51
|
Abstract
Lysosomes support diverse cellular functions by acting as sites of macromolecule degradation and nutrient recycling. The degradative abilities of lysosomes are conferred by a lumen that is characterized by an acidic pH and which contains numerous hydrolases that support the breakdown of major cellular macromolecules to yield cellular building blocks (amino acids, nucleic acids, sugars, lipids and metals) that are transported into the cytoplasm for their re-use. In addition to these important hydrolytic and recycling functions, lysosomes also serve as a signaling platform that integrates nutrient and metabolic cues to control signaling via the mTORC1 pathway. Due to their extreme longevity, polarity, demands of neurotransmission and metabolic activity, neurons are particularly sensitive to perturbations in lysosome function. The dependence of neurons on optimal lysosome function is highlighted by insights from human genetics that link lysosome dysfunction to a wide range of both rare and common neurological diseases. How then is lysosome function adapted to the unique demands of neurons? This review will focus on the roles played by lysosomes in distinct neuronal sub-compartments, the regulation of neuronal lysosome sub-cellular localization and the implications of such neuronal lysosome regulation for both physiology and disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
52
|
Abstract
Lysosomes perform degradative functions that are important for all cells. However, neurons are particularly dependent on optimal lysosome function due to their extremes of longevity, size and polarity. Axons in particular exemplify the major spatial challenges faced by neurons in the maintenance of lysosome biogenesis and function. What impact does this have on the regulation and functions of lysosomes in axons? This review focuses on the mechanisms whereby axonal lysosome biogenesis, transport and function are adapted to meet neuronal demand. Important features include the dynamic relationship between endosomes, autophagosomes and lysosomes as well as the transport mechanisms that support the movement of lysosome precursors in axons. A picture is emerging wherein intermediates in the lysosome maturation processes that would only exist transiently within the crowded confines of a neuronal cell body are spatially and temporally separated over the extreme distances encountered in axons. Axons may thus offer significant opportunities for the analysis of the mechanisms that control lysosome biogenesis. Insights from the genetics and pathology of human neurodegenerative diseases furthermore emphasize the importance of efficient axonal transport of lysosomes and their precursors.
Collapse
|
53
|
Licon-Munoz Y, Michel V, Fordyce CA, Parra KJ. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open 2017; 6:1734-1744. [PMID: 29038303 PMCID: PMC5703614 DOI: 10.1242/bio.028837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) proton pump sustains cellular pH homeostasis, and its inhibition triggers numerous stress responses. However, the cellular mechanisms involved remain largely elusive in cancer cells. We studied V-ATPase in the prostate cancer (PCa) cell line PC-3, which has characteristics of highly metastatic PCa. V-ATPase inhibitors impaired endo-lysosomal pH, vesicle trafficking, migration, and invasion. V-ATPase accrual in the Golgi and recycling endosomes suggests that traffic of internalized membrane vesicles back to the plasma membrane was particularly impaired. Directed movement provoked co-localization of V-ATPase containing vesicles with F-actin near the leading edge of migrating cells. V-ATPase inhibition prompted prominent F-actin cytoskeleton reorganization. Filopodial projections were reduced, which related to reduced migration velocity. F-actin formed novel cytoplasmic rings. F-actin rings increased with extended exposure to sublethal concentrations of V-ATPase inhibitors, from 24 to 48 h, as the amount of alkalinized endo-lysosomal vesicles increased. Studies with chloroquine indicated that F-actin rings formation was pH-dependent. We hypothesize that these novel F-actin rings assemble to overcome widespread traffic defects caused by V-ATPase inhibition, similar to F-actin rings on the surface of exocytic organelles. Summary: V-ATPase activates multiple stress responses. In prostate cancer, sub-lethal concentrations of V-ATPase inhibitors trigger widespread traffic defects. F-actin assembles into rings that mimic those seen during regulated exocytosis.
Collapse
Affiliation(s)
- Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Vera Michel
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Colleen A Fordyce
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
54
|
|
55
|
Gowrishankar S, Wu Y, Ferguson SM. Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology. J Cell Biol 2017; 216:3291-3305. [PMID: 28784610 PMCID: PMC5626538 DOI: 10.1083/jcb.201612148] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
Axonal lysosomes accumulate abnormally in Alzheimer’s disease brains. However, whether and how such lysosomes contribute to disease pathology has been unclear. Gowrishankar et al. show that the JIP3-dependent transport of axonal lysosomes negatively regulates amyloid precursor protein processing into amyloidogenic peptides. Lysosomes robustly accumulate within axonal swellings at Alzheimer’s disease (AD) amyloid plaques. However, the underlying mechanisms and disease relevance of such lysosome accumulations are not well understood. Motivated by these problems, we identified JNK-interacting protein 3 (JIP3) as an important regulator of axonal lysosome transport and maturation. JIP3 knockout mouse neuron primary cultures accumulate lysosomes within focal axonal swellings that resemble the dystrophic axons at amyloid plaques. These swellings contain high levels of amyloid precursor protein processing enzymes (BACE1 and presenilin 2) and are accompanied by elevated Aβ peptide levels. The in vivo importance of the JIP3-dependent regulation of axonal lysosomes was revealed by the worsening of the amyloid plaque pathology arising from JIP3 haploinsufficiency in a mouse model of AD. These results establish the critical role of JIP3-dependent axonal lysosome transport in regulating amyloidogenic amyloid precursor protein processing and support a model wherein Aβ production is amplified by plaque-induced axonal lysosome transport defects.
Collapse
Affiliation(s)
- Swetha Gowrishankar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT .,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
56
|
Jähn K, Kelkar S, Zhao H, Xie Y, Tiede-Lewis LM, Dusevich V, Dallas SL, Bonewald LF. Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. J Bone Miner Res 2017; 32:1761-1772. [PMID: 28470757 PMCID: PMC5550338 DOI: 10.1002/jbmr.3167] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 11/10/2022]
Abstract
Osteocytes appear to mobilize calcium within minutes in response to PTH injections; we have previously shown that osteocytes remove their perilacunar matrix during lactation through activation of the PTH type 1 receptor. Mechanisms utilized by osteocytes to mobilize calcium are unknown but we hypothesized that the molecular components may be similar to those used by osteoclasts. Here we show, using IDG-SW3 cells that ATP6V0D2, an essential component of vacuolar ATPase in osteoclasts, and other genes associated with osteoclastic bone resorption, increase with osteoblast to osteocyte differentiation. Furthermore, PTHrP increases ATP6V0D2 expression and induces proton generation by primary osteocytes, which is blocked by bafilomycin, a vacuolar ATPase inhibitor. These in vitro proton measurements raised the question of osteocyte viability in an acidic environment. Interestingly, osteocytes, showed enhanced viability at pH as low as 5 compared to osteoblasts and fibroblasts in vitro. To study in vivo acidification by osteocytes, virgin and lactating CD1 mice on a low calcium diet were injected with the pH indicator dye, acridine orange, and their osteocyte lacuno-canalicular system imaged by confocal microscopy. Lower pH was observed in lactating compared to virgin animals. In addition, a novel transgenic mouse line with a topaz variant of green fluorescent protein (GFPtpz)-tagged collagen α2(I) chain was used. Instead of the expected reduction in GFP-fluorescence only in the perilacunar matrix, reduced fluorescence was observed in the entire bone matrix of lactating mice. Based on our experiments showing quenching of GFP in vitro, we propose that the observed reduction in GFP fluorescence in lactating mice is due to quenching of GFP by the acidic pH generated by osteocytes. Together these findings provide novel mechanistic insight into how osteocytes remove calcium from their perilacunar/pericanalicular matrices through active acidification of their microenvironment and show that osteocytes, like osteoclasts, are resistant to the negative effects of acid on viability. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katharina Jähn
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Shilpa Kelkar
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Hong Zhao
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
57
|
Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties. Sci Rep 2017. [PMID: 28638081 PMCID: PMC5479847 DOI: 10.1038/s41598-017-04125-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synthetic systems are widely used to unveil the molecular mechanisms of complex cellular events. Artificial membranes are key examples of models employed to address lipid-lipid and lipid-protein interactions. In this work, we developed a new synthetic system that more closely resembles the lysosome – the lysosome-mimicking vesicles (LMVs) – displaying stable acid-to-neutral pH gradient across the membrane. To evaluate the advantages of this synthetic system, we assessed the distinct effects of sphingosine (Sph) accumulation in membrane structure and biophysical properties of standard liposomes (no pH gradient) and in LMVs with lipid composition tuned to mimic physiological- or NPC1-like lysosomes. Ternary 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/Sphingomyelin (SM)/Cholesterol (Chol) mixtures with, respectively, low and high Chol/SM levels were prepared. The effect of Sph on membrane permeability and biophysical properties was evaluated by fluorescence spectroscopy, electrophoretic and dynamic light scattering. The results showed that overall Sph has the ability to cause a shift in vesicle surface charge, increase membrane order and promote a rapid increase in membrane permeability. These effects are enhanced in NPC1- LMVs. The results suggest that lysosomal accumulation of these lipids, as observed under pathological conditions, might significantly affect lysosomal membrane structure and integrity, and therefore contribute to the impairment of cell function.
Collapse
|
58
|
de Vries WC, Grill D, Tesch M, Ricker A, Nüsse H, Klingauf J, Studer A, Gerke V, Ravoo BJ. Reversible Stabilisierung von Vesikeln: redox-responsive Polymer-Nanocontainer für den Transport in das Zellinnere. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wilke C. de Vries
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - David Grill
- Institut für Medizinische Biochemie, Zentrum für Molekularbiologie der Entzündung; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Straße 56 48149 Münster Deutschland
| | - Matthias Tesch
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - Andrea Ricker
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Harald Nüsse
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Jürgen Klingauf
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - Volker Gerke
- Institut für Medizinische Biochemie, Zentrum für Molekularbiologie der Entzündung; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Straße 56 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| |
Collapse
|
59
|
de Vries WC, Grill D, Tesch M, Ricker A, Nüsse H, Klingauf J, Studer A, Gerke V, Ravoo BJ. Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery. Angew Chem Int Ed Engl 2017; 56:9603-9607. [DOI: 10.1002/anie.201702620] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Wilke C. de Vries
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - David Grill
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Strasse 56 48149 Münster Germany
| | - Matthias Tesch
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Strasse 56 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| |
Collapse
|
60
|
Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E4884-E4893. [PMID: 28559333 DOI: 10.1073/pnas.1613499114] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.
Collapse
|
61
|
BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 2017; 114:E2955-E2964. [PMID: 28320970 DOI: 10.1073/pnas.1616363114] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.
Collapse
|
62
|
Ruhe F, Olling A, Abromeit R, Rataj D, Grieschat M, Zeug A, Gerhard R, Alekov A. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB. Front Cell Infect Microbiol 2017; 7:67. [PMID: 28348980 PMCID: PMC5346576 DOI: 10.3389/fcimb.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.
Collapse
Affiliation(s)
- Frederike Ruhe
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Alexandra Olling
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Rasmus Abromeit
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Dennis Rataj
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | | | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Alexi Alekov
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
63
|
Ray KJ, Larkin JR, Tee YK, Khrapitchev AA, Karunanithy G, Barber M, Baldwin AJ, Chappell MA, Sibson NR. Determination of an optimally sensitive and specific chemical exchange saturation transfer MRI quantification metric in relevant biological phantoms. NMR IN BIOMEDICINE 2016; 29:1624-1633. [PMID: 27686882 PMCID: PMC5095597 DOI: 10.1002/nbm.3614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
The purpose of this study was to develop realistic phantom models of the intracellular environment of metastatic breast tumour and naïve brain, and using these models determine an analysis metric for quantification of CEST MRI data that is sensitive to only labile proton exchange rate and concentration. The ability of the optimal metric to quantify pH differences in the phantoms was also evaluated. Novel phantom models were produced, by adding perchloric acid extracts of either metastatic mouse breast carcinoma cells or healthy mouse brain to bovine serum albumin. The phantom model was validated using 1 H NMR spectroscopy, then utilized to determine the sensitivity of CEST MRI to changes in pH, labile proton concentration, T1 time and T2 time; six different CEST MRI analysis metrics (MTRasym , APT*, MTRRex , AREX and CESTR* with and without T1 /T2 compensation) were compared. The new phantom models were highly representative of the in vivo intracellular environment of both tumour and brain tissue. Of the analysis methods compared, CESTR* with T1 and T2 time compensation was optimally specific to changes in the CEST effect (i.e. minimal contamination from T1 or T2 variation). In phantoms with identical protein concentrations, pH differences between phantoms could be quantified with a mean accuracy of 0.6 pH units. We propose that CESTR* with T1 and T2 time compensation is the optimal analysis method for these phantoms. Analysis of CEST MRI data with T1 /T2 time compensated CESTR* is reproducible between phantoms, and its application in vivo may resolve the intracellular alkalosis associated with breast cancer brain metastases without the need for exogenous contrast agents.
Collapse
Affiliation(s)
- Kevin J Ray
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LE, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LE, UK
| | - Yee K Tee
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LE, UK
| | - Gogulan Karunanithy
- Physical and Theoretical Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Michael Barber
- Physical and Theoretical Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Michael A Chappell
- Institute for Biomedical Engineering, University of Oxford, Oxford, OX3 7LE, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LE, UK.
| |
Collapse
|
64
|
Sanman LE, van der Linden WA, Verdoes M, Bogyo M. Bifunctional Probes of Cathepsin Protease Activity and pH Reveal Alterations in Endolysosomal pH during Bacterial Infection. Cell Chem Biol 2016; 23:793-804. [PMID: 27427229 DOI: 10.1016/j.chembiol.2016.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Cysteine cathepsins are lysosomal proteases involved in regulation of both normal cellular processes and disease. Biochemical studies with peptide substrates indicate that cathepsins have optimal activity at acidic pH and highly attenuated activity at neutral pH. In contrast, there is mounting evidence that cathepsins have biological roles in environments that have non-acidic pH. To further define the specific pH environments where cathepsins act, we designed bifunctional activity-based probes (ABPs) that allow simultaneous analysis of cathepsin protease activity and pH. We use these probes to analyze the steady-state environment of cathepsin activity in macrophages and to measure dynamic changes in activity and pH upon stimulation. We show that Salmonella typhimurium induces a change in lysosomal pH that ultimately impairs cathepsin activity in both infected cells and a fraction of bystander cells, highlighting a mechanism by which Salmonella can simultaneously flourish within host cells and alter the behavior of nearby uninfected cells.
Collapse
Affiliation(s)
- Laura E Sanman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Matthew Bogyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
65
|
Takahashi T, Suzuki T. Low-pH Stability of Influenza A Virus Sialidase Contributing to Virus Replication and Pandemic. Biol Pharm Bull 2016; 38:817-26. [PMID: 26027822 DOI: 10.1248/bpb.b15-00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein neuraminidase (NA) of influenza A virus (IAV) has sialidase activity that cleaves the terminal sialic acids (viral receptors) from oligosaccharide chains of glycoconjugates. A new antigenicity of viral surface glycoproteins for humans has pandemic potential. We found "low-pH stability of sialidase activity" in NA. The low-pH stability can maintain sialidase activity under acidic conditions of pH 4-5. For human IAVs, NAs of all pandemic viruses were low-pH-stable, whereas those of almost all human seasonal viruses were not. The low-pH stability was dependent on amino acid residues near the active site, the calcium ion-binding site, and the subunit interfaces of the NA homotetramer, suggesting effects of the active site and the homotetramer on structural stability. IAVs with the low-pH-stable NA showed much higher virus replication rates than those of IAVs with low-pH-unstable NA, which was correlated with maintenance of sialidase activity under an endocytic pathway of the viral cell entry mechanism, indicating contribution of low-pH stability to high replication rates of pandemic viruses. The low-pH-stable NA of the 1968 H3N2 pandemic virus was derived from the low-pH-stable NA of H2N2 human seasonal virus, one of two types classified by both low-pH stability in N2 NA and a phylogenetic tree of N2 NA genes. The 2009 H1N1 pandemic virus acquired low-pH-stable NA by two amino acid substitutions at the early stage of the 2009 pandemic. It is thought that low-pH stability contributes to infection spread in a pandemic through enhancement of virus replication.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences,
University of Shizuoka
| | | |
Collapse
|
66
|
Chen S, Jin T. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers. Front Pharmacol 2016; 7:15. [PMID: 26869931 PMCID: PMC4740951 DOI: 10.3389/fphar.2016.00015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022] Open
Abstract
Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone.
Collapse
Affiliation(s)
- Shun Chen
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University Shanghai, China
| | - Tuo Jin
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
67
|
Huang J, Ying L, Yang X, Yang Y, Quan K, Wang H, Xie N, Ou M, Zhou Q, Wang K. Ratiometric Fluorescent Sensing of pH Values in Living Cells by Dual-Fluorophore-Labeled i-Motif Nanoprobes. Anal Chem 2015; 87:8724-31. [DOI: 10.1021/acs.analchem.5b01527] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Le Ying
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Yanjing Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - He Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Nuli Xie
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Qifeng Zhou
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
68
|
Søndergaard RV, Christensen NM, Henriksen JR, Kumar EKP, Almdal K, Andresen TL. Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells. Chem Rev 2015; 115:8344-78. [PMID: 26244372 DOI: 10.1021/cr400636x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rikke V Søndergaard
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Nynne M Christensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - E K Pramod Kumar
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| |
Collapse
|
69
|
Peretz-Soroka H, Pevzner A, Davidi G, Naddaka V, Kwiat M, Huppert D, Patolsky F. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations. NANO LETTERS 2015; 15:4758-4768. [PMID: 26086686 DOI: 10.1021/acs.nanolett.5b01578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.
Collapse
Affiliation(s)
- Hagit Peretz-Soroka
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexander Pevzner
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Davidi
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vladimir Naddaka
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moria Kwiat
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fernando Patolsky
- †School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- ‡The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- §Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
70
|
Yamamura M, Takizawa H, Nabeshima T. Zwitterionic N2O2-Type Protonated Dipyrrin Bearing a Phosphate Anionic Moiety as a pH-Responsive Fluorescence Indicator. Org Lett 2015; 17:3114-7. [PMID: 26042936 DOI: 10.1021/acs.orglett.5b01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic protonated-dipyrrin 1 bearing a phosphate unit was synthesized from the N2O2-type tetradentate dipyrrin ligand. Compound 1 is in equilibrium with the deprotonated form 1' with a pKa value of 5.8. Compound 1 exhibited a pH-responsive fluorescence under physiological conditions; the fluorescence intensity increased in aqueous media as the pH increased. In living cells, 1 also exhibited emission responsive to pH. Thus, 1 should be applicable as a pH probe for detecting tumor cells.
Collapse
Affiliation(s)
- Masaki Yamamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| | - Hiroyuki Takizawa
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
| |
Collapse
|
71
|
Daidoji T, Watanabe Y, Ibrahim MS, Yasugi M, Maruyama H, Masuda T, Arai F, Ohba T, Honda A, Ikuta K, Nakaya T. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH. J Biol Chem 2015; 290:10627-42. [PMID: 25673693 DOI: 10.1074/jbc.m114.611327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.
Collapse
Affiliation(s)
- Tomo Daidoji
- From the Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yohei Watanabe
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Madiha S Ibrahim
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan, the Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22111, Egypt
| | - Mayo Yasugi
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan, the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Hisataka Maruyama
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Taisuke Masuda
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Fumihito Arai
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Tomoyuki Ohba
- the Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayae Honda
- the Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kazuyoshi Ikuta
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takaaki Nakaya
- From the Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan,
| |
Collapse
|
72
|
Chowdhury R, Saha A, Mandal AK, Jana B, Ghosh S, Bhattacharyya K. Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. J Phys Chem B 2014; 119:2149-56. [DOI: 10.1021/jp503804y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rajdeep Chowdhury
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhijit Saha
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Amit Kumar Mandal
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Batakrishna Jana
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
73
|
A two-photon ratiometric fluorescent probe enables spatial coordinates determination of intracellular pH. Talanta 2014; 129:241-8. [PMID: 25127590 DOI: 10.1016/j.talanta.2014.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022]
Abstract
We reported a two-photon ratiometric fluorescent probe for detecting intracellular pH. When excited with 800 nm laser, an optimal output of laser as the routine equipment of two-photon fluorescence microscopy, the two-photon excited fluorescence of this probe showed distinct emission peak shift as large as 109 nm upon the change of pH values in vitro. Very importantly, the experiment results show that this probe has large two-photon absorption cross-section at pH 4.5 at 800 nm of 354 g, which ranks it as one of the best two-photon ratiometric fluorescent pH probes, and its working pH value is between 4.0 and 8.0 which could fit the intracellular pH range. Moreover, utilizing this probe, the two-photon ratiometric fluorescent images in living cells have been obtained, and the spatial coordinates of intracellular pH can be mapped. At the same time, the probe also exhibited selectivity, photostability and membrane permeability. And the photophysical properties of this probe in various solvents indicated that these photophysical properties variations are due to an intramolecular charge transfer process. At last, the imaging depth of the probe in liver biopsy slices was investigated. The experimental results demonstrated the maximum imaging depth can arrive 66 µm in living rat liver tissues.
Collapse
|
74
|
Abstract
UNLABELLED Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrP(Sc), was observed in nerve fibers of the tongue approximately 2 weeks prior to PrP(Sc) deposition in skeletal muscle. Initially, PrP(Sc) deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrP(Sc) was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrP(Sc) deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrP(Sc) was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrP(Sc)-bound endosomes can lead to membrane recycling in which PrP(Sc) is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrP(Sc) formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse.
Collapse
|
75
|
Tsai YT, Zhou J, Weng H, Shen J, Tang L, Hu WJ. Real-time noninvasive monitoring of in vivo inflammatory responses using a pH ratiometric fluorescence imaging probe. Adv Healthc Mater 2014; 3:221-9. [PMID: 23828849 DOI: 10.1002/adhm.201200365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/31/2013] [Indexed: 12/31/2022]
Abstract
It is often difficult to continuously monitor and quantify inflammatory responses in vivo. These dynamic responses however are often accompanied by specific pH changes. A new ratiometric optical pH probe is developed by combining pH-sensitive (CypHer5E) and pH-insensitive (Oyster800) fluorescent dyes into nanoparticles for in vivo optical imaging. By taking the ratio of fluorescence intensities at different wavelengths, these nanosized sensors provide excellent measurement capabilities, and unique mapping, of the continuous in vivo pH changes for three different inflammation models. In each model a strong positive correlation is found between ratiometric pH changes and the corresponding inflammatory response measured by histological analyses. These results indicate that ratiometric imaging can provide a noninvasive, rapid, and highly sensitive optical readout for the pH-ratio changes in vivo. Furthermore this technique may be used to monitor the real-time dynamics of inflammatory processes.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Bioengineering Department, University of Texas at Arlington, P.O. Box 19138, Arlington, TX 76019-0138
| | | | | | | | | | | |
Collapse
|
76
|
Wang K, Huang J, Yang X, He X, Liu J. Recent advances in fluorescent nucleic acid probes for living cell studies. Analyst 2014; 138:62-71. [PMID: 23154215 DOI: 10.1039/c2an35254k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Living cell studies can offer tremendous opportunities for biological and disease studies. Due to their high sensitivity and selectivity, minimum interference with living biological systems, ease of design and synthesis, fluorescent nucleic acid probes (FNAPs) have been widely used in living cell studies, such as for intracellular detection, cell detection, and cell-to-cell communication. Here, we review the general requirements and the recent developments in FNAPs for living cell studies. We broadly classify these designs as hybridization probes and aptamer probes. For hybridization probes, we describe recently developed designs, such as nanomaterial-based and amplification-based hybridization probes. For aptamer probes, we discuss four general paradigms that have appeared most frequently in the literature: nanomaterial-based, nanomachine-based, cell surface-anchored and activatable aptamer probe designs in vivo. FNAPs promise to open up new and exciting opportunities in biological marks detection for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Changsha 410082, China.
| | | | | | | | | |
Collapse
|
77
|
Chou HS, Hsiao MH, Hung WY, Yen TY, Lin HY, Liu DM. A pH-responsive amphiphilic chitosan–pyranine core–shell nanoparticle for controlled drug delivery, imaging and intracellular pH measurement. J Mater Chem B 2014; 2:6580-6589. [DOI: 10.1039/c4tb01080a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of CHC–PY core–shell nanoparticle provides multiple functionality, where a synergistic performance of nanotherapeutics, imaging and even diagnosis at a cellular resolution can be achieved simultaneously.
Collapse
Affiliation(s)
- Hao-Syun Chou
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Taiwan
| | - Meng-Hsuan Hsiao
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Taiwan
| | - Wei-Yang Hung
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Taiwan
| | - Tin-Yo Yen
- Joint Honours of Biotechnology
- Department of Microbiology and Immunology
- University of British Columbia/British Columbia Institute of Technology
- Vancouver, Canada
| | - Hui-Yi Lin
- School of Pharmacy
- China Medical University
- TaiChung, Taiwan
| | - Dean-Mo Liu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Taiwan
| |
Collapse
|
78
|
Afshar Farniya A, Esplandiu MJ, Reguera D, Bachtold A. Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. PHYSICAL REVIEW LETTERS 2013; 111:168301. [PMID: 24182306 DOI: 10.1103/physrevlett.111.168301] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Catalytic engines can use hydrogen peroxide as a chemical fuel in order to drive motion at the microscale. The chemo-mechanical actuation is a complex mechanism based on the interrelation between catalytic reactions and electro-hydrodynamics phenomena. We studied catalytic micropumps using fluorescence confocal microscopy to image the concentration of protons in the liquid. In addition, we measured the motion of particles with different charges in order to map the spatial distributions of the electric field, the electrostatic potential and the fluid flow. The combination of these two techniques allows us to contrast the gradient of the concentration of protons against the spatial variation in the electric field. We present numerical simulations that reproduce the experimental results. Our work sheds light on the interrelation between the different processes at work in the chemomechanical actuation of catalytic pumps. Our experimental approach could be used to study other electrochemical systems with heterogeneous electrodes.
Collapse
Affiliation(s)
- A Afshar Farniya
- ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
79
|
Surana S, Krishnan Y. A method to map spatiotemporal pH changes in a multicellular living organism using a DNA nanosensor. Methods Mol Biol 2013; 991:9-23. [PMID: 23546654 DOI: 10.1007/978-1-62703-336-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Environmental pH has a determining role in the structure of biomolecules, thus playing an important role in regulating cellular activities. Eukaryotic cells must, therefore, strive to stringently regulate pH in various intracellular organelles so as to confer normal functioning at the level of whole organism. Several pH-sensitive probes have been reported, each of which can be used to map the pH dependence of an in vivo process. However, these probes suffer from some inherent drawbacks. Here we demonstrate the utility of an externally introduced, pH-triggered DNA nanomachine inside the multicellular eukaryote Caenorhabditis elegans. The nanomachine uses FRET to effectively map spatiotemporal pH changes associated with endocytosis in coelomocytes of wild type as well as mutant worms, in a variety of genetic backgrounds. It shows highest dynamic range in the pH regime 5.3-6.6 and has a half-life of ~8 h, thus positioning it well to interrogate a variety of pH-correlated biological phenomena in vivo.
Collapse
Affiliation(s)
- Sunaina Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
80
|
Ouyang Q, Lizarraga SB, Schmidt M, Yang U, Gong J, Ellisor D, Kauer JA, Morrow EM. Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron 2013; 80:97-112. [PMID: 24035762 DOI: 10.1016/j.neuron.2013.07.043] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
Neuronal arborization is regulated by cell-autonomous and nonautonomous mechanisms including endosomal signaling via BDNF/TrkB. The endosomal Na⁺/H⁺ exchanger 6 (NHE6) is mutated in a new autism-related disorder. NHE6 functions to permit proton leak from endosomes, yet the mechanisms causing disease are unknown. We demonstrate that loss of NHE6 results in overacidification of the endosomal compartment and attenuated TrkB signaling. Mouse brains with disrupted NHE6 display reduced axonal and dendritic branching, synapse number, and circuit strength. Site-directed mutagenesis shows that the proton leak function of NHE6 is required for neuronal arborization. We find that TrkB receptor colocalizes to NHE6-associated endosomes. TrkB protein and phosphorylation are reduced in NHE6 mutant neurons in response to BDNF signaling. Finally, exogenous BDNF rescues defects in neuronal arborization. We propose that NHE6 mutation leads to circuit defects that are in part due to impoverished neuronal arborization that may be treatable by enhanced TrkB signaling.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Unikora Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Jingyi Gong
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Debra Ellisor
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Julie A Kauer
- Departments of Molecular Pharmacology, Physiology and Biotechnology, and Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA.,Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, 1011 Veteran Memorial Pkwy., East Providence, RI 02915, USA
| |
Collapse
|
81
|
Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 2013; 34:8504-10. [PMID: 23932249 DOI: 10.1016/j.biomaterials.2013.07.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023]
Abstract
Stimuli-responsive drug carriers have great potential to deliver bioactive materials on demand and to a specific location within the human body. Acid-responsive drug carriers can specifically release their payload in the acidic microenvironments of tumors or in the endosomal or lysosomal compartments within a cell. Here we describe an approach to functionalize vicinal diols of dextran with hydrophobic boronate esters in order to produce a water insoluble boronate dextran polymer (B-Dex), which spontaneously forms acid-responsive nanoparticles in water. We show the encapsulation of a hydrophobic anticancer drug doxorubicin into the particles. Hydrolysis of the boronate esters under mild acidic conditions recovers the hydrophilic hydroxyl groups of the dextran and disrupts the particles into water soluble fragments thereby leading to a pH-responsive release of the drug. According to dynamic light scattering (DLS) and UV/Vis spectroscopy, mild acidic conditions (pH 5.0) lead to a three-fold increase in the degradation of the particles and a four-fold increase in the release of the drug compared to the behavior of particles at pH 7.4. In vitro tests in Hela cells show no toxicity of the empty B-Dex nanoparticles, while the toxicity of doxorubicin-loaded B-Dex nanoparticles is comparable to that of the doxorubicin · HCl drug. Confocal fluorescence microscopy reveals that 100% of the Hela cells uptake doxorubicin-loaded B-Dex nanoparticles with a preferential accumulation of the nanoparticles in the cytoplasm.
Collapse
|
82
|
Peretz-Soroka H, Pevzner A, Davidi G, Naddaka V, Tirosh R, Flaxer E, Patolsky F. Optically-gated self-calibrating nanosensors: monitoring pH and metabolic activity of living cells. NANO LETTERS 2013; 13:3157-3168. [PMID: 23772673 DOI: 10.1021/nl401169k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantitative detection of biological and chemical species is critical to numerous areas of medical and life sciences. In this context, information regarding pH is of central importance in multiple areas, from chemical analysis, through biomedical basic studies and medicine, to industry. Therefore, a continuous interest exists in developing new, rapid, miniature, biocompatible and highly sensitive pH sensors for minute fluid volumes. Here, we present a new paradigm in the development of optoelectrical sensing nanodevices with built-in self-calibrating capabilities. The proposed electrical devices, modified with a photoactive switchable molecular recognition layer, can be optically switched between two chemically different states, each having different chemical binding constants and as a consequence affecting the device surface potential at different extents, thus allowing the ratiometric internal calibration of the sensing event. At each point in time, the ratio of the electrical signals measured in the ground and excited states, respectively, allows for the absolute concentration measurement of the molecular species under interest, without the need for electrical calibration of individual devices. Furthermore, we applied these devices for the real-time monitoring of cellular metabolic activity, extra- and intracellularly, as a potential future tool for the performance of basic cell biology studies and high-throughput personalized medicine-oriented research, involving single cells and tissues. This new concept can be readily expanded to the sensing of additional chemical and biological species by the use of additional photoactive switchable receptors. Moreover, this newly demonstrated coupling between surface-confined photoactive molecular species and nanosensing devices could be utilized in the near future in the development of devices of higher complexity for both the simultaneous control and monitoring of chemical and biological processes with nanoscale resolution control.
Collapse
Affiliation(s)
- Hagit Peretz-Soroka
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences and ‡The Center for Nanoscience and Nanotechnology, Tel-Aviv University , Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
83
|
Bai Z, Chen R, Si P, Huang Y, Sun H, Kim DH. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5856-60. [PMID: 23716502 DOI: 10.1021/am401528w] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.
Collapse
Affiliation(s)
- Zhenhua Bai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | | | | | | | | | | |
Collapse
|
84
|
Sen Mojumdar S, Chowdhury R, Mandal AK, Bhattacharyya K. In what time scale proton transfer takes place in a live CHO cell? J Chem Phys 2013; 138:215102. [PMID: 23758398 DOI: 10.1063/1.4807862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Supratik Sen Mojumdar
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
85
|
A BODIPY-derived fluorescent probe for cellular pH measurements. Anal Biochem 2013; 435:106-13. [DOI: 10.1016/j.ab.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022]
|
86
|
Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: Potential role of ion release. Toxicol In Vitro 2013; 27:752-9. [DOI: 10.1016/j.tiv.2012.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022]
|
87
|
Jing J, Zhang JL. Combining myeloperoxidase (MPO) with fluorogenic ZnSalen to detect lysosomal hydrogen peroxide in live cells. Chem Sci 2013. [DOI: 10.1039/c3sc50807b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
88
|
Fan L, Liu Q, Lu D, Shi H, Yang Y, Li Y, Dong C, Shuang S. A novel far-visible and near-infrared pH probe for monitoring near-neutral physiological pH changes: imaging in live cells. J Mater Chem B 2013; 1:4281-4288. [DOI: 10.1039/c3tb20547a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
89
|
pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur J Pharm Biopharm 2012; 82:587-97. [DOI: 10.1016/j.ejpb.2012.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 11/23/2022]
|
90
|
Monasterolo C, Ballestri M, Sotgiu G, Guerrini A, Dambruoso P, Sparnacci K, Laus M, De Cesare M, Pistone A, Beretta GL, Zunino F, Benfenati V, Varchi G. Sulfonates-PMMA nanoparticles conjugates: a versatile system for multimodal application. Bioorg Med Chem 2012; 20:6640-7. [PMID: 23043726 DOI: 10.1016/j.bmc.2012.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
We report herein the viability of a novel nanoparticles (NPs) conjugated system, namely the attachment, based on ionic and hydrophobic interactions, of different sulfonated organic salts to positively charged poly(methylmethacrylate) (PMMA)-based core-shell nanoparticles (EA0) having an high density of ammonium groups on their shells. In this context three different applications of the sulfonates@EA0 systems have been described. In detail, their ability as cytotoxic drugs and pro-drugs carriers was evaluated in vitro on NCI-H460 cell line and in vivo against human ovarian carcinoma IGROV-1 cells. Besides, 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) was chosen for NPs loading, and its internalization as bioimaging probe was evaluated on Hep G2 cells. Overall, the available data support the interest for these PMMA NPs@sulfonates systems as a promising formulation for theranostic applications. In vivo biological data strongly support the potential value of these core-shell NPs as delivery system for negatively charged drugs or biologically active molecules. Additionally, we have demonstrated the ability of these PMMA core-shell nanoparticles to act as efficient carriers of fluorophores. In principle, thanks to the high PMMA NPs external charge density, sequential and very easy post-loading of different sulfonates is achievable, thus allowing the preparation of nanocarriers either with bi-modal drug delivery behaviour or as theranostic systems.
Collapse
Affiliation(s)
- Claudio Monasterolo
- Istituto per la Sintesi Organica e la Fotoreattività, CNR-I.S.O.F., Area della Ricerca di Bologna, via P. Gobetti 101, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Shenoi RA, Narayanannair JK, Hamilton JL, Lai BFL, Horte S, Kainthan RK, Varghese JP, Rajeev KG, Manoharan M, Kizhakkedathu JN. Branched Multifunctional Polyether Polyketals: Variation of Ketal Group Structure Enables Unprecedented Control over Polymer Degradation in Solution and within Cells. J Am Chem Soc 2012; 134:14945-57. [DOI: 10.1021/ja305080f] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rajesh A. Shenoi
- Centre for Blood Research and
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3
| | | | - Jasmine L. Hamilton
- Centre for Blood Research and
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3
| | - Benjamin F. L. Lai
- Centre for Blood Research and
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3
| | - Sonja Horte
- Centre for Blood Research and
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3
| | - Rajesh K. Kainthan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts
02142, United States
| | - Jos P. Varghese
- Sanmar Speciality Chemicals Ltd., Chennai, Tamil Nadu, India
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts
02142, United States
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research and
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z3
| |
Collapse
|
92
|
Omtri RS, Davidson MW, Arumugam B, Poduslo JF, Kandimalla KK. Differences in the cellular uptake and intracellular itineraries of amyloid beta proteins 40 and 42: ramifications for the Alzheimer's drug discovery. Mol Pharm 2012; 9:1887-97. [PMID: 22574751 DOI: 10.1021/mp200530q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD), neurofibrillary tangles and parenchymal amyloid plaques, are downstream reflections of neurodegeneration caused by the intraneuronal accumulation of amyloid-β proteins (Aβ), particularly Aβ42 and Aβ40. While the neurotoxicity of more amyloidogenic but less abundant Aβ42 is well documented, the effect of Aβ40 on neurons has been understudied. The Aβ40 expression in the presymptomatic AD brain is ten times greater than that of Aβ42. However, the Aβ40:42 ratio decreases with AD progression and coincides with increased amyloid plaque deposition in the brain. Hence, it is thought that Aβ40 protects neurons from the deleterious effects of Aβ42. The pathophysiological pathways involved in the neuronal uptake of Aβ40 or Aβ42 have not been clearly elucidated. Lack of such critical information obscures therapeutic targets and thwarts rational drug development strategies aimed at preventing neurodegeneration in AD. The current study has shown that fluorescein labeled Aβ42 (F-Aβ42) is internalized by neurons via dynamin dependent endocytosis and is sensitive to membrane cholesterol, whereas the neuronal uptake of F-Aβ40 is energy independent and nonendocytotic. Following their uptake, both F-Aβ40 and F-Aβ42 did not accumulate in early/recycling endosomes; F-Aβ42 but not F-Aβ40 accumulated in late endosomes and in the vesicles harboring caveolin-1. Furthermore, F-Aβ42 demonstrated robust accumulation in the lysosomes and damaged their integrity, whereas F-Aβ40 showed only a sparse lysosomal accumulation. Such regulated trafficking along distinct pathways suggests that Aβ40 and Aβ42 exercise differential effects on neurons. These differences must be carefully considered in the design of a pharmacological agent intended to block the neurodegeneration triggered by Aβ proteins.
Collapse
Affiliation(s)
- Rajesh S Omtri
- Division of Basic Pharmaceutical Sciences, Florida A&M University College of Pharmacy and Pharmaceutical Sciences, Tallahassee, Florida, United States
| | | | | | | | | |
Collapse
|
93
|
Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O, Burke RE, Gershon M, Sulzer D. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012; 74:277-84. [PMID: 22542182 PMCID: PMC3578406 DOI: 10.1016/j.neuron.2012.02.020] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2012] [Indexed: 01/11/2023]
Abstract
mTOR is a regulator of cell growth and survival, protein synthesis-dependent synaptic plasticity, and autophagic degradation of cellular components. When triggered by mTOR inactivation, macroautophagy degrades long-lived proteins and organelles via sequestration into autophagic vacuoles. mTOR further regulates synaptic plasticity, and neurodegeneration occurs when macroautophagy is deficient. It is nevertheless unknown whether macroautophagy modulates presynaptic function. We find that the mTOR inhibitor rapamycin induces formation of autophagic vacuoles in prejunctional dopaminergic axons with associated decreased axonal profile volumes, synaptic vesicle numbers, and evoked dopamine release. Evoked dopamine secretion was enhanced and recovery was accelerated in transgenic mice in which macroautophagy deficiency was restricted to dopaminergic neurons; rapamycin failed to decrease evoked dopamine release in the striatum of these mice. Macroautophagy that follows mTOR inhibition in presynaptic terminals, therefore, rapidly alters presynaptic structure and neurotransmission.
Collapse
Affiliation(s)
- Daniela Hernandez
- Department of Neuroscience, Columbia University Medical Campus, New York NY 10013
| | - Ciara A. Torres
- Department of Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Campus, New York NY 10013
| | - Wanda Setlik
- Department of Pathology, Columbia University Medical Campus, New York NY 10013
| | - Carolina Cebrián
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Eugene V. Mosharov
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Hsiao-Chun Cheng
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Nikolai Kholodilov
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Olga Yarygina
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Robert E. Burke
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Michael Gershon
- Department of Pathology, Columbia University Medical Campus, New York NY 10013
| | - David Sulzer
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
- Department of Psychiatry and Pharmacology, Columbia University Medical Campus, New York NY 10013
| |
Collapse
|
94
|
Lin Y, Wu TY, Gmitro AF. Error analysis of ratiometric imaging of extracellular pH in a window chamber model. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:046004. [PMID: 22559682 PMCID: PMC4572359 DOI: 10.1117/1.jbo.17.4.046004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Ratiometric fluorescence-imaging technique is commonly used to measure extracellular pH in tumors and surrounding tissue within a dorsal skin-fold window chamber. Using a pH-sensitive fluorophore such as carboxy SNARF-1 one can measure pH distributions with high precision. However, it is often observed that the measured pH is lower than expected, with a bias that varies from one image to another. A comprehensive analysis of possible error sources is presented. These error sources include photon noise, estimator bias, instrument errors, temperature, and calibration errors from biological factors.
Collapse
Affiliation(s)
- Yuxiang Lin
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tuscon, Arizona 85721
| | - Tzu-Yu Wu
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tuscon, Arizona 85721
| | - Arthur F. Gmitro
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tuscon, Arizona 85721
- University of Arizona, College of Medicine, Department of Radiology, P.O. Box 245067, Tucson, Arizona 85724
| |
Collapse
|
95
|
Saito Y, Miyamoto S, Suzuki A, Matsumoto K, Ishihara T, Saito I. Fluorescent nucleosides with ‘on–off’ switching function, pH-responsive fluorescent uridine derivatives. Bioorg Med Chem Lett 2012; 22:2753-6. [DOI: 10.1016/j.bmcl.2012.02.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 11/28/2022]
|
96
|
Amali AJ, Singh S, Rangaraj N, Patra D, Rana RK. Poly(l-Lysine)–pyranine-3 coacervate mediated nanoparticle-assembly: fabrication of dynamic pH-responsive containers. Chem Commun (Camb) 2012; 48:856-8. [DOI: 10.1039/c1cc15209b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 2011; 6:879-98. [PMID: 21793678 DOI: 10.2217/nnm.11.78] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Silver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization. We include several proposed mechanisms of cytotoxicity based on such studies, as well as new opportunities for investigating the uptake and fate of Ag NPs in living systems.
Collapse
Affiliation(s)
- Matthew Charles Stensberg
- Department of Agricultural & Biological Engineering, Purdue University, 225 S University St., West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
98
|
Nanoparticle assembled microcapsules for application as pH and ammonia sensor. Anal Chim Acta 2011; 708:75-83. [DOI: 10.1016/j.aca.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 11/20/2022]
|
99
|
Differential response of the urothelial V-ATPase activity to the lipid environment. Cell Biochem Biophys 2011; 61:157-68. [PMID: 21359951 DOI: 10.1007/s12013-011-9172-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vesicle population beneath the apical plasma membrane of the most superficial urothelial cells is heterogeneous and their traffic and activity seems to be dependent on their membrane composition and inversely related to their development stage. Although the uroplakins, the major proteins of the highly differentiated urinary bladder umbrella cells, can maintain the bladder permeability barrier, the role of the membrane lipid composition still remains elusive. We have recently reported the lipid induced leakage of the vesicular content as a path of diversion in the degradative pathway. To extend the knowledge on how the lipid environment can affect vesicular acidification and membrane traffic through the regulation of the V-ATPase (vacuolar ATPase), we studied the proton translocation and ATP hydrolytic capacity of endocytic vesicles having different lipid composition obtained from rats fed with 18:1n-9 and 18:2n-6 fatty acid enriched diets. The proton translocation rate decreases while the enzymatic activity increases in oleic acid-rich vesicles (OAV), revealing an uncoupled state of V-ATPase complex which was further demonstrated by Western Blotting. A decrease of the very long fatty acyl chains length (C20-C24) and increase of the C16-C18 chains length in OAV membranes was observed, concomitant with increased hydrolytic activity of the V-ATPase. This response of the urothelial V-ATPase was similar to that of the Na-K ATPase when the activity of the latter was probed in reconstituted systems with lipids bearing different lengths of fatty acid chains. The studies describe for the first time a lipid composition-dependent activity of the urothelial V-ATPase, identified by immunofluorescence microscopy which is related to an effective coupling between the channel proton flux and ATP hydrolysis.
Collapse
|
100
|
Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS NANO 2011; 5:5864-5873. [PMID: 21707035 DOI: 10.1021/nn201643f] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Rikke V Benjaminsen
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Building 423, 2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|