiangiogenic therapy can induce disease control in patients with AML relapse. In this context we have investigated the profile of the systemic component of angiogenic regulation in AML by characterizing the serum levels of (i) the angiogenic regulators angiogenin, basic fibroblast growth factor (bFGF) and endostatin; (ii) the endothelial cell marker soluble (s) E-selectin. Patients with untreated AML had increased levels of angiogenin, endostatin and sE-selectin, whereas the levels of bFGF were not significantly altered. The systemic levels of the proangiogenic bFGF, the antiangiogenic endostatin and the endothelial cell marker sE-selectin showed significant correlations, whereas angiogenin and sE-selectin levels were not correlated. Furthermore, intensive chemotherapy resulted in decreased systemic levels of the 2 proangiogenic mediators angiogenin and bFGF, whereas endostatin levels remained high after treatment. Although angiogenin normally is a part of the acute phase reaction, its systemic levels were not altered when patients with chemotherapy-induced cytopenia developed complicating bacterial infections. Our results suggest that intensive chemotherapy can modulate the systemic component of angiogenic regulation in AML patients.
Collapse
Affiliation(s)
- Nils Glenjen
- Section for Hematology, Department of Medicine, Haukeland University Hospital and the University of Bergen, Norway.
| | | | | |
Collapse
|
90
|
Gho YS, Yoon WH, Chae CB. Antiplasmin activity of a peptide that binds to the receptor-binding site of angiogenin. J Biol Chem 2002; 277:9690-4. [PMID: 11782452 DOI: 10.1074/jbc.m105526200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been suggested that angiogenin binds to an actin-like molecule present on the surface of endothelial cells. Actin inhibits plasmin activity, but the angiogenin-actin complex is not active. In this report, we found that plasmin inhibits the interaction between angiogenin and actin suggesting a possibility that both angiogenin and plasmin may bind to a similar site on actin. Here we report that chANG, an antiangiogenin peptide that binds to the actin-binding site of angiogenin, inhibits the proteolytic activity of plasmin without any apparent effect on the activities of plasminogen activators and matrix metalloproteases. Its antiplasmin activity is comparable with that of actin. chANG inhibits plasmin activity via its binding to plasmin kringle domains while scrambled chANG does not bind to plasmin. chANG also inhibits the invasion of angiogenin-secreting human fibrosarcoma and colorectal carcinoma cells without effecting migration. Furthermore, chANG blocks angiogenesis induced by fibrosarcoma cells and metastasis of colorectal carcinoma cells to the liver. Therefore, the 11-amino acid peptide chANG has both antiangiogenin and antiplasmin activity, and could be useful in the development of anticancer agents.
Collapse
Affiliation(s)
- Yong Song Gho
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
91
|
Liu S, Yu D, Xu ZP, Riordan JF, Hu GF. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2001; 287:305-10. [PMID: 11549292 DOI: 10.1006/bbrc.2001.5568] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenin is a potent angiogenic factor that binds to endothelial cells and is endocytosed and rapidly translocated to the nucleus where it is concentrated in the nucleolus and binds to DNA. Angiogenin also activates cell-associated proteases, induces cell invasion and migration, stimulates cell proliferation, and organizes cultured cells to form tubular structures. The intracellular signaling pathways that mediate these various cellular responses are not well understood. Here we report that angiogenin induces transient phosphorylation of extracellular signal-related kinase1/2 (Erk1/2) in cultured human umbilical vein endothelial cells. Angiogenin does not affect the phosphorylation status of stress-associated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinases. PD98059--a specific inhibitor of MAP or Erk kinase 1 (MEK 1), the upstream kinase that phosphorylates Erk1/2--abolishes angiogenin-induced Erk phosphorylation and cell proliferation without affecting nuclear translocation of angiogenin. In contrast, neomycin, a known inhibitor of nuclear translocation and cell proliferation, does not interfere with angiogenin-induced Erk1/2 phosphorylation. These data indicate that both intracellular signaling pathways and direct nuclear functions of angiogenin are required for angiogenin-induced cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- S Liu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Seeley G. Mudd Building, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
92
|
Holloway DE, Hares MC, Shapiro R, Subramanian V, Acharya KR. High-level expression of three members of the murine angiogenin family in Escherichia coli and purification of the recombinant proteins. Protein Expr Purif 2001; 22:307-17. [PMID: 11437607 DOI: 10.1006/prep.2001.1434] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenin (Ang) is a small basic protein which belongs to the pancreatic ribonuclease superfamily. It potently induces the formation of new blood vessels and has emerged as a promising anticancer target. Mice possess genes encoding one ortholog (mAng) and three homologs of Ang, designated angiogenin-related protein (mAngrp), angiogenin-3 (mAng-3), and angiogenin-4 (mAng-4). Structural and functional study of these homologs has been hampered by the low yield of protein from the existing heterologous expression system. In the experiments described, we used a pET expression vector to express these proteins in the cytoplasm of Escherichia coli BL21-CodonPlus(DE3)-RIL cells, whereupon substantial amounts of each accumulated in the form of insoluble aggregates. The proteins were renatured using an arginine-assisted procedure and subsequently purified by cation-exchange chromatography and reversed-phase HPLC; each purified protein was shown to be enzymatically active toward tRNA. The yields of pure mAngrp and mAng-3 were 7.6 and 12 mg/liter culture, respectively, representing substantial increases over previously reported experiments. This is also the first report of the expression and purification of mAng-4, obtained here in a yield of 30 mg/liter culture. The ready availability of milligram quantities of these proteins will enable further functional studies and high-resolution structural analyses to be conducted.
Collapse
Affiliation(s)
- D E Holloway
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
93
|
Ferrier CM, Suciu S, van Geloof WL, Straatman H, Eggermont AM, Koops HS, Kroon BB, Lejeune FJ, Kleeberg UR, van Muijen GN, Ruiter DJ. High tPA-expression in primary melanoma of the limb correlates with good prognosis. Br J Cancer 2000; 83:1351-9. [PMID: 11044361 PMCID: PMC2408793 DOI: 10.1054/bjoc.2000.1460] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate whether the course of primary melanoma disease correlates with expression of the various components of the proteolytic plasminogen activation (PA) system, immunohistochemical stainings for activators of plasminogen (tissue type (tPA) and urokinase type (uPA)), inhibitors of plasminogen activation (type 1 (PAI-1) and type 2 (PAI-2)) and the receptor for uPA (uPAR) were performed on 214 routinely processed melanoma lesions. All lesions were primary cutaneous melanomas, minimally 1.5 mm thick, and derived from patients with only local disease at the moment of diagnosis (clinically stage II (T(3-4)N(0)M(0)), American Joint Committee on Cancer). Median patient follow-up was 6.1 years. Single variables as immunohistochemical staining results (extent of tumour cell staining, pattern of tumour cell staining and for some components also staining of stromal cells), histopathological and clinical parameters as well as treatment variables were analysed in order to assess their prognostic importance, in terms of time to recurrence, time to distant metastasis and duration of survival. The extent of tPA tumour cell positivity, categorized as 0-5%, 6-50% and 51-100%, appeared to be of importance for these end-points. Lesions with 51-100% tPA-positive tumour cells were found to have the best prognosis, whereas lesions with 6-50% tPA-positive tumour cells had the worst. Moreover, the prognostic significance of Breslow thickness, microscopic ulceration and sex was confirmed in this study. Multivariate analyses, incorporating these relevant factors, showed that the extent of tPA tumour cell positivity was an independent prognostic factor for distant metastasis-free interval (P = 0.012) and for the duration of survival (P = 0.043).
Collapse
Affiliation(s)
- C M Ferrier
- Department of Pathology, Department of Epidemiology, University Medical Center St. Radboud, PO Box 9101, Nijmegen, HB, 6500, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Dass CR, Su T. Delivery of lipoplexes for genotherapy of solid tumours: role of vascular endothelial cells. J Pharm Pharmacol 2000; 52:1301-17. [PMID: 11186238 DOI: 10.1211/0022357001777450] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cells constituting a solid tumour may vary considerably due to biological disparities, but for a solid tumour to pose as a threat to its host, an adequate blood supply has to be established. Although neovascularisation may have dire consequences for the host, it provides a common route by which tumours in general may be reached and eradicated by drugs. The fact that a tumour's vasculature is relatively more permeable than healthy host tissue means that selective delivery of drugs may be achieved. A closer examination of the role played by the cells making up the tumour vascular bed, vascular endothelial cells (VECs), is required to facilitate design of ways for enhancing drug delivery to solid tumours via the vascular route. VECs have two major roles in the body, barrier and transport, both of which are highly pertinent to drug delivery. This review discusses the factors regulating VEC function, and how these cells may be manipulated in-vivo to improve the selective delivery of lipoplexes, carriers for gene therapy constructs, to solid tumours. It also discusses how genotherapeutic drugs may be targeted against tumour VECs on the premise that by killing these cells, the tumour itself will perish.
Collapse
Affiliation(s)
- C R Dass
- Johnson & Johnson Research, Strawberry Hills, Australia.
| | | |
Collapse
|
95
|
Hagedorn M, Bikfalvi A. Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 2000; 34:89-110. [PMID: 10799835 DOI: 10.1016/s1040-8428(00)00056-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is growing evidence that anti-angiogenic drugs will improve future therapies of diseases like cancer, rheumatoid arthritis and ocular neovascularisation. However, it is still uncertain which kind of substance, out of the large number of angiogenesis inhibitors, will prove to be a suitable agent to treat these human diseases. There are currently more than 30 angiogenesis inhibitors in clinical trials and a multitude of promising new candidates are under investigation in vitro and in animal models. Important therapeutic strategies are: suppression of activity of the major angiogenic regulators like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF); inhibition of function of alphav-integrins and matrix metalloproteinases (MMPs); the exploitation of endogenous anti-angiogenic molecules like angiostatin, endostatin or thrombospondin. Given the wide spectrum of diseases which could be treated by anti-angiogenic compounds, it is important for today's clinicians to understand their essential mode of action at a cellular and molecular level. Here we give an in-depth overview of the basic pathophysiological mechanisms underlying the different anti-angiogenic approaches used to date based on the most recent fundamental and clinical research data. The angiogenesis inhibitors in clinical trials are presented and promising future drug candidates are discussed.
Collapse
Affiliation(s)
- M Hagedorn
- Laboratoire des Facteurs de Croissance et de la Différenciation cellulaire (Growth Factor and Cell Differenciation Laboratory), Bâtiment de Recherche Biologie Animale, Avenue des Facultés, Université de Bordeaux I, Talence, France
| | | |
Collapse
|
96
|
Shin SH, Kim JC, Chang SI, Lee H, Chung SI. Recombinant kringle 1-3 of plasminogen inhibits rabbit corneal angiogenesis induced by angiogenin. Cornea 2000; 19:212-7. [PMID: 10746455 DOI: 10.1097/00003226-200003000-00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Angiostatin is a potent angiogenesis inhibitor that has been identified as a cryptic fragment of plasminogen molecule containing the first four kringle domain. Angiogenin, a 14-kDa monomeric protein, a potent blood vessel inducer, is expressed in tumors and present in mammalian plasma. The purpose of this study was to determine whether recombinant kringle 1-3 (rKI-3) of human plasminogen could interfere with angiogenesis induced by angiogenin and to evaluate the role of angiogenin in corneal angiogenesis in rabbit. METHODS A Hydron polymer pellet containing 2.0 microg of angiogenin was implanted intrastromally into the superior cornea of each of 44 rabbit eyes. All eyes received an intrastromal pellet and were randomized into either one group treated with 12.5 microg of rKI-3 (n = 25) or the other group treated with phosphate-buffered saline (PBS; n = 19). Both pellets were positioned in parallel at the site 1.2 mm from the superior limbus. Two masked observers kept the angiogenesis score daily, based on the number and the length of new vessels. The corneas with induced angiogenesis also were examined histologically. RESULTS On the third day of the angiogenin pellets implantation, the eye treated with rKI-3 had less angiogenesis (mean score, 4.2 +/- 6.6) than eye treated with PBS (mean score, 16.1 +/- 17.1; p < 0.05, Mann-Whitney U test). The cornea treated with PBS also showed much more leukocyte adhesion than the cornea treated with rKI-3. CONCLUSION Recombinant kringle 1-3 appears to inhibit angiogenin-induced angiogenesis in a rabbit corneal pocket assay. Recombinant kringle 1-3 may have therapeutic potential as an antiangiogenic agent.
Collapse
Affiliation(s)
- S H Shin
- Department of Ophthalmology, Yongsan Hospital, Chung Ang University Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
97
|
Hu GF, Xu CJ, Riordan JF. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J Cell Biochem 2000; 76:452-62. [PMID: 10649442 DOI: 10.1002/(sici)1097-4644(20000301)76:3<452::aid-jcb12>3.0.co;2-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human angiogenin is translocated to the nucleus of human umbilical vein endothelial cells in a time-dependent manner. Exogenous angiogenin appears in the nucleus in 2 min, reaches saturation in 15 min when 85% of the internalized angiogenin is in the nuclei, and remains associated with the nucleus for at least 4 h. Endothelial cells cultured at low density have a much higher capacity to translocate angiogenin to the nucleus than do those cultured at high density. This observation is consistent with previous findings that both the ability of endothelial cells to proliferate in response to angiogenin and the expression of an angiogenin receptor on the cell surface depend on cell density. Nuclear (125)I-angiogenin is not degraded and is neither spontaneously dissociated nor replaced by unlabeled angiogenin. It is, however, released by deoxyribonuclease I, but not by ribonuclease A, suggesting that angiogenin binds to DNA in the nucleus. These results suggest that in addition to acting as a ribonuclease, angiogenin may play a role in regulating gene expression by direct binding to DNA.
Collapse
Affiliation(s)
- G f Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
98
|
Walter JJ, Sane DC. Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration In vitro. Arterioscler Thromb Vasc Biol 1999; 19:2041-8. [PMID: 10479644 DOI: 10.1161/01.atv.19.9.2041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiostatin is an inhibitor of angiogenesis that is known to reduce endothelial cell proliferation and consequently prevent the progression of tumor metastases. However, the modest effect of angiostatin on endothelial cell proliferation raises the possibility that angiostatin might exert its effects on other cells. To determine the cellular distribution of angiostatin binding in tissues with neovasculature (atherosclerotic coronary arteries), we developed a fusion protein consisting of placental alkaline phosphatase and the first 3 kringles of plasminogen. Angiostatin binding colocalized with smooth muscle cells and could be inhibited by a 50-fold molar excess of plasminogen and 10 mmol/L epsilon-amino-n-caproic acid. The fusion protein also bound to smooth muscle cells in culture. Angiostatin inhibited hepatocyte growth factor-induced proliferation and migration of smooth muscle cells, suggesting that they are a target for the antiangiogenic effect of angiostatin.
Collapse
Affiliation(s)
- J J Walter
- Section of Cardiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1045, USA
| | | |
Collapse
|
99
|
Leonidas DD, Shapiro R, Allen SC, Subbarao GV, Veluraja K, Acharya KR. Refined crystal structures of native human angiogenin and two active site variants: implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth. J Mol Biol 1999; 285:1209-33. [PMID: 9918722 DOI: 10.1006/jmbi.1998.2378] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human angiogenin (Ang), an unusual member of the pancreatic RNase superfamily, is a potent inducer of angiogenesis in vivo. Its ribonucleolytic activity is weak (10(4) to 10(6)-fold lower than that of bovine RNase A), but nonetheless seems to be essential for biological function. Ang has been implicated in the establishment of a wide range of human tumours and has therefore emerged as an important target for the design of new anti-cancer compounds. We report high-resolution crystal structures for native Ang in two different forms (Pyr1 at 1.8 A and Met-1 at 2.0 A resolution) and for two active-site variants, K40Q and H13A, at 2.0 A resolution. The native structures, together with earlier mutational and biochemical data, provide a basis for understanding the unique functional properties of this molecule. The major structural features that underlie the weakness of angiogenin's RNase activity include: (i) the obstruction of the pyrimidine-binding site by Gln117; (ii) the existence of a hydrogen bond between Thr44 and Thr80 that further suppresses the effectiveness of the pyrimidine site; (iii) the absence of a counterpart for the His119-Asp121 hydrogen bond that potentiates catalysis in RNase A (the corresponding aspartate in Ang, Asp116, has been recruited to stabilise the blockage of the pyrimidine site); and (iv) the absence of any precise structural counterparts for two important purine-binding residues of RNase A. Analysis of the native structures has revealed details of the cell-binding region and nuclear localisation signal of Ang that are critical for angiogenicity. The cell-binding site differs dramatically from the corresponding regions of RNase A and two other homologues, eosinophil-derived neurotoxin and onconase, all of which lack angiogenic activity. Determination of the structures of the catalytically inactive variants K40Q and H13A has now allowed a rigorous assessment of the relationship between the ribonucleolytic and biological activities of Ang. No significant change outside the enzymatic active site was observed in K40Q, establishing that the loss of angiogenic activity for this derivative is directly attributable to disruption of the catalytic apparatus. The H13A structure shows some changes beyond the ribonucleolytic site, but sites involved in cell-binding and nuclear translocation are essentially unaffected by the amino acid replacement.
Collapse
Affiliation(s)
- D D Leonidas
- Department of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
100
|
Fu X, Roberts WG, Nobile V, Shapiro R, Kamps MP. mAngiogenin-3, a target gene of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family. Growth Factors 1999; 17:125-37. [PMID: 10595312 DOI: 10.3109/08977199909103521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angiogenins are proteins in the pancreatic ribonuclease superfamily that utilize their ribonuclease activity to induce formation of new blood vessels. Recently we identified a new member of the angiogenin gene family, mouse angiogenin-3, by virtue of its transcriptional activation in NIH3T3 fibroblasts coincident with transformation by the chimeric leukemia oncogene, E2a-Pbx1. Here we have isolated the cDNA encoding mouse angiogenin-3 and used it to produce the protein in E. coli. We demonstrate that mouse angiogenin-3 is a ribonuclease whose activity and specificity towards tRNA and dinucleotide substrates differ from those of mouse angiogenin or of mouse angiogenin-related protein, a non-angiogenic factor. Mouse angiogenin-3 induced angiogenesis in both the chicken embryo chorioallantoic membrane assay and the rat cremaster muscle. Electron microscopy revealed that endothelial cells within vessels induced by both mouse angiogenin-3 and mouse angiogenin contain fenestrations similar to those observed in endothelial cells from neovasculature induced by vascular endothelial growth factor and basic fibroblast growth factor. Mouse angiogenin-3 also induced other molecular events typical of rapidly proliferating endothelial cells, such as increases in rough endoplasmic reticulum, polysomes, and mitochondria.
Collapse
Affiliation(s)
- X Fu
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612, USA
| | | | | | | | | |
Collapse
|