51
|
Wang L, Song C, Wang N, Li S, Liu Q, Sun Z, Wang K, Yu SC, Yang Q. NADP modulates RNA m 6A methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol 2020; 16:1394-1402. [PMID: 32719557 DOI: 10.1038/s41589-020-0601-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
Abstract
Metabolism is often regulated by the transcription and translation of RNA. In turn, it is likely that some metabolites regulate enzymes controlling reversible RNA modification, such as N6-methyladenosine (m6A), to modulate RNA. This hypothesis is at least partially supported by the findings that multiple metabolic diseases are highly associated with fat mass and obesity-associated protein (FTO), an m6A demethylase. However, knowledge about whether and which metabolites directly regulate m6A remains elusive. Here, we show that NADP directly binds FTO, independently increases FTO activity, and promotes RNA m6A demethylation and adipogenesis. We screened a set of metabolites using a fluorescence quenching assay and NADP was identified to remarkably bind FTO. In vitro demethylation assays indicated that NADP enhances FTO activity. Furthermore, NADP regulated mRNA m6A via FTO in vivo, and deletion of FTO blocked NADP-enhanced adipogenesis in 3T3-L1 preadipocytes. These results build a direct link between metabolism and RNA m6A demethylation.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adipocytes/cytology
- Adipocytes/drug effects
- Adipocytes/enzymology
- Adipogenesis/drug effects
- Adipogenesis/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Binding Sites
- Cell Differentiation/drug effects
- Demethylation
- Enzyme Assays
- Gene Deletion
- Gene Expression Regulation
- HEK293 Cells
- High-Throughput Screening Assays
- Humans
- Kinetics
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- NADP/metabolism
- NADP/pharmacology
- Protein Binding
- Protein Structure, Secondary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Lina Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Chengli Song
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Na Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Songyu Li
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Qiaoling Liu
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Kai Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Qingkai Yang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
52
|
Quiroga J, Alarcón P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103768. [PMID: 32692996 DOI: 10.1016/j.dci.2020.103768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Neutrophil extracellular trap (NET) formation eliminates/prevents the spread of infectious agents. Platelet activating factor (PAF) is involved in infectious diseases of cattle because it recruits and activates neutrophils. However, its ability to induce NET release and the role of metabolism in this process is not known. We investigated if inhibition of glycolysis, mitochondrial-derived adenosine triphosphate (ATP) synthesis and purinergic signaling though P2X1 purinoceptors interfered with NET formation induced by PAF. We inhibited bovine neutrophils with 2-deoxy-d-glucose, rotenone, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and NF449 to evaluate PAF-mediated NET extrusion. PAF induced mitochondrial hyperpolarization and triggered extracellular ATP release via pannexin-1. Inhibition of mitochondrial metabolism prevented extracellular ATP release. Inhibition of glycolysis, complex-I activity and oxidative phosphorylation prevented NET formation induced by PAF. Inhibition of P2X1 purinergic receptors inhibited mitochondrial hyperpolarization and NET formation. We concluded that PAF-induced NET release is dependent upon glycolysis, mitochondrial ATP synthesis and purinergic signaling.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
53
|
Reproductive Potential of Yeast Cells Depends on Overall Action of Interconnected Changes in Central Carbon Metabolism, Cellular Biosynthetic Capacity, and Proteostasis. Int J Mol Sci 2020; 21:ijms21197313. [PMID: 33022992 PMCID: PMC7582853 DOI: 10.3390/ijms21197313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon metabolism is a crucial aspect of cell life. Glucose, as the primary source of energy and carbon skeleton, determines the type of cell metabolism and biosynthetic capabilities, which, through the regulation of cell size, may affect the reproductive capacity of the yeast cell. Calorie restriction is considered as the most effective way to improve cellular physiological capacity, and its molecular mechanisms are complex and include several nutrient signaling pathways. It is widely assumed that the metabolic shift from fermentation to respiration is treated as a substantial driving force for the mechanism of calorie restriction and its influence on reproductive capabilities of cells. In this paper, we propose another approach to this issue based on analysis the connection between energy-producing and biomass formation pathways which are closed in the metabolic triangle, i.e., the respiration-glycolysis-pentose phosphate pathway. The analyses were based on the use of cells lacking hexokinase 2 (∆hxk2) and conditions of different glucose concentration corresponding to the calorie restriction and the calorie excess. Hexokinase 2 is the key enzyme involved in central carbon metabolism and is also treated as a calorie restriction mimetic. The experimental model used allows us to explain both the role of increased respiration as an effect of calorie restriction but also other aspects of carbon metabolism and the related metabolic flux in regulation of reproductive potential of the cells. The obtained results reveal that increased respiration is not a prerequisite for reproductive potential extension but rather an accompanying effect of the positive role of calorie restriction. More important seems to be the changes connected with fluxes in central carbon metabolic pathways resulting in low biosynthetic capabilities and improved proteostasis.
Collapse
|
54
|
Kizilbay G, Karaman M. Possible inhibition mechanism of dobutamine hydrochloride as potent inhibitor for human glucose-6-phosphate dehydrogenase enzyme. J Biomol Struct Dyn 2020; 40:204-212. [PMID: 32835622 DOI: 10.1080/07391102.2020.1811155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first rate-limiting enzyme in the pentose phosphate pathway. One of the enzyme's most important functions is the production of a reducing agent that is essential for preserving the level of reduced glutathione (GSH). However, some chemicals, such as industrial waste and the active ingredients of several drugs, can cause reduction or blockage in this enzyme's activity. This case causes the occurrence of anemia by damaging erythrocytes. In this study, the G6PD enzyme was purified 21,981 fold with affinity chromatography and the effects of the active ingredients of some antiarrhythmic drugs on enzyme activity were investigated with in vitro and in silico methods. We found that dobutamine hydrochloride significantly decreased enzyme activity and its inhibitory constant (Ki) value was calculated as 19.02 ± 4.83 mM. The in vitro study results also show that dobutamine hydrochloride is a potent inhibitor of enzyme activity. We also found that dobutamine hydrochloride inhibits the hG6PD enzyme's activity by causing structural alterations in substrate and coenzyme binding sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gokce Kizilbay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
55
|
Linkage between Carbon Metabolism, Redox Status and Cellular Physiology in the Yeast Saccharomyces cerevisiae Devoid of SOD1 or SOD2 Gene. Genes (Basel) 2020; 11:genes11070780. [PMID: 32664606 PMCID: PMC7397328 DOI: 10.3390/genes11070780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Saccharomyces cerevisiae yeast cells may generate energy both by fermentation and aerobic respiration, which are dependent on the type and availability of carbon sources. Cells adapt to changes in nutrient availability, which entails the specific costs and benefits of different types of metabolism but also may cause alteration in redox homeostasis, both by changes in reactive oxygen species (ROS) and in cellular reductant molecules contents. In this study, yeast cells devoid of the SOD1 or SOD2 gene and fermentative or respiratory conditions were used to unravel the connection between the type of metabolism and redox status of cells and also how this affects selected parameters of cellular physiology. The performed analysis provides an argument that the source of ROS depends on the type of metabolism and non-mitochondrial sources are an important pool of ROS in yeast cells, especially under fermentative metabolism. There is a strict interconnection between carbon metabolism and redox status, which in turn has an influence on the physiological efficiency of the cells. Furthermore, pyridine nucleotide cofactors play an important role in these relationships.
Collapse
|
56
|
Insulin Resistance Does Not Impair Mechanical Overload-Stimulated Glucose Uptake, but Does Alter the Metabolic Fate of Glucose in Mouse Muscle. Int J Mol Sci 2020; 21:ijms21134715. [PMID: 32630335 PMCID: PMC7370044 DOI: 10.3390/ijms21134715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle glucose uptake and glucose metabolism are impaired in insulin resistance. Mechanical overload stimulates glucose uptake into insulin-resistant muscle; yet the mechanisms underlying this beneficial effect remain poorly understood. This study examined whether a differential partitioning of glucose metabolism is part of the mechanosensitive mechanism underlying overload-stimulated glucose uptake in insulin-resistant muscle. Mice were fed a high-fat diet to induce insulin resistance. Plantaris muscle overload was induced by unilateral synergist ablation. After 5 days, muscles were excised for the following measurements: (1) [3H]-2-deoxyglucose uptake; (2) glycogen; 3) [5-3H]-glucose flux through glycolysis; (4) lactate secretion; (5) metabolites; and (6) immunoblots. Overload increased glucose uptake ~80% in both insulin-sensitive and insulin-resistant muscles. Overload increased glycogen content ~20% and this was enhanced to ~40% in the insulin-resistant muscle. Overload did not alter glycolytic flux, but did increase muscle lactate secretion 40–50%. In both insulin-sensitive and insulin-resistant muscles, overload increased 6-phosphogluconate levels ~150% and decreased NADP:NADPH ~60%, indicating pentose phosphate pathway activation. Overload increased protein O-GlcNAcylation ~45% and this was enhanced to ~55% in the insulin-resistant muscle, indicating hexosamine pathway activation. In conclusion, insulin resistance does not impair mechanical overload-stimulated glucose uptake but does alter the metabolic fate of glucose in muscle.
Collapse
|
57
|
Gupte R, Dhagia V, Rocic P, Ochi R, Gupte SA. Glucose-6-phosphate dehydrogenase increases Ca 2+ currents by interacting with Ca v1.2 and reducing intrinsic inactivation of the L-type calcium channel. Am J Physiol Heart Circ Physiol 2020; 319:H144-H158. [PMID: 32442021 DOI: 10.1152/ajpheart.00727.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pyridine nucleotides, such as NADPH and NADH, are emerging as critical players in the regulation of heart and vascular function. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, is the primary source and regulator of cellular NADPH. In the current study, we have identified two isoforms of G6PD (slow and fast migrating) and functionally characterized the slow migrating isoform of G6PD (G6PD545) in bovine and human arteries. We found that G6PD545 is eluted in the caveolae fraction of vascular smooth muscle (VSM) and has a higher maximum rate of reaction (Vmax: 1.65-fold) than its fast migrating isoform (G6PD515). Interestingly, caveolae G6PD forms a complex with the pore-forming α1C-subunit of the L-type Ca2+ channel, Cav1.2, as demonstrated by a proximity ligation assay in fixed VSMCs. Additionally, Förster resonance energy transfer (FRET) analysis of HEK293-17T cells cotransfected with red fluorescent protein (RFP)-tagged G6PD545 (C-G6PD545) and green fluorescent protein (GFP)-tagged Cav1.2-(Cav1.2-GFP) demonstrated strong FRET signals as compared with cells cotransfected with Cav1.2-GFP and C-G6PD515. Furthermore, L-type Ca2+ channel conductance was larger and the voltage-independent component of availability (c1) was augmented in C-G6PD545 and Cav1.2-GFP cotransfectants compared with those expressing Cav1.2-GFP alone. Surprisingly, epiandrosterone, a G6PD inhibitor, disrupted the G6PD-Cav1.2 complex, also decreasing the amplitude of L-type Ca2+ currents and window currents, thereby reducing the availability of the c1 component. Moreover, overexpression of adeno-G6PD545-GFP augmented the KCl-induced contraction in coronary arteries compared with control. To determine whether overexpression of G6PD had any clinical implication, we investigated its activity in arteries from patients and rats with metabolic syndrome and found that G6PD activity was high in this disease condition. Interestingly, epiandrosterone treatment reduced elevated mean arterial blood pressure and peripheral vascular resistance in metabolic syndrome rats, suggesting that the increased activity of G6PD augmented vascular contraction and blood pressure in the metabolic syndrome. These data suggest that the novel G6PD-Cav1.2 interaction, in the caveolae fraction, reduces intrinsic voltage-dependent inactivation of the channel and contributes to regulate VSM L-type Ca2+ channel function and Ca2+ signaling, thereby playing a significant role in modulating vascular function in physiological/pathophysiological conditions.NEW & NOTEWORTHY In this study we have identified a novel isozyme of glucose-6-phosphate dehydrogenase (G6PD), a metabolic enzyme, that interacts with and contributes to regulate smooth muscle cell l-type Ca2+ ion channel function, which plays a crucial role in vascular function in physiology and pathophysiology. Furthermore, we demonstrate that expression and activity of this novel G6PD isoform are increased in arteries of individuals with metabolic syndrome and in inhibition of G6PD activity in rats of metabolic syndrome reduced blood pressure.
Collapse
Affiliation(s)
- Rakhee Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Rikuo Ochi
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
58
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
59
|
Zheng S, Jiang B, Zhang T, Chen J. Combined mutagenesis and metabolic regulation to enhance D-arabitol production from Candida parapsilosis. J Ind Microbiol Biotechnol 2020; 47:425-435. [PMID: 32361796 DOI: 10.1007/s10295-020-02278-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
D-Arabitol is an important pentitol that is widely used in the food, pharmaceutical and chemical industries. It is mainly produced by yeasts during the biotransformation of glucose. To obtain strains with high D-arabitol production, Candida parapsilosis was mutated using atmospheric and room temperature plasma (ARTP). Among the screened mutants, mutant A6 had the highest yield at 32.92 g/L, a 53.98% increase compared with the original strain (21.38 g/L). Furthermore, metabolic regulators were added to the medium to improve D-arabitol production. Pyrithioxin dihydrochloride increased D-arabitol production by 34.4% by regulating glucose-6-phosphate dehydrogenase, and 4-methylpyrazole increased D-arabitol production by 77.4% compared with the control group by inhibiting alcohol dehydrogenase activity. Amphotericin B and Triton X-100 increased D-arabitol production by 23.8% and 42.2% by improving the membrane permeability and dissolved oxygen content, respectively. This study may provide important implications for obtaining high-yield D-arabitol strains.
Collapse
Affiliation(s)
- Simeng Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
60
|
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, Zheng C, Zhang H, Jordan A, Waddell I, Leopold J, Hu CJ, McMurtry IF, D'Alessandro A, Stenmark KR, Gupte SA. Hypoxic activation of glucose-6-phosphate dehydrogenase controls the expression of genes involved in the pathogenesis of pulmonary hypertension through the regulation of DNA methylation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L773-L786. [PMID: 32159369 PMCID: PMC7191486 DOI: 10.1152/ajplung.00001.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is considered important in the pathogenesis of the occlusive vasculopathy observed in pulmonary hypertension (PH). However, the mechanisms that link reprogrammed metabolism to aberrant expression of genes, which modulate functional phenotypes of cells in PH, remain enigmatic. Herein, we demonstrate that, in mice, hypoxia-induced PH was prevented by glucose-6-phosphate dehydrogenase deficiency (G6PDDef), and further show that established severe PH in Cyp2c44-/- mice was attenuated by knockdown with G6PD shRNA or by G6PD inhibition with an inhibitor (N-ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl]urea, NEOU). Mechanistically, G6PDDef, knockdown and inhibition in lungs: 1) reduced hypoxia-induced changes in cytoplasmic and mitochondrial metabolism, 2) increased expression of Tet methylcytosine dioxygenase 2 (Tet2) gene, and 3) upregulated expression of the coding genes and long noncoding (lnc) RNA Pint, which inhibits cell growth, by hypomethylating the promoter flanking region downstream of the transcription start site. These results suggest functional TET2 is required for G6PD inhibition to increase gene expression and to reverse hypoxia-induced PH in mice. Furthermore, the inhibitor of G6PD activity (NEOU) decreased metabolic reprogramming, upregulated TET2 and lncPINT, and inhibited growth of control and diseased smooth muscle cells isolated from pulmonary arteries of normal individuals and idiopathic-PAH patients, respectively. Collectively, these findings demonstrate a previously unrecognized function for G6PD as a regulator of DNA methylation. These findings further suggest that G6PD acts as a link between reprogrammed metabolism and aberrant gene regulation and plays a crucial role in regulating the phenotype of cells implicated in the pathogenesis of PH, a debilitating disorder with a high mortality rate.
Collapse
Affiliation(s)
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ryota Hashimoto
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amrit Ramesh
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Jane Leopold
- Department of Medicine, Division of Cardiology, Brigham Women and Children's Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ivan F McMurtry
- Departments of Pharmacology and Internal Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
61
|
McGuire PJ. Chemical individuality in T cells: A Garrodian view of immunometabolism. Immunol Rev 2020; 295:82-100. [PMID: 32236968 DOI: 10.1111/imr.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metabolically quiescent T cells circulate throughout the body in search of antigen. Following engagement of their cognate receptors, T cells undergo metabolic reprogramming to support their activation, differentiation, and ultimately function. In the spirit of Sir Archibald Garrod, this metabolic reprogramming actually imparts a chemical individuality which confers advantage, while in others confers vulnerability, depending upon the milieu. Studying T cell immunometabolism in the context of inborn errors of metabolism allows one to define essential pathways of intermediary metabolism as well metabolic vulnerabilities and plasticity. Inborn errors of metabolism, a class of diseases first named by Garrod, have a long history of being informative for common physiologic and pathologic processes. This endeavor may be accomplished through the study of patients, animal models, and in vitro models of inborn errors of metabolism. In this review, the basics of intermediary metabolism and core metabolic pathways will be discussed, along with their relationship to T cell immunometabolism. Due to their pleiotropic nature, the reader will be specifically directed toward various inborn errors of metabolism which may be helpful for answering important questions about the role of metabolism in T cells.
Collapse
Affiliation(s)
- Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
62
|
Mujahid Z, Tounekti T, Khemira H. Cold plasma treatment to release dormancy and improve growth in grape buds: a promising alternative to natural chilling and rest breaking chemicals. Sci Rep 2020; 10:2667. [PMID: 32060299 PMCID: PMC7021807 DOI: 10.1038/s41598-020-59097-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/23/2020] [Indexed: 02/04/2023] Open
Abstract
Winter dormancy of temperate zone perennial plant species is commonly released by chilling temperature. If the duration of the cold weather is not adequate, plant growth becomes disorganized leading to reduced growth, spread out flowering and fruit maturation and often reduced yield. In mild-winter regions, growers commonly resort to spraying their trees with chemicals such as hydrogen cyanamide to compensate for the lack of chilling to ensure good growth and yield. Although effective, most of these chemicals are highly toxic; unfortunately, there is no effective and environmentally friendly alternative which can be used to release dormancy. In this work, we present a cold plasma treatment-based method which can effectively release the dormancy of grape buds. We have found that exposing grape buds to plasma provides improvement of several growth parameters including higher, faster and more synchronous budbreak and more vigorous vegetative growth, comparatively similar to or better than natural chilling. Biochemical analyses of bud tissue suggest that the plasma treatment triggered a marked transient oxidative stress as indicated by the increase in the concentrations of free proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2). Proline appears to have played a key role; as a compatible osmolyte, it may have protected cellular structures against free radicals and as a signaling molecule, it may have induced the events leading to dormancy release. We anticipate that our work will provide a starting point for the development of novel plasma-based tools and methods to treat dormant plants. The plasma treatment method may allow higher agricultural production in several regions of the world at risk of becoming marginal for the cultivation of certain crops due to global warming.
Collapse
Affiliation(s)
- Z Mujahid
- Department of Physics, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - T Tounekti
- Centre for Environmental Research & Studies, Jazan University, Jazan, 45142, Saudi Arabia
| | - H Khemira
- Centre for Environmental Research & Studies, Jazan University, Jazan, 45142, Saudi Arabia.
| |
Collapse
|
63
|
TGF-ß1 Induces Changes in the Energy Metabolism of White Adipose Tissue-Derived Human Adult Mesenchymal Stem/Stromal Cells In Vitro. Metabolites 2020; 10:metabo10020059. [PMID: 32046088 PMCID: PMC7074410 DOI: 10.3390/metabo10020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue plays an active role in the regulation of the body’s energy balance. Mesenchymal stem/stromal cells from adipose tissue (adMSC) are the precursor cells for repair and adipogenesis. Since the balance of the differentiation state of adipose tissue-resident cells is associated with the development of various diseases, the examination of the regulation of proliferation and differentiation of adMSC might provide new therapeutic targets. Transforming growth factor-β1 (TGF-ß1) is synthetized by many cell types and is involved in various biological processes. Here, we investigated the effects of different concentrations of TGF-ß1 (1–10 ng/mL) on adMSC proliferation, metabolic activity, and analyzed the gene expression data obtained from DNA microarrays by bioinformatics. TGF-ß1 induced the concentration- and time-dependent increase in the cell number of adMSC with simultaneously unchanged cell cycle distributions. The basal oxygen consumption rates did not change significantly after TGF-ß1 exposure. However, glycolytic activity was significantly increased. The gene expression analysis identified 3275 differentially expressed genes upon exposure to TGF-ß1. According to the pathway enrichment analyses, they also included genes associated with energy metabolism. Thus, it was shown that TGF-ß1 induces changes in the energy metabolism of adMSC. Whether these effects are of relevance in vivo and whether they contribute to pathogenesis should be addressed in further examinations.
Collapse
|
64
|
Amara I, Timoumi R, Annabi E, Di Rosa G, Scuto M, Najjar MF, Calabrese V, Abid-Essefi S. Di (2-ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:78-86. [PMID: 31486570 DOI: 10.1002/tox.22844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that gives flexibility to various polyvinyl chloride products. It is a pollutant easily released into the environment and can cause many adverse effects to living organisms including hepatotoxicity. The thioredoxin system is a determining factor in the redox balance maintaining in the liver, which is a vulnerable tissue of reactive oxygen species overproduction because of its high energy needs. In order to determine if the thioredoxin system is a target in the development of DEHP hepatotoxicity, Balb/c mice were administered with DEHP intraperitoneally daily for 30 days. Results demonstrated that after DEHP exposure, biochemical profile changes were observed. This phthalate causes oxidative damage through the induction of lipid peroxydation as well as the increase of superoxide dismutase and catalase activities. As new evidence provided in this study, we demonstrated that the DEHP affected the thioredoxin system by altering the expression and the activity of thioredoxin (Trx) and thioredoxin Reductase (TrxR1). The two enzyme activities of the oxidative phase of the pentose phosphate pathway: Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase were also affected by this phthalate. This leads to a decrease in the level of nicotinamide adenine dinucleotide phosphate used by the TrxR1 to maintain the regeneration of the reduced Trx. We also demonstrated that such effects can be responsible of DEHP-induced DNA damage.
Collapse
Affiliation(s)
- Ines Amara
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rim Timoumi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Emna Annabi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Mohamed F Najjar
- Laboratory of Biochemistry-Toxicology, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salwa Abid-Essefi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| |
Collapse
|
65
|
Tokuda K, Baron B, Yamashiro C, Kuramitsu Y, Kitagawa T, Kobayashi M, Sonoda KH, Kimura K. Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina. Cell Biol Int 2020; 44:137-144. [PMID: 31393075 DOI: 10.1002/cbin.11212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/04/2019] [Indexed: 01/24/2023]
Abstract
The metabolic state influences the regulation of neural stem/progenitor cells. The pentose phosphate pathway (PPP), an alternative metabolic pathway that operates parallel to glycolysis, not only provides key intermediates for biosynthetic reactions but also controls the fate of neural stem/progenitor cells. We have previously shown that glutamate application leads to the induction of neural progenitor cells in mature ex vivo rat retina. In this study, we investigated whether regulation of the PPP might be changed following glutamate treatment of the retina. Immunoblot analysis revealed that the amount of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP as well as that of 6-phosphogluconate dehydrogenase (6PGD), another enzyme in this pathway, increased in the glutamate-treated retina. Consistent with the fact that both these enzymes generate reduced nicotinamide adenine dinucleotide phosphate (NADPH), the amount of NAPDH in the treated retina was significantly higher compared with that in the untreated retina. We also found that both DNA synthesis as well as the expression of fatty acid synthase (FASN) increased significantly in the glutamate-treated retina. Furthermore, hypoxia-inducible factor 1-α (HIF-1α), a positive transcriptional regulator of PPP enzymes, was up-regulated at both messenger RNA (mRNA) and protein levels. Finally, we found the interaction of HIF-1α with the M2 isozyme of pyruvate kinase (PKM2), with this interaction having been shown to contribute to a positive feedback loop in the control of glycolysis. Our results thus show that specific metabolic change in the PPP occurs in the process of neural progenitor cell induction in the mature rat retina.
Collapse
Affiliation(s)
- Kazuhiro Tokuda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuhiro Kuramitsu
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takao Kitagawa
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
66
|
Warzych E, Lipinska P. Energy metabolism of follicular environment during oocyte growth and maturation. J Reprod Dev 2019; 66:1-7. [PMID: 31787727 PMCID: PMC7040205 DOI: 10.1262/jrd.2019-102] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental competence. Therefore homeostasis between metabolism of glucose and fatty acids in the oocyte is being widely described nowadays. This review aims to discuss the follicular (in vivo) or maturation media (in vitro) environments with regard to glucose and fatty acid metabolism, as the main sources of the energy for the oocyte. A great emphasis is given on the balance between those two metabolic pathways and its further impact on female fertility.
Collapse
Affiliation(s)
- Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland
| | - Paulina Lipinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland
| |
Collapse
|
67
|
Smolinski MB, Green SR, Storey KB. Glucose-6-phosphate dehydrogenase is posttranslationally regulated in the larvae of the freeze-tolerant gall fly, Eurosta solidaginis, in response to freezing. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21618. [PMID: 31512274 DOI: 10.1002/arch.21618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The freeze-tolerant larvae of the goldenrod gall fly (Eurosta solidaginis) undergo substantial alterations to their molecular physiology during the winter including the production of elevated quantities of glycerol and sorbitol, which function as cryoprotectants to survive whole body freezing. Production of these cryoprotectants depends on cytosolic pools of nicotinamide adenine dinucleotide phosphate H (NADPH), a major source being the pentose phosphate pathway (PPP). Glucose-6-phosphate dehydrogenase (G6PDH) mediates the rate-limiting and committed step of the PPP and therefore its molecular properties were explored in larvae sampled from control versus frozen states. G6PDH was purified from control (5°C) and frozen (-15°C) E. solidaginis larvae by a single-step chromatography method utilizing 2',5'-ADP agarose and analyzed to determine its enzymatic parameters. Studies revealed a decrease in Km for G6P in the frozen animals (to 50% of control values) suggesting an increased flux through the PPP. Immunoblotting of the purified enzyme showed differences in the relative extent of several posttranslational modifications, notably ubiquitination (95% decrease in frozen larvae), cysteine nitrosylation (61% decrease), threonine (4.1 fold increase), and serine phosphorylation (59% decrease). Together these data suggested that the increased flux through the PPP needed to generate NADPH for cryoprotectants synthesis is regulated, at least in part, through posttranslational alterations of G6PDH.
Collapse
Affiliation(s)
| | - Stuart R Green
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
68
|
Shivashankar S, Sumathi M. Rapid burst of ethylene evolution by premature seed: A warning sign for the onset of spongy tissue disorder in Alphonso mango fruit? J Biosci 2019. [DOI: 10.1007/s12038-019-9957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Sun S, Hanzawa F, Kim D, Umeki M, Nakajima S, Sakai K, Ikeda S, Mochizuki S, Oda H. Circadian rhythm-dependent induction of hepatic lipogenic gene expression in rats fed a high-sucrose diet. J Biol Chem 2019; 294:15206-15217. [PMID: 31481463 PMCID: PMC6802514 DOI: 10.1074/jbc.ra119.010328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome has become a global health challenge and was recently reported to be positively correlated with increased sucrose consumption. Mechanistic analyses of excess sucrose-induced progression of metabolic syndrome have been focused mainly on abnormal hepatic lipogenesis, and the exact contribution of excess sucrose to metabolic disorders remains controversial. Considering that carbohydrate and lipid metabolisms exhibit clear circadian rhythms, here we investigated the possible contribution of diurnal oscillations to responses of hepatic lipid metabolism to excess sucrose. We found that excess sucrose dose-dependently promotes fatty liver and hyperlipidemia in in rats fed a high-sucrose diet (HSD). We observed that excess sucrose enhances the oscillation amplitudes of the expression of clock genes along with the levels of hepatic lipid and carbohydrate metabolism-related mRNAs that increase lipogenesis. We did not observe similar changes in the levels of the transcription factors regulating the expression of these genes. This suggested that the excess sucrose-induced, circadian rhythm-dependent amplification of lipogenesis is post-transcriptionally regulated via the stability of metabolic gene transcripts. Of note, our findings also provide evidence that fructose causes some of the HSD-induced, circadian rhythm-dependent alterations in lipogenic gene expression. Our discovery of HSD-induced circadian rhythm-dependent alterations in lipogenesis at the post-transcriptional level may inform future studies investigating the complex relationships among sucrose uptake, circadian rhythm, and metabolic enzyme expression. Our findings could contribute to the design of chrono-nutritional interventions to prevent or manage the development of fatty liver and hyperlipidemia in sucrose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Fumiaki Hanzawa
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| | - Daeun Kim
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Miki Umeki
- Faculty of Food Science and Nutrition, Beppu University, Beppu 874-8501, Japan
| | - Syunsuke Nakajima
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Kumiko Sakai
- Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Saiko Ikeda
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
70
|
CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression. Sci Rep 2019; 9:14065. [PMID: 31575908 PMCID: PMC6773781 DOI: 10.1038/s41598-019-50547-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.
Collapse
|
71
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
72
|
Wang LR, Yang XN, Gao YS, Zhang XY, Hu W, Zhou Z, Meng YL. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:911-919. [PMID: 31077623 DOI: 10.1111/plb.13005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/07/2019] [Indexed: 05/06/2023]
Abstract
The dormancy of seeds of upland cotton can be broken during dry after-ripening, but the mechanism of its dormancy release remains unclear. Freshly harvested cotton seeds were subjected to after-ripening for 180 days. Cotton seeds from different days of after-ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2 O2 and phytohormones and activities of antioxidant enzymes and glucose-6-phosphate dehydrogenase were measured during after-ripening and germination. Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2 O2 increased during after-ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2 O2 and changed peroxidase content during germination. For cotton seed, the alleviation of coat-imposed dormancy required 30 days of after-ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2 O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
Collapse
Affiliation(s)
- L R Wang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - X N Yang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Y S Gao
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - X Y Zhang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - W Hu
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Z Zhou
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Y L Meng
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
73
|
An Effective Protocol for Proteome Analysis of Medaka ( Oryzias latipes) after Acute Exposure to Ionizing Radiation. Methods Protoc 2019; 2:mps2030066. [PMID: 31366181 PMCID: PMC6789492 DOI: 10.3390/mps2030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
All terrestrial organisms are subject to evolutionary pressures associated with natural sources of ionizing radiation (IR). The legacy of human-induced IR associated with energy, weapons production, medicine, and research has changed the distribution and magnitude of these evolutionary pressures. To date, no study has systematically examined the effects of environmentally relevant doses of radiation exposure across an organismal proteome. This void in knowledge has been due, in part, to technological deficiencies that have hampered quantifiable environmentally relevant IR doses and sensitive detection of proteomic responses. Here, we describe a protocol that addresses both needs, combining quantifiable IR delivery with a reliable method to yield proteomic comparisons of control and irradiated Medaka fish. Exposures were conducted at the Savannah River Ecology Laboratory (SREL, in Aiken, SC), where fish were subsequently dissected into three tissue sets (carcasses, organs and intestines) and frozen until analysis. Tissue proteins were extracted, resolved by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE), and each sample lane was divided into ten equal portions. Following in-gel tryptic digestion, peptides released from each gel portion were identified and quantified by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) to obtain the most complete, comparative study to date of proteomic responses to environmentally relevant doses of IR. This method provides a simple approach for use in ongoing epidemiologic studies of chronic exposure to environmentally relevant levels of IR and should also serve well in physiological, developmental, and toxicological studies.
Collapse
|
74
|
Human adipocytes and CD34 + cells from the stromal vascular fraction of the same adipose tissue differ in their energy metabolic enzyme configuration. Exp Cell Res 2019; 380:47-54. [PMID: 31002814 DOI: 10.1016/j.yexcr.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023]
Abstract
Adipose tissue plays a role in energy storage and metabolic balance and is composed of different cell types. The metabolic activity of the tissue itself has been a matter of research for a long time, but comparative data about the energy metabolism of different cell types of human subcutaneous adipose tissue are sparse. Therefore, we compared the activity of major energy metabolic pathways of adipocytes and CD34+ cells from the stromal vascular fraction (SVF) separated from the same tissue. This CD34+ cell fraction is enriched with adipose tissue-derived mesenchymal progenitors, as they account for the largest proportion of CD34+ cells of the SVF. Adipocytes displayed significantly higher mitochondrial enzyme capacities compared to CD34+ SVF-cells, as shown by the higher activities of isocitrate dehydrogenase and ß-hydroxyacyl-CoA dehydrogenase. Inversely, the CD34+ SVF-cells showed higher capacities for cytosolic carbohydrate metabolism, represented by the activity of glycolysis and the pentose phosphate pathway. Thus, the CD34+ SVF-cells may ensure the provision of pentose phosphates and reduction equivalents for the replication of DNA during proliferation. The data indicate that these two cell fractions of the human adipose tissue vary in their metabolic configuration adapted to their physiological demands regarding proliferation and differentiation in vivo.
Collapse
|
75
|
Banerjee M, Ta S, Ghosh M, Ghosh A, Das D. Sequential Fluorescence Recognition of Molybdenum(VI), Arsenite, and Phosphate Ions in a Ratiometric Manner: A Facile Approach for Discrimination of AsO 2 - and H 2PO 4. ACS OMEGA 2019; 4:10877-10890. [PMID: 31460185 PMCID: PMC6648501 DOI: 10.1021/acsomega.9b00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/15/2019] [Indexed: 05/17/2023]
Abstract
An amide-based smart probe (L) is explored for nanomolar detection of Mo(VI) ion in a ratiometric manner, involving hydrogen-bond-assisted chelation-enhanced fluorescence process through inhibition of photoinduced electron transfer process. The recognition of Mo(VI) is associated with a 17-fold fluorescence enhancement and confirmed by single-crystal X-ray diffraction of the resulting Mo(VI) complex (M1). Further, M1 selectively recognizes arsenite through green emission of their adduct (C1) with an 81-fold fluorescence enhancement. Interestingly, dihydrogen phosphate causes dissociation of C1 back to free L having weak fluorescence. The methods are fast, highly selective, and allow their bare eye visualization at physiological pH. All of the interactions have been substantiated by time-dependent density functional theory calculations to rationalize their spectroscopic properties. The corresponding lowest detection limits are 1.5 × 10-8 M for Mo(VI), 1.2 × 10-10 M for AsO2 -, and 3.2 × 10-6 M for H2PO4 -, whereas the respective association constants are 4.21 × 105 M-1 for Mo(VI), 6.49 × 104 M-1 for AsO2 -, and 2.11 × 105 M-1 for H2PO4 -. The L is useful for efficient enrichment of Mo(VI) from aqueous solution, while M1 efficiently removes AsO2 - from environmental samples by solid-phase extraction.
Collapse
Affiliation(s)
- Mahuya Banerjee
- Department
of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Sabyasachi Ta
- Department
of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Milan Ghosh
- Department
of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Avijit Ghosh
- Department
of Chemistry, University of Calcutta, Kolkata 700009, West Bengal, India
| | - Debasis Das
- Department
of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India
| |
Collapse
|
76
|
Zheng X, Chen M, Li X, Yang P, Zhao X, Ouyang Y, Yang Z, Liang M, Hou E, Tian Z. Insufficient fumarase contributes to hypertension by an imbalance of redox metabolism in Dahl salt-sensitive rats. Hypertens Res 2019; 42:1672-1682. [DOI: 10.1038/s41440-019-0290-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023]
|
77
|
Kwolek-Mirek M, Maslanka R, Molon M. Disorders in NADPH generation via pentose phosphate pathway influence the reproductive potential of the Saccharomyces cerevisiae yeast due to changes in redox status. J Cell Biochem 2019; 120:8521-8533. [PMID: 30474881 DOI: 10.1002/jcb.28140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose-6-phosphate dehydrogenase (Zwf1p) and 6-phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate-limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Mateusz Molon
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
78
|
Modulation of glucose-related metabolic pathways controls glucose level in airway surface liquid and fight oxidative stress in cystic fibrosis cells. J Bioenerg Biomembr 2019; 51:203-218. [PMID: 31030390 DOI: 10.1007/s10863-019-09797-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Direct and indirect evidences show that elevated glucose concentrations in airway surface liquid (ASL) promote lung infection by pathogens, playing a role in the progression of the Cystic Fibrosis (CF) disease. The joint action of transporter/s for glucose and of the cellular enzymes is essential in order to try to lower ASL glucose level. Inside the cell, the glycolysis and the pentose phosphate pathway (PPP) compete for the utilization of glucose-6-phosphate (G6P), the product in which glucose, after entry within the cell and phosphorylation, is trapped. The study aims to clarify whether, modulating the activity of enzymatic proteins and/or the level of metabolites/cofactors, involved in intracellular glucose utilization, a lowering of the extracellular glucose level in CF occurs. Biochemical approaches have enabled us to understand i) how G6P is shunted between glycolysis and PPP and ii) that mitochondria, more than enzymes/cofactors participating to the two cell glucose utilization pathways, are protagonists of the scene in counteracting the high ASL glucose level as well as oxidative stress in CF.
Collapse
|
79
|
Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:163-196. [PMID: 28875490 DOI: 10.1007/978-94-024-1170-6_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
80
|
Zamani S, Hoseini AZ, Namin AM. Glucose-6-phosphate dehydrogenase (G6PD) activity can modulate macrophage response to Leishmania major infection. Int Immunopharmacol 2019; 69:178-183. [DOI: 10.1016/j.intimp.2019.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/22/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
81
|
Maslanka R, Zadrag-Tecza R. Less is more or more is less: Implications of glucose metabolism in the regulation of the reproductive potential and total lifespan of the Saccharomyces cerevisiae yeast. J Cell Physiol 2019; 234:17622-17638. [PMID: 30805924 DOI: 10.1002/jcp.28386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Carbohydrates are dietary nutrients that have an influence on cells physiology, cell reproductive capacity and, consequently, the lifespan of organisms. They are used in cellular processes after conversion to glucose, which is the primary source of energy and carbon skeleton for biosynthetic processes. Studies of the influence of glucose on cellular parameters and lifespan of organisms are primarily concerned with the effect of low glucose concentration defined as calorie restriction conditions. However, the effect of high glucose concentration on cell physiology is also very important. Thus, a comparative analysis of the effects of low and high glucose concentration conditions on cell efficiency was proposed with regard to reproductive capacity and total lifespan of the cell. Glucose concentration determines the type of metabolism and biosynthetic capabilities, which in turn, through the regulation on the cell size, may affect the reproductive capacity of cells. This study was conducted on yeast cells of wild-type and mutant strains Δgpa2 and Δgpr1 with glucose signalling pathway impairment. Such an experimental model enabled testing both the role of glucose concentration in the regulation of metabolic changes and the extent to which these changes depend on the extracellular or intracellular glucose concentrations. It has been shown here that calorie/glucose excess connected with changes in cell metabolic fluxes increases biosynthetic capabilities of yeast cells. This leads to an increase in cell dry weight accompanied by the increase in cell size and a simultaneous decrease in the reproductive potential and the overall length of cell life.
Collapse
Affiliation(s)
- Roman Maslanka
- Department of Biochemistry and Cell Biology, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
82
|
Wang M, Hu J, Yan L, Yang Y, He M, Wu M, Li Q, Gong W, Yang Y, Wang Y, Handy DE, Lu B, Hao C, Wang Q, Li Y, Hu R, Stanton RC, Zhang Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33:6296-6310. [PMID: 30785802 DOI: 10.1096/fj.201801921r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress contributes substantially to podocyte injury, which plays an important role in the development of diabetic kidney disease. The mechanism of hyperglycemia-induced oxidative stress in podocytes is not fully understood. Glucose-6-phosphate dehydrogenase (G6PD) is critical in maintaining NADPH, which is an important cofactor for the antioxidant system. Here, we hypothesized that high glucose induced ubiquitination and degradation of G6PD, which injured podocytes by reactive oxygen species (ROS) accumulation. We found that G6PD protein expression was decreased in kidneys of both diabetic patients and diabetic rodents. G6PD activity was also reduced in diabetic mice. Overexpressing G6PD reversed redox imbalance and podocyte apoptosis induced by high glucose and palmitate. Inhibition of G6PD with small interfering RNA induced podocyte apoptosis. In kidneys of G6PD-deficient mice, podocyte apoptosis was significantly increased. Interestingly, high glucose had no effect on G6PD mRNA expression. Decreased G6PD protein expression was mediated by the ubiquitin proteasome pathway. We found that the von Hippel-Lindau (VHL) protein, an E3 ubiquitin ligase subunit, directly bound to G6PD and degraded G6PD through ubiquitylating G6PD on K366 and K403. In summary, our data suggest that high glucose induces ubiquitination of G6PD by VHL E3 ubiquitin ligase, which leads to ROS accumulation and podocyte injury.-Wang, M., Hu, J., Yan, L., Yang, Y., He, M., Wu, M., Li, Q., Gong, W., Yang, Y., Wang, Y., Handy, D. E., Lu, B., Hao, C., Wang, Q., Li, Y., Hu, R., Stanton, R. C., Zhang, Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes.
Collapse
Affiliation(s)
- Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Linling Yan
- Department of Endocrinology, The First People's Hospital of Taicang, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Li
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Lu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
83
|
Fang X, Xia W, Cao H, Guo Y, Wang H, Zhang X, Wan P, Liu C, Wei Q, Sun S, Tian S, Li J, Wang Z. Effect of supplemetation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Anim Biotechnol 2019; 31:155-163. [PMID: 30734624 DOI: 10.1080/10495398.2018.1559846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 μmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Wei Xia
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Xiaosheng Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin, China
| | - Pengcheng Wan
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| |
Collapse
|
84
|
Abstract
The streamlining hypothesis is usually used to explain the genomic reduction events in free-living bacteria like SAR11. However, we find that the genomic reduction phenomenon in the bacterial genus Idiomarina is different from that in SAR11. Therefore, we propose a new hypothesis to explain genomic reduction in this genus based on trophic specialization that could result in genomic reduction, which would be not uncommon in nature. Not only can the trophic specialization hypothesis explain the genomic reduction in the genus Idiomarina, but it also sheds new light on our understanding of the genomic reduction processes in other free-living bacterial lineages. The streamlining hypothesis is generally used to explain the genomic reduction events related to the small genome size of free-living bacteria like marine bacteria SAR11. However, our current understanding of the correlation between bacterial genome size and environmental adaptation relies on too few species. It is still unclear whether there are other paths leading to genomic reduction in free-living bacteria. The genome size of marine free-living bacteria of the genus Idiomarina belonging to the order Alteromonadales (Gammaproteobacteria) is much smaller than the size of related genomes from bacteria in the same order. Comparative genomic and physiological analyses showed that the genomic reduction pattern in this genus is different from that of the classical SAR11 lineage. Genomic reduction reconstruction and substrate utilization profile showed that Idiomarina spp. lost a large number of genes related to carbohydrate utilization, and instead they specialized on using proteinaceous resources. Here we propose a new hypothesis to explain genomic reduction in this genus; we propose that trophic specialization increasing the metabolic efficiency for using one kind of substrate but reducing the substrate utilization spectrum could result in bacterial genomic reduction, which would be not uncommon in nature. This hypothesis was further tested in another free-living genus, Kangiella, which also shows dramatic genomic reduction. These findings highlight that trophic specialization is potentially an important path leading to genomic reduction in some marine free-living bacteria, which is distinct from the classical lineages like SAR11.
Collapse
|
85
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
86
|
Abu el Maaty MA, Dabiri Y, Almouhanna F, Blagojevic B, Theobald J, Büttner M, Wölfl S. Activation of pro-survival metabolic networks by 1,25(OH) 2D 3 does not hamper the sensitivity of breast cancer cells to chemotherapeutics. Cancer Metab 2018; 6:11. [PMID: 30181873 PMCID: PMC6116450 DOI: 10.1186/s40170-018-0183-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have previously identified 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the bioactive form of vitamin D3, as a potent regulator of energy-utilization and nutrient-sensing pathways in prostate cancer cells. In the current study, we investigated the effects of 1,25(OH)2D3 on breast cancer (BCa) cell metabolism using cell lines representing distinct molecular subtypes, luminal (MCF-7 and T-47D), and triple-negative BCa (MDA-MB-231, MDA-MB-468, and HCC-1143). METHODS 1,25(OH)2D3's effect on BCa cell metabolism was evaluated by employing a combination of real-time measurements of glycolysis/oxygen consumption rates using a biosensor chip system, GC/MS-based metabolomics, gene expression analysis, and assessment of overall energy levels. The influence of treatment on energy-related signaling molecules was investigated by immunoblotting. RESULTS We show that 1,25(OH)2D3 significantly induces the expression and activity of the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (G6PD) in all BCa cell lines, however differentially influences glycolytic and respiratory rates in the same cells. Although 1,25(OH)2D3 treatment was found to induce seemingly anti-oxidant responses in MCF-7 cells, such as increased intracellular serine levels, and reduce the expression of its putative target gene thioredoxin-interacting protein (TXNIP), intracellular reactive oxygen species levels were found to be elevated. Serine accumulation in 1,25(OH)2D3-treated cells was not found to hamper the efficacy of chemotherapeutics, including 5-fluorouracil. Detailed analyses of the nature of TXNIP's regulation by 1,25(OH)2D3 included genetic and pharmacological inhibition of signaling molecules and metabolic enzymes including AMP-activated protein kinase and G6PD, as well as by studying the ITCH (E3 ubiquitin ligase)-TXNIP interaction. While these investigations demonstrated minimal involvement of such pathways in the observed non-canonical regulation of TXNIP, inhibition of estrogen receptor (ER) signaling by tamoxifen mirrored the reduction of TXNIP levels by 1,25(OH)2D3, demonstrating that the latter's negative regulation of ER expression is a potential mechanism of TXNIP modulation. CONCLUSIONS Altogether, we propose that regulation of energy metabolism contributes to 1,25(OH)2D3's anti-cancer effects and that combining 1,25(OH)2D3 with drugs targeting metabolic networks in tumor cells may lead to synergistic effects.
Collapse
Affiliation(s)
- Mohamed A. Abu el Maaty
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Center for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
87
|
Chen X, Xu Z, Zhu Z, Chen A, Fu G, Wang Y, Pan H, Jin B. Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro. Int J Oncol 2018; 53:1703-1712. [PMID: 30066842 DOI: 10.3892/ijo.2018.4501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme of the pentose phosphate pathway. Multiple studies have previously revealed that elevated G6PD levels promote cancer progression in numerous tumor types; however, the underlying mechanism remains unclear. In the present study, it was demonstrated that high G6PD expression is a poor prognostic factor in bladder cancer, and the levels of G6PD expression increase with increasing tumor stage. Patients with bladder cancer with high G6PD expression had worse survival rates compared with those with lower G6PD expression in resected tumors. In vitro experiments revealed that knockdown of G6PD suppressed cell viability and growth in Cell Counting Kit-8 and colony formation assays, and increased apoptosis in bladder cancer cell lines compared with normal cells. Further experiments indicated that the weakening of the survival ability in G6PD-knockdown bladder cancer cells may be explained by intracellular reactive oxygen species accumulation and protein kinase B pathway suppression. Furthermore, it was additionally revealed that 6-aminonicotinamide (6-AN), a competitive G6PD inhibitor, may be a potential therapy for bladder cancer, particularly in cases with high G6PD expression, and that the combination of cisplatin and 6-AN may optimize the clinical dose or minimize the side effects of cisplatin.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijian Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Anqi Chen
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yimin Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
88
|
Meyer J, Salamon A, Mispagel S, Kamp G, Peters K. Energy metabolic capacities of human adipose-derived mesenchymal stromal cells in vitro and their adaptations in osteogenic and adipogenic differentiation. Exp Cell Res 2018; 370:632-642. [PMID: 30036541 DOI: 10.1016/j.yexcr.2018.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Mesenchymal stromal/stem cells (MSC) are important in tissue homeostasis and regeneration due to their ability for self-renewal and multipotent differentiation. Differentiation, as well as proliferation, requires adaptations in the cell metabolism. However, only few data exist concerning the energy metabolism of non-differentiating and differentiating MSC. In this study we compared capacities of major energy metabolic pathways of MSC from human adipose tissue (adMSC) in vitro in the non-differentiated state with those of osteogenically or adipogenically differentiating adMSC. To this end we quantified the proliferation and differentiation status of adMSC and analyzed maximum enzyme capacities and several enzyme isoforms of major energy metabolic pathways regarding their activity and gene expression. We could show that non-differentiating and osteogenic cultivation conditions induced proliferation and showed increasing capacities of the glycolytic marker enzyme phosphofructokinase as well as the marker enzyme of the pentose phosphate pathway glucose-6-phosphate dehydrogenase. Adipogenic stimulation, which was accompanied by the absence of proliferation, reduced the glycolytic capacity (e.g. decreased glyceraldehyde 3-phosphate dehydrogenase capacity) and induced an increase in mitochondrial enzyme capacities. These changes in energy metabolism might represent an adaptation of adMSC to the high energy demand during proliferation and to the specific cellular functions during osteogenic or adipogenic differentiation respectively.
Collapse
Affiliation(s)
- Juliane Meyer
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany
| | | | - Günter Kamp
- AMP-Lab GmbH, Mendelstraße 11, 48149 Münster, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
89
|
Zhang Y, Lee JH, Paull TT, Gehrke S, D'Alessandro A, Dou Q, Gladyshev VN, Schroeder EA, Steyl SK, Christian BE, Shadel GS. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal 2018; 11:eaaq0702. [PMID: 29991649 PMCID: PMC6042875 DOI: 10.1126/scisignal.aaq0702] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are integral to cellular energy metabolism and ATP production and are involved in regulating many cellular processes. Mitochondria produce reactive oxygen species (ROS), which not only can damage cellular components but also participate in signal transduction. The kinase ATM, which is mutated in the neurodegenerative, autosomal recessive disease ataxia-telangiectasia (A-T), is a key player in the nuclear DNA damage response. However, ATM also performs a redox-sensing function mediated through formation of ROS-dependent disulfide-linked dimers. We found that mitochondria-derived hydrogen peroxide promoted ATM dimerization. In HeLa cells, ATM dimers were localized to the nucleus and inhibited by the redox regulatory protein thioredoxin 1 (TRX1), suggesting the existence of a ROS-mediated, stress-signaling relay from mitochondria to the nucleus. ATM dimer formation did not affect its association with chromatin in the absence or presence of nuclear DNA damage, consistent with the separation of its redox and DNA damage signaling functions. Comparative analysis of U2OS cells expressing either wild-type ATM or the redox sensing-deficient C2991L mutant revealed that one function of ATM redox sensing is to promote glucose flux through the pentose phosphate pathway (PPP) by increasing the abundance and activity of glucose-6-phosphate dehydrogenase (G6PD), thereby increasing cellular antioxidant capacity. The PPP produces the coenzyme NADPH needed for a robust antioxidant response, including the regeneration of TRX1, indicating the existence of a regulatory feedback loop involving ATM and TRX1. We propose that loss of the mitochondrial ROS-sensing function of ATM may cause cellular ROS accumulation and oxidative stress in A-T.
Collapse
Affiliation(s)
- Yichong Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Qianhui Dou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | | | - Samantha K Steyl
- Department of Chemistry, Appalachian State University, Boone, NC 28608, USA
| | - Brooke E Christian
- Department of Chemistry, Appalachian State University, Boone, NC 28608, USA.
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
90
|
Uhde K, van Tol HTA, Stout TAE, Roelen BAJ. Exposure to elevated glucose concentrations alters the metabolomic profile of bovine blastocysts. PLoS One 2018; 13:e0199310. [PMID: 29924852 PMCID: PMC6010268 DOI: 10.1371/journal.pone.0199310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Chronically high blood glucose concentrations are a characteristic of diabetes mellitus. Maternal diabetes affects the metabolism of early embryos and can cause a delay in development. To mimic maternal diabetes, bovine in vitro fertilization and embryo culture were performed in fertilization medium and culture medium containing 0.5, 2, 3, and 5 mM, glucose whereas under control conditions, the medium was glucose free (0 mM). Compared to control conditions (0 mM, 31%), blastocyst development was decreased to 23% with 0.5 and 2 mM glucose. Presence of 3 or 5 mM glucose in the medium resulted in decreased blastocyst rates (20% and 10% respectively). The metabolomic profile of resulting day 8 blastocysts was analysed by UPLC-MS/MS, and compared to that of blastocysts cultured in control conditions. Elevated glucose concentrations stimulated an increase in glycolysis and activity of the hexosamine pathway, which is involved in protein glycosylation. However, components of the tricarboxylic acid cycle, such as citrate and alpha-ketoglutarate, were reduced in glucose stimulated blastocysts, suggesting that energy production from pyruvate was inefficient. On the other hand, activity of the polyol pathway, an alternative route to energy generation, was increased. In short, cattle embryos exposed to elevated glucose concentrations during early development showed changes in their metabolomic profile consistent with the expectations of exposure to diabetic conditions.
Collapse
Affiliation(s)
- Karen Uhde
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T. A. van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A. E. Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bernard A. J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
- * E-mail:
| |
Collapse
|
91
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
92
|
Mele L, Paino F, Papaccio F, Regad T, Boocock D, Stiuso P, Lombardi A, Liccardo D, Aquino G, Barbieri A, Arra C, Coveney C, La Noce M, Papaccio G, Caraglia M, Tirino V, Desiderio V. A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death Dis 2018; 9:572. [PMID: 29760380 PMCID: PMC5951921 DOI: 10.1038/s41419-018-0635-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Pentose phosphate pathway (PPP) is a major glucose metabolism pathway, which has a fundamental role in cancer growth and metastasis. Even though PPP blockade has been pointed out as a very promising strategy against cancer, effective anti-PPP agents are not still available in the clinical setting. Here we demonstrate that the natural molecule polydatin inhibits glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP. Polydatin blocks G6PD causing accumulation of reactive oxygen species and strong increase of endoplasmic reticulum stress. These effects are followed by cell cycle block in S phase, an about 50% of apoptosis, and 60% inhibition of invasion in vitro. Accordingly, in an orthotopic metastatic model of tongue cancer, 100 mg/kg polydatin induced an about 30% tumor size reduction with an about 80% inhibition of lymph node metastases and 50% reduction of lymph node size (p < 0.005). Polydatin is not toxic in animals up to a dose of 200 mg/kg and a phase II clinical trial shows that it is also well tolerated in humans (40 mg twice a day for 90 days). Thus, polydatin may be used as a reliable tool to limit human cancer growth and metastatic spread.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Federica Papaccio
- Oncologia Medica ed Ematologia, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG1 4FQ, Nottingham, UK
| | - David Boocock
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG1 4FQ, Nottingham, UK
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gabriella Aquino
- Department of Research, Pathology Unit, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, 80131, Naples, Italy
| | - Antonio Barbieri
- SSD Sperimentazione Animale, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, 80131, Naples, Italy
| | - Claudio Arra
- SSD Sperimentazione Animale, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, 80131, Naples, Italy
| | - Clare Coveney
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG1 4FQ, Nottingham, UK
| | - Marcella La Noce
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. RECENT FINDINGS NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. SUMMARY Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.
Collapse
|
94
|
Buj R, Aird KM. Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:177. [PMID: 29720963 PMCID: PMC5915462 DOI: 10.3389/fendo.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signaling pathways, such as c-Myc, p53, and mTORC1 feed into dNTP metabolism, and there is a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is understood about the role for dNTP levels in metabolic disorders and syndromes and whether alterations in dNTP levels change cancer incidence in these patients. For instance, while deficiencies in some metabolic pathways known to play a role in nucleotide synthesis are pro-tumorigenic (e.g., p53 mutations), others confer an advantage against the onset of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide metabolism in diabetes, obesity, and insulin resistance; however, whether these changes play a mechanistic role is unclear. In this review, we will address the complex network of metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, and we will discuss the potential role for this pathway in metabolic disease.
Collapse
Affiliation(s)
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
95
|
Cho ES, Cha YH, Kim HS, Kim NH, Yook JI. The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy. Biomol Ther (Seoul) 2018; 26:29-38. [PMID: 29212304 PMCID: PMC5746035 DOI: 10.4062/biomolther.2017.179] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.
Collapse
Affiliation(s)
- Eunae Sandra Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yong Hoon Cha
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| |
Collapse
|
96
|
Javvadi S, Pandey SS, Mishra A, Pradhan BB, Chatterjee S. Bacterial cyclic β-(1,2)-glucans sequester iron to protect against iron-induced toxicity. EMBO Rep 2017; 19:172-186. [PMID: 29222343 DOI: 10.15252/embr.201744650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular iron homeostasis is critical for survival and growth. Bacteria employ a variety of strategies to sequester iron from the environment and to store intracellular iron surplus that can be utilized in iron-restricted conditions while also limiting the potential for the production of iron-induced reactive oxygen species (ROS). Here, we report that membrane-derived oligosaccharide (mdo) glucan, an intrinsic component of Gram-negative bacteria, sequesters the ferrous form of iron. Iron-binding, uptake, and localization experiments indicated that both secreted and periplasmic β-(1,2)-glucans bind iron specifically and promote growth under iron-restricted conditions. Xanthomonas campestris and Escherichia coli mutants blocked in the production of β-(1,2)-glucan accumulate low amounts of intracellular iron under iron-restricted conditions, whereas they exhibit elevated ROS production and sensitivity under iron-replete conditions. Our results reveal a critical role of glucan in intracellular iron homeostasis conserved in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally Hyderabad, India.,Graduate Studies, Manipal University, Manipal, India
| | | | | | | |
Collapse
|
97
|
Oba D, Inoue SI, Miyagawa-Tomita S, Nakashima Y, Niihori T, Yamaguchi S, Matsubara Y, Aoki Y. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis. EBioMedicine 2017; 27:138-150. [PMID: 29254681 PMCID: PMC5828294 DOI: 10.1016/j.ebiom.2017.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022] Open
Abstract
Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. > 80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice) as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo. Mice expressing Hras G12S (HrasG12S/+) showed Costello syndrome-like phenotypes, including craniofacial and cardiac defects. HrasG12S/+ mice are resistant to high-fat diet (HFD)-induced obesity, showing microvesicular hepatic steatosis. Upon fasting, HFD-fed HrasG12S/+ mice show abnormal hepatic fatty acid oxidation, hypoketosis and early hypoglycemia.
Costello syndrome is a congenital anomaly syndrome, which is caused by germline mutations in HRAS oncogene. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and growth retardation. Here, we generated a mouse model for Costello syndrome expressing a Hras G12S mutation, which showed craniofacial and heart abnormalities. On a high-fat diet, mutant mice exhibited a lean phenotype with poor weight gain and microvesicular hepatic steatosis. Under starvation conditions, impaired mitochondrial fatty acid oxidation has been observed. These results suggest that oncogenic RAS signaling in mice modulates energy homeostasis in vivo.
Collapse
Affiliation(s)
- Daiju Oba
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan; Division of Cardiovascular Development and Differentiation, Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan; Department of Veterinary Technology, Yamazaki gakuen University, Tokyo, Japan
| | - Yasumi Nakashima
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Faculty of Medicine, Shimane, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan; National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
98
|
Iron overload in hematological disorders. Presse Med 2017; 46:e296-e305. [PMID: 29174474 DOI: 10.1016/j.lpm.2017.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/22/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
While most common symptom of impairment of iron homeostasis is iron deficiency anemia, some hematological disorders are associated with iron overload (IO). These disorders are related mainly to chronic severe hemolytic anemia, where red blood cells (RBC) or their precursors are destroyed prematurely (hemolyzed), leading to anemia that cannot be compensated by increased production of new RBC. In such cases, IO is mainly due to repeated RBC transfusions and/or increased uptake of iron in the gastrointestinal tract. Normally, iron is present in the plasma and in the cells bound to compounds that render it redox inactive. Iron overload leaves a fraction of the iron free (labile iron pool) and redox active, leading to the generation of excess free radicals such as the reactive oxygen species. This condition upsets the cellular redox balance between oxidants and antioxidants, leading to oxidative stress. The free radicals bind to various cellular components, thereby becoming toxic to vital organs. Oxidative stress may also affect blood cells, such as RBC, platelets and neutrophils, exacerbating the anemia, and causing recurrent infections and thrombotic events, respectively. The toxic effect of IO can be decreased by treating the patients with iron chelators that enter cells, bind free iron and remove it from the body through the urine and feces. Iron toxicity may be also ameliorated by treatment with anti-oxidants that scavenge free radicals and/or correct their damage. The use of iron chelators is widely accepted when started in young patients with severe chronic anemia, but is still debatable as a therapeutic modality for older patients suffering from IO due to myelodysplastic syndromes. It should be noted that in addition to preventing iron toxicity, some compounds with iron chelator activity may also benefit other aspects of hematological disorders. These aspects include stimulation of platelet production, inhibition of leukemic cell proliferation and induction of their differentiation. Compounds with such multiple activities may prove beneficial for at least some patients with leukemia and myelodysplastic syndromes.
Collapse
|
99
|
Nakatani Y, Kobe A, Kuriya M, Hiroki Y, Yahagi T, Sakakibara I, Matsuzaki K, Amano T. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells. Eur J Pharmacol 2017; 815:381-390. [DOI: 10.1016/j.ejphar.2017.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
|
100
|
Cao L, Zhang D, Chen J, Qin YY, Sheng R, Feng X, Chen Z, Ding Y, Li M, Qin ZH. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic Biol Med 2017; 112:433-444. [PMID: 28823591 DOI: 10.1016/j.freeradbiomed.2017.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
TIGAR-regulated pentose phosphate pathway (PPP) plays a critical role in the neuronal survival during cerebral ischemia/reperfusion. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme in PPP and thus, we hypothesized that it plays an essential role in anti-oxidative defense through producing NADPH. The present study investigated the regulation and the role of G6PD in ischemia/reperfusion-induced neuronal injury with in vivo and in vitro models of ischemic stroke. The results showed that the levels of G6PD mRNA and protein were increased after ischemia/reperfusion. In vivo, lentivirus-mediated G6PD overexpression in mice markedly reduced neuronal damage after ischemia/reperfusion insult, while lentivirus-mediated G6PD knockdown exacerbated it. In vitro, overexpression of G6PD in cultured primary neurons decreased neuronal injury under oxygen and glucose deprivation/reoxygenation (OGD/R) condition, whereas knockdown of G6PD aggravated it. Overexpression of G6PD increased levels of NADPH and reduced form of glutathione (rGSH), and ameliorated ROS-induced macromolecular damage. On the contrary, knockdown of G6PD executed the opposite effects in mice and in primary neurons. Supplementation of exogenous NADPH alleviated the detrimental effects of G6PD knockdown, whereas further enhanced the beneficial effects of G6PD overexpression in ischemic injury. Therefore, our results suggest that G6PD protects ischemic brain injury through increasing PPP. Thus G6PD may be considered as potential therapeutic target for treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Lijuan Cao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Dingmei Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Jieyu Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xing Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University; Suzhou 215025, China
| | - Zhong Chen
- Institute of Neuroscience, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University; Suzhou 215025, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|