51
|
Abstract
PURPOSE OF REVIEW To summarize recent findings that docosahexaenoate (DHA) is the precursor of stereospecific derivatives with anti-inflammatory and cytoprotective properties. RECENT FINDINGS The docosahexaenoate-derived mediator neuroprotectin D1 is formed in retinal pigment epithelial cells when confronted with oxidative stress, in the brain during experimental stroke, and in the human brain from Alzheimer's disease patients as well as in human brain cells in culture. Neuroprotectin D1 displays potent anti-inflammatory and neuroprotective bioactivity. SUMMARY Here, we summarize recent studies demonstrating that in brain ischemia-reperfusion and in retinal pigment epithelial cells exposed to oxidative stress stereospecific docosahexaenoate-oxygenation pathways are activated and lead to the formation of docosanoid messengers. Two docosahexaenoate-oxygenation pathways were identified: the first is responsible for the formation of the messenger neuroprotectin D1 and the second pathway, which is active in the presence of aspirin, leads to the formation of the resolvin-type mediators (17R-DHA). Neuroprotectin D1 induces antiapoptotic, anti-inflammatory signaling and is neuroprotective.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Louisiana State University Health Sciences Center, Neuroscience Center of Excellence, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
52
|
Shen Y, He P, Zhong Z, McAllister C, Lindholm K. Distinct destructive signal pathways of neuronal death in Alzheimer's disease. Trends Mol Med 2006; 12:574-9. [PMID: 17055782 DOI: 10.1016/j.molmed.2006.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 09/14/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022]
Abstract
Abundant neuron loss is a major feature of Alzheimer's disease (AD). Hypotheses for this loss include abnormal amyloid precursor protein processing (i.e. excess Abeta production, protein aggregation or misfolding), oxidative stress, excitotoxicity and inflammation. Neuron loss is a major cause of dementia in AD; however, it seems that there is no definitive pathway that causes cell death in the AD brain. Here, we examine the hypotheses for neuron loss in AD and pose the argument that the means by which neurons degenerate is irrelevant for cognitive decline. The best treatment for cognitive decline is to prevent the toxicity that first sets the neuron on its path to destruction, which is the production of Abeta peptide.
Collapse
Affiliation(s)
- Yong Shen
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute 3501, West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | | | | | | | |
Collapse
|
53
|
Mémet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006; 72:1180-95. [PMID: 16997282 DOI: 10.1016/j.bcp.2006.09.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is an ubiquitously expressed dimeric molecule with post-translationally regulated activity. Its role in the immune system and host defense has been well characterized over the last two decades. In contrast, our understanding of the function of this transcription factor in the nervous system (NS) is only emerging. Given their cytoplasmic retention and nuclear translocation upon stimulus, NF-kappaB members are likely to exert an important role in transduction of signals from synaptic terminals to nucleus, to initiate transcriptional responses. This report describes recent findings deciphering the diverse functions of NF-kappaB in NS development and activity, which range from the control of cell growth, survival and inflammatory response to synaptic plasticity, behavior and cognition. Particular attention is given to the specific roles of NF-kappaB in the various cells of the NS, e.g. neurons and glia. Current knowledge of the contribution of NF-kappaB to several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases is also summarized.
Collapse
Affiliation(s)
- Sylvie Mémet
- Unité de Mycologie Moléculaire, FRE CNRS 2849, Department of Infection and Epidemiology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
54
|
Mattson MP, Meffert MK. Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 2006; 13:852-60. [PMID: 16397579 DOI: 10.1038/sj.cdd.4401837] [Citation(s) in RCA: 461] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here we review evidence of roles for NF-kappaB in the regulation of developmental and synaptic plasticity, and cell survival in physiological and pathological settings. Signaling pathways modulating NF-kappaB activity include those engaged by neurotrophic factors, neurotransmitters, electrical activity, cytokines, and oxidative stress. Emerging findings support a pivotal role for NF-kappaB as a mediator of transcription-dependent enduring changes in the structure and function of neuronal circuits. Distinct subunits of NF-kappaB may uniquely affect cognition and behavior by regulating specific target genes. NF-kappaB activation can prevent the death of neurons by inducing the production of antiapoptotic proteins such as Bcl-2, IAPs and manganese superoxide dismutase (Mn-SOD). Recent findings indicate that NF-kappaB plays important roles in disorders such as epilepsy, stroke, Alzheimer's and Parkinson's diseases, as well as oncogenesis. Molecular pathways upstream and downstream of NF-kappaB in neurons are being elucidated and may provide novel targets for therapeutic intervention in various neurological disorders.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
55
|
Cosby N, Haak-Frendscho M. Fourth Annual Promega Neurosciences Symposium: Genetic and Environmental Interactions in Neurodegeneration Los Angeles, CA, USA November 7, 1998. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1999.tb00090.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
56
|
Nguyen V, Hawkins C, Bergeron C, Supala A, Huang J, Westaway D, St George-Hyslop P, Rozmahel R. Loss of nicastrin elicits an apoptotic phenotype in mouse embryos. Brain Res 2006; 1086:76-84. [PMID: 16626651 DOI: 10.1016/j.brainres.2006.02.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 12/21/2022]
Abstract
Nicastrin is a member of the high molecular weight presenilin complex that plays a central role in gamma-secretase cleavage of numerous type-1 membrane-associated proteins required for cell signaling, proliferation and lineage development. We have generated a nicastrin-null mouse line by disruption of exon 3. Similar to previously described nicastrin-null mice, these animals demonstrate severe growth retardation, mortality beginning at embryonic age 10.5 days, and marked developmental abnormalities indicative of a severe Notch phenotype. Preceding their mortality, 10.5-day-old nicastrin-null embryos were found to also exhibit specific apoptosis within regions showing profound deformities, particularly in the developing heart and brain. This result suggests that complete disruption of presenilin complexes elicits programmed cell death, in addition to a Notch phenotype, which may contribute to the developmental abnormalities and embryonic mortality of nicastrin-null mice and possibly neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Van Nguyen
- Dept. of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Although several prominent morphological features of apoptosis are evident in the cell body (e.g., cell shrinkage, membrane blebbing, and nuclear DNA condensation and fragmentation) the biochemical and molecular cascades that constitute the cell death machinery can be engaged in synaptic terminals and neurites. Initiating events such as oxyradical production and calcium influx, and effector processes such as Par-4 production, mitochondrial alterations and caspase activation, can be induced in synapses and neurites. Several prominent signal transduction pathways in synaptic terminals play important roles in either promoting or preventing neuronal death in physiological and pathological conditions. For example, activation of glutamate receptors in postsynaptic spines can induce neuronal apoptosis, whereas local activation of neurotrophic factor receptors in presynaptic terminals can prevent neuronal death. Factors capable of inducing nuclear chromatin condensation and fragmentation can be produced locally in synaptic terminals and neurites, and may propogate to the cell body. Recent findings suggest that, beyond their roles in inducing or preventing cell death, apoptotic and anti-apoptotic cascades play roles in synaptic plasticity (structural remodelling and long-term functional changes). For example, caspase activation results in proteolysis of glutamate receptor (AMPA) subunits, which results in altered neuronal responsivity to glutamate. Activation of neurotrophic factor receptors in synaptic terminals can result in local changes in energy metabolism and calcium homeostasis, and can induce long-term changes in synaptic transmission. The emerging data therefore suggest that synapses can be considered as autonomous compartments in which both pro- and anti-apoptotic signaling pathways are activated resulting in structural and functional changes in neuronal circuits. A better understanding of such synaptic signaling mechanisms may reveal novel approaches for preventing and treating an array of neurodegenerative conditions that are initiated by perturbed synaptic homeostasis.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
58
|
Developmental Mechanisms in Aging and Age-Related Diseases of the Nervous System. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 2006; 26:3541-50. [PMID: 16571762 PMCID: PMC2897814 DOI: 10.1523/jneurosci.2488-05.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 01/24/2006] [Accepted: 01/16/2006] [Indexed: 12/26/2022] Open
Abstract
Degeneration of the spiral ganglion neurons (SGNs) of the auditory nerve occurs with age and in response to acoustic injury. Histopathological observations suggest that the neural degeneration often begins with an excitotoxic process affecting the afferent dendrites under the inner hair cells (IHCs), however, little is known about the sequence of cellular or molecular events mediating this excitotoxicity. Nuclear factor kappaB (NFkappaB) is a transcription factor involved in regulating inflammatory responses and apoptosis in many cell types. NFkappaB is also associated with intracellular calcium regulation, an important factor in neuronal excitotoxicity. Here, we provide evidence that NFkappaB can play a central role in the degeneration of SGNs. Mice lacking the p50 subunit of NFkappaB (p50(-/-) mice) showed an accelerated hearing loss with age that was highly associated with an exacerbated excitotoxic-like damage in afferent dendrites under IHCs and an accelerated loss of SGNs. Also, as evidenced by immunostaining intensity, calcium-buffering proteins were significantly elevated in SGNs of the p50(-/-) mice. Finally, the knock-out mice exhibited an increased sensitivity to low-level noise exposure. The accelerated hearing loss and neural degeneration with age in the p50(-/-) mice occurred in the absence of concomitant hair cell loss and decline of the endocochlear potential. These results indicate that NFkappaB activity plays an important role in protecting the primary auditory neurons from excitotoxic damage and age-related degeneration. A possible mechanism underlying this protection is that the NFkappaB activity may help to maintain calcium homeostasis in SGNs.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Choi S, Kim JH, Roh EJ, Ko MJ, Jung JE, Kim HJ. Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells. J Biol Chem 2006; 281:12722-8. [PMID: 16490783 DOI: 10.1074/jbc.m601018200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G(q/11) protein-coupled muscarinic receptors are known to regulate the release of soluble amyloid precursor protein (sAPPalpha) produced by alpha-secretase processing; however, their signaling mechanisms remain to be elucidated. It has been reported that a muscarinic agonist activates nuclear factor (NF)-kappaB, a transcription factor that has been shown to play an important role in the Alzheimer disease brain, and that NF-kappaB activation is regulated by intracellular Ca2+ level. In the present study, we investigated whether NF-kappaB activation plays a role in muscarinic receptor-mediated sAPPalpha release enhancement and contributes to a changed capacitative Ca2+ entry (CCE), which was suggested to be involved in the muscarinic receptor-mediated stimulation of sAPPalpha release. Muscarinic receptor-mediated NF-kappaB activation was confirmed by observing the translocation of the active subunit (p65) of NF-kappaB to the nucleus by the muscarinic agonist, oxotremorine M (oxoM), in SH-SY5Y neuroblastoma cells expressing muscarinic receptors that are predominantly of the M3 subtype. NF-kappaB activation and sAPPalpha release enhancement induced by oxoM were inhibited by NF-kappaB inhibitors, such as an NF-kappaB peptide inhibitor (SN50), an IkappaB alpha kinase inhibitor (BAY11-7085), a proteasome inhibitor (MG132), the inhibitor of proteasome activity and IkappaB phosphorylation, pyrrolidine dithiocarbamate, the novel NF-kappaB activation inhibitor (6-amino-4-(4-phenoxyphenylethylamino) quinazoline), and by an intracellular Ca2+ chelator (TMB-8). Furthermore, both oxoM-induced NF-kappaB activation and sAPPalpha release were antagonized by CCE inhibitors (gadolinium or SKF96365) but not by voltage-gated Ca2+-channel blockers. On the other hand, treatment of cells with NF-kappaB inhibitors (SN50, BAY11-7085, MG132, or pyrrolidine dithiocarbamate) did not inhibit muscarinic receptor-mediated CCE. These findings provide evidence for the involvement of NF-kappaB regulated by CCE in muscarinic receptor-mediated sAPPalpha release enhancement.
Collapse
Affiliation(s)
- Shinkyu Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | |
Collapse
|
61
|
Fukuda N, Saitoh M, Kobayashi N, Miyazono K. Execution of BMP-4-induced apoptosis by p53-dependent ER dysfunction in myeloma and B-cell hybridoma cells. Oncogene 2006; 25:3509-17. [PMID: 16449972 DOI: 10.1038/sj.onc.1209393] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone morphogenic protein (BMP)-4 inhibits proliferation and induces the apoptosis of myeloma cells. However, little is known about the molecular mechanisms of how BMP-4 executes this apoptosis. In this report, we investigated the roles of p53 and the endoplasmic reticulum (ER) in BMP-4-induced apoptosis of mouse hybridoma HS-72 cells. We found that 3 ng/ml of BMP-4 is sufficient to induce the expression of proapoptotic proteins, puma and bax, in a p53-dependent mechanism, and facilitate Ca(2+) release from the ER to the cytosol, resulting in the activation of caspase-12 and ER dysfunction. Similarly to HS-72 cells, multiple myeloma cells with wild-type p53 genes show much higher sensitivity to BMP-4-induced apoptosis than cells without wild-type p53 genes, suggesting that wild-type p53 status is required for dysfunction of the ER during BMP-4-induced apoptosis in ER-enriched cells, such as hybridoma and myeloma cells. These findings demonstrate that the presence of wild-type p53 genes and enrichment of the ER determines the sensitivity to effective apoptosis by BMP-4, and suggest that ER stress-inducing agents would be valuable in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- N Fukuda
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
62
|
Widera D, Mikenberg I, Kaltschmidt B, Kaltschmidt C. Potential role of NF-kappaB in adult neural stem cells: the underrated steersman? Int J Dev Neurosci 2006; 24:91-102. [PMID: 16413989 DOI: 10.1016/j.ijdevneu.2005.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/11/2005] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.
Collapse
Affiliation(s)
- Darius Widera
- Institut für Neurobiochemie, Universität Witten/Herdecke, Stockumer Str. 10, D-58448 Witten, Germany
| | | | | | | |
Collapse
|
63
|
Kojro E, Postina R, Buro C, Meiringer C, Gehrig-Burger K, Fahrenholz F. The neuropeptide PACAP promotes ?‐secretase pathway for processing Alzheimer amyloid precursor protein. FASEB J 2006; 20:512-4. [PMID: 16401644 DOI: 10.1096/fj.05-4812fje] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has neurotrophic as well as anti-apoptotic properties and is involved in learning and memory processes. Its specific G protein-coupled receptor PAC1 is expressed in several central nervous system (CNS) regions, including the hippocampal formation. Here we examined the effect of PAC1 receptor activation on alpha-secretase cleavage of the amyloid precursor protein (APP) and the production of secreted APP (APPsalpha). Stimulation of endogenously expressed PAC1 receptors with PACAP in human neuroblastoma cells increased APPsalpha secretion, which was completely inhibited by the PAC1 receptor specific antagonist PACAP-(6-38). In HEK cells stably overexpressing functional PAC1 receptors, PACAP-27 and PACAP-38 strongly stimulated alpha-secretase cleavage of APP. The PACAP-induced APPsalpha production was dose dependent and saturable. This increase of alpha-secretase activity was completely abolished by hydroxamate-based metalloproteinase inhibitors, including a preferential ADAM 10 inhibitor. By using several specific protein kinase inhibitors, we show that the MAP-kinase pathway [including extracellular-regulated kinase (ERK) 1 and ERK2] and phosphatidylinositol 3-kinase mediate the PACAP-induced alpha-secretase activation. Our findings provide evidence for a role of the neuropeptide PACAP in stimulation of the nonamyloidogenic pathway, which might be related to its neuroprotective properties.
Collapse
Affiliation(s)
- Elzbieta Kojro
- Institute of Biochemistry, Johannes Gutenberg University, Becherweg, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
64
|
Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005; 115:2774-83. [PMID: 16151530 PMCID: PMC1199531 DOI: 10.1172/jci25420] [Citation(s) in RCA: 594] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/28/2005] [Indexed: 11/17/2022] Open
Abstract
Deficiency in docosahexaenoic acid (DHA), a brain-essential omega-3 fatty acid, is associated with cognitive decline. Here we report that, in cytokine-stressed human neural cells, DHA attenuates amyloid-beta (Abeta) secretion, an effect accompanied by the formation of NPD1, a novel, DHA-derived 10,17S-docosatriene. DHA and NPD1 were reduced in Alzheimer disease (AD) hippocampal cornu ammonis region 1, but not in the thalamus or occipital lobes from the same brains. The expression of key enzymes in NPD1 biosynthesis, cytosolic phospholipase A2 and 15-lipoxygenase, was altered in AD hippocampus. NPD1 repressed Abeta42-triggered activation of proinflammatory genes while upregulating the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1). Soluble amyloid precursor protein-alpha stimulated NPD1 biosynthesis from DHA. These results indicate that NPD1 promotes brain cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Abeta42-induced neurotoxicity.
Collapse
Affiliation(s)
- Walter J Lukiw
- Louisiana State University Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Wehner S, Siemes C, Kirfel G, Herzog V. Cytoprotective function of sAppalpha in human keratinocytes. Eur J Cell Biol 2005; 83:701-8. [PMID: 15679114 DOI: 10.1078/0171-9335-00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.
Collapse
Affiliation(s)
- Sven Wehner
- Institute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
66
|
Abstract
The transcription factor nuclear factor kappa-B (NF-kappaB) is involved in regulating responses of neurons to activation of several different signaling pathways in a variety of physiological and pathological settings. During development of the nervous system NF-kappaB is activated in growing neurons by neurotrophic factors and can induce the expression of genes involved in cell differentiation and survival. In the mature nervous system NF-kappaB is activated in synapses in response to excitatory synaptic transmission and may play a pivotal role in processes such as learning and memory. NF-kappaB is activated in neurons and glial cells in acute neurodegenerative conditions such as stroke and traumatic injury, as well as in chronic neurodegenerative conditions such as Alzheimer's disease. Activation of NF-kappaB in neurons can promote their survival by inducing the expression of genes encoding anti-apoptotic proteins such as Bcl-2 and the antioxidant enzyme Mn-superoxide dismutase. On the other hand, by inducing the production and release of inflammatory cytokines, reactive oxygen molecules and excitotoxins, activation of NF-kappaB in microglia and astrocytes may contribute to neuronal degeneration. Emerging findings suggest roles for NF-kappaB as a mediator of effects of behavioral and dietary factors on neuronal plasticity. NF-kappaB provides an attractive target for the development of novel therapeutic approaches for a range of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
67
|
Juravleva E, Barbakadze T, Mikeladze D, Kekelidze T. Creatine enhances survival of glutamate-treated neuronal/glial cells, modulates Ras/NF-kappaB signaling, and increases the generation of reactive oxygen species. J Neurosci Res 2005; 79:224-30. [PMID: 15578723 DOI: 10.1002/jnr.20291] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protective effects of creatine against glutamate cytotoxicity have been demonstrated in neuronal cells and animal models of neurodegenerative diseases. The mechanisms underlying creatine neuroprotection against glutamate-induced cell death are understood poorly. For the first time, we demonstrate a correlation between the protective effect of creatine and the modulation of Ras-mediated redox-dependent signaling pathways, which involve nuclear factor kappaB (NF-kappaB) and reactive oxygen species (ROS). In primary cerebrocortical cultures of mixed neurons and glia, creatine significantly reduced glutamate-induced cell death. The increase in cell survival was accompanied by increased generation of oxygen radicals and decreased levels of farnesylated Ras and IkappaB, an inhibitor of NF-kappaB. Non-farnesylated Ras and ROS-dependent activation of NF-kappaB have been shown to promote neuronal survival. Our data suggest that creatine may enhance survival signaling via activation of the Ras/NF-kappaB system. Possible mechanisms underlying the protective effect of creatine are discussed, including normalization of cellular GTP levels.
Collapse
Affiliation(s)
- Elena Juravleva
- Institute of Physiology, Georgian Academy of Sciences, Tbilisi, Georgia
| | | | | | | |
Collapse
|
68
|
Korte SM, Koolhaas JM, Wingfield JC, McEwen BS. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 2004; 29:3-38. [PMID: 15652252 DOI: 10.1016/j.neubiorev.2004.08.009] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 08/09/2004] [Indexed: 12/22/2022]
Abstract
Why do we get the stress-related diseases we do? Why do some people have flare ups of autoimmune disease, whereas others suffer from melancholic depression during a stressful period in their life? In the present review possible explanations will be given by using different levels of analysis. First, we explain in evolutionary terms why different organisms adopt different behavioral strategies to cope with stress. It has become clear that natural selection maintains a balance of different traits preserving genes for high aggression (Hawks) and low aggression (Doves) within a population. The existence of these personality types (Hawks-Doves) is widespread in the animal kingdom, not only between males and females but also within the same gender across species. Second, proximate (causal) explanations are given for the different stress responses and how they work. Hawks and Doves differ in underlying physiology and these differences are associated with their respective behavioral strategies; for example, bold Hawks preferentially adopt the fight-flight response when establishing a new territory or defending an existing territory, while cautious Doves show the freeze-hide response to adapt to threats in their environment. Thus, adaptive processes that actively maintain stability through change (allostasis) depend on the personality type and the associated stress responses. Third, we describe how the expression of the various stress responses can result in specific benefits to the organism. Fourth, we discuss how the benefits of allostasis and the costs of adaptation (allostatic load) lead to different trade-offs in health and disease, thereby reinforcing a Darwinian concept of stress. Collectively, this provides some explanation of why individuals may differ in their vulnerability to different stress-related diseases and how this relates to the range of personality types, especially aggressive Hawks and non-aggressive Doves in a population. A conceptual framework is presented showing that Hawks, due to inefficient management of mediators of allostasis, are more likely to be violent, to develop impulse control disorders, hypertension, cardiac arrhythmias, sudden death, atypical depression, chronic fatigue states and inflammation. In contrast, Doves, due to the greater release of mediators of allostasis (surplus), are more susceptible to anxiety disorders, metabolic syndromes, melancholic depression, psychotic states and infection.
Collapse
Affiliation(s)
- S Mechiel Korte
- Animal Sciences Group, Wageningen University and Research Centre, Box 65, Edelhertweg 15, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
69
|
Fisher L, Soomets U, Cortés Toro V, Chilton L, Jiang Y, Langel U, Iverfeldt K. Cellular delivery of a double-stranded oligonucleotide NFkappaB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Ther 2004; 11:1264-72. [PMID: 15292915 DOI: 10.1038/sj.gt.3302291] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The activation of nuclear factor kappaB (NFkappaB) is a key event in immune and inflammatory responses. In this study, a cell-penetrating transport peptide, transportan (TP) or its shorter analogue TP 10, was used to facilitate the cellular uptake of an NFkappaB decoy. Peptide nucleic acid (PNA) hexamer or nonamer was linked to the transport peptide by a disulfide bond. NFkappaB decoy oligonucleotide consisted of a double-stranded consensus sequence corresponding to the kappaB site localized in the IL-6 gene promoter, 5'-GGGACTTTCCC-3', with a single-stranded protruding 3'-terminal sequence complementary to the PNA sequence was hybridized to the transport peptide-PNA construct. The ability of the transport peptide-PNA-NFkappaB decoy complex to block the effect of interleukin (IL)-1beta-induced NFkappaB activation and IL-6 gene expression was analyzed by electrophoretic mobility shift assay and reverse transcriptase-polymerase chain reaction in rat Rinm5F insulinoma cells. Preincubation with transport peptide-PNA-NFkappaB decoy (1 microM, 1 h) blocked IL-1beta-induced NFkappaB-binding activity and significantly reduced the IL-6 mRNA expression. The same concentration of NFkappaB decoy in the absence of transport peptide-PNA had no effect even after longer incubations. Our results showed that binding of the oligonucleotide NFkappaB decoy to the nonamer PNA sequence resulted in a stable complex that was efficiently translocated across the plasma membrane.
Collapse
Affiliation(s)
- L Fisher
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
70
|
Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, Zhang D, Shen Y. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci 2004; 24:1760-71. [PMID: 14973251 PMCID: PMC6730458 DOI: 10.1523/jneurosci.4580-03.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/30/2003] [Accepted: 01/03/2004] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor type I receptor (TNFRI), a death receptor, mediates apoptosis and plays a crucial role in the interaction between the nervous and immune systems. A direct link between death receptor activation and signal cascade-mediated neuron death in brains with neurodegenerative disorders remains inconclusive. Here, we show that amyloid-beta protein (Abeta), a major component of plaques in the Alzheimer's diseased brain, induces neuronal apoptosis through TNFRI by using primary neurons overexpressing TNFRI by viral infection or neurons from TNFRI knock-out mice. This was mediated via alteration of apoptotic protease-activating factor (Apaf-1) expression that in turn induced activation of nuclear factor kappaB (NF-kappaB). Abeta-induced neuronal apoptosis was reduced with lower Apaf-1 expression, and little NF-kappaB activation was found in the neurons with mutated Apaf-1 or a deletion of TNFRI compared with the cells from wild-type (WT) mice. Our studies suggest a novel neuronal response of Abeta, which occurs through a TNF receptor signaling cascade and a caspase-dependent death pathway.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Amyloid beta-Peptides/toxicity
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptotic Protease-Activating Factor 1
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Gene Targeting
- Genes, Reporter
- Hippocampus/cytology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Peptide Fragments/toxicity
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction/physiology
- Transfection
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Rena Li
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, Arizona 85351, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Popescu BO, Cedazo-Minguez A, Benedikz E, Nishimura T, Winblad B, Ankarcrona M, Cowburn RF. γ-Secretase Activity of Presenilin 1 Regulates Acetylcholine Muscarinic Receptor-mediated Signal Transduction. J Biol Chem 2004; 279:6455-64. [PMID: 14625299 DOI: 10.1074/jbc.m306041200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling, we studied the effect of two other FAD PS1 mutants (M146V and L250S) and two dominant negative PS1 mutants (D257A and D385N) on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular calcium concentrations ([Ca2+]i) in SH-SY5Y neuroblastoma cells. We found a significant increase in basal PI hydrolysis in PS1 M146V cells but not in PS1 L250S cells. Both PS1 M146V and PS1 L250S cells showed a significant increase in carbachol-induced [Ca2+]i as compared with nontransfected or wild type PS1 transfected cells. The elevated carbachol-induced [Ca2+]i signals were reversed by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated carbachol-stimulated PI hydrolysis and [Ca2+]i responses. In nontransfected or PS1 wild type transfected cells, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester and pepstatin A also attenuated both carbachol-stimulated PI hydrolysis and [Ca2+]i responses to levels found in PS1 D257A or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent.
Collapse
Affiliation(s)
- Bogdan O Popescu
- Section of Experimental Geriatrics, Karolinska Institutet, Neurotec Department, Kliniskt Forskningscentrum, Novum, 141 86 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
72
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
73
|
Pentreath VW, Mead C. Responses of Cultured Astrocytes, C6 Glioma and 1321NI Astrocytoma Cells to Amyloid beta-Peptide Fragments. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:45-63. [PMID: 19330108 PMCID: PMC2647817 DOI: 10.1080/15401420490426990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of amyloid beta-peptide (betaAP), which can have both neurotrophic or neurotoxic effects on neurons and has been implicated in the pathogenesis of Alzheimer's disease (AD), was studied on astrocytes using primary cultures and astrocyte cell lines (rat C6 glioma, human 1321NI astrocytoma cells). The cultures were exposed to 0.0005-50 mug/ml) betaAP fragments 1-40, 25-35, 31-35, or 40-41 (control) for 24 hr. Some of the fragments were maintained at 37 degrees C for 48 hr to induce aggregation and some of the cell cultures were pretreated with the differentiating agent dBcAMP before the experiments. The astrocyte responses were evaluated for lysosome activity (neutral red assay) and levels of structural proteins, glial fibrillary acidic protein, vimentin, and S-100, which are altered in the dystrophic plaques with associated astrogliosis in AD. The cells frequently responded with biphasic responses, with initial (low-dose) activation-type responses (i.e., increases of indicator compared to controls), before reductions with altered morphology (increased branching of cells) at higher concentrations. However, cell death (with EC(50) values) was not observed, even at the maximum concentrations of betaAP fragments. The findings suggest that the astrocytes have a relatively high resistance against the betaAP toxicity.
Collapse
Affiliation(s)
- V W Pentreath
- Division of Biosciences, University of Salford, Salford, United Kingdom
| | | |
Collapse
|
74
|
Abstract
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center 4F01, Baltimore, MD 21224, USA.
| | | |
Collapse
|
75
|
Kaltschmidt B, Heinrich M, Kaltschmidt C. Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. Neuromolecular Med 2003; 2:299-309. [PMID: 12622408 DOI: 10.1385/nmm:2:3:299] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidative stress is believed to play an important role in neuronal cell death associated with several neurodegenerative diseases (e.g., Alzheimer disease, Parkinson disease, and cerebral ischemia). Neuronal cell death might be one of the crucial mediators of these diseases. The transcription factor NF-kappaB is well-known for its roles in preventing apoptotic cell death. Data indicated that NF-kappaB activation by pre-conditioning is part of a general brain tolerance program. Here we show that pre-conditioning leading to NF-kappaB activation also protects against oxidative insults generated by Fe2+ ions. Protection was accompanied by a long-lasting (more than 24 h) NF-kappaB activation. Using this paradigm of oxidative insult, we analyzed the effect of hypericin, one of the active principles of St. John's Wort. Hypericin alone was able to induce short-time activation of NF-kappaB, which declined to basal levels after 24 h. Cell death was induced by hypericin at a concentration of 10 microM. A profound synergistic action in inducing apoptosis was detected in co-treatment of hypericin together with FeSO4. In contrast, hypericin in low concentrations was able to partly prevent cell death induced by amyloid-beta-peptide (Abeta). Hypericin (10 microM) synergistically enhanced Abeta neurotoxicity. Since hypericin is a described inhibitor of protein kinase C, we compared its action to staurosporine, another natural neuronal death-promoting PKC inhibitor. Staurosporine induced cell death and activates NF-kappaB. Molecular inhibition of NF-kappaB activation with a transdominant negative IkappaB-alpha protected against staurosporine-induced cell death. In summary, the data describe NF-kappaB in the same primary neuronal culture as stimulus-dependent, anti-apoptotic, or pro-apoptotic factor.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Institut für Neurobiochemie, Universität Witten/Herdecke, Stockumer Str. 10, D-58448 Witten, Germany
| | | | | |
Collapse
|
76
|
Youdim MBH, Amit T, Bar-Am O, Weinstock M, Yogev-Falach M. Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann N Y Acad Sci 2003; 993:378-86; discussion 387-93. [PMID: 12853332 DOI: 10.1111/j.1749-6632.2003.tb07548.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two novel neuroprotective cholinesterase (ChE) inhibitors, TV3326 and TV3279 [(N-propargyl-(3R) and (3S) aminoindan-5-yl)-ethyl methyl carbamate], respectively were derived from rasagiline, for the treatment of Alzheimer's disease (AD). TV3326 also inhibits monoamine oxidase (MAO)-A and B, while its S-isomer, TV3279, lacks MAO-inhibitory activity. The actions of these drugs in the regulation of the amyloid precursor protein (APP) processing using rat PC12 and human SH-SY5Y neuroblastoma cells were examined. Both isomers stimulated the release of the non-amyloidogenic alpha-secretase form of soluble APP (sAPPalpha) from these cell lines. The increases in sAPPalpha, induced by TV3326 and TV3279, were dose-dependent (0.1-100 micro M) and blocked by the hydroxamic acid-based metalloprotease inhibitor, Ro31-9790, suggesting mediation via alpha-secretase activity. Using several signal transduction inhibitors, the involvement of protein kinase C (PKC), mitogen-activated protein (MAP) kinase, and tyrosine kinase-dependent pathways in the enhancement of sAPPalpha release by TV3326 and TV3279 was identified. In addition, both drugs directly induced the phosphorylation of p44 and p42 MAP kinase, which was abolished by the specific inhibitors of MAP kinase activation, PD98059 and U0126. These data suggest a novel pharmacological mechanism, whereby these ChE inhibitors regulate the secretary processes of APP via activation of the MAP kinase pathway.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | |
Collapse
|
77
|
Mattson MP. Contributions of mitochondrial alterations, resulting from bad genes and a hostile environment, to the pathogenesis of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:387-409. [PMID: 12512347 DOI: 10.1016/s0074-7742(02)53014-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. /gov
| |
Collapse
|
78
|
Kashour T, Burton T, Dibrov A, Amara FM. Late Simian virus 40 transcription factor is a target of the phosphoinositide 3-kinase/Akt pathway in anti-apoptotic Alzheimer's amyloid precursor protein signalling. Biochem J 2003; 370:1063-75. [PMID: 12472467 PMCID: PMC1223229 DOI: 10.1042/bj20021197] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 12/02/2002] [Accepted: 12/10/2002] [Indexed: 12/11/2022]
Abstract
The association of familial Alzheimer's disease (FAD) with mutations in Alzheimer's amyloid precursor protein (APP) suggests important functions for APP in the central nervous system. Mutations in APP impair its function to confer resistance to apoptosis in cells under stress, and this may contribute to neurodegeneration in Alzheimer's disease (AD) brain, but the mechanisms involved are unknown. We examined the role of the late Simian virus 40 transcription factor (LSF), in anti-apoptotic APP pathways. We show that in APP-deficient B103 cells, expression of wild-type human APP (hAPPwt), but not of FAD-mutant APP, inhibited staurosporine (STS)-induced apoptosis. This inhibition was further enhanced by expression of LSFwt, although LSFwt alone was not sufficient to inhibit STS-induced apoptosis. In contrast, expression of dominant-negative LSF led to a marked increase in STS-induced cell death that was significantly blocked by hAPPwt. These effects of APP were accompanied by LSF nuclear translocation and dependent gene transcription. The activation of LSF is dependent on the expression of hAPPwt and is inhibited by the expression of dominant-negative forms of either phosphoinositide 3-kinase or Akt. These results demonstrate that LSF activation is required for the neuroprotective effects of APP via phosphoinositide 3-kinase/Akt signalling. Alterations in this pathway by aberrations in APP and/or LSF could promote neuronal loss in AD brain, due to secondary insults. Thus a link is established between APP and LSF and AD.
Collapse
Affiliation(s)
- Tarek Kashour
- Section of Cardiology, Department of Medicine, St. Boniface General Hospital, The University of Manitoba, 770 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0W3
| | | | | | | |
Collapse
|
79
|
Abstract
Prostate apoptosis response-4 (par-4) is a pro-apoptotic gene identified in prostate cancer cells undergoing apoptosis. Par-4 protein, which contains a leucine zipper domain at the carboxy-terminus, functions as a transcriptional repressor in the nucleus. Par-4 selectively induces apoptosis in androgen-independent prostate cancer cells and Ras-transformed cells but not in androgen-dependent prostate cancer cells or normal cells. Cells that are resistant to apoptosis by Par-4 alone, however, are greatly sensitized by Par-4 to the action of other pro-apoptotic insults such as growth factor withdrawal, tumor necrosis factor, ionizing radiation, intracellular calcium elevation, or those involved in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and stroke. Apoptosis induction by Par-4 involves a complex mechanism that requires activation of the Fas death receptor signaling pathway and coparallel inhibition of cell survival NF-kappaB transcription activity. The unique ability of Par-4 to induce apoptosis in cancer cells but not normal cells and the ability of Par-4 antisense or dominant-negative mutant to abrogate apoptosis in neurodegenerative disease paradigms makes it an appealing candidate for molecular therapy of cancer and neuronal diseases.
Collapse
Affiliation(s)
- Nadia El-Guendy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
80
|
Kassed CA, Butler TL, Navidomskis MT, Gordon MN, Morgan D, Pennypacker KR. Mice expressing human mutant presenilin-1 exhibit decreased activation of NF-kappaB p50 in hippocampal neurons after injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:152-7. [PMID: 12573544 DOI: 10.1016/s0169-328x(02)00658-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the presenilin-1 (mutPS-1) gene, a cause of familial Alzheimer's disease, increase the susceptibility of neurons to apoptotic death. Using the trimethyltin model of hippocampal neurodegeneration, mice expressing the human mutPS-1 gene (M146L) exhibited increased neurodegeneration and mortality relative to non-transgenic littermates. Activation of NF-kappaB p50 was found to be impaired in transgenic mice with unaltered expression levels suggesting that mutPS-1 expression inhibits p50 activation to adversely affect neuronal resistance to injury.
Collapse
Affiliation(s)
- C A Kassed
- Department of Pharmacology and Therapeutics, College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 9, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
81
|
Butler TL, Kassed CA, Pennypacker KR. Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 2003; 59:339-51. [PMID: 12507684 DOI: 10.1016/s0361-9230(02)00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain injury and neurodegenerative disease are linked by their primary pathological consequence-death of neurons. Current approaches for the treatment of neurodegeneration are limited. In this review, we discuss animal models of human brain injury and molecular biological data that have been obtained from their analysis. In particular, signal transduction pathways that are associated with neurosurvival following injury to the brain are presented and discussed.
Collapse
Affiliation(s)
- T L Butler
- Department of Pharmacology and Therapeutics, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
82
|
Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J Neurosci 2003. [PMID: 12486164 DOI: 10.1523/jneurosci.22-24-10710.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Telomerase, a reverse transcriptase that maintains chromosome ends (telomeres) during successive cell divisions in mitotic cells is present in neuroblasts and early postmitotic embryonic neurons but is absent from adult neurons. The signals that control telomerase levels during development are unknown, as are the functions of telomerase in developing neurons. We now report that telomerase activity and levels of its catalytic subunit telomerase reverse transcriptase (TERT) are increased in embryonic hippocampal neurons by brain-derived neurotrophic factor (BDNF) and a secreted form of beta-amyloid precursor protein (sAPP). BDNF and sAPP promote the survival of the embryonic neurons, and these trophic effects are blocked when TERT production is suppressed using antisense technology. Telomerase is required for the long-term survival of early postmitotic neurons during a time window of approximately 1 week in culture; telomerase is then downregulated and is not required for BDNF and sAPP survival signaling in mature neurons. The increase in telomerase activity and trophic effects of BDNF and sAPP are mediated by phosphatidylinositol-3 kinase and p42/p44 MAP kinases. Our findings demonstrate a requirement for telomerase in the cell survival-promoting actions of BDNF and sAPP in early postmitotic hippocampal neurons, suggesting a previously unknown role for telomerase in mediating the biological actions of neurotrophic factors during brain development.
Collapse
|
83
|
Kaltschmidt B, Linker RA, Deng J, Kaltschmidt C. Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol Biol 2002; 3:16. [PMID: 12466023 PMCID: PMC140029 DOI: 10.1186/1471-2199-3-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Accepted: 12/04/2002] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND NF-kappaB is implicated in gene regulation involved in neuronal survival, inflammmatory response and cancer. There are relatively few neuronal target genes of NF-kappaB characterized. RESULTS We have identified the neuronal cyclooxygenase-2 (COX-2) as a NF-kappaB target gene. In organotypic hippocampal slice cultures constitutive NF-kappaB activity was detected, which was correlated with high anti-COX-2 immunoreactivity. Aspirin a frequently used painkiller inhibits neuronal NF-kappaB activity in organotypic cultures resulting in a strong inhibition of the NF-kappaB target gene COX-2. Based on these findings, the transcriptional regulation of COX-2 by NF-kappaB was investigated. Transient transfections showed a significant increase of COX-2 promoter activity upon stimulation with PMA, an effect which could be obtained also by cotransfection of the NF-kappaB subunits p65 and p50. In the murine neuroblastoma cell line NB-4, which is characterized by constitutive NF-kappaB activity, COX-2 promoter activity could not be further increased with PMA or TNF. Constitutive promoter activity could be repressed upon cotransfection of the inhibitory subunit IkappaB-alpha. EMSA and mutational analysis conferred the regulatory NF-kappaB activity to the promoter distal kappaB-site in the human COX-2 promoter. CONCLUSIONS NF-kappaB regulates neuronal COX-2 gene expression, and acts as an upstream target of Aspirin. This extends Aspirin's mode of action from a covalent modification of COX-2 to the upstream regulation of COX-2 gene expression in neurons.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Institute of Neurobiochemistry University of Witten/Herdecke, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf A Linker
- Present address: Neurologische Klinik und Poliklinik der Universität Würzburg Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany
| | - Jinbo Deng
- Institute of Anatomy, University of Freiburg, P.O. Box 111, D-79001 Freiburg, Germany
| | - Christian Kaltschmidt
- Institute of Neurobiochemistry University of Witten/Herdecke, Stockumer Str. 10, D-58448 Witten, Germany
| |
Collapse
|
84
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
85
|
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3:862-72. [PMID: 12415294 DOI: 10.1038/nrn960] [Citation(s) in RCA: 768] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frank M LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Building, Irvine, California 92697, USA.
| |
Collapse
|
86
|
Milhavet O, Martindale JL, Camandola S, Chan SL, Gary DS, Cheng A, Holbrook NJ, Mattson MP. Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. J Neurochem 2002; 83:673-81. [PMID: 12390529 DOI: 10.1046/j.1471-4159.2002.01165.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the presenilin-1 (PS1) gene cause early onset familial Alzheimer's disease (FAD) by a mechanism believed to involve perturbed endoplasmic reticulum (ER) function and altered proteolytic processing of the amyloid precursor protein. We investigated the molecular mechanisms underlying cell death and ER dysfunction in cultured cells and knock-in mice expressing FAD PS1 mutations. We report that PS1 mutations cause a marked increase in basal protein levels of the pro-apoptotic transcription factor Gadd153. PS1 mutations increase Gadd153 protein translation without affecting mRNA levels, while decreasing levels of the anti-apoptotic protein Bcl-2. Moreover, an exaggerated Gadd153 response to stress induced by ER stress agents was observed in PS1 mutant cells. Cell death in response to ER stress is enhanced by PS1 mutations, and this endangering effect is attenuated by anti-sense-mediated suppression of Gadd153 production. An abnormality in the translational regulation of Gadd153 may sensitize cells to the detrimental effects of ER stress and contribute to the pathogenic actions of PS1 mutations in FAD.
Collapse
Affiliation(s)
- Ollivier Milhavet
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The function of nuclear factor (NF)-kappaB within the developing and mature CNS is controversial. We have generated transgenic mice to reveal NF-kappaB transcriptional activity in vivo. As expected, constitutive NF-kappaB activity was observed within immune organs, and tumor necrosis factor-inducible NF-kappaB activity was present in mesenchymal cells. Intriguingly, NF-kappaB activity was also prominent in the CNS throughout development, especially within neocortex, olfactory bulbs, amygdala, and hippocampus. NF-kappaB in the CNS was restricted to neurons and blocked by overexpression of dominant-negative NF-kappaB-inducible kinase or the IkappaBalphaM super repressor. Blocking endogenous neuronal NF-kappaB activity in cortical neurons using recombinant adenovirus induced neuronal death, whereas induction of NF-kappaB activity increased levels of anti-apoptotic proteins and was strongly neuroprotective. Together, these data demonstrate a physiological role for NF-kappaB in maintaining survival of central neurons.
Collapse
|
88
|
Vega F, Orduz R, Medeiros LJ. Chromosomal translocations and their role in the pathogenesis of non-Hodgkin's lymphomas. Pathology 2002; 34:397-409. [PMID: 12408337 DOI: 10.1080/0031302021000009306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The discovery that non-Hodgkin's lymphomas are monoclonal and that recurrent chromosomal translocations are involved in their pathogenesis has greatly revolutionised their diagnosis and improved our understanding of these diseases. In the last decades, many genes deregulated by such recurrent chromosomal translocations have been identified. However, we have also learned that these genetic alterations are apparently insufficient, in themselves, to cause neoplastic cell transformation and that more complex genetic events must be involved. This review examines the involved genes in chromosomal translocations and current evidence and postulated mechanisms for their role in the pathogenesis of non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Francisco Vega
- Department of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
89
|
Bisaglia M, Venezia V, Piccioli P, Stanzione S, Porcile C, Russo C, Mancini F, Milanese C, Schettini G. Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation. Neurochem Int 2002; 41:43-54. [PMID: 11918971 DOI: 10.1016/s0197-0186(01)00136-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present findings show that an atypical non-steroidal anti-inflammatory drug, such as acetaminophen, retains the ability to recover amyloid beta-peptides driven neuronal apoptosis through the impairment of oxidative stress. Moreover, this compound reduces the increased NF-kappaB binding activity, which occurs in these degenerative conditions. Therapeutic interventions aimed at reducing the inflammatory response in Alzheimer's disease (AD) recently suggested the application of non-steroidal anti-inflammatory drugs. Although the anti-inflammatory properties of acetaminophen are controversial, it emerged that in an amyloid-driven astrocytoma cell degeneration model acetaminophen proved to be effective. On these bases, we analyzed the role of acetaminophen against the toxicity exerted by different Abeta-peptides on rat primary hippocampal neurons and on a rat pheochromocytoma cell line. We found a consistent protection from amyloid beta-fragments 1-40 and 1-42-induced impairment of mitochondrial redox activity on both cell cultures, associated with a marked reduction of apoptotic nuclear fragmentation. An antioxidant component of the protective activity emerged from the analysis of the reduction of phospholipid peroxidation, and also from a significant reduction of cytoplasmic accumulation of peroxides in the pheochromocytoma cell line. Moreover, activation of NF-kappaB by amyloid-derived peptides was greatly impaired by acetaminophen pre-treatment in hippocampal cells. This evidence points out antioxidant and anti-transcriptional properties of acetaminophen besides the known capability to interfere with inflammation within the central nervous system, and suggests that it can be exploited as a possible therapeutic approach against AD.
Collapse
Affiliation(s)
- M Bisaglia
- Pharmacology and Neuroscience, National Cancer Research Institute c/o Advanced Biotechnology Centre, L.go R. Benzi 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Cheng G, Yu Z, Zhou D, Mattson MP. Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp Neurol 2002; 175:407-14. [PMID: 12061870 DOI: 10.1006/exnr.2002.7920] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The alpha-secretase-derived form of the amyloid precursor protein (sAPPalpha), which is released from neurons in an activity-dependent manner, has been shown to promote long-term survival of hippocampal and cortical neurons in culture and can protect those neurons against excitotoxic and ischemic injury in culture and in vivo. The signal transduction pathway(s) activated by sAPPalpha has not been established. We now report that sAPPalpha activates the phosphatidylinositol-3-kinase (PI(3)K)-Akt kinase signaling pathway in cultured hippocampal neurons. sAPPalpha also stimulates phosphorylation of p42 (ERK1) and p44 (ERK2) mitogen-activated protein (MAP) kinases by a PI(3)K-independent pathway. Treatment of neurons with sAPPalpha protects them against death induced by trophic factor deprivation and exposure to glutamate, and these survival-promoting effects of sAPPalpha are abolished or attenuated when either PI(3)K or p42/p44 MAP kinases are selectively blocked. Exposure of neurons to sAPPalpha resulted in a decrease in the level of IkappaBbeta and an increase in NF-kappaB DNA binding activity, both of which were blocked by wortmannin, suggesting that the transcription factor NF-kappaB may be a downstream target of the PI(3)K-Akt pathway that may play a role in the cell survival-promoting action of sAPPalpha. These findings suggest that the PI(3)K-Akt pathway and p42/p44 MAP kinases mediate responses of neurons to sAPPalpha in physiological and pathological settings, with implications for synaptic plasticity and the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Guanjun Cheng
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
91
|
Lilliehook C, Chan S, Choi EK, Zaidi NF, Wasco W, Mattson MP, Buxbaum JD. Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signaling. Mol Cell Neurosci 2002; 19:552-9. [PMID: 11988022 DOI: 10.1006/mcne.2001.1096] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calsenilin (also called DREAM and KChIP3), a member of the neuronal calcium sensor family, was isolated in a yeast two-hybrid screen using an apoptotic domain of presenilin 2 as bait. Calsenilin is a cytoplasmic protein, but interacts with the COOH-termini of both presenilin 1 and presenilin 2 at the endoplasmic reticulum and the Golgi apparatus. In this study, we have investigated calsenilin's effect on apoptosis. In stable neuroglioma cell lines, we observed that calsenilin enhances apoptosis in response to serum withdrawal or thapsigargin. Consistent with these observations, caspase and apparently calpain activities were increased during apoptosis in calsenilin-overexpressing cells. Moreover, using calcium imaging we were able to show that cells treated with thapsigargin released more calcium from intracellular stores when calsenilin was overexpressed. Taken together, these data suggest that calsenilin causes cells to be more susceptible to apoptotic triggers, possibly by altering calcium dynamics.
Collapse
Affiliation(s)
- C Lilliehook
- Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Castagné V, Lefèvre K, Clarke PG. Dual role of the NF-kappaB transcription factor in the death of immature neurons. Neuroscience 2002; 108:517-26. [PMID: 11738264 DOI: 10.1016/s0306-4522(01)00430-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that the extent of axotomy-induced death of retinal ganglion cells is reduced by cycloheximide, an inhibitor of protein synthesis, and that an earlier sublethal oxidative insult induced by buthionine sulfoximine, a glutathione synthesis inhibitor, enhances the protective effects of cycloheximide. Thus, axotomy-induced ganglion cell death seems to involve an interaction between the redox status and genetic expression. The redox-sensitive transcription factor nuclear factor-kappaB (NF-kappaB) is a logical candidate for providing this interaction. In the present study, we injected intraocularly selective inhibitors of NF-kappaB in chick embryos either unlesioned, or after a unilateral tectal lesion, which axotomizes ganglion cells. The number of dying cells in the retina contralateral to the lesion was reduced in embryos receiving NF-kappaB inhibitors as compared with vehicle-injected controls. In contrast, the same NF-kappaB inhibitors administered as pretreatment before intraocular injection of buthionine sulfoximine and cycloheximide drastically raised neuronal death and induced fulgurant degenerative changes in the retina. The most parsimonious interpretation of our results is that in axotomized retinal ganglion cells of chick embryos NF-kappaB may have either death-promoting or death-inhibiting effects. We propose a theoretical model to explain these dual effects assuming the existence of parallel death pathways differently affected by NF-kappaB. These results may have implications for future redox-based therapeutic strategies for neuroprotection.
Collapse
Affiliation(s)
- V Castagné
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| | | | | |
Collapse
|
93
|
Xie J, Chang X, Zhang X, Guo Q. Aberrant induction of Par-4 is involved in apoptosis of hippocampal neurons in presenilin-1 M146V mutant knock-in mice. Brain Res 2001; 915:1-10. [PMID: 11578614 DOI: 10.1016/s0006-8993(01)02803-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in presenilin-1 (PS-1) have been shown to increase neuronal vulnerability to apoptosis in Alzheimer's disease (AD). Par-4 is a novel cell-death-promoting protein associated with neuronal degeneration in AD. We previously reported that, in transfected PC12 cells, Par-4 seems to be involved in the neurodegenerative mechanisms of PS-1 mutations. However, direct evidence for a necessary role of Par-4 in the pathogenic mechanisms of PS-1 mutations in neurons is lacking. We recently generated and characterized presenilin-1 mutant M146V knock-in (PS-1 M146V KI) mice. We now report that expression of the mutant presenilin-1 in these mice induces early and exaggerated increase in Par-4 expression in hippocampal neurons following glucose deprivation (an insult relevant to the pathogenesis of AD). Importantly, inhibition of Par-4 expression by antisense par-4 oligonucleotide treatment counteracts neuronal apoptosis promoted by M146V mutation of PS-1. Mitochondrial dysfunction and caspase-3 activity induced by glucose deprivation was significantly exacerbated in hippocampal neurons expressing the mutant PS-1. Antisense par-4 treatment largely suppressed the adverse effect of the mutant PS-1 on mitochondrial dysfunction and caspase activation. These results provide evidence in hippocampal neurons that Par-4 is involved in the neurodegenerative cascades associated with PS-1 M146V mutation by acting relatively early in the apoptotic process before mitochondrial dysfunction and caspase-3 activation. Since levels of Par-4 are significantly increased in the hippocampus in human AD brain, the results of this study may provide a significant link between aberrant induction of Par-4 and the neurodegenerative cascades promoted by PS-1 mutations in AD.
Collapse
Affiliation(s)
- J Xie
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, P.O. Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | |
Collapse
|
94
|
Mattson MP, Chan SL, Camandola S. Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 2001; 23:733-44. [PMID: 11494322 DOI: 10.1002/bies.1103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Presenilin-1 (PS1) is thought to regulate cell differentiation and survival by modulating the Notch signaling pathway. Mutations in PS1 have been shown to cause early-onset inherited forms of Alzheimer's disease (AD) by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP) resulting in increased production of neurotoxic forms of amyloid beta-peptide. The present article considers a second pathogenic mode of action of PS1 mutations, a defect in cellular calcium signaling characterized by overfilling of endoplasmic reticulum (ER) calcium stores and altered capacitive calcium entry; this abnormality may impair synaptic plasticity and sensitize neurons to apoptosis and excitotoxicity. The calcium signaling defect has also been documented in lymphocytes, suggesting a contribution of immune dysfunction to the pathogenesis of AD. A better understanding of the calcium signaling defect resulting from PS1 mutations may lead to the development of novel preventative and therapeutic strategies for disorders of the nervous and immune systems.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
95
|
Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:387-97. [PMID: 11485895 PMCID: PMC1850555 DOI: 10.1016/s0002-9440(10)61708-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear factor (NF)-kappaB family of eukaryotic transcription factors plays an important role in the regulation of immune response, embryo and cell lineage development, cell apoptosis, cell-cycle progression, inflammation, and oncogenesis. A wide range of stimuli, including cytokines, mitogens, environmental particles, toxic metals, and viral or bacterial products, activate NF-kappaB, mostly through IkappaB kinase (IKK)-dependent phosphorylation and subsequent degradation of its inhibitor, the IkappaB family of proteins. Activated NF-kappaB translocates into the nucleus where it modulates the expression of a variety of genes, including those encoding cytokines, growth factors, acute phase response proteins, cell adhesion molecules, other transcription factors, and several cell apoptosis regulators. During the past few years, tremendous progress has been achieved in our understanding on how intracellular signaling pathways are transmitted in either a linear or a network manner leading to the activation of NF-kappaB and subsequent cell growth control. However, a detailed molecular mechanism of NF-kappaB regulating cell growth has yet to be determined. Elucidation of the relationships between NF-kappaB activation and cell growth will be important in developing new strategies for the treatment of various human diseases, such as chronic autoimmune disorder and cancer.
Collapse
Affiliation(s)
- F Chen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
96
|
Lu C, Chan SL, Haughey N, Lee WT, Mattson MP. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem 2001; 78:577-89. [PMID: 11483661 DOI: 10.1046/j.1471-4159.2001.00431.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased oxyradical production and membrane lipid peroxidation occur in neurons under physiological conditions and in neurodegenerative disorders. Lipid peroxidation can alter synaptic plasticity and may increase the vulnerability of neurons to excitotoxicity, but the underlying mechanisms are unknown. We report that 4-hydroxy-2,3-nonenal (4HN), an aldehyde product of lipid peroxidation, exerts a biphasic effect on NMDA-induced current in cultured rat hippocampal neurons with current being increased during the first 2 h and decreased after 6 h. Similarly, 4HN causes an early increase and a delayed decrease in NMDA-induced elevation of intracellular Ca2+ levels. In contrast, 4HN affects neither the ion current nor the Ca2+ response to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). The initial enhancement of NMDA-induced current is associated with increased phosphorylation of the NR1 receptor subunit, whereas the delayed suppression of current is associated with cellular ATP depletion and mitochondrial membrane depolarization. Cell death induced by 4HN is attenuated by an NMDA receptor antagonist, but not by an AMPA receptor antagonist. A secreted form of amyloid precursor protein, previously shown to protect neurons against oxidative and excitotoxic insults, prevented each of the effects of 4HN including the early and late changes in NMDA current, delayed ATP depletion, and cell death. These findings show that the membrane lipid peroxidation product 4HN can modulate NMDA channel activity, suggesting a role for this aldehyde in physiological and pathophysiological responses of neurons to oxidative stress.
Collapse
Affiliation(s)
- C Lu
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore 21224, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
This article summarizes recent findings indicating that amyloid beta-peptide displays neurotoxic and neurotrophic effects, depending on concentration. Mechanistic findings revealed that reactive oxygen species mediate both the toxic and neurotropic responses as a function of concentration with low doses being neutotrophic, while higher doses were toxic. The data reveal a potential biological function for amyloid beta-peptide within an optimal concentration zone. These findings suggest the critical role of dose in understanding disease causation and clinical therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- E J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
98
|
Guo Q, Xie J, Chang X, Zhang X, Du H. Par-4 is a synaptic protein that regulates neurite outgrowth by altering calcium homeostasis and transcription factor AP-1 activation. Brain Res 2001; 903:13-25. [PMID: 11382383 DOI: 10.1016/s0006-8993(01)02304-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although Par-4 (prostate apoptosis response-4) is involved in initiation of neurodegenerative cascades associated with certain neurodegenerative disorders, normal physiological roles of Par-4 in neurons have remained elusive. It was recently reported that Par-4 protein levels could be regulated at translational level in synaptic terminals following apoptotic insults, suggesting that Par-4 might play a role in synaptic function. We report that Par-4 is a synaptic protein preferably localized in postsynaptic density (PSD). The expression of Par-4 in synaptosome preparations and PSDs are developmentally and regionally regulated. Synaptic Par-4 is enriched in the cerebral cortex and the hippocampus, but not in the cerebellum. In vitro as well as in vivo experiments demonstrate that the levels of synaptic Par-4 increase as the neurons mature. Overexpression of Par-4 in transfected PC12 cells inhibits nerve growth factor (NGF)-induced cellular differentiation and neurite outgrowth by a mechanism involving aberrant elevation of intracellular calcium levels and suppression of activation of the transcription factor AP-1. The actions of Par-4 were consistently blocked by co-expression of the dominant negative regulator of Par-4 activity (the leucine zipper domain of Par-4). Since the leucine zipper domain of Par-4 (Leu.zip) may mediate protein--protein interactions, the results indicate that the actions of Par-4 require its interaction with other protein(s) or dimerization with itself. These results suggest that Par-4 may play an important role in postsynaptic signal transduction and regulation of cellular pathways associated with cellular differentiation and neurite outgrowth. Identification of Par-4 as a novel synaptic protein may have significant implications in understanding the mechanisms of synaptic functions in physiological and pathological settings.
Collapse
Affiliation(s)
- Q Guo
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA.
| | | | | | | | | |
Collapse
|
99
|
Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci U S A 2001; 98:5815-20. [PMID: 11309494 PMCID: PMC33296 DOI: 10.1073/pnas.081612998] [Citation(s) in RCA: 584] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical, epidemiological, and genetic findings demonstrate a link between cholesterol levels, processing of the amyloid precursor protein (APP), and Alzheimer's disease. In the present report, we identify the alpha-secretase ADAM 10 (a disintegrin and metalloprotease) as a major target of the cholesterol effects on APP metabolism. Treatment of various peripheral and neural cell lines with either the cholesterol-extracting agent methyl-beta-cyclodextrin or the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin resulted in a drastic increase of secreted alpha-secretase cleaved soluble APP. This strong stimulatory effect was in the range obtained with phorbol esters and was further increased in cells overexpressing ADAM 10. In cells overexpressing APP, the increase of alpha-secretase activity resulted in a decreased secretion of Abeta peptides. Several mechanisms were elucidated as being the basis of enhanced alpha-secretase activity: increased membrane fluidity and impaired internalization of APP were responsible for the effect observed with methyl-beta-cyclodextrin; treatment with lovastatin resulted in higher expression of the alpha-secretase ADAM 10. Our results demonstrate that cholesterol reduction promotes the nonamyloidogenic alpha-secretase pathway and the formation of neuroprotective alpha-secretase cleaved soluble APP by several mechanisms and suggest approaches to prevention of or therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- E Kojro
- Institute of Biochemistry, Johannes Gutenberg University, Becherweg 30, D-55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
100
|
Simakajornboon N, Gozal E, Gozal D. Developmental patterns of NF-kappaB activation during acute hypoxia in the caudal brainstem of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:175-83. [PMID: 11335004 DOI: 10.1016/s0165-3806(01)00132-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NF-kappaB, an ubiquitous transcription factor which plays a major role in the regulation of stress-related genes, is activated during environmental hypoxia in the dorsocaudal brainstem of adult rats. To examine the developmental pattern of NF-kappaB basal activity in the brainstem and the response to hypoxia, electromobility shift assays and immunohistochemical staining for the P65 subunit of NF-kappaB were performed in caudal brainstem samples of rats at 2, 5, 10, 15, and 60 days postnatal age, following normoxic or hypoxic (1 h in 10% O2) exposures. In addition, the expression of IkappaB-alpha, and IkappaB kinases (ikk)-alpha and -beta was also examined using Western blots. Basal NF-kappaB nuclear activity and nuclear P65 immunoreactivity increased with maturation. In contrast, hypoxia induced enhanced activation of NF-kappaB and nuclear translocation of P65 in youngest animals. Expression of both IkappaB-alpha and ikk-alpha was highest in the more immature rats, and decreased with postnatal age. In contrast, ikk-beta expression was unchanged over time. We conclude that NF-kappaB activity in caudal brainstem is developmentally regulated, and that hypoxia-induced NF-kappaB activation is more prominent in youngest rats. We postulate that postnatal regulation of NF-kappaB complex expression and function may underlie fundamental genomic processes mediating developmental changes in neuronal hypoxic tolerance.
Collapse
Affiliation(s)
- N Simakajornboon
- Constance S. Kaufman Pediatric Pulmonary Research Laboratory, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|