51
|
Schmitt S, Prokisch H, Schlunck T, Camp DG, Ahting U, Waizenegger T, Scharfe C, Meitinger T, Imhof A, Neupert W, Oefner PJ, Rapaport D. Proteome analysis of mitochondrial outer membrane fromNeurospora crassa. Proteomics 2006; 6:72-80. [PMID: 16294304 DOI: 10.1002/pmic.200402084] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of LC-MS/MS of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS PMF. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.
Collapse
Affiliation(s)
- Simone Schmitt
- Institute for Physiological Chemistry, Ludwig-Maximillians-Universität, Butenandstrasse 5, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci U S A 2005; 102:17981-6. [PMID: 16330752 PMCID: PMC1312417 DOI: 10.1073/pnas.0509107102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently synthesized proteins are sorted at the trans-Golgi network into specialized routes for exocytosis. Surprisingly little is known about the underlying molecular machinery. Here, we present a visual screen to search for proteins involved in cargo sorting and vesicle formation. We expressed a GFP-tagged plasma membrane protein in the yeast deletion library and identified mutants with altered marker localization. This screen revealed a requirement of several enzymes regulating the synthesis of sphingolipids and ergosterol in the correct and efficient delivery of the marker protein to the cell surface. Additionally, we identified mutants regulating the actin cytoskeleton (Rvs161p and Vrp1p), known membrane traffic regulators (Kes1p and Chs5p), and several unknown genes. This visual screening method can now be used for different cargo proteins to search in a genome-wide fashion for machinery involved in post-Golgi sorting.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Gardocki ME, Jani N, Lopes JM. Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:89-100. [PMID: 15967713 DOI: 10.1016/j.bbalip.2005.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/14/2005] [Accepted: 05/19/2005] [Indexed: 12/22/2022]
Abstract
Phosphatidylinositol (PI) is a ubiquitous membrane lipid in eukaryotes. It is becoming increasingly obvious that PI and its metabolites play a myriad of very diverse roles in eukaryotic cells. The Saccharomyces cerevisiae PIS1 gene is essential and encodes PI synthase, which is required for the synthesis of PI. Recently, PIS1 expression was found to be regulated in response to carbon source and oxygen availability. It is particularly significant that the promoter elements required for these responses are conserved evolutionarily throughout the Saccharomyces genus. In addition, several genome-wide strategies coupled with more traditional screens suggest that several other factors regulate PIS1 expression. The impact of regulating PIS1 expression on PI synthesis will be discussed along with the possible role(s) that this may have on diseases such as cancer.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit MI 48202, USA
| | | | | |
Collapse
|
54
|
Johanson T, Katz M, Gorwa-Grauslund MF. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases. FEMS Yeast Res 2005; 5:513-25. [PMID: 15780652 DOI: 10.1016/j.femsyr.2004.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/06/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
Pure chiral molecules are needed in the pharmaceutical and chemical industry as intermediates for the production of drugs or fine chemicals. Microorganisms represent an attractive alternative to chemical synthesis since they have the potential to generate single stereoisomers in high enantiomeric excess (ee). The baker's yeast Saccharomyces cerevisiae can notably reduce dicarbonyl compounds (in particular alpha- and beta-diketones and keto esters) to chiral alcohols with high ee. However, products are formed at a low rate. Moreover, large amounts of co-substrate are required for the regeneration of NADPH that is the preferred co-factor in almost all the known dicarbonyl reductions. Traditionally, better ee, reduction rate and product titre have been achieved via process engineering. The advent of recombinant DNA technology provides an alternative strategy to improve productivity and yield by strain engineering. This review discusses two aspects of strain engineering: (i) the generation of strains with higher reductase activity towards dicarbonyl compounds and (ii) the optimisation of co-substrate utilisation for NADPH cofactor regeneration.
Collapse
Affiliation(s)
- Ted Johanson
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | |
Collapse
|
55
|
Sorger D, Athenstaedt K, Hrastnik C, Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 2004; 279:31190-6. [PMID: 15155725 DOI: 10.1074/jbc.m403251200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid particles of the yeast Saccharomyces cerevisiae are storage compartments for triacylglycerols (TAG) and steryl esters (STE). Four gene products, namely the TAG synthases Dga1p and Lro1p, and the STE synthases Are1p and Are2p contribute to storage lipid synthesis. A yeast strain lacking the four respective genes is devoid of lipid particles thus providing a valuable tool to study the physiological role of storage lipids and lipid particles. Using a dga1lro1are1are2 quadruple mutant transformed with plasmids bearing inducible DGA1, LRO1, or ARE2 we demonstrate that TAG synthesis contributes more efficiently to lipid particle proliferation than synthesis of STE. Moreover, we show that proteins typically located to lipid particles in wild type such as Erg1p, Erg6p, Erg7p, and Ayr1p are refined to microsomal fractions of the dga1lro1are1are2 quadruple mutant. This result confirms the close relationship between lipid particles and endoplasmic reticulum. Most interestingly, the amount of the squalene epoxidase Erg1p, which is dually located in lipid particles and endoplasmic reticulum of wild type, is decreased in the quadruple mutant, whereas amounts of other lipid particle proteins tested were not reduced. This decrease is not caused by down-regulation of ERG1 transcription but by the low stability of Erg1p in the quadruple mutant. Because a similar effect was also observed in are1are2 mutants this finding can be mainly attributed to the lack of STE. The quadruple mutant, however, was more sensitive to terbinafine, an inhibitor of Erg1p, than the are1are2 strain suggesting that the presence of TAG and/or intact lipid particles has an additional protective effect. In a strain lacking the two STE synthases, Are1p and Are2p, incorporation of ergosterol into the plasma membrane was reduced, although the total cellular amount of free ergosterol was higher in the mutant than in wild type. Thus, an esterification/deacylation mechanism appears to contribute to the supply of ergosterol to the plasma membrane.
Collapse
Affiliation(s)
- Daniel Sorger
- Institut für Biochemie, Technische Universität Graz, Petersgasse12/2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
56
|
Katz M, Johanson T, Gorwa-Grauslund MF. Mild detergent treatment ofCandida tropicalis reveals a NADPH-dependent reductase in the crude membrane fraction, which enables the production of pure bicyclic exo-alcohol. Yeast 2004; 21:1253-67. [PMID: 15543528 DOI: 10.1002/yea.1176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study demonstrated the occurrence of a NADPH-dependent exo-alcohol reductase in the crude membrane fraction of Candida tropicalis. Cytosolic endo-alcohol reductase activity could be separated from the membrane-bound exo-alcohol activity by means of detergent treatment, enabling the preparation of pure exo-alcohol via the enzymatic conversion of the bicyclic diketone, bicyclo[2.2.2]octane-2,6-dione. The exo-alcohol reductase is, to our knowledge, the first membrane-bound NADPH-dependent reductase accepting a xenobiotic carbonyl substrate that was not a steroid. When C. tropicalis was grown on D-sorbitol, a two-fold increase in the exo-reductase activity was observed as compared to when grown on glucose. An in silico comparison at the protein level between putative xenobiotic carbonyl reductases in Candida albicans, C. tropicalis and Saccharomyces cerevisiae was performed to explain why Candida species are often encountered when screening yeasts for novel stereoselective reduction properties. C. albicans contained more reductases with the potential to reduce xenobiotic carbonyl compounds than did S. cerevisiae. C. tropicalis had many membrane-bound reductases (predicted with the bioinformatics program, TMHMM), some of which had no counterpart in the two other organisms. The exo-reductase is suspected to be either a beta-hydroxysteroid dehydrogenase or a polyol dehydrogenase from either the short chain dehydrogenase family or the dihydroflavonol reductase family.
Collapse
Affiliation(s)
- Michael Katz
- Department of Applied Microbiology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | | |
Collapse
|
57
|
Athenstaedt K, Daum G. YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 2003; 278:23317-23. [PMID: 12682047 DOI: 10.1074/jbc.m302577200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the cellular level of triacylglycerols (TAG). These observations suggested that TGL3 may encode a TAG lipase of Saccharomyces cerevisiae. Here we demonstrate by cell fractionation and by microscopic inspection of a strain bearing a Tgl3p-GFP hybrid that this polypeptide is highly enriched in the lipid particle fraction but virtually absent from other organelles. The entire TAG lipase activity of lipid particles is attributed to Tgl3p, because the activity in this organelle is completely absent in a Deltatgl3 deletion mutant, whereas it is significantly enhanced in a strain overexpressing Tgl3p. A His6-tagged Tgl3p hybrid purified close to homogeneity from a yeast strain overexpressing this fusion protein exhibited high TAG lipase activity. Most importantly, experiments in vivo using the fatty acid synthesis inhibitor cerulenin demonstrated that deletion of TGL3 resulted in a decreased mobilization of TAG from lipid particles. The amino acid sequence deduced from the open reading frame YMR313c contains the consensus sequence motif GXSXG typical for lipolytic enzymes. Otherwise, Tgl3p has no significant sequence homology to other lipases identified so far. In summary, our data identified Tgl3p as a novel yeast TAG lipase at the molecular level and by function in vivo and in vitro.
Collapse
Affiliation(s)
- Karin Athenstaedt
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
58
|
Sorger D, Daum G. Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 2003; 61:289-99. [PMID: 12743757 DOI: 10.1007/s00253-002-1212-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 11/29/2002] [Accepted: 11/29/2002] [Indexed: 10/25/2022]
Abstract
Triacylglycerol (TAG) is the major storage component for fatty acids, and thus for energy, in eukaryotic cells. In this mini-review, we describe recent progress that has been made with the yeast Saccharomyces cerevisiae in understanding formation of TAG and its cell biological role. Formation of TAG involves the synthesis of phosphatidic acid (PA) and diacylglycerol (DAG), two key intermediates of lipid metabolism. De novo formation of PA in yeast as in other types of cells can occur either through the glycerol-3-phosphate- or dihydroxyacetone phosphate-pathways-each named after its respective precursor. PA, formed in two steps of acylation, is converted to DAG by phosphatidate phosphatase. Acylation of DAG to yield TAG is catalyzed mainly by the two yeast proteins Dga1p and Lro1p, which utilize acyl-CoA or phosphatidylcholine, respectively, as acyl donors. In addition, minor alternative routes of DAG acylation appear to exist. Endoplasmic reticulum and lipid particles (LP), the TAG storage compartment in yeast, are the major sites of TAG synthesis. The interplay of these organelles, formation of LP, and enzymatic properties of enzymes catalyzing the synthesis of PA, DAG, and TAG in yeast are discussed in this communication.
Collapse
Affiliation(s)
- D Sorger
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, Austria
| | | |
Collapse
|
59
|
Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem 2002; 277:39035-44. [PMID: 12167660 DOI: 10.1074/jbc.m207753200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we demonstrate that the GAT1 and GAT2 genes encode the major glycerol-3-phosphate acyltransferase activities in Saccharomyces cerevisiae. Genetic inactivation of either GAT1 or GAT2 did not alter cell growth but inactivation of both resulted in growth cessation. Metabolic analyses of gat1 and gat2 yeast detected that the major differences were: (i) a 50% increase in the rate of triacylglycerol synthesis in gat1 yeast and a corresponding 50% decrease in gat2 yeast, and (ii) a 5-fold increase in glycerophosphocholine production through deacylation of phosphatidylcholine synthesized through the CDP-choline pathway in gat1 yeast, whereas gat2 yeast displayed a 10-fold decrease. To address why we observed alterations in phospholipid turnover specific to phosphatidylcholine produced through the CDP-choline pathway in gat1 and gat2 yeast we tested their sensitivity to various cytotoxic lysolipids and observed that gat2 cells were more sensitive to lysophosphatidylcholine, but not other lysolipids. To pursue the mechanism we analyzed their sensitivity to choline-containing lysolipids or drugs that could not be deacylated and/or reacylated. Our data showed that gat1 and gat2 yeast were resistant and sensitive to lysoplatelet activating factor, platelet activating factor, and the anti-tumor lipid edelfosine, respectively, indicating that their sensitivity to these compounds was not because of differences in rates of phosphatidylcholine deacylation. As growth of gat2 cells was impaired in the presence of ethanol, a phospholipase D (Spo14p) inhibitor, we inferred that phospholipase D may play important biologic and metabolic roles in phenotypes observed in gat yeast. Genetic inactivation of the SPO14 gene resulted in increased susceptibility, whereas expression of Escherichia coli diacylglycerol kinase relieved growth inhibition, to choline-containing lysolipids and drugs. Our results are consistent with a model whereby phosphatidic acid generated from phosphatidylcholine hydrolysis by Spo14p regulates susceptibility to choline-containing lysolipid analogs and drugs.
Collapse
Affiliation(s)
- Vanina Zaremberg
- Atlantic Research Centre, Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
60
|
Han G, Gable K, Kohlwein SD, Beaudoin F, Napier JA, Dunn TM. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J Biol Chem 2002; 277:35440-9. [PMID: 12087109 DOI: 10.1074/jbc.m205620200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitro elongation assays confirm that the ybr159Delta mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Delta mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Delta mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Delta mutant we found that the ybr159Deltaayr1Delta double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184, USA
| | | | | | | | | | | |
Collapse
|
61
|
Vico P, Cauet G, Rose K, Lathe R, Degryse E. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17beta-hydroxysteroid dehydrogenase activity. Yeast 2002; 19:873-86. [PMID: 12112241 DOI: 10.1002/yea.882] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility.
Collapse
Affiliation(s)
- Pedro Vico
- Transgene SA, 11 Rue de Molsheim, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
62
|
Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 2002; 277:11481-8. [PMID: 11792704 DOI: 10.1074/jbc.m111441200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of Saccharomyces cerevisiae membrane-bound oxidoreductases were examined for potential roles in microsomal fatty acid elongation, by assaying heterologous elongating activities in individual deletion mutants. One yeast gene, YBR159w, was identified as being required for activity of both the Caenorhabditis elegans elongase PEA1 (F56H11.4) and the Arabidopsis thaliana elongase FAE1. Ybr159p shows some limited homology to human steroid dehydrogenases and is a member of the short-chain alcohol dehydrogenase superfamily. Disruption of YBR159w is not lethal, in contrast to previous reports, although the mutants are slow growing and display high temperature sensitivity. Both Ybr159p and an Arabidopsis homologue were shown to restore heterologous elongase activities when expressed in ybr159Delta mutants. Biochemical characterization of microsomal preparations from ybr159Delta cells revealed a primary perturbation in beta-ketoacyl reduction, confirming the assignment of YBR159w as encoding a component of the microsomal elongase.
Collapse
Affiliation(s)
- Frédéric Beaudoin
- Institute of Arable Crops Research-Long Ashton Research Station, Long Ashton, Bristol BS41 9AF, United Kingdom
| | | | | | | | | |
Collapse
|
63
|
Milla P, Athenstaedt K, Viola F, Oliaro-Bosso S, Kohlwein SD, Daum G, Balliano G. Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. J Biol Chem 2002; 277:2406-12. [PMID: 11706015 DOI: 10.1074/jbc.m104195200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidosqualene cyclase of the yeast encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study (Athenstaedt, K., Zweytick, D., Jandrositz, A, Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448), Erg7p was identified as a component of yeast lipid particles. Here, we present evidence that Erg7p is almost exclusively associated with this compartment as shown by analysis of enzymatic activity, Western blot analysis, and in vivo localization of Erg7p-GFP. Occurrence of oxidosqualene cyclase in other organelles including the endoplasmic reticulum is negligible. In an erg7 deletion strain or in wild-type cells treated with an inhibitor of oxidosqualene cyclase, the substrate of Erg7p, oxidosqualene, accumulated mostly in lipid particles. Storage in lipid particles of this intermediate produced in excess may provide a possibility to exclude this membrane-perturbing component from other organelles. Thus, our data provide evidence that lipid particles are not only a depot for neutral lipids, but also participate in coordinate sterol metabolism and trafficking and serve as a storage site for compounds that may negatively affect membrane integrity.
Collapse
Affiliation(s)
- Paola Milla
- Dipartimento di Scienza e Tecnologia del Farmaco, Facoltà di Farmacia, Università degli Studi di Torino, Corso Raffaello 31, I-10125 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
64
|
Zheng Z, Zou J. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 2001; 276:41710-6. [PMID: 11544256 DOI: 10.1074/jbc.m104749200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis pathway in Saccharomyces cerevisiae. Disruption of the open reading frame YBL011w, corresponding to a gene previously identified as a choline transporter suppressor (SCT1), resulted in a substantial decrease of total cellular G-3-P acyltransferase activity. A yeast strain disrupted at the open reading frame YKR067w, which encodes a protein closely related to Sct1p, also exhibited a dramatic reduction in G-3-P acyltransferase activity. Molecular characterizations of the genes revealed that a missense mutation in YKR067w accounted for a defect in the activities of the G-3-P acyltransferase in the yeast mutant strain TTA1. Heterologous expression of YKR067w in Escherichia coli further confirmed its enzyme activity. These results indicate that YKR067w and YBL011w, designated herein as GAT1 and GAT2(SCT1), respectively, are yeast G-3-P acyltransferase genes. Furthermore, biochemical results are presented to show that both Gat1p and Gat2p(Sct1p) are G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferases. The fatty acyl specificity of Gat1p is similar to that of the mammalian microsomal G-3-P acyltransferase, as it can effectively utilize a broad range of fatty acids as acyl donors. In contrast, Gat2p(Sct1p) displayed preference toward 16-carbon fatty acids. The most notable of the altered phospholipid compositions of the gat1Delta and gat2(sct1)Delta strains are a decreased phosphatidic acid pool and an increased phosphatidylserine/phosphatidylinositol ratio. This did not appear to affect the mutants as no growth defect was found. However, null mutations of both GAT1 and GAT2(SCT1) are synthetically lethal to yeast.
Collapse
Affiliation(s)
- Z Zheng
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N OW9, Canada
| | | |
Collapse
|
65
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
66
|
Bakker BM, Overkamp KM, Kötter P, Luttik MA, Pronk JT. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001; 25:15-37. [PMID: 11152939 DOI: 10.1111/j.1574-6976.2001.tb00570.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.
Collapse
Affiliation(s)
- B M Bakker
- Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
67
|
Abstract
The glycoprotein secretory pathway of yeast serves mainly for cell surface growth and cell division. It involves a centrifugal transport of transit macromolecules among organelles, whose membranes contain resident proteins needed for driving the transport. These resident membrane proteins return by retrograde vesicular transport. Apart from this, the pathway involves endocytosis. The model yeast Saccharomyces cerevisiae and vertebrate cells were found to contain very similar gene products regulating the molecular mechanism of glycoprotein transport, and the cellular mechanism of their secretion pathways was therefore also presumed to be identical. Biochemists have postulated that, in S. cerevisiae, the translocation of peptides through the endoplasmic reticulum membranes into the lumen of ER cisternae and the core glycosylation is followed by a vector-mediated transport into the functional cascade of the Golgi system cisternae and between them. This is the site of maturation and sorting of glycoproteins, before the ultimate transport by other vectors involving either secretion from the cells (exocytosis across the plasmalemma into the cell wall) or transport into the lysosome-like vacuole via a prevacuolar compartment, which serves at the same time as a primary endosome. The established cellular model of secretion deals with budding yeast; interphase yeast cells, in which the secretion is limited and which predominate in exponential cultures, have not been taken into consideration. The quality of organelle imaging in S. cerevisiae ultra-thin sections depends on the fixation technique used and on specimen contrasting by metals. The results achieved by combinations of different techniques differ mostly in the imaging of bilayers of membrane interfaces and the transparence of the matrix phase. Fixation procedures are decisive for the results of topochemical localisations of cellular antigenic components or enzyme activities, which form the basis of the following survey of functional morphology of organelles involved in the yeast secretory pathway. The existing results of these studies do not confirm all aspects of the vertebrate model of the Golgi apparatus proposed by molecular geneticists to hold for S. cerevisiae, and alternative models of the cellular mechanism of secretion in this yeast are, therefore, also discussed.
Collapse
Affiliation(s)
- J Vorísek
- Institute of Microbiology, Academy of Sciences of Czech Republic, Vídenská 1083, CZ 142 20 Praha 4, Czech Republic.
| |
Collapse
|
68
|
Abstract
The yeast Saccharomyces cerevisiae produces large amounts of glycerol as an osmoregulator during hyperosmotic stress and as a redox sink at low oxygen availability. NAD(+)-dependent glycerol-3-phosphate dehydrogenase in S. cerevisiae is present in two isoforms, coded for by two different genes, GPD1 and GPD2. Mutants for either one or both of these genes were investigated under carefully controlled static and dynamic conditions in continuous cultures at low oxygen transfer rates. Our results show that S. cerevisiae controls the production of glycerol in response to hypoxic conditions by regulating the expression of several genes. At high demand for NADH reoxidation, a strong induction was seen not only of the GPD2 gene, but also of GPP1, encoding one of the molecular forms of glycerol-3-phosphatase. Induction of the GPP1 gene appears to play a decisive role at elevated growth rates. At low demand for NADH reoxidation via glycerol formation, the GPD1, GPD2, GPP1, and GPP2 genes were all expressed at basal levels. The dynamics of the gene induction and the glycerol formation at low demand for NADH reoxidation point to an important role of the Gpd1p; deletion of the GPD1 gene strongly altered the expression patterns of the GPD2 and GPP1 genes under such conditions. Furthermore, our results indicate that GCY1 and DAK1, tentatively encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, may be involved in the redox regulation of S. cerevisiae.
Collapse
Affiliation(s)
- R Costenoble
- Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden
| | | | | | | | | |
Collapse
|
69
|
Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:101-20. [PMID: 10998572 DOI: 10.1016/s0005-2736(00)00294-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review article we describe characterization of intracellular lipid particles of three different eukaryotic species, namely mammalian cells, plants and yeast. Lipid particles of all types of cells share a general structure. A hydrophobic core of neutral lipids is surrounded by a membrane monolayer of phospholipids which contains a minor amount of proteins. Whereas lipid particles from mammalian cells and plants harbor specific classes of polypeptides, mainly perilipins and oleosins, respectively, yeast lipid particles contain a more complex set of enzymes which are involved in lipid biosynthesis. Function of lipid particles as storage compartment and metabolic organelle, and their interaction with other subcellular fractions are discussed. Furthermore, models for the biogenesis of lipid particles are presented and compared among the different species.
Collapse
Affiliation(s)
- D Zweytick
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse 12/II, A-8010, Graz, Austria
| | | | | |
Collapse
|