51
|
Chen W, Schwalie PC, Pankevich EV, Gubelmann C, Raghav SK, Dainese R, Cassano M, Imbeault M, Jang SM, Russeil J, Delessa T, Duc J, Trono D, Wolfrum C, Deplancke B. ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer. Nat Commun 2019; 10:1809. [PMID: 31000713 PMCID: PMC6472429 DOI: 10.1038/s41467-019-09803-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner.
Collapse
Affiliation(s)
- Wanze Chen
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Petra C Schwalie
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Eugenia V Pankevich
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - Carine Gubelmann
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Sunil K Raghav
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Immunogenomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco Cassano
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michael Imbeault
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Suk Min Jang
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Tenagne Delessa
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Julien Duc
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Didier Trono
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
52
|
Luteolin Targets the Toll-Like Receptor Signaling Pathway in Prevention of Hepatic and Adipocyte Fibrosis and Insulin Resistance in Diet-Induced Obese Mice. Nutrients 2018; 10:nu10101415. [PMID: 30282902 PMCID: PMC6213163 DOI: 10.3390/nu10101415] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
This study was to investigate the protective role of luteolin on inflammation-mediated metabolic diseases, focusing on the role of luteolin in the modulation of the Toll-like receptor (TLR) signaling pathway. C57BL/6J mice were fed a normal, high-fat, or high-fat + 0.005% (w/w) luteolin diet for 16 weeks. Luteolin improved chronic low-grade inflammation by modulating the TLR signaling pathway, resulting in reduced pro-inflammatory cytokines and macrophage accumulation. A positive relationship was detected between gene expressions of Tlr5, Map2k7, Mapk12, Mapk13, and Mapk9 and lipogenesis in epididymal white adipose tissue (eWAT) of luteolin-treated mice, which was linked to attenuation of hepatic lipotoxicity by increasing free fatty acid (FFA) flux to the WAT. Luteolin prevented fibrosis by decreasing extracellular matrix accumulation and cathepsin gene expressions, while enhancing the hepatic antioxidant system. Emr1 and Ccl7, important markers inducing low-grade inflammation, were affected by advanced age and greater body weight, which were normalized by luteolin treatment. Luteolin improved insulin resistance by normalizing pancreatic islet dysfunction and differentially modulating the plasma glucagon-like peptide-1 and gastric inhibitory polypeptide levels. Our results suggest that luteolin ameliorates diet-induced obesity and its comorbidities. Overall, this study provides novel insights into the effect of luteolin on the links among adiposopathy, insulin resistance, hepatic steatosis, and fibrosis.
Collapse
|
53
|
Liu CP, Chau PC, Chang CT, An LM, Yeh JL, Chen IJ, Wu BN. KMUP-1, a GPCR Modulator, Attenuates Triglyceride Accumulation Involved MAPKs/Akt/PPARγ and PKA/PKG/HSL Signaling in 3T3-L1 Preadipocytes. Molecules 2018; 23:molecules23102433. [PMID: 30249030 PMCID: PMC6222827 DOI: 10.3390/molecules23102433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022] Open
Abstract
Xanthine-based KMUP-1 was shown to inhibit phosphodiesterases (PDEs) and modulate G-protein coupled receptors (GPCRs) to lower hyperlipidemia and body weight. This study further investigated whether KMUP-1 affects adipogenesis and lipolysis in 3T3-L1 preadipocytes. KMUP-1 (1–40 µM) concentration-dependently attenuated Oil Red O (ORO) staining and decreased triglyceride (TG) accumulation, indicating adipogenesis inhibition in 3T3-L1 cells. In contrast, the β-agonist ractopamine increased ORO staining and TG accumulation and adipogenesis. KMUP-1 (1–40 µM) also reduced MAPKs/Akt/PPARγ expression, PPARγ1/PPARγ2 mRNA, and p-ERK immunoreactivity at the adipogenesis stage, but enhanced hormone sensitive lipase (HSL) immunoreactivity at the lipolysis stage. Addition of protein kinase A (PKA) or protein kinase G (PKG) antagonist (KT5720 or KT5728) to adipocytes did not affect HSL immunoreactivity. However, KMUP-1 did increase HSL immunoreactivity and the effect was reduced by PKA or PKG antagonist. Simvastatin, theophylline, caffeine, and sildenafil, like KMUP-1, also enhanced HSL immunoreactivity. Phosphorylated HSL (p-HSL) was enhanced by KMUP-1, indicating increased lipolysis in mature 3T3-L1 adipocytes. Decreases of MAPKs/Akt/PPARγ during adipogenesis contributed to inhibition of adipocyte differentiation, and increases of PKA/PKG at lipolysis contributed to HSL activation and TG hydrolysis. Taken together, the data suggest that KMUP-1 can inhibit hyperadiposity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Chung-Pin Liu
- Department of Cardiology, Yuan's General Hospital, Kaohsiung 802, Taiwan.
| | - Pei-Chun Chau
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chain-Ting Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Li-Mei An
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ing-Jun Chen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Pingtung Christian Hospital, Pingtung 900, Taiwan.
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
54
|
Matesanz N, Nikolic I, Leiva M, Pulgarín-Alfaro M, Santamans AM, Bernardo E, Mora A, Herrera-Melle L, Rodríguez E, Beiroa D, Caballero A, Martín-García E, Acín-Pérez R, Hernández-Cosido L, Leiva-Vega L, Torres JL, Centeno F, Nebreda AR, Enríquez JA, Nogueiras R, Marcos M, Sabio G. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol 2018; 16:e2004455. [PMID: 29979672 PMCID: PMC6051667 DOI: 10.1371/journal.pbio.2004455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 07/18/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.
Collapse
Affiliation(s)
- Nuria Matesanz
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ivana Nikolic
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Magdalena Leiva
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ayelén M. Santamans
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Edgar Bernardo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Leticia Herrera-Melle
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Rodríguez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Ainoa Caballero
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Martín-García
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Rebeca Acín-Pérez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - Luis Leiva-Vega
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jorge L. Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Francisco Centeno
- Facultad de Ciencias, University of Extremadura, Grupo GIEN (Grupo de Investigación en Enfermedades Neurodegenerativas), Badajoz, Spain
| | - Angel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - José Antonio Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
Jung TW, Chung YH, Kim HC, Abd El-Aty AM, Jeong JH. LECT2 promotes inflammation and insulin resistance in adipocytes via P38 pathways. J Mol Endocrinol 2018; 61:37-45. [PMID: 29650721 DOI: 10.1530/jme-17-0267] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a recently identified novel hepatokine that causes insulin resistance in skeletal muscle by activating c-Jun N-terminal kinase (JNK), thereby driving atherosclerotic inflammation. However, the role of LECT2 in inflammation and insulin resistance in adipocytes has not been investigated. In this study, we report that LECT2 treatment of differentiated 3T3-L1 cells stimulates P38 phosphorylation in a dose-dependent manner. LECT2 also enhanced inflammation markers such as IκB phosphorylation, nuclear factor kappa beta (NF-κB) phosphorylation and IL-6 expression. Moreover, LECT2 treatment impaired insulin signaling in differentiated 3T3-L1 cells, as evidenced by the decreased levels of insulin receptor substrate (IRS-1) and Akt phosphorylation and reduced insulin-stimulated glucose uptake. Furthermore, LECT2 augmented lipid accumulation during 3T3-L1 cell differentiation by activating SREBP1c-mediated signaling. All these effects were significantly abrogated by siRNA-mediated silencing of P38, CD209 expression or a JNK inhibitor. Our findings suggest that LECT2 stimulates inflammation and insulin resistance in adipocytes via activation of a CD209/P38-dependent pathway. Thus, these results suggest effective therapeutic targets for treating inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
56
|
Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. Int J Mol Sci 2018; 19:ijms19061772. [PMID: 29904032 PMCID: PMC6032296 DOI: 10.3390/ijms19061772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Phloretin, a glucose transporter (GLUT) inhibitor, has pleiotropic effects. The present study examined the effects of phloretin on the commitment of marrow stromal cells to adipocytes, using the mouse marrow stromal cell line ST2. Oil red O staining showed that treatment with phloretin 10–100 µM promoted lipid accumulation. Real-time PCR showed that phloretin significantly increased the expression of adipogenic markers, including PPARγ, C/EBPα, fatty acid synthase, fatty acid-binding protein 4, and adiponectin. Western blotting showed that phloretin inhibited ERK1/2 and JNK but activated p38 MAPK. Treatment with a MAPK/ERK kinase inhibitor and a JNK inhibitor enhanced adipogenesis, similar to phloretin. In contrast, a p38 MAPK inhibitor suppressed phloretin-induced adipogenesis. Although phloretin phosphorylated AMP-activated protein kinase (AMPK), co-incubation with an AMPK inhibitor did not block phloretin-induced adipogenesis. The 2-deoxyglucose colorimetric assay showed that phloretin and siRNA silencing of GLUT1 decreased glucose uptake. However, unlike phloretin treatment, GLUT1 silencing inhibited adipogenesis. In addition, phloretin enhanced adipogenesis in GLUT1 knocked-down cells. Taken together, phloretin induced adipogenesis of marrow stromal cells by inhibiting ERK1/2 and JNK and by activating p38 MAPK. The adipogenic effects of phloretin were independent of glucose uptake inhibition. Phloretin may affect energy metabolism by influencing adipogenesis and adiponectin expression.
Collapse
|
57
|
Dual Effects of Metformin on Adipogenic Differentiation of 3T3-L1 Preadipocyte in AMPK-Dependent and Independent Manners. Int J Mol Sci 2018; 19:ijms19061547. [PMID: 29789508 PMCID: PMC6032223 DOI: 10.3390/ijms19061547] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/29/2023] Open
Abstract
Metformin has been reported to have body weight lowering effects while treating type 2 diabetes. However, limited studies examined the effects of metformin on adipogenesis in vitro, and available data are inconclusive and contradictory. In this study, we examined the effects of a variety of concentrations of metformin on adipocyte differentiation of 3T3-L1 preadipocytes and found metformin exhibits a dual effect on adipogenesis. Metformin at lower concentrations (1.25–2.5 mM) significantly induced adipogenesis while at higher concentrations (5–10 mM) metformin significantly inhibited adipogenesis in 3T3-L1 cells. The biphasic effect of different doses of metformin on adipogenesis was accompanied by increasing or decreasing the expression of adipogenic and lipogenic genes including peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and fatty acid synthase (FASN) at both messenger RNA (mRNA) and protein levels. Furthermore, only the higher concentrations of metformin induced the phosphorylation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), p38, and c-Jun N-terminal kinase (JNK) and reduced the phosphorylation of extracellular regulated protein kinases (ERK) and Akt. Pretreatment with compound C, a specific AMPK inhibitor, significantly countered high concentration of metformin-induced inhibition of adipogenesis. Taken together, these findings demonstrate that the effect of metformin on adipocyte differentiation is biphasic and dose-dependent. Lower concentrations of metformin induce adipogenesis, which could be mediated in an AMPK-independent manner, while higher concentrations of metformin inhibit adipogenesis via AMPK activation.
Collapse
|
58
|
Ishihara Y, Tsuji M, Vogel CFA. Suppressive effects of aryl-hydrocarbon receptor repressor on adipocyte differentiation in 3T3-L1 cells. Arch Biochem Biophys 2018; 642:75-80. [PMID: 29432714 DOI: 10.1016/j.abb.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
The aryl-hydrocarbon receptor repressor (AhRR) negatively regulates aryl-hydrocarbon receptor (AhR) signaling via its inhibitory transactivation. AhR is well known to suppress adipocyte differentiation, but the function of AhRR during adipogenesis is unclear. The purpose of this study was to investigate the role of AhRR in adipocyte differentiation using 3T3-L1 cells. During the early phase of differentiation, AhRR expression was transiently induced, but throughout the entire differentiation process, low levels of AhR expression were maintained. AhRR knockdown significantly increased not only glycerol-3-phosphate dehydrogenase (GPDH) activity but also lipid accumulation inside the cells. AhRR overexpression clearly reduced GPDH activity and lipid accumulation, indicating that AhRR upregulation during the early stage of adipogenesis suppresses adipocyte differentiation. Since AhRR knockdown increases the expression and activity of peroxisome proliferator-activated receptor γ (PPARγ), AhRR negatively regulates PPARγ during adipogenesis. In summary, similar to AhR, AhRR acts as an inhibitor of adipocyte differentiation. In addition to controlling the negative feedback loop of AhR, AhRR might be involved in other functions, especially in adipocyte differentiation processes.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA; Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan.
| | - Mayumi Tsuji
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA; Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
59
|
Harada N, Hirano I, Inui H, Yamaji R. Stereoselective effects of lactate enantiomers on the enhancement of 3T3-L1 adipocyte differentiation. Biochem Biophys Res Commun 2018; 498:105-110. [PMID: 29501496 DOI: 10.1016/j.bbrc.2018.02.198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Lactate contains a chiral carbon and thus has two optical isomers-d-lactate and l-lactate. l-Lactate is the predominant form that is produced by the body and can be delivered to the organs. On the other hand, gut microbiota produce both isomers, which can then flow into the body. Although both d-lactate and l-lactate can contribute to energy metabolism, their potential roles in adipocyte differentiation remain to be elucidated. Here, we investigated the effects of l-lactate and d-lactate on the differentiation of 3T3-L1 preadipocytes. Both lactate enantiomers were demonstrated to enhance triglyceride accumulation by stimulating the early phase of adipocyte differentiation. Notably, d-lactate was more potent than l-lactate in inducing triglyceride accumulation. The degree of triglyceride accumulation induced by l-lactate was similar to that induced by pyruvate. d-Lactate was more potent than l-lactate in increasing the activity of glycerol-3-phosphate dehydrogenase. Both lactate enantiomers did not affect cell viability. Moreover, both enantiomers upregulated the expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein-1c, and fatty acid synthase, with d-lactate exerting stronger effects than l-lactate. By contrast, lactate did not influence the expression of C/EBPβ and C/EBPδ. d-Lactate significantly increased and l-lactate tended to increase p38 MAPK phosphorylation, and the p38 MAPK inhibitor SB203580 inhibited the stimulation of adipocyte differentiation by d-lactate and l-lactate. These findings showed that both lactate enantiomers stimulate preadipocyte differentiation, with d-lactate showing more potent effects than l-lactate. In addition, our study demonstrated that d-lactate and l-lactate exert different effects on physiological events.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | - Ito Hirano
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
60
|
Liotti A, Cabaro S, Cimmino I, Ricci S, Procaccini C, Paciello O, Raciti GA, Spinelli R, Iossa S, Matarese G, Miele C, Formisano P, Beguinot F, Oriente F. Prep1 deficiency improves metabolic response in white adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:515-525. [PMID: 29474930 DOI: 10.1016/j.bbalip.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Prep1 is a gene encoding for a homeodomain transcription factor which induces hepatic and muscular insulin resistance. In this study, we show that Prep1 hypomorphic heterozygous (Prep1i/+) mice, expressing low levels of protein, featured a 23% and a 25% reduction of total body lipid content and epididymal fat, respectively. The percentage of the small adipocytes (25-75 μm) was 30% higher in Prep1i/+ animals than in the WT, with a reciprocal difference in the large adipose cells (100-150 and >150 μm). Insulin-stimulated insulin receptor tyrosine and Akt serine phosphorylation markedly increased in Prep1i/+ mice, paralleled by 3-fold higher glucose uptake and a significant increase of proadipogenic genes such as C/EBPα, GLUT4, and FABP4. Moreover, T cells infiltration and TNF-α, IFNγ and leptin expression were reduced in adipose tissue from Prep1i/+ mice, while adiponectin levels were 2-fold higher. Furthermore, Prep1i/+ mature adipocytes released lower amounts of pro-inflammatory cytokines and higher amount of adiponectin compared to WT cells. Incubation of murine liver cell line (NMuLi) with conditioned media (CM) from mature adipocytes of Prep1i/+ mice improved glucose metabolism, while those from WT mice had no effect. Consistent with these data, Prep1 overexpression in 3T3-L1 adipocytes impaired adipogenesis and insulin signaling, and increased proinflammatory cytokine secretion. All these findings suggest that Prep1 silencing reduces inflammatory response and increases insulin sensitivity in adipose tissue. In addition, CM from mature adipocytes of Prep1i/+ mice improve metabolism in hepatic cells.
Collapse
Affiliation(s)
- Antonietta Liotti
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Serena Ricci
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudio Procaccini
- Laboratory of Immunology, National Council of Research (CNR), Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Gregory A Raciti
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Rosa Spinelli
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Susanna Iossa
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Giuseppe Matarese
- Laboratory of Immunology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy.
| |
Collapse
|
61
|
Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis. Toxins (Basel) 2017; 10:toxins10010009. [PMID: 29295544 PMCID: PMC5793096 DOI: 10.3390/toxins10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Hanny University, Suseong-gu, Deagu 42158, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
62
|
Shim EH, Lee H, Lee MS, You S. Anti-adipogenic effects of the traditional herbal formula Dohongsamul-tang in 3T3-L1 adipocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:542. [PMID: 29258500 PMCID: PMC5738182 DOI: 10.1186/s12906-017-2038-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Background Blood stasis syndrome (BSS) is a general pattern identification and refers to pathological stagnation of blood circulation, dysfunction of endothelial cells or metabolic disorder in traditional Korean medicine (TKM). Dohongsamul-Tang (DHSMT) is a well-known traditional herbal formula which used for treatment and prevention of BSS by promoting blood circulation in TKM. Methods Cytotoxicity of DHSMT was examined by cell counting kit-8 (CCK-8). We also investigated the anti-adipogenesis effect of DHSMT by using Oil Red O staining, intracellular triglyceride assay leptin ELISA and western blot analysis in 3T3-L1 adipocytes. In addition, the accumulation of adiponectin, resistin and plasminogen activator inhibitor-1 (PAI-1) were measured by magnetic bead panel kit. Results Oil Red O staining showed that DHSMT markedly reduced fat accumulation without affecting cell cytotoxicity. DHSMT also significantly decreased accumulation of triglyceride and adipokines such as leptin, adiponectin, resistin and PAI-1 compared with fully differentiated adipocytes. Furthermore, our results found that DHSMT significantly suppressed the adipocyte differentiation by downregulating adipogenic-specific transcriptional factors such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding proteins alpha (C/EBPα) and fatty acid binding protein 4 (FABP4) in adipocytes. Conclusions Taken together, our findings provide that DHSMT has potential for treatment and prevention of obesity or MS related to BSS.
Collapse
|
63
|
Constitutive activation of p46JNK2 is indispensable for C/EBPδ induction in the initial stage of adipogenic differentiation. Biochem J 2017; 474:3421-3437. [PMID: 28887384 DOI: 10.1042/bcj20170332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 01/03/2023]
Abstract
Adipogenic differentiation plays a vital role in energy homeostasis and endocrine system. Several transcription factors, including peroxisome proliferator-activated receptor gamma 2 and CCAAT-enhancer-binding protein (C/EBP) α, β, and δ, are important for the process, whereas the stage-specific intracellular signal transduction regulating the onset of adipogenesis remains enigmatic. Here, we explored the functional role of c-jun N-terminal kinases (JNKs) in adipogenic differentiation using in vitro differentiation models of 3T3-L1 cells and primary adipo-progenitor cells. JNK inactivation with either a pharmacological inhibitor or JNK2-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the down-regulation of Adiponectin, fatty acid protein 4 (Fabp4), Pparg2, and C/ebpa expressions. Conversely, increased adipogenesis was observed by the inducible overexpression of p46JNK2 (JNK2-1), whereas it was not observed by that of p54JNK2 (JNK2-2), indicating a distinct role of p46JNK2. The essential role of JNK appears restricted to the early stage of adipogenic differentiation, as JNK inhibition in the later stages did not influence adipogenesis. Indeed, JNK phosphorylation was significantly induced at the onset of adipogenic differentiation. As for the transcription factors involved in early adipogenesis, JNK inactivation significantly inhibited the induction of C/ebpd, but not C/ebpb, during the initial stage of adipogenic differentiation. JNK activation increased C/ebpd mRNA and protein expression through the induction and phosphorylation of activating transcription factor 2 (ATF2) that binds to a responsive element within the C/ebpd gene promoter region. Taken together, these data indicate that constitutive JNK activity is specifically required for the initial stage differentiation events of adipocytes.
Collapse
|
64
|
IGFBP2 enhances adipogenic differentiation potentials of mesenchymal stem cells from Wharton's jelly of the umbilical cord via JNK and Akt signaling pathways. PLoS One 2017; 12:e0184182. [PMID: 28859160 PMCID: PMC5578624 DOI: 10.1371/journal.pone.0184182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/18/2017] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cell (MSC)-mediated tissue engineering represents a promising strategy to address adipose tissue defects. MSCs derived from Wharton’s jelly of the umbilical cord (WJCMSCs) may serve as an ideal source for adipose tissue engineering due to their abundance, safety profile, and accessibility. How to activate the directed differentiation potentials of WJCMSCs is the core point for their clinical applications. A thorough investigation of mechanisms involved in WJCMSC adipogenic differentiation is necessary to support their application in adipose tissue engineering and address shortcomings. Previous study showed, compared with periodontal ligament stem cells (PDLSCs), WJCMSCs had a weakened adipogenic differentiation potentials and lower expression of insulin-like growth factor binding protein 2 (IGFBP2). IGFBP2 may be involved in the adipogenesis of MSCs. Generally, IGFBP2 is involved in regulating biological activity of insulin-like growth factors, however, its functions in human MSCs are unclear. Here, we found IGFBP2 expression was upregulated upon adipogenic induction, and that IGFBP2 enhanced adipogenic differentiation of WJCMSCs and BMSCs. Moreover, IGFBP2 increased phosphorylation of c-Jun N-terminal kinase (p-JNK) and p-Akt, and activated JNK or Akt signaling significantly promoted adipogenic differentiation of MSCs. Furthermore, inhibitor-mediated blockage of either JNK or Akt signaling dramatically reduced IGFBP2-mediated adipogenic differentiation. And the JNK inhibitor, SP600125 markedly blocked IGFBP2-mediated Akt activation. Moreover, IGFBP2 was negatively regulated by BCOR, which inhibited adipogenic differentiation of WJCMSCs. Overall, our results reveal a new function of IGFBP2, providing a novel insight into the mechanism of adipogenic differentiation and identifying a potential target mediator for improving adipose tissue engineering based on WJCMSCs.
Collapse
|
65
|
Echinomycin inhibits adipogenesis in 3T3-L1 cells in a HIF-independent manner. Sci Rep 2017; 7:6516. [PMID: 28747725 PMCID: PMC5529514 DOI: 10.1038/s41598-017-06761-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
Abstract
Obesity is a risk factor for many diseases including diabetes, cancer, cardiovascular disease, and chronic kidney disease. Obesity is characterized by the expansion of white adipose tissue (WAT). Hypertrophy and hyperplasia of adipocytes cause tissue hypoxia followed by inflammation and fibrosis. Its trigger, preadipocyte differentiation into mature adipocytes, is finely regulated by transcription factors, signal molecules, and cofactors. We found that echinomycin, a potent HIF-1 inhibitor, completely inhibited adipogenesis in 3T3-L1 WAT preadipocytes by affecting the early phase of mitotic clonal expansion. The dose required to exert the effect was surprisingly low and the time was short. Interestingly, its inhibitory effect was independent of HIF-1 pathways. Time-course DNA microarray analysis of drug-treated and untreated preadipocytes extracted a major transcription factor, CCAAT/enhancer-protein β, as a key target of echinomycin. Echinomycin also inhibited adipogenesis and body weight gain in high fat diet mice. These findings highlight a novel role of echinomycin in suppressing adipocyte differentiation and offer a new therapeutic strategy against obesity and diabetes.
Collapse
|
66
|
Wu W, Zhang J, Zhao C, Sun Y, Pang W, Yang G. CTRP6 Regulates Porcine Adipocyte Proliferation and Differentiation by the AdipoR1/MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5512-5522. [PMID: 28535682 DOI: 10.1021/acs.jafc.7b00594] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intramuscular fat (IMF) and subcutaneous fat (SCF), which are modulated by adipogenesis of intramuscular and subcutaneous adipocytes, play key roles in pork quality. C1q/tumor necrosis factor-related protein 6 (CTRP6), an adipokine, plays an important role in the differentiation of 3T3-L1 cells. However, the effect and regulatory mechanisms of CTRP6 on porcine adipogenesis, and whether CTRP6 has the same effect on intramuscular and subcutaneous adipocytes, are still unknown. Here, we found that CTRP6 significantly inhibited both adipocyte proliferation assessed by proliferative marker expression, but CTRP6 decreased the proliferation rate of intramuscular adipocytes (IM) to a greater extent than subcutaneous adipocytes (SC). Moreover, CTRP6 promoted the activity of the p38 signaling pathway during the proliferation of both cell types. Nevertheless, in subcutaneous adipocytes, CTRP6 also influenced the phosphorylation of extracellular regulated protein kinases1/2 (p-Erk1/2), but not in intramuscular adipocytes. Additionally, during the differentiation of intramuscular and subcutaneous adipocytes, CTRP6 increased adipogenic genes expression and the level of p-p38, while it decreased the activity of p-Erk1/2. Interestingly, the effect of CTRP6 shRNA or CTRP6 recombinant protein was attenuated by U0126 (a special p-Erk inhibitor) or SB203580 (a special p-p38 inhibitor) in adipocytes. By target gene prediction and experimental validation, we demonstrated that CTRP6 may be a target of miR-29a in porcine adipocytes. Moreover, AdipoR1was identified as a receptor of CTRP6 in intramuscular adipocytes, but not in subcutaneous adipocytes. On the basis of the above findings, we suggest that CTRP6 was the target gene of miR-29a, inhibited intramuscular and subcutaneous adipocyte proliferation, but promoted differentiation by the mitogen-activated protein kinase (MAPK) signaling pathway. These findings indicate that CTRP6 played an essentially regulatory role in fat development.
Collapse
Affiliation(s)
- Wenjing Wu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
- College of Biological and Chemical Engineering, Jiaxing University , Jiaxing, Zhejiang 314000, China
| | - Jin Zhang
- College of Biological and Chemical Engineering, Jiaxing University , Jiaxing, Zhejiang 314000, China
| | - Chen Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi 712100, China
| |
Collapse
|
67
|
Shim EH, Lee MS, Lee JA, Lee H. Do In Seung Gi‑Tang extract suppresses adipocyte differentiation in 3T3‑L1 cells. Mol Med Rep 2017; 15:3549-3554. [PMID: 28393240 PMCID: PMC5436156 DOI: 10.3892/mmr.2017.6446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Blood stasis syndrome (BSS), additionally called Eohyul, is a basic pathological concept in Traditional Korean Medicine. Do In Seung Gi‑Tang (DISGT) is herbal medicine used for the treatment of BSS. It primarily treats metabolic diseases (MDs) including obesity, hypertension, diabetes mellitus and gynecological diseases, by promoting blood circulation. The present study aimed to investigate the anti‑adipogenesis effect of DISGT in 3T3‑L1 adipocytes using Oil Red O staining, and assessing levels of triglycerides (TGs) and leptin in adipocytes by ELISA and western blot analysis. The results demonstrated that DISGT treatment had inhibitory effects on fat droplet formation, TG accumulation, leptin production and cytokine content, during 3T3‑L1 adipocyte differentiation, without affecting cell viability. Additionally, DISGT treatment significantly suppressed the protein expression levels of peroxisome proliferator‑activated receptor γ and CAAT/enhancer binding protein α. These results provide evidence that DISGT has anti‑adipogenesis effects on preadipocytes and adipocytes by significantly blocking adipocyte differentiation and lipid accumulation, and suppressing adipogenic gene expression. Therefore, the present study demonstrated the potential of DISGT as a therapeutic agent for the treatment of MDs.
Collapse
Affiliation(s)
- Eun Hyoung Shim
- Korea Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Myeong Soo Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Ju-Ah Lee
- Korea Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hoyoung Lee
- Korea Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| |
Collapse
|
68
|
Seo M, Goo TW, Chung MY, Baek M, Hwang JS, Kim MA, Yun EY. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2017; 18:ijms18030518. [PMID: 28264489 PMCID: PMC5372534 DOI: 10.3390/ijms18030518] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor, the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Tae-Won Goo
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Korea.
| | - Mi Yeon Chung
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Eun-Young Yun
- Graduate School of Integrated Bioindustry, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
69
|
Lee H, Shim EH, Lee MS, Myung CS. Traditional medicine, Sobokchukeo‑Tang, modulates the inflammatory response in adipocytes and macrophages. Mol Med Rep 2016; 15:117-124. [PMID: 27959437 PMCID: PMC5355692 DOI: 10.3892/mmr.2016.6005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/02/2016] [Indexed: 12/25/2022] Open
Abstract
Sobokchukeo-Tang (ST) is a well-known formula that is used for treating primary dysmenorrhea caused by blood stasis syndrome (BSS) in Korea and China. The current study investigated the anti-inflammatory and anti-adipogenesis effects of ST on adipocytes and macrophages. The anti-inflammatory efficacy of ST was evaluated in RAW 264.7 cells and differentiated THP-1 cells. To induce inflammation, the cells were treated with lipopolysaccharide (LPS; 1 µg/ml). Following the induction of inflammation, the levels of proinflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the cell supernatant were detected using enzyme-linked immunosorbent assay. 3T3-L1 preadipocytes differentiated into adipocytes in response to insulin, isobutyl-1-methylxanthine and dexamethasone (MDI). To confirm the anti-adipogenesis efficacy of ST, we investigated Oil Red O staining was performed, triglyceride (TG) and leptin secretion were measured, and the protein expression of lipid metabolism-associated factors was determined. ST significantly inhibited TNF-α and IL-6 production in the LPS-treated RAW 264.7 cells compared with LPS stimulation alone. In addition, the concentrations of IL-6 and TNF-α were significantly inhibited by ST in LPS-treated THP-1 cells. Lipid accumulation was reduced by ST, similarly to the positive control treatment, SB203580. In the ST-treated group, the TG and leptin concentrations were inhibited by up to 50 and 83%, respectively, compared with MDI induction only. The ST-treated group reduced the protein expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein α compared with MDI induction only. The results of the present study demonstrated that ST exerts anti-inflammatory effects on LPS-treated mouse and human macrophage cell lines. ST inhibited adipogenesis in MDI-induced 3T3-L1 adipocytes, as indicated by the significant reduction in TG and leptin concentrations without cytotoxicity. Thus, ST may be useful as a therapeutic agent for preventing lipid-associated diseases, including obesity and atherosclerosis.
Collapse
Affiliation(s)
- Hoyoung Lee
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Eun Hyoung Shim
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Myeong Soo Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 34134, Republic of Korea
| |
Collapse
|
70
|
Ai L, Wang X, Chen Z, Lin Q, Su D, Xu Q, Wu C, Jiang X, Xu A, Fan Z. A20 reduces lipid storage and inflammation in hypertrophic adipocytes via p38 and Akt signaling. Mol Cell Biochem 2016; 420:73-83. [PMID: 27443844 DOI: 10.1007/s11010-016-2768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue plays a vital role in the development of obesity and related disorders. Our previous study showed that A20, an ubiquitin-editing enzyme with anti-inflammation function, attenuated free fatty acids (FFAs)-induced lipid accumulation in nonalcoholic steatohepatitis. Here, we investigated A20 expression in adipose tissue of obese individuals and its effects on 3T3-L1 lipogenesis as well as the likely mechanisms underlying this process. By re-annotation of raw microarray data downloaded from Gene Expression Omnibus, we found that obese individuals showed significantly higher A20 mRNA levels in adipocytes. In vitro, A20 inhibited MCP-1 and IL-6 secretion in adipocytes. Forced expression of A20 resulted in decreased expression of key markers of lipogenesis and adipogenesis, such as sterol regulatory element binding protein 1c (SREBP-1c) and adipogenesis (aP2), leading to less lipids accumulation in differentiated 3T3-L1 cells. This process was concomitant with attenuated activation of p38 and Akt signaling. Our results suggest that A20 may have therapeutic potential for obesity and related diseases. The mechanisms involved the suppression of lipid storage and inflammation in adipocytes.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohan Wang
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zhiwei Chen
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lin
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
| | - Dazhi Su
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Wu
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoke Jiang
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuping Fan
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China.
| |
Collapse
|
71
|
Zhang Y, O'Keefe RJ, Jonason JH. BMP-TAK1 (MAP3K7) Induces Adipocyte Differentiation Through PPARγ Signaling. J Cell Biochem 2016; 118:204-210. [PMID: 27293199 DOI: 10.1002/jcb.25626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 02/05/2023]
Abstract
BMPs have been shown to promote adipocyte differentiation through SMAD-dependent signaling. However, the role of TGF-β-activated kinase 1 (TAK1) in non-canonical BMP signaling in adipocyte differentiation remains unclear. Here, we show that TAK1 inhibition decreases lipid accumulation in C3H10T1/2 mesenchymal stem cells (MSCs) induced to differentiate into adipocytes. TAK1 knockdown by siRNA further confirms that TAK1 is required for adipocyte commitment of MSCs. Additionally, TAK1 knockdown inhibits adipogenesis of 3T3-L1 preadipocytes, indicating that TAK1 is not only needed for adipocyte commitment, but also required for adipocyte terminal differentiation. Furthermore, TAK1 ablation specifically in adipocytes reduced high fat diet-induced weight gain and improved glucose tolerance. Mechanistically, we demonstrate that TAK1 is required for PPARγ transactivation and promotes PPARγ transcriptional activity synergistically with TAK1 binding protein 1 (TAB1). Collectively, our results demonstrate that TAK1 plays a critical role in BMP-mediated adipocyte differentiation. J. Cell. Biochem. 118: 204-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongchun Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, Missouri 63110
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642
| |
Collapse
|
72
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
73
|
Shih LJ, Chen TF, Lin CK, Liu HS, Kao YH. Green tea (-)-epigallocatechin gallate inhibits the growth of human villous trophoblasts via the ERK, p38, AMP-activated protein kinase, and protein kinase B pathways. Am J Physiol Cell Physiol 2016; 311:C308-21. [PMID: 27147558 DOI: 10.1152/ajpcell.00003.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
Green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been reported to circulate in the placenta of animals and blood of humans after consumption. Whether EGCG regulates activity of human villous trophoblasts (HVT) is unknown. This study investigated the pathways involved in EGCG modulation of trophoblast mitogenesis. EGCG inhibited trophoblast proliferation in a dose-dependent and time-dependent manner, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). EGCG was more effective than other green tea catechins in inhibiting cell growth. EGCG also increased the phosphorylation of the MAPK pathway proteins, ERK1/2, and p38, but not JNK. Furthermore, EGCG had no effects on the total amounts of ERK1/2, p38 MAPK, and JNK proteins. This suggests that EGCG selectively affects particular MAPK subfamilies. Pretreatment with specific inhibitors of ERK1/2, p38 MAPK, and AMP-activated protein kinase (AMPK) antagonized EGCG-induced decreases in both cell number and BrdU incorporation. These inhibitors also blocked EGCG-induced increases in the levels of phospho-ERK1/2, phospho-p38, and phospho-AMPK proteins, respectively. Moreover, EGCG was similar to the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 to decrease protein kinase B (AKT) phosphorylation, cell number, and BrdU incorporation. These data imply that EGCG inhibits the growth of HVT through the ERK, p38, AMPK, and AKT pathways.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan; and Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Tz-Fang Chen
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Cheng-Kuo Lin
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Hang-Shen Liu
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan; and
| |
Collapse
|
74
|
Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells. Placenta 2016; 41:1-9. [DOI: 10.1016/j.placenta.2016.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/09/2016] [Accepted: 02/28/2016] [Indexed: 12/27/2022]
|
75
|
Choi JW, Lee CW, Lee J, Choi DJ, Sohng JK, Park YI. 7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells. Life Sci 2015; 144:103-12. [PMID: 26631505 DOI: 10.1016/j.lfs.2015.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/29/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022]
Abstract
AIMS Anti-obesity effects of a natural plant flavonoid 7,8-dihydroxyflavone (7,8-DHF) were evaluated using 3T3-L1 preadipocyte cells. MAIN METHODS The cell viability was determined using MTT assay. Effects of 7,8-DHF on intracellular lipid droplets and intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay and Oil Red O staining method, respectively. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels and protein expression of adipogenic transcription factors were determined by real-time PCR and Western blotting, respectively. KEY FINDINGS Whereas the cell viability of 3T3-L1 preadipocytes was not affected by lower concentrations of 7,8-DHF (<20 μM), higher concentrations of 7,8-DHF (>20 μM) induced apoptotic cell death. 7,8-DHF (<20 μM) significantly reduced the intracellular lipid droplets and the expression of major adipogenic transcription factors, such as CCAAT/enhancer-binding protein-α (C/EBP-α), C/EBP-β, and peroxisome proliferator activated receptor-γ (PPAR-γ). 7,8-DHF treatment also dose-dependently reduced the intracellular ROS level, attenuated MAPK pathway activation, and increased the expression of antioxidant enzymes, such as Mn-superoxide dismutase (Mn-SOD), catalase (CAT), and heme oxygenase-1 (HO-1). SIGNIFICANCE The results of this study indicated that 7,8-DHF inhibits the adipogenesis of 3T3-L1 preadipocyte cells by down-regulating the expression of adipogenic transcription factors, reduces lipid accumulation, and attenuates ROS accumulation by inducing antioxidant enzymes in differentiated 3T3-L1 cells, suggesting for the first time that 7,8-DHF has an anti-obesity effect in vitro via its anti-oxidant activity.
Collapse
Affiliation(s)
- Ji Won Choi
- Department of Biotechnology, The CUK Agromedical Research Center, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology, The CUK Agromedical Research Center, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, The CUK Agromedical Research Center, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Doo Jin Choi
- Department of Biotechnology, The CUK Agromedical Research Center, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asansi, Chungnam 336-708, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The CUK Agromedical Research Center, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
76
|
Ferguson BS, Nam H, Stephens JM, Morrison RF. Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J Cell Physiol 2015; 231:1562-74. [PMID: 26566083 DOI: 10.1002/jcp.25248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Abstract
Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
77
|
Toneatto J, Charó NL, Galigniana NM, Piwien-Pilipuk G. Adipogenesis is under surveillance of Hsp90 and the high molecular weight Immunophilin FKBP51. Adipocyte 2015; 4:239-47. [PMID: 26451279 DOI: 10.1080/21623945.2015.1049401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the architecture of the nucleus through its participation in the reorganization of the nuclear lamina. Therefore, the aim of this review is to integrate and discuss the recent advances in the field, with special emphasis on the roles of Hsp90 and FKBP51 in the process of adipocyte differentiation.
Collapse
|
78
|
Abstract
Obesity is a new global pandemic, with growing incidence and prevalence. This disease is associated with increased risk of several pathologies, including diabetes, cardiovascular diseases, and cancer. The mechanisms underlying obesity-associated metabolic changes are the focus of efforts to identify new therapies. Stress-activated protein kinases (SAPK), including cJun N-terminal kinases (JNKs) and p38, are required for cellular responses to metabolic stress and therefore might contribute to the pathogenesis of obesity. Tissue-specific knockout models support a cell-type-specific role for JNK isoforms, in particular JNK1, highlighting its importance in cell homeostasis and organ crosstalk. However, more efforts are needed to elucidate the specific roles of other JNK isoforms and p38 family members in metabolism and obesity. This review provides an overview of the role of SAPKs in the regulation of metabolism.
Collapse
Affiliation(s)
- Elisa Manieri
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Guadalupe Sabio
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
79
|
Aflatoxin B1 augments the synthesis of corticotropin releasing hormone in JEG-3 placental cells. Chem Biol Interact 2015; 237:73-9. [PMID: 26026912 DOI: 10.1016/j.cbi.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
Aflatoxins pose a major threat to food safety. These toxins are classified as hepatocarcinogens; however, their effect on the other tissues is unclear. During pregnancy, the fetus and placental tissues are especially sensitive to toxin exposure. In the present study aflatoxin B1 was found to induce the mRNA expression of corticotrophin-releasing hormone (CRH) in placental cells. A corresponding increase in CRH peptide in the culture medium was also observed. Since signal transduction pathways have been described previously in the control of CRH transcription, the status of protein kinase Cs (PKCs) and mitogen-activated protein kinases (MAPKs) were determined by Western analysis. In the aflatoxin B1-treated cultures, PKC α/βII/δ and ERK-1/2 were activated. As the PKC inhibitor bisindolylmaleimide I and the ERK inhibitor PD98059 could revert the induced CRH expression, the pathways dictated by PKC and ERK were likely involved in the transcriptional regulation. Electrophoretic mobility shift assay showed that C/EBP could be the ultimate activated transcription factor. Taken together, this study demonstrated that aflatoxin B1 could increase the parturition-related placental hormone in vitro. These findings might have significant implications for public health.
Collapse
|
80
|
Ji J, Zhu J, Hu X, Wang T, Zhang X, Hou AJ, Wang H. (2S)-7,4'-dihydroxy-8-prenylflavan stimulates adipogenesis and glucose uptake through p38MAPK pathway in 3T3-L1 cells. Biochem Biophys Res Commun 2015; 460:578-82. [PMID: 25797620 DOI: 10.1016/j.bbrc.2015.03.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023]
Abstract
Adipose tissue plays a key role in the development of obesity and diabetes. Natural products are one of the main sources for discovering new lead compounds. In the present study, (2S)-7,4'-dihydroxy-8-prenylflavan (DHPF), a natural prenylated flavan isolated from Morus yunnanensis, was found to significantly promote adipogenesis and increase glucose uptake in 3T3-L1 cells. Real-time PCR results showed that DHPF increased the expression of glucose and lipid metabolism-related genes (C/EBPα, PPARγ, aP2, GLUT4 and adiponectin) and decreased the expression of inflammatory cytokine TNF-α. Western blotting further revealed that DHPF activated p38 MAPK at the initial stage of 3T3-L1 preadipocyte differentiation. DHPF-induced activation of p38, adipogenesis and glucose uptake were effectively blocked by SB203580, a specific p38 inhibitor. These results indicate that DHPF could stimulate adipogenesis and increase glucose uptake through the p38 MAPK pathway, and DHPF may be useful for the prevention and treatment of obesity-associated disorders such as type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Jun Ji
- Department of Pharmacognosy, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Pudong, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Jingjie Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiao Hu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Pudong, Shanghai 201203, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 13400 East Shea Boulevard Scottsdale, AZ 85259, USA
| | - Ai-Jun Hou
- Department of Pharmacognosy, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Pudong, Shanghai 201203, China.
| | - Heyao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.
| |
Collapse
|
81
|
Wang Q, Wang ST, Yang X, You PP, Zhang W. Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res 2015; 35:317-27. [PMID: 25724338 DOI: 10.1016/j.nutres.2014.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/15/2022]
Abstract
Myricetin (MyR), a naturally occurring flavonol widely distributed in fruits, vegetables, and medicinal plants, has anticancer, anti-inflammatory, antihyperlipidaemic, and antiobesity activities. In the present study, we hypothesized that the antiobesity property of MyR is mediated via suppression of differentiation of preadipocytes into adipocytes and promotion of lipolysis of mature adipocytes, which effectively decrease the intracellular triglyceride concentration of adipocytes. Accordingly, the aim of this work was to investigate the effects of MyR on adipocyte differentiation and lipolysis in differentiated 3 T3-L1 adipocytes. Our results showed that MyR inhibited differentiation of 3 T3-L1 preadipocytes in a concentration-dependent manner. Myricetin downregulated the mRNA and protein levels of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, both of which are major adipogenic transcription factors. Furthermore, the mRNA levels of other adipogenesis-related transcription factors, namely, CCAAT/enhancer-binding protein β, sterin regulatory element binding protein 1-c, peroxisome proliferator-activated receptor γ coactivator-1, adipocyte protein 2, lipoprotein lipase and glucose transporter 4, were also reduced by MyR treatment. Moreover, MyR significantly inhibited the phosphorylation of extracellular signal-regulated kinase, Jun N-terminal kinase, and p38 during the differentiation process. On the other hand, MyR induced a dose-dependent increase in glycerol release in fully differentiated adipocytes, indicating its stimulatory effect on adipocyte lipolysis. Furthermore, MyR downregulated mRNA level of perilipin A and enhanced the phosphorylation level of extracellular signal-regulated kinase, Jun N-terminal kinase, and p38 during lipolysis. Taken together, these findings indicate that MyR exerts antiobesity activity in adipocytes.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, East China Normal University
| | | | - Xin Yang
- School of Life Sciences, East China Normal University
| | - Pan-pan You
- School of Life Sciences, East China Normal University
| | - Wen Zhang
- School of Life Sciences, East China Normal University.
| |
Collapse
|
82
|
Khadir A, Tiss A, Abubaker J, Abu-Farha M, Al-Khairi I, Cherian P, John J, Kavalakatt S, Warsame S, Al-Madhoun A, Al-Ghimlas F, Elkum N, Behbehani K, Dermime S, Dehbi M. MAP kinase phosphatase DUSP1 is overexpressed in obese humans and modulated by physical exercise. Am J Physiol Endocrinol Metab 2015; 308:E71-83. [PMID: 25370852 DOI: 10.1152/ajpendo.00577.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic low-grade inflammation and dysregulation of the stress defense system are cardinal features of obesity, a major risk factor for the development of insulin resistance and diabetes. Dual-specificity protein phosphatase 1 (DUSP1), known also as MAP kinase phosphatase 1 (MKP1), is implicated in metabolism and energy expenditure. Mice lacking DUSP1 are resistant to high-fat diet-induced obesity. However, the expression of DUSP1 has not been investigated in human obesity. In the current study, we compared the expression pattern of DUSP1 between lean and obese nondiabetic human subjects using subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs). The levels of DUSP1 mRNA and protein were significantly increased in obese subjects with concomitant decrease in the phosphorylation of p38 MAPK (p-p38 MAPK) and PGC-1α and an increase in the levels of phospho-JNK (p-JNK) and phospho-ERK (p-ERK). Moreover, obese subjects had higher levels of circulating DUSP1 protein that correlated positively with various obesity indicators, triglycerides, glucagon, insulin, leptin, and PAI-1 (P < 0.05) but negatively with V̇O(2max) and high-density lipoprotein (P < 0.05). The observation that DUSP1 was overexpressed in obese subjects prompted us to investigate whether physical exercise could reduce its expression. In this study, we report for the first time that physical exercise significantly attenuated the expression of DUSP1 in both the SAT and PBMCs, with a parallel increase in the expression of PGC-1α and a reduction in the levels of p-JNK and p-ERK along with attenuated inflammatory response. Collectively, our data suggest that DUSP1 upregulation is strongly linked to adiposity and that physical exercise modulates its expression. This gives further evidence that exercise might be useful as a strategy for managing obesity and preventing its associated complications.
Collapse
Affiliation(s)
| | - Ali Tiss
- Deptartment of Biomedical Research
| | | | | | | | | | | | | | | | | | | | - Naser Elkum
- Department of Biostatistics and Epidemiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Kazem Behbehani
- Deptartment of Biomedical Research, Fitness and Rehabilitation Center, and Department of Biostatistics and Epidemiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Said Dermime
- King Fahad Specialist Hospital, Dammam, Saudi Arabia; and
| | - Mohammed Dehbi
- Diabetes Research Centre, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| |
Collapse
|
83
|
Toneatto J, Charó NL, Naselli A, Muñoz-Bernart M, Lombardi A, Piwien-Pilipuk G. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis? NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
84
|
Atwood AA, Sealy LJ. C/EBPβ's role in determining Ras-induced senescence or transformation. Small GTPases 2014; 2:41-46. [PMID: 21686281 DOI: 10.4161/sgtp.2.1.15038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 01/05/2023] Open
Abstract
Introduction of activated Ras into normal cells leads to senescence, a tumor suppressive mechanism, whereas expression of this oncogene in many immortalized cell lines leads to transformation. Studying the signaling differences in cells that undergo Ras-induced senescence versus Ras transformation may shed light on potential therapeutic targets in the treatment of cancer. C/EBPβ is a transcription factor necessary for both Ras-induced senescence and Ras transformation. Three isoforms of this transcription factor exist due to alternative translation initation at three in frame ATGs. C/EBPβ1 is the isoform responsible for oncogene-induced senescence, and this isoform is degraded by the proteosome during Ras transformation. Phosphorylation of C/EBPβ1 on Thr235 by Cdk2 is necessary, but not sufficient, for degradation of C/EBPβ1. Proteasomal degradation of C/EBPβ1 may represent a mechanism to evade senescence. In contrast, C/EBPβ2 is expressed in breast cancer cells and is involved in proliferation, supporting a role for this isoform in Ras transformation. We propose here that one potential signaling difference in Ras-induced senescence versus Ras transformation is that Ras signals through different C/EBPβ isoforms (C/EBPβ1 versus C/EBPβ2) during these processes.
Collapse
Affiliation(s)
- Allison A Atwood
- Department of Cancer Biology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | | |
Collapse
|
85
|
Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int J Mol Med 2014; 34:1401-8. [PMID: 25189808 DOI: 10.3892/ijmm.2014.1921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Dioscin (DS) is a steroidal saponin present in a number of medicinal plants and has been shown to exert anticancer, antifungal and antiviral effects. The present study aimed to deternube the effects DS on the regulation of adipogenesis and to elucidate the underlying mechanisms. In vitro experiments were performed using differentiating 3T3-L1 cells treated with various concentrations (0-4 µM) of DS for 6 days. A cell viability assay was performed on differentiating cells following exposure to DS. Oil Red O staining and triglyceride content assay were performed to evaluate the lipid accumulation in the cells. We also carried out the following experiments: i) flow cytometry for cell cycle analysis, ii) quantitative reverse transcription polymerase chain reaction for measuring adipogenesis-related gene expression, and iii) western blot analysis to measure the expression of adipogenesis transcription factors and AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase (MAPK) phosphorylation. In vivo experiements were performed using mice with obesity induced by a high-fat diet (HFD) that were treated with or without DS for 7 weeks. DS suppressed lipid accumulation in the 3T3-L1 cells without affecting viability at a dose of up to 4 µM. It also delayed cell cycle progression 48 h after the initiation of adipogenesis. DS inhibited adipocyte differentiation by the downregulation of adipogenic transcription factors and attenuated the expression of adipogenesis-associated genes. In addition, it enhanced the phosphorylation of AMPK and its target molecule, ACC, during the differentiation of the cells. Moreover, the inhibition of adipogenesis by DS was mediated through the suppression of the phosphorylation of MAPKs, such as extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK). DS significantly reduced weight gain in the mice with HFD-induced obesity; this was evident by the suppression of fat accumulation in the abdomen. the present study reveals an anti-adipogenic effect of DS in vitro and in vivo and highlights AMPK/MAPK signaling as targets for DS during adipogenesis.
Collapse
Affiliation(s)
- Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Seong-Won Lim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
86
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|
87
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
88
|
Evaluation of protein phosphorylation during adipogenesis. Methods Enzymol 2014. [PMID: 24529445 DOI: 10.1016/b978-0-12-800280-3.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Adipocyte differentiation is a complex process that involves the sequential expression of various adipocyte-specific genes controlled by signaling pathways and transcription factors for which phosphorylation plays a crucial regulatory role. CCAAT/enhancer-binding proteins and peroxisome proliferator-activated receptors are the most important transcriptional regulators in adipogenesis, and the functions of these proteins are regulated by various phosphorylation events. Because cultured 3T3-L1 preadipocytes are commonly used as a model for adipocyte differentiation, we used these cells for a proteomic analysis to identify kinases, phosphatases, and phosphosites that participate in adipogenesis. In addition to the phosphoproteomic analysis, we provide a detailed description of Western blotting, an in vitro phosphorylation assay, enzyme-linked immunosorbent assay, and phosphorylation site mutagenesis to fully characterize the phosphorylation of proteins and verify their roles in adipogenesis.
Collapse
|
89
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
90
|
Lin JC, Tarn WY, Hsieh WK. Emerging role for RNA binding motif protein 4 in the development of brown adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:769-79. [PMID: 24389249 DOI: 10.1016/j.bbamcr.2013.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
RNA-binding motif protein 4 (RBM4) reportedly reprograms the tissue-specific splicing network which modulates the development of muscles and pancreatic β-islets. Herein, we report that Rbm4a(-/-) mice exhibited hyperlipidemia accompanied with reduced mass of interscapular brown adipose tissue (iBAT). Elevated RBM4a led to the isoform shift of IR, Ppar-γ, and Pref-1 genes which play pivotal roles in the different stages of adipogenesis. Overexpression of RBM4a enhanced the mitochondrial activity of brown adipocyte-like lineage in the presence of uncoupling agent. RBM4a-ablated adipocytes inversely exhibited impaired development and inefficient energy expenditure. Intriguingly, overexpressed RBM4a induced the expression of brown adipocyte-specific factors (Prdm16 and Bmp7) in white adipocyte-like lineage, which suggested the potential action of RBM4a on the white-to-brown trans-differentiation of adipocytes. In differentiating adipocytes, RBM4a constituted a feed-forward circuit through autoregulating the splicing pattern of its own transcript. Based on these results, we propose the emerging role of RBM4 in regulating the adipocyte-specific splicing events and transcription cascade, which subsequently facilitate the development and function of brown adipocyte-like cells.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Kou Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
91
|
Serrat N, Sebastian C, Pereira-Lopes S, Valverde-Estrella L, Lloberas J, Celada A. The Response of Secondary Genes to Lipopolysaccharides in Macrophages Depends on Histone Deacetylase and Phosphorylation of C/EBPβ. THE JOURNAL OF IMMUNOLOGY 2013; 192:418-26. [DOI: 10.4049/jimmunol.1203500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
92
|
Yan J, Gan L, Chen D, Sun C. Adiponectin impairs chicken preadipocytes differentiation through p38 MAPK/ATF-2 and TOR/p70 S6 kinase pathways. PLoS One 2013; 8:e77716. [PMID: 24194895 PMCID: PMC3806819 DOI: 10.1371/journal.pone.0077716] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 09/13/2013] [Indexed: 01/05/2023] Open
Abstract
Adiponectin is a protein hormone secreted exclusively by adipocytes that plays an important role in the modulation of glucose and lipid metabolism. In the present study, we investigated the ability of adiponectin to stimulate chicken preadipocyte differentiation and its effect on cellular signaling pathways associated with adipocyte differentiation. Data showed that over-expression of adiponectin inhibited adipocyte differentiation and the expression of adipogenic marker gene, while activated the expression of lipolytic marker gene. Meanwhile, adiponectin led to activation of p38 mitogen-activated protein kinase (p38 MAPK)/activating transcription factor 2 (ATF-2) signaling pathway and down-regulation of target of rapamycin (TOR)/p70 S6 Kinase signaling pathway. Furthermore, the activation of p38 MAPK/ATF-2 signaling pathway was blocked by the p38 MAPK inhibitor SB253580, whereas adiponectin had a synergistic effect on the suppression of TOR/p70 S6 Kinase signaling pathway with the TOR inhibitor rapamycin. In conclusion, the results demonstrate the ability of adiponectin to inhibit chicken preadipocyte differentiation, which depends on the p38 MAPK/ATF-2 and TOR/p70 S6 Kinase pathways.
Collapse
Affiliation(s)
- Jun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
93
|
Choi HR, Kim WK, Kim EY, Han BS, Min JK, Chi SW, Park SG, Bae KH, Lee SC. Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase. PLoS One 2013; 8:e72340. [PMID: 23977283 PMCID: PMC3748012 DOI: 10.1371/journal.pone.0072340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/09/2013] [Indexed: 11/23/2022] Open
Abstract
Background Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role of dual-specificity phosphatase 10 (DUSP10) in brown adipocyte differentiation using primary brown preadipocytes. Methods and Results The expression of DUSP10 increased continuously after the brown adipocyte differentiation of mouse primary brown preadipocytes, whereas the phosphorylation of p38 was significantly upregulated at an early stage of differentiation followed by steep downregulation. The overexpression of DUSP10 induced a decrease in the level of p38 phosphorylation, resulting in lower lipid accumulation than that in cells overexpressing the inactive mutant DUSP10. The expression levels of several brown adipocyte markers such as PGC-1α, UCP1, and PRDM16 were also significantly reduced upon the ectopic expression of DUSP10. Furthermore, decreased mitochondrial DNA content was detected in cells expressing DUSP10. The results obtained upon treatment with the p38 inhibitor, SB203580, clearly indicated that the phosphorylation of p38 at an early stage is important in brown adipocyte differentiation. The effect of the p38 inhibitor was partially recovered by DUSP10 knockdown using RNAi. Conclusions These results suggest that p38 phosphorylation is controlled by DUSP10 expression. Furthermore, p38 phosphorylation at an early stage is critical in brown adipocyte differentiation. Thus, the regulation of DUSP10 activity affects the efficiency of brown adipogenesis. Consequently, DUSP10 can be used as a novel target protein for the regulation of obesity.
Collapse
Affiliation(s)
- Hye-Ryung Choi
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Won Kon Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Eun Young Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Baek Soo Han
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Biomedical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sung Goo Park
- Biomedical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
- * E-mail: (KHB); (SCL)
| | - Sang Chul Lee
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
- * E-mail: (KHB); (SCL)
| |
Collapse
|
94
|
Wu L, Jia Z, Yan L, Wang W, Wang J, Zhang Y, Zhou C. Angiotensin II promotes cardiac differentiation of embryonic stem cells via angiotensin type 1 receptor. Differentiation 2013; 86:23-9. [PMID: 23933399 DOI: 10.1016/j.diff.2013.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/30/2013] [Accepted: 06/28/2013] [Indexed: 11/16/2022]
Abstract
As embryonic stem cells (ESCs) represent an attractive candidate cell source for obtaining cardiomyocytes to be used in cell replacement therapy, it is thus of considerable importance to understand the mechanism by which cardiac differentiation is regulated. In previous studies, we have shown that angiotensin type 1 receptor (AT1R) expressed in cardiomyocytes derived from mouse embryonic stem cells. However, little is known about the role of AT1R in cardiac differentiation, which plays a key role in cardiac physiology and pharmacology. In the present study, we demonstrated that AT1R agonist significantly enhanced cardiac differentiation as determined by increased percentage of beating embryoid bodies and a higher expression level of cardiac markers. On the contrary, AT1R agonist stimulated differentiation was reversed in the presence of AT1R antagonist. In addition, by administering selective inhibitors we found that the effect of AT1R was driven via extracellular-signal regulated kinase, c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathways. These findings suggest that AT1R signaling plays a key role in cardiac differentiation of ESCs.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Bian L, Traurig M, Hanson RL, Marinelarena A, Kobes S, Muller YL, Malhotra A, Huang K, Perez J, Gale A, Knowler WC, Bogardus C, Baier LJ. MAP2K3 is associated with body mass index in American Indians and Caucasians and may mediate hypothalamic inflammation. Hum Mol Genet 2013; 22:4438-49. [PMID: 23825110 PMCID: PMC3792696 DOI: 10.1093/hmg/ddt291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To identify genes that affect body mass index (BMI) in American Indians who are predominately of Pima Indian heritage, we previously completed a genome-wide association study in 1120 American Indians. That study also included follow-up genotyping for 9 SNPs in 2133 additional subjects. A comprehensive follow-up study has subsequently been completed where 292 SNPs were genotyped in 3562 subjects, of which 128 SNPs were assessed for replication in 3238 additional subjects. In the combined subjects (n = 6800), BMI associations for two SNPs, rs12882548 and rs11652094, approached genome-wide significance (P = 6.7 × 10−7 and 8.1 × 10−7, respectively). Rs12882548 is located in a gene desert on chromosome 14 and rs11652094 maps near MAP2K3. Several SNPs in the MAP2K3 region including rs11652094 were also associated with BMI in Caucasians from the GIANT consortium (P = 10−2–10−5), and the combined P-values across both American Indians and Caucasian were P = 10−4–10−9. Follow-up sequencing across MAP2K3 identified several paralogous sequence variants indicating that the region may have been duplicated. MAP2K3 expression levels in adipose tissue biopsies were positively correlated with BMI, although it is unclear if this correlation is a cause or effect. In vitro studies with cloned MAP2K3 promoters suggest that MAP2K3 expression may be up-regulated during adipogenesis. Microarray analyses of mouse hypothalamus cells expressing constitutively active MAP2K3 identified several up-regulated genes involved in immune/inflammatory pathways and a gene, Hap1, thought to play a role in appetite regulation. We conclude that MAP2K3 is a reproducible obesity locus that may affect body weight via complex mechanisms involving appetite regulation and hypothalamic inflammation.
Collapse
Affiliation(s)
- Li Bian
- Diabetes Molecular Genetics Section and Diabetes Epidemiology and Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Volloch V, Olsen BR. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 2013; 32:365-71. [PMID: 23792045 DOI: 10.1016/j.matbio.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/16/2023]
Abstract
This Perspective addresses one of the major puzzles of adipogenesis in adipose tissue, namely its resistance to cellular stress. It introduces a concept of "density" of integrin binding sites in extracellular matrix, proposes a cellular signaling explanation for the observed effects of matrix elasticity and of cell shape on mesenchymal stem cell differentiation, and discusses how specialized integrin binding sites in collagen IV-containing matrices guard two pivotal physiological and evolutionary processes: stress-resistant adipogenesis in adipose tissues and preservation of pluripotency of mesenchymal stem-like cells in their storage niches. Finally, it proposes strategies to suppress adipogenesis in adipose tissues.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
97
|
Zhang T, Sawada K, Yamamoto N, Ashida H. 4-Hydroxyderricin and xanthoangelol from Ashitaba (Angelica keiskei) suppress differentiation of preadiopocytes to adipocytes via AMPK and MAPK pathways. Mol Nutr Food Res 2013; 57:1729-40. [PMID: 23681764 DOI: 10.1002/mnfr.201300020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/07/2022]
Abstract
SCOPE Adipocytes differentiation is deeply involved in the onset of obesity. 4-Hydroxyderricin (4HD) and xanthoangelol (XAG) are the chalcones that are derived from Ashitaba (Angelica keiskei). In this study, we demonstrated the inhibitory effects of these chalcones on adipocytes differentiation. METHODS AND RESULTS 4HD and XAG suppressed intracellular lipid accumulation by Oil red O staining at 5 μM without cytotoxicity. They inhibited adipocytes differentiation accompanied by down-expression of adipocyte-specific transcription factors, CCAAT/enhancer-binding protein-β (C/EBP-β), C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ) using RT-PCR and Western blotting analysis. To obtain insights into the underlying mechanism, the activation of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase pathways was investigated. These two chalcones promoted phosphorylation of AMPK and acetyl CoA carboxylase during differentiation of 3T3-L1 adipocytes accompanied by a decrease in glycerol-3-phosphate acyl transferase-1 and an increase in carnitine palmitoyltransferase-1 mRNA expression. These chalcones also promoted phosphorylation of extracellular signal-regulated kinases and Jun aminoterminal kinases, but not p38. Moreover, the inhibitors for AMPK and extracellular signal-regulated kinases abolished the chalcones-caused down-expression of C/EBP-β, C/EBP-α, and PPAR-γ. Treatment with Jun aminoterminal kinases inhibitor abolished the down-expression of C/EBP-α and PPAR-γ, but not C/EBP-β. CONCLUSION 4HD and XAG inhibit adipocytes differentiation through AMPK and mitogen-activated protein kinase pathways, resulting in the down-expression of adipocyte-specific transcription factors.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
98
|
Stöckl S, Bauer RJ, Bosserhoff AK, Göttl C, Grifka J, Grässel S. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci 2013; 126:2890-902. [PMID: 23606745 DOI: 10.1242/jcs.124305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also for successful repair and regeneration of tissues and organs in adults.
Collapse
Affiliation(s)
- Sabine Stöckl
- Centre for Medical Biotechnology, BioPark I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Zhang G, Lin RK, Kwon YT, Li YP. Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2. FASEB J 2013; 27:2893-901. [PMID: 23568773 DOI: 10.1096/fj.12-222711] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The N-end rule pathway contributes significantly to accelerated muscle proteolysis mediated by the ubiquitin-proteasome pathway in various catabolic conditions. UBR2 (aka E3α-II) is the only known E3 ubiquitin ligase of the N-end rule pathway that is up-regulated by cachectic stimuli including proinflammatory cytokines and tumors. However, the signaling mechanism through which UBR2 is up-regulated remains undetermined. Here we identify a signaling pathway that mediates tumor cell-induced up-regulation of UBR2. UBR2 expression in C2C12 myotubes was up-regulated by conditioned medium from Lewis lung carcinoma cells or C26 colon adenocarcinoma cells, which was blocked by a pharmacological inhibitor of p38α/β mitogen-activated protein kinase (MAPK), SB202190. Similarly, SB202190 administration (i.p.) abolished UBR2 up-regulation in the tibialis anterior of LLC tumor-bearing mice. Genetic gain and loss of function assays in C2C12 myotubes indicated that tumor-induced activation of the p38β isoform is sufficient and necessary for UBR2 up-regulation. In addition, UBR2 up-regulation required p38β-mediated phosphorylation of CCAAT/enhancer binding protein (C/EBP)-β Thr-188, which was critical to C/EBPβ binding to the UBR2 promoter. Furthermore, luciferase reporter assay revealed that the C/EBPβ binding motif in the UBR2 promoter is a functional C/EBPβ-responsive cis-element that enhances the promoter activity on activation by p38β. Finally, genetic ablation of C/EBPβ blocked UBR2 up-regulation in LLC tumor-bearing mice. These results suggest that UBR2 up-regulation in cachectic muscle is mediated by the p38β-C/EBPβ signaling pathway responsible for the bulk of tumor-induced muscle proteolysis.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
100
|
Romier B, Tourniaire F, Marcotorchino J, Gouranton E, Astier J, Malezet C, Blouin E, Landrier JF. Bioeffects of a combination of trace elements on adipocyte biology. Metallomics 2013; 5:524-31. [PMID: 23503329 DOI: 10.1039/c3mt20209g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The white adipose tissue plays a major role in the development of obesity and associated metabolic complications by producing a variety of pro and anti-inflammatory adipokines. Recently, studies in humans or in animals have shown a beneficial effect of certain trace elements such as zinc on insulin resistance and adipokine secretion. The aim of our study was to test the effect of a zinc-nickel-cobalt solution (ZnNiCo) on adipocyte function and to identify potential health effects of this solution in the context of obesity and associated disorders. No impact of ZnNiCo on adipogenesis was observed in 3T3-L1 cells. Gene expression in murine and human adipocytes was examined in the presence of ZnNiCo using whole genome microarrays. This transcriptomic analysis indicated that ZnNiCo affected the expression levels of genes in adipocytes under basal conditions or incubated with TNF-α and showed a down regulation of several inflammatory genes belonging to the cytokine and chemokine families (P < 0.01). These data were confirmed in mice fed with a high fat diet supplemented with ZnNiCo (P < 0.05). A modulation of NF-κB activation (evaluated by ELISA; P < 0.05) by ZnNiCo could explain at least in part these observations. The trace elements present in ZnNiCo are able to modulate the expression level of several inflammation related transcripts in adipocytes. These studies suggest that ZnNiCo could play a role in the prevention of inflammation in adipose tissue in obesity.
Collapse
|