51
|
Inanç B, Elçin YM. Stem Cells in Tooth Tissue Regeneration—Challenges and Limitations. Stem Cell Rev Rep 2011; 7:683-92. [DOI: 10.1007/s12015-011-9237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Chun SY, Lee HJ, Choi YA, Kim KM, Baek SH, Park HS, Kim JY, Ahn JM, Cho JY, Cho DW, Shin HI, Park EK. Analysis of the Soluble Human Tooth Proteome and Its Ability to Induce Dentin/Tooth Regeneration. Tissue Eng Part A 2011; 17:181-91. [DOI: 10.1089/ten.tea.2010.0121] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- So Young Chun
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jung Lee
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ae Choi
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Heum Baek
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Sang Park
- Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Mo Ahn
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yeol Cho
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, Republic of Korea
| | - Hong-In Shin
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
53
|
A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Dev Biol 2010; 348:130-41. [DOI: 10.1016/j.ydbio.2010.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/04/2010] [Accepted: 09/07/2010] [Indexed: 11/20/2022]
|
54
|
Fraser GJ, Smith MM. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:99-112. [PMID: 21328527 DOI: 10.1002/jez.b.21387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/15/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
Abstract
Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
55
|
Liu F, Millar S. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 2010; 89:318-30. [PMID: 20200414 PMCID: PMC3140915 DOI: 10.1177/0022034510363373] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway is one of several key conserved intercellular signaling pathways in animals, and plays fundamental roles in the proliferation, regeneration, differentiation, and function of many cell and tissue types. This pathway is activated in a dynamic manner during the morphogenesis of oral organs, including teeth, taste papillae, and taste buds, and is essential for these processes to occur normally. Conversely, forced activation of Wnt/beta-catenin signaling promotes the formation of ectopic teeth and taste papillae. In this review, we discuss our current understanding of the roles of Wnt/beta-catenin signaling in oral tissue development and in related human diseases, and the potential of manipulating this pathway for therapeutic purposes.
Collapse
Affiliation(s)
- F. Liu
- Institute for Regenerative Medicine at Scott & White Hospital, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - S.E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
56
|
Revisiting the supernumerary: the epidemiological and molecular basis of extra teeth. Br Dent J 2010; 208:25-30. [PMID: 20057458 DOI: 10.1038/sj.bdj.2009.1177] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2009] [Indexed: 11/08/2022]
Abstract
Supernumerary teeth are a common clinical and radiographic finding and may produce occlusal and dental problems. The aetiological basis of extra teeth is poorly understood in human populations; however, the mouse provides a useful model system to investigate the complex genetics of tooth development. This article describes recent advances in our understanding of the genetic basis of supernumerary teeth. We have reviewed biological evidence that provides insight into why supernumerary tooth formation may occur. Indeed, many of the molecular signalling pathways known to be involved in normal development of the tooth germ can also give rise to additional teeth if inappropriately regulated. These include components of the Hedgehog, FGF, Wnt, TNF and BMP families, which provide a useful resource of candidate genes that may potentially play a role in human supernumerary tooth formation.
Collapse
|
57
|
Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 2010; 19:1577-92. [PMID: 20106874 DOI: 10.1093/hmg/ddq030] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
58
|
Quinlan R, Graf M, Mason I, Lumsden A, Kiecker C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 2009; 4:35. [PMID: 19732418 PMCID: PMC2757023 DOI: 10.1186/1749-8104-4-35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/04/2009] [Indexed: 01/07/2023] Open
Abstract
Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.
Collapse
Affiliation(s)
- Robyn Quinlan
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Hospital Campus, King's College, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
59
|
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 2009; 7:e31. [PMID: 19215146 PMCID: PMC2637924 DOI: 10.1371/journal.pbio.1000031] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| | - C. Darrin Hulsey
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ryan F Bloomquist
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kristine Uyesugi
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - J. Todd Streelman
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| |
Collapse
|
60
|
Cobourne MT, Xavier GM, Depew M, Hagan L, Sealby J, Webster Z, Sharpe PT. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. Dev Biol 2009; 331:38-49. [PMID: 19394325 PMCID: PMC2696601 DOI: 10.1016/j.ydbio.2009.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/21/2022]
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant or spontaneous disorder characterized by multiple cutaneous basal cell carcinomas, odontogenic keratocysts, skeletal anomalies and facial dysmorphology, including cleft lip and palate. Causative mutations for NBCCS occur in the PTCH1 gene on chromosome 9q22.3–q31, which encodes the principle receptor for the Hedgehog signalling pathway. We have investigated the molecular basis of craniofacial defects seen in NBCCS using a transgenic mouse model expressing Shh in basal epithelium under a Keratin-14 promoter. These mice have an absence of flat bones within the skull vault, hypertelorism, open-bite malocclusion, cleft palate and arrested tooth development. Significantly, increased Hedgehog signal transduction in these mice can influence cell fate within the craniofacial region. In medial edge epithelium of the palate, Shh activity prevents apoptosis and subsequent palatal shelf fusion. In contrast, high levels of Shh in odontogenic epithelium arrests tooth development at the bud stage, secondary to a lack of cell proliferation in this region. These findings illustrate the importance of appropriately regulated Hedgehog signalling during early craniofacial development and demonstrate that oro-facial clefting and hypodontia seen in NBCCS can occur as a direct consequence of increased Shh signal activity within embryonic epithelial tissues.
Collapse
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development and Orthodontics, Dental Institute, King's College London, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| | | | | | | | | | | | | |
Collapse
|
61
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5:226-43. [PMID: 19266065 PMCID: PMC2651620 DOI: 10.7150/ijbs.5.226] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/21/2009] [Indexed: 12/28/2022] Open
Abstract
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens, Greece
| | | | | |
Collapse
|
62
|
Ohazama A, Haycraft CJ, Seppala M, Blackburn J, Ghafoor S, Cobourne M, Martinelli DC, Fan CM, Peterkova R, Lesot H, Yoder BK, Sharpe PT. Primary cilia regulate Shh activity in the control of molar tooth number. Development 2009; 136:897-903. [PMID: 19211681 DOI: 10.1242/dev.027979] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Primary cilia mediate Hh signalling and mutations in their protein components affect Hh activity. We show that in mice mutant for a cilia intraflagellar transport (IFT) protein, IFT88/polaris, Shh activity is increased in the toothless diastema mesenchyme of the embryonic jaw primordia. This results in the formation of ectopic teeth in the diastema, mesial to the first molars. This phenotype is specific to loss of polaris activity in the mesenchyme since loss of Polaris in the epithelium has no detrimental affect on tooth development. To further confirm that upregulation of Shh activity is responsible for the ectopic tooth formation, we analysed mice mutant for Gas1, a Shh protein antagonist in diastema mesenchyme. Gas1 mutants also had ectopic diastema teeth and accompanying increased Shh activity. In this context, therefore, primary cilia exert a specific negative regulatory effect on Shh activity that functions to repress tooth formation and thus determine tooth number. Strikingly, the ectopic teeth adopt a size and shape characteristic of premolars, a tooth type that was lost in mice around 50-100 million years ago.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A. Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc Biol Sci 2009; 276:1225-33. [PMID: 19141424 PMCID: PMC2660956 DOI: 10.1098/rspb.2008.1526] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
For a dentition representing the most basal extant gnathostomes, that of the shark can provide us with key insights into the evolution of vertebrate dentitions. To detail the pattern of odontogenesis, we have profiled the expression of sonic hedgehog, a key regulator of tooth induction. We find in the catshark (Scyliorhinus canicula) that intense shh expression first occurs in a bilaterally symmetrical pattern restricted to broad regions in each half of the dentition in the embryo jaw. As in the mouse, there follows a changing temporal pattern of shh spatial restriction corresponding to epithelial bands of left and right dental fields, but also a subfield for symphyseal teeth. Then, intense shh expression is restricted to loci coincident with a temporal series of teeth in iterative jaw positions. The developmental expression of shh reveals previously undetected timing within epithelial stages of tooth formation. Each locus at alternate, even then odd, jaw positions establishes precise sequential timing for successive replacement within each tooth family. Shh appears first in the central cusp, iteratively along the jaw, then reiteratively within each tooth for secondary cusps. This progressive, sequential restriction of shh is shared by toothed gnathostomes and conserved through 500 million years of evolution.
Collapse
Affiliation(s)
- Moya M Smith
- King's College London, MRC Centre of Developmental Neurobiology, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
64
|
Wen S, Li H, Liu J. Dynamic signaling for neural stem cell fate determination. Cell Adh Migr 2009; 3:107-17. [PMID: 19262166 DOI: 10.4161/cam.3.1.7602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Central nervous system (CNS) development starts from neural stem cells (NSCs) which ultimately give rise to the three major cell types (neurons, oligodendrocytes and astrocytes) of the CNS. NSCs are specified in space- and time-related fashions, becoming spatially heterogeneous and generating a progressively restricted repertoire of cell types. Mammalian NSCs produce different cell types at different time points during development under the influence of multiple signaling pathways. These pathways act in a dynamic web mode to determine the fate of NSCs via modulating the expression and activity of distinct set of transcription factors which in turn trigger the transcription of neural fate-associated genes. This review thus introduces the major signal pathways, transcription factors and their cross-talks and coordinative interactions in NSC fate determination.
Collapse
Affiliation(s)
- Shu Wen
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | | |
Collapse
|
65
|
Depew MJ, Compagnucci C. Tweaking the hinge and caps: testing a model of the organization of jaws. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:315-35. [PMID: 18027841 DOI: 10.1002/jez.b.21205] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Historically, examinations of gnathostome skulls have indicated that for essentially the entirety of their existence, jaws have been characterized by a high degree of fidelity to an initial basic structural design that will then go on to manifest an amazing array of end-point phenotypes. These two traits-bauplan fidelity and elaboration of design-are inter-connected and striking, and beg a number of questions, including: Are all jaws made in the same manner and if not how not? To begin to tackle such questions, we herein operationally define jaws as two appositional, hinged cranial units for which polarity and potential modularity are characteristics, and then address what is necessary for them to form, including delineating both the sources of cells and tissues that will formally yield the jaws as well as what informs their ontogeny (e.g., sources of positional information and factors directing the interpretation of developmental cues). Following on this, we briefly describe a predictive, testable model of jaw development (the "Hinge and Caps" model) and present evidence that the Satb2+cell population in the developing jaw primordia of mice defines a developmentally and evolutionarily significant jaw module such as would be predicted by the model.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, Guy's Hospital, King's College London, London, United Kingdom.
| | | |
Collapse
|
66
|
Epithelial histogenesis during tooth development. Arch Oral Biol 2008; 54 Suppl 1:S25-33. [PMID: 18656852 DOI: 10.1016/j.archoralbio.2008.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 12/31/2022]
Abstract
This paper reviews the current understanding of the progressive changes mediating dental epithelial histogenesis as a basis for future collaborative studies. Tooth development involves morphogenesis, epithelial histogenesis and cell differentiation. The consecutive morphological stages of lamina, bud, cap and bell are also characterized by changes in epithelial histogenesis. Differential cell proliferation rates, apoptosis, and alterations in adhesion and shape lead to the positioning of groups of cells with different functions. During tooth histo-morphogenesis changes occur in basement membrane composition, expression of signalling molecules and the localization of cell surface components. Cell positional identity may be related to cell history. Another important parameter is cell plasticity. Independently of signalling molecules, which play a major role in inducing or modulating specific steps, cell-cell and cell-matrix interactions regulate the plasticity/rigidity of particular domains of the enamel organ. This involves specifying in space the differential growth and influences the progressive tooth morphogenesis by shaping the epithelial-mesenchymal junction. Deposition of a mineralized matrix determines the final shape of the crown. All data reviewed in this paper were investigated in the mouse.
Collapse
|
67
|
Fraser GJ, Bloomquist RF, Streelman JT. A periodic pattern generator for dental diversity. BMC Biol 2008; 6:32. [PMID: 18625062 PMCID: PMC2496899 DOI: 10.1186/1741-7007-6-32] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/14/2008] [Indexed: 11/18/2022] Open
Abstract
Background Periodic patterning of iterative structures is a fundamental process during embryonic organization and development. Studies have shown how gene networks are employed to pattern butterfly eyespots, fly bristles and vertebrate epithelial appendages such as teeth, feathers, hair and mammary glands. Despite knowledge of how these features are organized, little is known about how diversity in periodic patterning is generated in nature. We address this problem through the molecular analysis of oral jaw dental diversity in Lake Malawi cichlids, where closely related species exhibit from 1 to 20 rows of teeth, with total teeth counts ranging from around 10 to 700. Results We investigate the expression of conserved gene networks (involving bmp2, bmp4, eda, edar, fgf8, pax9, pitx2, runx2, shh and wnt7b) known to pattern iterative structures and teeth in other vertebrates. We show that spatiotemporal variation in expression pattern reflects adult morphological diversity among three closely related Malawi cichlid species. Combinatorial epithelial expression of pitx2 and shh appears to govern the competence both of initial tooth sites and future tooth rows. Epithelial wnt7b and mesenchymal eda are expressed in the inter-germ and inter-row regions, and likely regulate the spacing of these shh-positive units. Finally, we used chemical knockdown to demonstrate the fundamental role of hedgehog signalling and initial placode formation in the organization of the periodically patterned cichlid dental programme. Conclusion Coordinated patterns of gene expression differ among Malawi species and prefigure the future-ordered distribution of functional teeth of specific size and spacing. This variation in gene expression among species occurs early in the developmental programme for dental patterning. These data show how a complex multi-rowed vertebrate dentition is organized and how developmental tinkering of conserved gene networks during iterative pattern formation can impact upon the evolution of trophic novelty.
Collapse
Affiliation(s)
- Gareth J Fraser
- School of Biology, Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | |
Collapse
|
68
|
Bailleul-Forestier I, Molla M, Verloes A, Berdal A. The genetic basis of inherited anomalies of the teeth. Eur J Med Genet 2008; 51:273-91. [PMID: 18499550 DOI: 10.1016/j.ejmg.2008.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/03/2008] [Indexed: 01/10/2023]
|
69
|
Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Dev Biol 2008; 319:132-45. [DOI: 10.1016/j.ydbio.2008.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 11/21/2022]
|
70
|
Nunes FD, Valenzuela MDGS, Rodini CO, Massironi SMG, Ko GM. Localization of Bmp-4, Shh and Wnt-5a transcripts during early mice tooth development by in situ hybridization. Braz Oral Res 2008; 21:127-33. [PMID: 17589647 DOI: 10.1590/s1806-83242007000200006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 01/03/2007] [Indexed: 11/21/2022] Open
Abstract
A comparative nonisotopic in situ hybridization (ISH) analysis was carried out for the detection of Bmp-4, Shh and Wnt-5a transcripts during mice odontogenesis from initiation to cap stage. Bmp-4 was expressed early in the epithelium and then in the underlying mesenchyme. Shh expression was seen in the odontogenic epithelial lining thickening, being stronger in the enamel knot area, during the cap stage. Wnt-5a transcripts were expressed only in the mesenchyme during the initiation, bud and cap stages, with strong expression in the dental mesenchyme during the bud stage. The present results showed that Bmp-4, Shh and Wnt-5a are expressed since the very early stages of tooth development, and they suggest that the Wnt-5a gene is expressed in different cell populations than Bmp-4 and Shh.
Collapse
Affiliation(s)
- Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Lineu Prestes 2227, Ciudad Universitária, São Paulo, CEP 05508-900 SP, Brazil.
| | | | | | | | | |
Collapse
|
71
|
Yamanaka A, Yasui K, Sonomura T, Uemura M. Development of heterodont dentition in house shrew (Suncus murinus). Eur J Oral Sci 2007; 115:433-40. [DOI: 10.1111/j.1600-0722.2007.00499.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
72
|
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2007; 15:301-16. [PMID: 15916718 DOI: 10.1038/sj.cr.7290299] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.
Collapse
|
73
|
Fgfr2b mediated epithelial–mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev 2007; 124:868-83. [DOI: 10.1016/j.mod.2007.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/01/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|
74
|
Abstract
The congenital absence of teeth is one of the commonest developmental abnormalities seen in human populations. Familial hypodontia or oligodontia represents an absence of varying numbers of primary and/or secondary teeth as an isolated trait. While much progress has been made in understanding the developmental basis of tooth formation, knowledge of the aetiological basis of inherited tooth loss remains poor. The study of mouse genetics has uncovered a large number of candidate genes for this condition, but mutations in only three have been identified in human pedigrees with familial hypodontia or oligodontia: MSX1, PAX9 and AXIN2. This suggests that these conditions may represent a more complex multifactorial trait, influenced by a combination of gene function, environmental interaction and developmental timing. Completion of the human genome project has made available the DNA sequence of the collected human chromosomes, allowing the localisation of all human genes and, ultimately, determination of their function. Therefore it is likely that our understanding of this complex developmental process will continue to improve, not only during normal development but also when things go wrong.
Collapse
Affiliation(s)
- M T Cobourne
- Department of Orthodontics and Craniofacial Development, King's Dental Institute, Guy's Hospital, London, UK.
| |
Collapse
|
75
|
Zhang L, Hua F, Yuan GH, Zhang YD, Chen Z. Sonic hedgehog signaling is critical for cytodifferentiation and cusp formation in developing mouse molars. J Mol Histol 2007; 39:87-94. [PMID: 17786571 DOI: 10.1007/s10735-007-9132-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 08/08/2007] [Indexed: 11/28/2022]
Abstract
The present study was designed to investigate the direct role of Shh molecule on cytodifferentiation and cusp formation. Affi-gel blue beads soaked in exogenous Shh-N, Shh antibody or BSA control protein were implanted between the epithelium and mesenchyme of isolated molar germs at the cap stage. The recombinants were grafted for culture under the kidney capsules respectively. In compared to the control, additional Shh-N protein could not enhance the ameloblasts and odontoblasts differentiation of the explanted tooth germs. While, application of Shh antibody retarded these events. After 4 weeks of subrenal culture, the teeth dissected from the explants treated with Shh-N were multicuspid. Most of the teeth harvested from the Shh antibody group were small and single irregularly shaped cusp was visible. The main cusp height in this group was reduced. The results indicated Shh signaling pathway is critical for odontoblast and ameloblast differentiation and patterns cusp formation.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, No. 237 Luo Yu Road, Wuhan, Hubei, PR China
| | | | | | | | | |
Collapse
|
76
|
Melichar H, Kang J. Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Immunol Rev 2007; 215:32-45. [PMID: 17291277 DOI: 10.1111/j.1600-065x.2006.00469.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphogens, a class of secreted proteins that regulate gene expression in a concentration-dependent manner, are responsible for directing nearly all lineage fate choices during embryogenesis. In the thymus, morphogen signal pathways consisting of WNT, Hedgehog, and the transforming growth factor-beta superfamily are active and have been implicated in various developmental processes including proliferation, survival, and differentiation of maturing thymocytes. Intriguingly, it has been inferred that some of these morphogen signal pathways differentially affect gammadelta and alphabeta T-cell development or maintenance, but their role in T-cell lineage commitment has not been directly probed. We have recently identified a modulator of morphogen signaling that significantly influences binary gammadelta versus alphabeta T-cell lineage diversification. In this review, we summarize functions of morphogens in the thymus and provide a highly speculative model of integrated morphogen signals, potentially directing the gammadelta versus alphabeta T-cell fate determination process.
Collapse
Affiliation(s)
- Heather Melichar
- Department of Pathology University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
77
|
Khan M, Seppala M, Zoupa M, Cobourne MT. Hedgehog pathway gene expression during early development of the molar tooth root in the mouse. Gene Expr Patterns 2007; 7:239-43. [PMID: 17095302 DOI: 10.1016/j.modgep.2006.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/31/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Sonic hedgehog is a secreted protein important for many aspects of embryonic development. In the developing tooth, Shh expression is restricted to the epithelial compartment and plays an important role during both initiation and subsequent coronal morphogenesis. We have investigated the expression of Shh and constituent members of the signalling pathway during early development of the molar tooth root in the mouse and find the presence of transcripts in Hertwig's epithelial root sheath. These epithelial cells of the root sheath and the surrounding apical mesenchyme of the dental papilla and follicle also expressed the Shh receptor Ptc1, agonist Smo and Gli downstream transcriptional effectors; however, this response occurred over short range. In contrast, the Shh antagonists Hip1 and Gas1 were both expressed at a distance from these responding cells, in more peripheral regions of the developing root. Transcripts of the Skn acyl transferase lacked specific expression in early root structures.
Collapse
Affiliation(s)
- Mohammed Khan
- Department of Orthodontics, The Dental Institute of King's College London at Guy's, King's and St. Thomas', Guy's Hospital, London SE19RT, UK
| | | | | | | |
Collapse
|
78
|
Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 2006; 11:187-203. [PMID: 17111222 DOI: 10.1007/s10911-006-9029-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Like other skin appendages, the embryonic mammary gland develops via extensive epithelial-mesenchymal interactions. Early stages in embryonic mammary development strikingly resemble analogous steps in the development of hair follicles and teeth. In each case the first morphological sign of development is a localized thickening in the surface epithelium that subsequently invaginates to form a mammary, hair follicle or tooth bud. Similar sets of intersecting signaling pathways are involved in patterning the mammary, hair follicle and dental epithelium, directing placode formation, and controlling bud invagination. Despite these similarities, subsequent events in the formation of these appendages are diverse. The mammary bud extends to form a sprout that begins to branch upon contact with the mammary fat pad. Hair follicles also extend into the underlying mesenchyme, but instead of branching, hair follicle epithelium folds around a condensation of dermal cells. In contrast, teeth undergo a more complex folding morphogenesis. Here, we review what is known of the molecular and cellular mechanisms controlling early steps in the development of these organs, attempt to unravel both common themes and unique aspects that can begin to explain the diversity of appendage formation, and discuss human genetic diseases that affect appendage morphogenesis.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Viikinkaari 9, Helsinki, 00014, Finland
| | | |
Collapse
|
79
|
Stock DW, Jackman WR, Trapani J. Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 2006; 133:3127-37. [PMID: 16831836 DOI: 10.1242/dev.02459] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fossil record indicates that cypriniform fishes, a group including the zebrafish, lost oral teeth over 50 million years ago. Despite subsequent diversification of feeding modes, no cypriniform has regained oral teeth, suggesting the zebrafish as a model for studying the developmental genetic basis of evolutionary constraint. To investigate the mechanism of cypriniform tooth loss, we compared the oral expression of seven genes whose mammalian orthologs are involved in tooth initiation in the zebrafish and the Mexican tetra, Astyanax mexicanus, a related species retaining oral teeth. The most significant difference we found was an absence in zebrafish oral epithelium of expression of dlx2a and dlx2b, transcription factors that are expressed in early Astyanax odontogenic epithelium. Analysis of orthologous genes in the Japanese medaka (Oryzias latipes) and a catfish (Synodontis multipunctatus) suggests that expression was lost in cypriniforms, rather than gained in Astyanax. Treatment of Astyanax with an inhibitor of Fibroblast growth factor (Fgf) signaling produced a partial phenocopy of the zebrafish oral region, in that oral teeth, and expression of dlx2a and dlx2b, were lost, whereas shh and pitx2, genes whose expression is present in zebrafish oral epithelium, were unaffected. We hypothesize that a loss of Fgf signaling to oral epithelium was associated with cypriniform tooth loss.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | |
Collapse
|
80
|
Mitsiadis TA, Caton J, Cobourne M. Waking-up the sleeping beauty: recovery of the ancestral bird odontogenic program. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:227-33. [PMID: 16463377 DOI: 10.1002/jez.b.21094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent advances in molecular and developmental genetics have provided tools for understanding evolutionary changes in the nature of the epithelial-mesenchymal interactions regulating the patterned outgrowth of the tooth primordia. Tissue recombination experiments in mice have identified the oral epithelium as providing the instructive information for the initiation of tooth development. Teeth were lost in birds for more than 80 million years ago, but despite their disappearance, a number of gene products and the requisite tissue interactions needed for tooth formation are found in the avian oral region. It is believed that the avian ectomesenchyme has lost the odontogenic capacity, whilst the oral epithelium retains the molecular signaling required to induce odontogenesis. In order to investigate the odontogenic capacity of the neural crest-derived mesenchyme and its potential activation of the avian oral epithelium, we have realized mouse neural tube transplantations to chick embryos to replace the neural crest cells of chick with those of mouse. Teeth are formed in the mouse/chick chimeras, indicating that timing is critical for the acquisition of the odontogenic potential by the epithelium and, furthermore, suggesting that odontogenesis is initially directed by species-specific mesenchymal signals interplaying with common epithelial signals.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Craniofacial Development, King's College London, Dental Institute, London Bridge, London SE1 9RT, UK.
| | | | | |
Collapse
|
81
|
Fraser GJ, Graham A, Smith MM. Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:183-203. [PMID: 16496402 DOI: 10.1002/jez.b.21097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rainbow trout (Oncorhynchus mykiss) as a developmental model surpasses both zebrafish and mouse for a more widespread distribution of teeth in the oro-pharynx as the basis for general vertebrate odontogenesis, one in which replacement is an essential requirement. Studies on the rainbow trout have led to the identification of the initial sequential appearance of teeth, through differential gene expression as a changing spatio-temporal pattern, to set in place the primary teeth of the first generation, and also to regulate the continuous production of replacement tooth families. Here we reveal gene expression data that address both the field and clone theories for patterning a polyphyodont osteichthyan dentition. These data inform how the initial pattern may be established through up-regulation at tooth loci from a broad odontogenic band. It appears that control and regulation of replacement pattern resides in the already primed dental epithelium at the sides of the predecessor tooth. A case is presented for the developmental changes that might have occurred during vertebrate evolution, for the origin of a separate successional dental lamina, by comparison with an osteichthyan tetrapod dentition (Ambystoma mexicanum). The evolutionary origins of such a permanent dental lamina are proposed to have occurred from the transient one demonstrated here in the trout. This has implications for phylogenies based on the homology of teeth as only those developed from a dental lamina. Utilising the data generated from the rainbow trout model, we propose this as a standard for comparative development and evolutionary theories of the vertebrate dentition.
Collapse
Affiliation(s)
- Gareth J Fraser
- MRC Centre for Developmental Neurobiology, King's College London, London, UK.
| | | | | |
Collapse
|
82
|
Du C, Moradian-Oldak J. Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater 2006; 1:R10-7. [DOI: 10.1088/1748-6041/1/1/r02] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
83
|
Harris MP, Hasso SM, Ferguson MWJ, Fallon JF. The Development of Archosaurian First-Generation Teeth in a Chicken Mutant. Curr Biol 2006; 16:371-7. [PMID: 16488870 DOI: 10.1016/j.cub.2005.12.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
Modern birds do not have teeth. Rather, they develop a specialized keratinized structure, called the rhamphotheca, that covers the mandible, maxillae, and premaxillae. Although recombination studies have shown that the avian epidermis can respond to tooth-inductive cues from mouse or lizard oral mesenchyme and participate in tooth formation, attempts to initiate tooth development de novo in birds have failed. Here, we describe the formation of teeth in the talpid2 chicken mutant, including the developmental processes and early molecular changes associated with the formation of teeth. Additionally, we show recapitulation of the early events seen in talpid2 after in vivo activation of beta-catenin in wild-type embryos. We compare the formation of teeth in the talpid2 mutant with that in the alligator and show the formation of decidedly archosaurian (crocodilian) first-generation teeth in an avian embryo. The formation of teeth in the mutant is coupled with alterations in the specification of the oral/aboral boundary of the jaw. We propose an epigenetic model of the developmental modification of dentition in avian evolution; in this model, changes in the relative position of a lateral signaling center over competent odontogenic mesenchyme led to loss of teeth in avians while maintaining tooth developmental potential.
Collapse
Affiliation(s)
- Matthew P Harris
- Department of Anatomy, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
84
|
Abstract
Craniofacial malformations are involved in three fourths of all congenital birth defects in humans, affecting the development of head, face, or neck. Tremendous progress in the study of craniofacial development has been made that places this field at the forefront of biomedical research. A concerted effort among evolutionary and developmental biologists, human geneticists, and tissue engineers has revealed important information on the molecular mechanisms that are crucial for the patterning and formation of craniofacial structures. Here, we highlight recent advances in our understanding of evo-devo as it relates to craniofacial morphogenesis, fate determination of cranial neural crest cells, and specific signaling pathways in regulating tissue-tissue interactions during patterning of craniofacial apparatus and the morphogenesis of tooth, mandible, and palate. Together, these findings will be beneficial for the understanding, treatment, and prevention of human congenital malformations and establish the foundation for craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
85
|
Deng M, Shi J, Smith AJ, Jin Y. Effects of transforming growth factor β1 (TGFβ-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Arch Oral Biol 2005; 50:937-45. [PMID: 15871903 DOI: 10.1016/j.archoralbio.2005.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 03/09/2005] [Indexed: 01/09/2023]
Abstract
Cranial neural crest-derived ectomesenchymal cells represent a population of pluripotent stem cells giving rise to many of the various oro-facial and dental tissues. The factors determining the terminal fate of these cells are still unclear. The potentiality of human embryonic ectomesenchymal cells from the first branchial arch have been investigated when isolated and grown in a three-dimensional (3D)-collagen gel culture system in the presence of dentin matrix-derived non-collagenous proteins (DNCP) and TGFbeta-1. Functional differentiation of cells showing some characteristics of odontoblast-like cells could be observed when the cells were cultured with DNCP+TGFbeta-1 or DNCP, however, only cytological differentiation was observed during culture with TGFbeta-1 alone. The characteristics of these cells was assessed by morphological appearance, expression of the odontoblast phenotype marker dentin sialophosphoprotein (DSPP), increased alkaline phosphatase levels and formation of mineralised nodules in vitro. The results indicate that these embryonic cells from the first branchial arch are capable of responding to the inductive stimulus of DNCP or DNCP+TGFbeta-1 when isolated and grown in the 3D collagen gel culture system. The capacity of the isolated cells to differentiate into mineralizing cells showing some characteristics of odontoblast-like cells under these growth conditions highlights the potential of such approaches for tissue engineering strategies for hard-tissue regeneration after injury.
Collapse
Affiliation(s)
- Manjing Deng
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | | | | | |
Collapse
|
86
|
Melnick M, Witcher D, Bringas P, Carlsson P, Jaskoll T. Meckel's cartilage differentiation is dependent on hedgehog signaling. Cells Tissues Organs 2005; 179:146-57. [PMID: 16046861 DOI: 10.1159/000085950] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hedgehog (Hh) signaling pathway has been shown to be essential for craniofacial development. Although mandibular arch derivatives are largely absent in Shh null mice, little is known about the role of Hh signaling during Meckel's cartilage development per se. Mandible development is dependent on the morphogenesis of Meckel's cartilage, which then serves as a template for subsequent skeletal differentiation. In this study, we examine the biological function of Hh signaling during Meckel's cartilage development in vivo and in vitro. E13.5 Shh null mice present a small mesenchymal condensation in the region of a presumptive Meckel's cartilage in the hypoplastic mandibular arch. By E15.5, the Shh mutant exhibits a mere remnant of the mandibular arch, without evidence of Meckel's cartilage differentiation. Further, wild-type embryonic (E11 or E12) mandibular explants cultured for up to 5 days in the presence of cyclopamine, a steroidal alkaloid that specifically disrupts the Hh signaling pathway, exhibit a stage-dependent inhibition of Meckel's cartilage chondroblast differentiation to mature chondrocytes. This phenotype can be rescued by exogenous FGF8, a downstream effector of Hh signaling. Taken together, our results indicate that the Hh signaling pathway is critical to Meckel's cartilage ontogenesis and the rate of chondrogenesis, but not to initial primordium formation. The reliance on Hh signaling is stage dependent.
Collapse
Affiliation(s)
- Michael Melnick
- Laboratory for Developmental Genetics, USC, Los Angeles, CA 90089-0641, USA.
| | | | | | | | | |
Collapse
|
87
|
Abstract
In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis.
Collapse
Affiliation(s)
- Luis de la Fuente
- Department of Surgery, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
88
|
Miletich I, Cobourne MT, Abdeen M, Sharpe PT. Expression of the Hedgehog antagonists Rab23 and Slimb/betaTrCP during mouse tooth development. Arch Oral Biol 2005; 50:147-51. [PMID: 15721142 DOI: 10.1016/j.archoralbio.2004.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2004] [Indexed: 11/23/2022]
Abstract
The sonic hedgehog signalling peptide has been demonstrated to play an important role in the growth and patterning of several organs including the tooth. Inappropriate activation of Shh signalling in the embryo causes various patterning defects and complex regulation of this pathway is important during normal development. A growing list of diverse antagonists have been identified that restrict Shh signalling in the embryo, however, only Ptc1, Gas1 and Hip1 have been studied during tooth development. We have examined the expression pattern of the putative antagonists Rab23 and Slimb/betaTrCP during early murine odontogenesis and find that these molecules are expressed in the developing tooth. Interestingly, Rab23 demonstrates contrasting expression domains in the incisor and molar dentition during the cap stage, being restricted to the mesenchymal compartment of molar teeth and the epithelium of the enamel knot in incisor teeth. These findings provide the first evidence of distinct regulatory pathways for Shh in teeth of different classes.
Collapse
Affiliation(s)
- Isabelle Miletich
- Department of Craniofacial Development, Dental Institute, King's College London, Floor 28, Guy's Hospital, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
89
|
Abstract
Wnt and Hedgehog (Hh) signalling regulate stem-cell self-renewal and differentiation in a range of epithelia and the inappropriate activation of these pathways contributes to epithelial cancers. Recently, it was reported that Indian Hedgehog (Ihh) antagonises Wnt signalling in colonic epithelium. This observation contrasts with other reports of positive synergy between the pathways and challenges the view that systemically administered Hedgehog antagonists could be beneficial for the treatment of intestinal tumours. The work is discussed in the broader context of Ihh expression and function in epithelia and the different ways in which the Hh and Wnt pathways interact.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| |
Collapse
|
90
|
Madan AK, Kramer B. Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth. J Mol Histol 2005; 36:171-8. [PMID: 15900407 DOI: 10.1007/s10735-005-2684-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 02/22/2005] [Indexed: 12/01/2022]
Abstract
Epithelio-mesenchymal interactions are active during the development of the root of the tooth and are regulated by a variety of growth factors, such as fibroblast growth factors. FGF-2, 3, 4, and 8 have all been shown to play a role in the development of the crown of the tooth, but less is known about the factors that govern root formation, particularly FGF-2. The aim of this study was thus to elucidate the spatial and temporal expression of FGF-2 in the root of the developing tooth, as this growth factor is believed to be a mediator of epithelio-mesenchymal interactions. Parasagittal sections of the maxillary and mandibular arches of post-natal mice were utilized and the roots of the molar teeth were studied. Immunocytochemistry utilizing an antibody to FGF-2 was performed on sections of teeth at various stages of development. Intense immunostaining for FGF-2 was observed in differentiating odontoblasts at the apical end of the tooth and in the furcation zone of the developing root at all the stages examined. FGF-2 localization was also observed in cementoblasts on post-natal days 16, 20 and 24. The pattern of localization of FGF-2 in the developing root suggests that this growth factor may participate in the signaling network associated with root development.
Collapse
Affiliation(s)
- A K Madan
- Embryonic Development and Differentiation Research Programme, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193 Johannesburg, South Africa
| | | |
Collapse
|
91
|
Miletich I, Sharpe PT. Neural crest contribution to mammalian tooth formation. ACTA ACUST UNITED AC 2005; 72:200-12. [PMID: 15269893 DOI: 10.1002/bdrc.20012] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cranial neural crest cells, which are specialized cells of neural origin, are central to the process of mammalian tooth development. They are the only source of mesenchyme able to sustain tooth development, and give rise not only to most of the dental tissues, but also to the periodontium, the surrounding tissues that hold teeth in position. Tooth organogenesis is regulated by a series of interactions between cranial neural crest cells and the oral epithelium. In the development of a tooth, the epithelium covering the inside of the developing oral cavity provides the first instructive signals. Signaling molecules secreted by the oral epithelium 1) establish large cellular fields competent to form a specific tooth shape (mono- or multicuspid) along a proximodistal axis; 2) define an oral (capable of forming teeth) and non-oral mesenchyme along a rostrocaudal axis; and 3) position the sites of future tooth development. The critical information to model tooth shape resides later in the neural crest-derived mesenchyme. Cranial neural crest cells ultimately differentiate into highly specialized cell types to produce mature dental organs. Some cranial neural crest cells located in the dental pulp, however, maintain plasticity in their developmental potential up to postnatal life, offering new prospects for regeneration of dental tissues.
Collapse
Affiliation(s)
- Isabelle Miletich
- Department of Craniofacial Development, Dental Institute, King's College London, United Kingdom.
| | | |
Collapse
|
92
|
Kettunen P, Løes S, Furmanek T, Fjeld K, Kvinnsland IH, Behar O, Yagi T, Fujisawa H, Vainio S, Taniguchi M, Luukko K. Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 2004; 132:323-34. [PMID: 15604101 DOI: 10.1242/dev.01541] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During development, trigeminal nerve fibers navigate and establish their axonal projections to the developing tooth in a highly spatiotemporally controlled manner. By analyzing Sema3a and its receptor Npn1 knockout mouse embryos, we found that Sema3a regulates dental trigeminal axon navigation and patterning, as well as the timing of the first mandibular molar innervation, and that the effects of Sema3a appear to be mediated by Npn1 present in the axons. By performing tissue recombinant experiments and analyzing the effects of signaling molecules, we found that early oral and dental epithelia, which instruct tooth formation, and epithelial Wnt4 induce Sema3a expression in the presumptive dental mesenchyme before the arrival of the first dental nerve fibers. Later, at the bud stage, epithelial Wnt4 and Tgfbeta1 regulate Sema3a expression in the dental mesenchyme. In addition, Wnt4 stimulates mesenchymal expression of Msx1 transcription factor, which is essential for tooth formation, and Tgfbeta1 proliferation of the dental mesenchymal cells. Thus, epithelial-mesenchymal interactions control Sema3a expression and may coordinate axon navigation and patterning with tooth formation. Moreover, our results suggest that the odontogenic epithelium possesses the instructive information to control the formation of tooth nerve supply.
Collapse
Affiliation(s)
- Päivi Kettunen
- Division of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ. Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. Dev Dyn 2004; 229:857-68. [PMID: 15042709 DOI: 10.1002/dvdy.10453] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periostin was originally isolated as an osteoblast-specific factor that functions as a cell adhesion molecule for preosteoblasts and is thought to be involved in osteoblast recruitment, attachment, and spreading. The protein was renamed "periostin" because of its expression in the periosteum and periodontal ligament, indicating a potential role in bone and maintenance of tooth structure. Periostin has structural similarity to insect fasciclin-I and can be induced by TGF-beta and Bmp2. Because tooth and periodontium development is a well-described genetic model for organogenesis governed by a reciprocal set of epithelial-mesenchymal interactions, thought to be controlled by various TGF-beta superfamily members, we investigated whether periostin is present during tooth morphogenesis. Both periostin mRNA and protein expression were analyzed throughout normal tooth development (embryonic day [E] 9.5-newborn) and within both Bmp4- and Msx2-null embryos. Periostin mRNA is initially present within the E9.5 first branchial arch epithelium and then shifts to underlying ectomesenchyme. Both mRNA and protein are asymmetrically localized to the lingual/palatal and buccal side during the early epithelial-mesenchymal interactions. Periostin is also present in dental papilla cells and within the trans-differentiating odontoblasts during the bell and hard tissue formation stages of tooth development. We suggest that periostin plays multiple roles as a primary responder molecule during tooth development and may be linked to deposition and organization of other extracellular matrix adhesion molecules during maintenance of the adult tooth, particularly at the sites of hard-soft tissue interface.
Collapse
|
94
|
Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004; 5:499-508. [PMID: 15211352 DOI: 10.1038/nrg1380] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abigail Tucker
- Department of Craniofacial Development, Dental Institute, Kings College London, Floor 28 Guys Hospital, London Bridge, London SE1 9RT, UK.
| | | |
Collapse
|
95
|
Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development 2004; 131:2875-85. [PMID: 15151988 DOI: 10.1242/dev.01163] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The signalling peptide encoded by the sonic hedgehog gene is restricted to localised thickenings of oral epithelium, which mark the first morphological evidence of tooth development, and is known to play a crucial role during the initiation of odontogenesis. We show that at these stages in the murine mandibular arch in the absence of epithelium, the Shh targets Ptc1and Gli1 are upregulated in diastema mesenchyme, an edentulous region between the sites of molar and incisor tooth formation. This ectopic expression is not associated with Shh transcription but with Shh protein, undetectable in the presence of epithelium. These findings suggest that, in diastema mesenchyme, restriction of Shh activity is dependent upon the overlying epithelium. This inhibitory activity was demonstrated by the ability of transplanted diastema epithelium to downregulate Ptc1 in tooth explants, and for isolated diastema mesenchyme to express Ptc1. A candidate inhibitor in diastema mesenchyme is the glycosylphosphatidylinositol-linked membrane glycoprotein Gas1. Gas1is normally expressed throughout mandibular arch mesenchyme; however, in the absence of epithelium this expression was downregulated specifically in the diastema where ectopic Shh protein was identified. Although Shh signalling has no effect upon Gas1 expression in mandibular arch mesenchyme,overexpression of Gas1 results in downregulation of ectopic Ptc1. Therefore, control of the position of tooth initiation in the mandibular arch involves a combination of Shh signalling at sites where teeth are required and antagonism in regions destined to remain edentulous.
Collapse
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development and Orthodontics, GKT Dental Institute, King's College London, Floor 28, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
96
|
Ohazama A, Hu Y, Schmidt-Ullrich R, Cao Y, Scheidereit C, Karin M, Sharpe PT. A dual role for Ikk alpha in tooth development. Dev Cell 2004; 6:219-27. [PMID: 14960276 DOI: 10.1016/s1534-5807(04)00024-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 11/26/2003] [Accepted: 12/01/2003] [Indexed: 12/20/2022]
Abstract
IKK alpha is a component of the I kappa B kinase (IKK) complex that plays a key role in the activation of NF-kappa B. In Ikk alpha mutant mice and mice expressing a transdominant negative mutant of I kappa B alpha (cI kappa B alpha Delta N), molars have abnormal cusps, indicating that Ikk alpha is involved in cusp formation through the NF-kappa B pathway. However, Ikk alpha mutant incisors also have an earlier phenotype where epithelium evaginates outward into the developing oral cavity rather than invaginating into the underlying mesenchyme. A similar evagination of epithelium was also observed in whisker development, suggesting that Ikk alpha contributes to the direction of epithelial growth during the early stages of development in many ectodermal appendages. Since cI kappa B alpha Delta N mice have normal incisor epithelial invagination, Ikk alpha's role appears to be NF-kappa B independent. Changes in Notch1, Notch2, Wnt7b, and Shh expression found in incisor epithelium of Ikk alpha mutants suggest that this NF-kappa B-independent function is mediated by Notch/Wnt/Shh signaling pathways.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
97
|
Boughner JC, Dean MC. Does space in the jaw influence the timing of molar crown initiation? A model using baboons (Papio anubis) and great apes (Pan troglodytes, Pan paniscus). J Hum Evol 2004; 46:255-77. [PMID: 14984783 DOI: 10.1016/j.jhevol.2003.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 11/20/2003] [Accepted: 11/26/2003] [Indexed: 11/18/2022]
Abstract
Radiographic and histological studies of baboon (Papio hamadryas, P. anubis) and chimpanzee (Pan troglodytes) permanent tooth development have found that periods of molar crown mineralization overlap markedly in chimpanzees but are staggered in baboons. Here we test the hypothesis that these intertaxon differences in molar initiation are primarily due to the space available in the mandibles of each species for these teeth. This study includes radiographic, linear measurement, and three-dimensional (3D) coordinate landmark data taken from baboon (Papio anubis n=51) and great ape (Pan paniscus n=43, P. troglodytes n=60) mandibles and permanent molars across a broad developmental range for each taxon. Unexpectedly, 3D multivariate statistical shape analysis of the molar crypt, crown, and root data shows that all three species trajectories of molar row shape change are indistinguishable from each other. Qualitative analysis of these 3D data reveals subtle and inconclusive intergeneric differences in the space maintained between adjacent molars during growth. The space distal to each newly initiated molar is slightly greater in the baboon. Bivariate analyses comparing molar row and mandibular corpus proportions in Papio and Pan fail to show clear or consistent taxonomic differences in the ratio of space afforded developing molars in the alveolar bone. Thus, there is a poor correlation between mandibular proportion and both intermolar spacing and 3D molar development pattern. Contrary to earlier studies, these results suggest that pattern of molar crown initiation and temporal overlap of adjacent mineralizing crowns is not significantly different between Papio and Pan. This may be due in part to the inclusion here of not only 3D molar crown data but also 3D molar crypt data. This study strongly refutes the hypothesis that space available in the mandible directly underlies different times of permanent molar crown initiation between Papio and Pan.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | | |
Collapse
|
98
|
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development and Orthodontics, GKT Dental Institute, King's College London, United Kingdom
| | | |
Collapse
|
99
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
100
|
Abstract
New evidence shows that teeth evolved with a greater degree of independence from jaws than previously considered. Pharyngeal denticles occur in jawless fish and also in early gnathostomes and precede jaw teeth in phylogeny. Many of these denticles form joined polarized sets on each branchial arch; these resemble whorl-shaped tooth sets on the jaws of stem and crown gnathostomes and are proposed as homologous units. Therefore, the source of patterning of these pharyngeal denticle and tooth sets is conserved from jawless conditions. It is proposed that developmental regulatory systems, responsible for all such tooth patterns on the jaws, are co-opted from the pharyngeal region and not from the skin as classically understood. This strongly implicates embryonic endoderm as opposed to ectoderm in the genetic control of dentition patterning. New interpretations of ontogenetic data on patterning dentitions of extant sharks are proposed, together with those of osteichthyan fish. Two entirely fossil groups, placoderms and acanthodians, at the base of gnathostome phylogeny are reassessed on the basis of a new model. It is concluded that within stem group and crown group gnathostomes several different strategies, unique to each taxon, were adopted to produce different developmental models of dentition patterning from pharyngeal denticles. One shared developmental pattern is that of initiation from primordial tooth sites, independently in each dentate zone of the jaws. The new model is proposed as a framework for data on evolutionary developmental genetics.
Collapse
Affiliation(s)
- Moya Meredith Smith
- Department of Craniofacial Development, Dental Institute KCL, Guy's Tower, London Bridge, SE1 9RT, UK.
| |
Collapse
|