51
|
Gendron A, Lan Linh Tran N, Laloy J, Brusini R, Rachet A, Gobeaux F, Nicolas V, Chaminade P, Abreu S, Desmaële D, Varna M. New Nanoparticle Formulation for Cyclosporin A: In Vitro Assessment. Pharmaceutics 2021; 13:pharmaceutics13010091. [PMID: 33445646 PMCID: PMC7828155 DOI: 10.3390/pharmaceutics13010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Cyclosporin A (CsA) is a molecule with well-known immunosuppressive properties. As it also acts on the opening of mitochondrial permeability transition pore (mPTP), CsA has been evaluated for ischemic heart diseases (IHD). However, its distribution throughout the body and its physicochemical characteristics strongly limit the use of CsA for intravenous administration. In this context, nanoparticles (NPs) have emerged as an opportunity to circumvent the above-mentioned limitations. We have developed in our laboratory an innovative nanoformulation based on the covalent bond between squalene (Sq) and cyclosporin A to avoid burst release phenomena and increase drug loading. After a thorough characterization of the bioconjugate, we proceeded with a nanoprecipitation in aqueous medium in order to obtain SqCsA NPs of well-defined size. The SqCsA NPs were further characterized using dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryoTEM), and high-performance liquid chromatography (HPLC), and their cytotoxicity was evaluated. As the goal is to employ them for IHD, we evaluated the cardioprotective capacity on two cardiac cell lines. A strong cardioprotective effect was observed on cardiomyoblasts subjected to experimental hypoxia/reoxygenation. Further research is needed in order to understand the mechanisms of action of SqCsA NPs in cells. This new formulation of CsA could pave the way for possible medical application.
Collapse
Affiliation(s)
- Amandine Gendron
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Natalie Lan Linh Tran
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Romain Brusini
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Aurélie Rachet
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Frédéric Gobeaux
- CEA, CNRS, NIMBE, Université Paris-Saclay, CEA-Saclay, 91191 Gif sur Yvette, France;
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay—US 31 INSERM—UMS 3679 CNRS, Plate-forme d’imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Pierre Chaminade
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Sonia Abreu
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Didier Desmaële
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Mariana Varna
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Correspondence: ; Tel.: +33-0146835721
| |
Collapse
|
52
|
Stocco A, Smolina N, Sabatelli P, Šileikytė J, Artusi E, Mouly V, Cohen M, Forte M, Schiavone M, Bernardi P. Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacol Res 2021; 165:105421. [PMID: 33429034 DOI: 10.1016/j.phrs.2021.105421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022]
Abstract
High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.
Collapse
Affiliation(s)
- Anna Stocco
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Natalia Smolina
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Justina Šileikytė
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Edoardo Artusi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Vincent Mouly
- Center for Research in Myology UMRS 974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Michael Cohen
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michael Forte
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Marco Schiavone
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy.
| |
Collapse
|
53
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
54
|
Wang L, MacGowan GA, Ali S, Dark JH. Ex situ heart perfusion: The past, the present, and the future. J Heart Lung Transplant 2020; 40:69-86. [PMID: 33162304 DOI: 10.1016/j.healun.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the advancements in medical treatment, mechanical support, and stem cell therapy, heart transplantation remains the most effective treatment for selected patients with advanced heart failure. However, with an increase in heart failure prevalence worldwide, the gap between donor hearts and patients on the transplant waiting list keeps widening. Ex situ machine perfusion has played a key role in augmenting heart transplant activities in recent years by enabling the usage of donation after circulatory death hearts, allowing longer interval between procurement and implantation, and permitting the safe use of some extended-criteria donation after brainstem death hearts. This exciting field is at a hinge point, with 1 commercially available heart perfusion machine, which has been used in hundreds of heart transplantations, and a number of devices being tested in the pre-clinical and Phase 1 clinical trial stage. However, no consensus has been reached over the optimal preservation temperature, perfusate composition, and perfusion parameters. In addition, there is a lack of objective measurement for allograft quality and viability. This review aims to comprehensively summarize the lessons about ex situ heart perfusion as a platform to preserve, assess, and repair donor hearts, which we have learned from the pre-clinical studies and clinical applications, and explore its exciting potential of revolutionizing heart transplantation.
Collapse
Affiliation(s)
- Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John H Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
55
|
Tombo N, Imam Aliagan AD, Feng Y, Singh H, Bopassa JC. Cardiac ischemia/reperfusion stress reduces inner mitochondrial membrane protein (mitofilin) levels during early reperfusion. Free Radic Biol Med 2020; 158:181-194. [PMID: 32726689 PMCID: PMC7484119 DOI: 10.1016/j.freeradbiomed.2020.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/23/2022]
Abstract
Mitochondrial inner membrane protein (Mitofilin or Mic60) is a mitochondria-shaping protein that plays a key role in maintaining mitochondrial cristae structure and remodeling. We recently showed that Mitofilin knockdown in H9c2 myoblasts induces mitochondrial structural damage resulting in mitochondrial dysfunction that is responsible for cell death via apoptosis. Here, we investigated the role of Mitofilin regulation in ischemia/reperfusion (I/R) injury and studied the relationship between Mitofilin and Cyclophilin (CypD), a key regulator of mitochondrial permeability transition pore (mPTP) opening. C57Bl6 male mice hearts were subjected to different ischemia times (15, 30, or 45 min) followed by a 2 h reperfusion period, or 45 min ischemia followed by 0, 15, 30, 60, or 120 min reperfusion to determine the impact of ischemia or reperfusion times on Mitofilin levels and its interaction with CypD. We found that the increase in myocardial infarct size and the reduction of mitochondrial calcium retention capacity were concomitant with Mitofilin reduction as a function of ischemic duration. We also found that 15 min reperfusion after 45 min ischemia was sufficient to cause a reduction of Mitofilin levels compared to sham, while 45 min ischemia alone was not enough to cause a significant decrease of Mitofilin. We revealed that the c-terminus coiled-coiled domain of Mitofilin is important for its interaction with CypD and the deletion of this identified sequence resulted in a loss of Mitofilin-CypD link, dissipation of mitochondrial membrane potential and increase in cell death. A decrease of the levels of Mitofilin was also associated with mitochondrial structural integrity damage, increased reactive oxygen species (ROS) production, and calpain activity. Our results indicate that Mitofilin physically binds to CypD in the inner mitochondrial membrane and the disruption of this interaction may play a critical role in the increase of mitochondrial dysfunction and initiation of myocytes' death after I/R injury.
Collapse
Affiliation(s)
- Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Abdulhafiz D Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, TX, 78229, USA.
| |
Collapse
|
56
|
Carraro M, Jones K, Sartori G, Schiavone M, Antonucci S, Kucharczyk R, di Rago JP, Franchin C, Arrigoni G, Forte M, Bernardi P. The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore. Cell Rep 2020; 32:108095. [DOI: 10.1016/j.celrep.2020.108095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
57
|
Breton M, Costemale-Lacoste JF, Li Z, Lafuente-Lafuente C, Belmin J, Mericskay M. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp Gerontol 2020; 139:111051. [PMID: 32783906 DOI: 10.1016/j.exger.2020.111051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Age-associated decline in nicotinamide adenine dinucleotide (NAD) tissue levels has emerged as potential driving mechanism in the establishment of energy metabolism perturbations in the context of chronic diseases, notably heart failure. OBJECTIVE The aim of this study was to measure the blood NAD levels in a healthy blood donor population and in a population of elderly patients hospitalized for decompensated heart failure. METHOD Whole blood sample was collected from 151 healthy voluntary blood donors, aged 19 to 68 years, and from 19 patients aged 75 to 101 years and hospitalized for decompensated heart failure in a geriatric ward. Metabolites were extracted by the hot buffered ethanol procedure and NAD was quantified in triplicate for each sample. RESULTS The mean concentration of NAD in blood of healthy donors was 23.4 (SD 4.05) μmol/L. There was no significant correlation between NAD levels and donors' age nor sex in the healthy population when studied as a whole. However, the linear regression curves of NAD concentration plotted against age differed between males and females (p = 0.0283) with a trend in males to decline with age that was not observed in females. The mean concentration of NAD in whole blood samples of the geriatric population was 20.7 (SD 3.6) μmol/L (p = 0.007 versus the healthy blood donor population). There were no differences between males and females (p = 0.7) nor between patients with ejection fraction inferior or superior to 50% (p = 0.86) in the geriatric population. CONCLUSION This study highlighted a diminution of NAD blood levels for elderly patients hospitalized for decompensated heart failure in comparison to a healthy population, suggesting that new therapeutics to restore NAD stock and energy metabolism would be a major progress in the management of this type of geriatric patients.
Collapse
Affiliation(s)
- Marie Breton
- Université Paris-Saclay, Inserm UMRS 1180 Signalling and Cardiovascular Pathophysiology, Châtenay-Malabry, France
| | - Jean-François Costemale-Lacoste
- GHU Paris, psychiatrie et neurosciences, Université de Paris, France; Université Paris-Saclay, Inserm UMRS 1178, CESP, Team "MOODS" Le Kremlin-Bicêtre, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Carmelo Lafuente-Lafuente
- Service de gériatrie à orientation cardiovasculaire et neuropsychogériatrique, Hôpital Charles Foix, Assistance Publique-Hôpitaux de Paris, Ivry-sur-Seine, France; Faculté de Médecine, Sorbonne Université, Paris, France
| | - Joël Belmin
- Service de gériatrie à orientation cardiovasculaire et neuropsychogériatrique, Hôpital Charles Foix, Assistance Publique-Hôpitaux de Paris, Ivry-sur-Seine, France; Faculté de Médecine, Sorbonne Université, Paris, France
| | - Mathias Mericskay
- Université Paris-Saclay, Inserm UMRS 1180 Signalling and Cardiovascular Pathophysiology, Châtenay-Malabry, France.
| |
Collapse
|
58
|
Darwesh AM, Bassiouni W, Adebesin AM, Mohammad AS, Falck JR, Seubert JM. A Synthetic Epoxydocosapentaenoic Acid Analogue Ameliorates Cardiac Ischemia/Reperfusion Injury: The Involvement of the Sirtuin 3-NLRP3 Pathway. Int J Mol Sci 2020; 21:ijms21155261. [PMID: 32722183 PMCID: PMC7432620 DOI: 10.3390/ijms21155261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.
Collapse
Affiliation(s)
- Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada;
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - Abdul Sattar Mohammad
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - John R. Falck
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Correspondence: ; Tel.: +1-780-492-0007; Fax: +1-780-492-1217
| |
Collapse
|
59
|
Assali EA, Jones AE, Veliova M, Acín-Pérez R, Taha M, Miller N, Shum M, Oliveira MF, Las G, Liesa M, Sekler I, Shirihai OS. NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nat Commun 2020; 11:3347. [PMID: 32620768 PMCID: PMC7334226 DOI: 10.1038/s41467-020-16572-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/06/2020] [Indexed: 01/30/2023] Open
Abstract
A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway.
Collapse
Affiliation(s)
- Essam A Assali
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rebeca Acín-Pérez
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahmoud Taha
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Nathanael Miller
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaël Shum
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcus F Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy Las
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
60
|
Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol 2020; 144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
|
61
|
Palee S, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Chattipakorn SC, Chattipakorn N. Exercise with calorie restriction improves cardiac function via attenuating mitochondrial dysfunction in ovariectomized prediabetic rats. Exp Gerontol 2020; 135:110940. [DOI: 10.1016/j.exger.2020.110940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022]
|
62
|
Gallyas Jr. F, Sumegi B. Mitochondrial Protection by PARP Inhibition. Int J Mol Sci 2020; 21:ijms21082767. [PMID: 32316192 PMCID: PMC7215481 DOI: 10.3390/ijms21082767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of the nuclear DNA damage sensor and signalling enzyme poly(ADP-ribose) polymerase (PARP) have recently been introduced in the therapy of cancers deficient in double-strand DNA break repair systems, and ongoing clinical trials aim to extend their use from other forms of cancer non-responsive to conventional treatments. Additionally, PARP inhibitors were suggested to be repurposed for oxidative stress-associated non-oncological diseases resulting in a devastating outcome, or requiring acute treatment. Their well-documented mitochondria- and cytoprotective effects form the basis of PARP inhibitors’ therapeutic use for non-oncological diseases, yet can limit their efficacy in the treatment of cancers. A better understanding of the processes involved in their protective effects may improve the PARP inhibitors’ therapeutic potential in the non-oncological indications. To this end, we endeavoured to summarise the basic features regarding mitochondrial structure and function, review the major PARP activation-induced cellular processes leading to mitochondrial damage, and discuss the role of PARP inhibition-mediated mitochondrial protection in several oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Ferenc Gallyas Jr.
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|
63
|
Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.
Collapse
|
64
|
ARH1 in Health and Disease. Cancers (Basel) 2020; 12:cancers12020479. [PMID: 32092898 PMCID: PMC7072381 DOI: 10.3390/cancers12020479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine-specific mono-adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD)+-dependent, reversible post-translational modification involving the transfer of an ADP-ribose from NAD+ by bacterial toxins and eukaryotic ADP-ribosyltransferases (ARTs) to arginine on an acceptor protein or peptide. ADP-ribosylarginine hydrolase 1 (ARH1) catalyzes the cleavage of the ADP-ribose-arginine bond, regenerating (arginine)protein. Arginine-specific mono-ADP-ribosylation catalyzed by bacterial toxins was first identified as a mechanism of disease pathogenesis. Cholera toxin ADP-ribosylates and activates the α subunit of Gαs, a guanine nucleotide-binding protein that stimulates adenylyl cyclase activity, increasing cyclic adenosine monophosphate (cAMP), and resulting in fluid and electrolyte loss. Arginine-specific mono-ADP-ribosylation in mammalian cells has potential roles in membrane repair, immunity, and cancer. In mammalian tissues, ARH1 is a cytosolic protein that is ubiquitously expressed. ARH1 deficiency increased tumorigenesis in a gender-specific manner. In the myocardium, in response to cellular injury, an arginine-specific mono-ADP-ribosylation cycle, involving ART1 and ARH1, regulated the level and cellular distribution of ADP-ribosylated tripartite motif-containing protein 72 (TRIM72). Confirmed substrates of ARH1 in vivo are Gαs and TRIM72, however, more than a thousand proteins, ADP-ribosylated on arginine, have been identified by proteomic analysis. This review summarizes the current understanding of the properties of ARH1, e.g., bacterial toxin action, myocardial membrane repair following injury, and tumorigenesis.
Collapse
|
65
|
Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 2020; 24:2717-2729. [PMID: 31967733 PMCID: PMC7077531 DOI: 10.1111/jcmm.14953] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Pre‐clinical studies have indicated that mitoprotective drugs may add cardioprotection beyond rapid revascularization, antiplatelet therapy and risk modification. We review the clinical efficacy of mitoprotective drugs that have progressed to clinical testing comprising cyclosporine A, KAI‐9803, MTP131 and TRO 40303. Whereas cyclosporine may reduce infarct size in patients undergoing primary angioplasty as evaluated by release of myocardial ischaemic biomarkers and infarct size imaging, the other drugs were not capable of demonstrating this effect in the clinical setting. The absent effect leaves the role of the mitochondrial permeability transition pore for reperfusion injury in humans unanswered and indicates that targeting one single mechanism to provide mitoprotection may not be efficient. Moreover, the lack of effect may relate to favourable outcome with current optimal therapy, but conditions such as age, sex, diabetes, dyslipidaemia and concurrent medications may also alter mitochondrial function. However, as long as the molecular structure of the pore remains unknown and specific inhibitors of its opening are lacking, the mitochondrial permeability transition pore remains a target for alleviation of reperfusion injury. Nevertheless, taking conditions such as ageing, sex, comorbidities and co‐medication into account may be of paramount importance during the design of pre‐clinical and clinical studies testing mitoprotective drugs.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Mexico.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Marisol Ruiz-Meana
- Vall d'Hebron Institut de Recerca, University Hospital Vall d'Hebron-Universitat Autònoma, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV, CIBER-CV, Spain
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen. Medical School, Essen, Germany
| | - Michel Ovize
- CarMeN Laboratory, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, INSERM U1060, Lyon, France
| |
Collapse
|
66
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
67
|
Klimova N, Fearnow A, Long A, Kristian T. NAD + precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol 2019; 325:113144. [PMID: 31837320 DOI: 10.1016/j.expneurol.2019.113144] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Global cerebral ischemia depletes brain tissue NAD+, an essential cofactor for mitochondrial and cellular metabolism, leading to bioenergetics failure and cell death. The post-ischemic NAD+ levels can be replenished by the administration of nicotinamide mononucleotide (NMN), which serves as a precursor for NAD+ synthesis. We have shown that NMN administration shows dramatic protection against ischemic brain damage and inhibits post-ischemic hippocampal mitochondrial fragmentation. To understand the mechanism of NMN-induced modulation of mitochondrial dynamics and neuroprotection we used our transgenic mouse models that express mitochondria targeted yellow fluorescent protein in neurons (mito-eYFP) and mice that carry knockout of mitochondrial NAD+-dependent deacetylase sirt3 gene (SIRT3KO). Following ischemic insult, the mitochondrial NAD+ levels were depleted leading to an increase in mitochondrial protein acetylation, high reactive oxygen species (ROS) production, and excessive mitochondrial fragmentation. Administration of a single dose of NMN normalized hippocampal mitochondria NAD+ pools, protein acetylation, and ROS levels. These changes were dependent on SIRT3 activity, which was confirmed using SIRT3KO mice. Ischemia induced increase in acetylation of the key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) that resulted in inhibition of its activity. This was reversed after NMN treatment followed by reduction of ROS generation and suppression of mitochondrial fragmentation. Specifically, we found that the interaction of mitochondrial fission protein, pDrp1(S616), with neuronal mitochondria was inhibited in NMN treated ischemic mice. Our data thus provide a novel link between mitochondrial NAD+ metabolism, ROS production, and mitochondrial fragmentation. Using NMN to target these mechanisms could represent a new therapeutic approach for treatment of acute brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina Klimova
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam Fearnow
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
68
|
Antonucci S, Di Sante M, Sileikyte J, Deveraux J, Bauer T, Bround MJ, Menabò R, Paillard M, Alanova P, Carraro M, Ovize M, Molkentin JD, Cohen M, Forte MA, Bernardi P, Di Lisa F, Murphy E. A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacol Res 2019; 151:104548. [PMID: 31759087 DOI: 10.1016/j.phrs.2019.104548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.
Collapse
Affiliation(s)
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Sileikyte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Jordan Deveraux
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Tyler Bauer
- Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Roberta Menabò
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Melanie Paillard
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Petra Alanova
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Developmental Cardiology, Institute of Physiology CAS, Prague, Czech Republic
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michel Ovize
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Cohen
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Michael A Forte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy.
| | | |
Collapse
|
69
|
Calleja LF, Belmont-Díaz JA, Medina-Contreras O, Quezada H, Yoval-Sánchez B, Campos-García J, Rodríguez-Zavala JS. Omeprazole as a potent activator of human cytosolic aldehyde dehydrogenase ALDH1A1. Biochim Biophys Acta Gen Subj 2019; 1864:129451. [PMID: 31678145 DOI: 10.1016/j.bbagen.2019.129451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Accumulation of lipid aldehydes plays a key role in the etiology of human diseases where high levels of oxidative stress are generated. In this regard, activation of aldehyde dehydrogenases (ALDHs) prevents oxidative tissue damage during ischemia-reperfusion processes. Although omeprazole is used to reduce stomach gastric acid production, in the present work this drug is described as the most potent activator of human ALDH1A1 reported yet. METHODS Docking analysis was performed to predict the interactions of omeprazole with the enzyme. Recombinant human ALDH1A1 was used to assess the effect of omeprazole on the kinetic properties. Temperature treatment and mass spectrometry were conducted to address the nature of binding of the activator to the enzyme. Finally, the effect of omeprazole was evaluated in an in vivo model of oxidative stress, using E. coli cells expressing the human ALDH1A1. RESULTS Omeprazole interacted with the aldehyde binding site, increasing 4-6 fold the activity of human ALDH1A1, modified the kinetic properties, altering the order of binding of substrates and release of products, and protected the enzyme from inactivation by lipid aldehydes. Furthermore, omeprazole protected E. coli cells over-expressing ALDH1A1 from the effects of oxidative stress generated by H2O2 exposure, reducing the levels of lipid aldehydes and preserving ALDH activity. CONCLUSION Omeprazole can be repositioned as a potent activator of human ALDH1A1 and may be proposed for its use in therapeutic strategies, to attenuate the damage generated during oxidative stress events occurring in different human pathologies.
Collapse
Affiliation(s)
- Luis Francisco Calleja
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico 14080
| | | | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico 06720
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico 06720
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico 14080
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., Mexico 58030
| | | |
Collapse
|
70
|
Wang X, Zhang Z, Zhang N, Li H, Zhang L, Baines CP, Ding S. Subcellular NAMPT-mediated NAD + salvage pathways and their roles in bioenergetics and neuronal protection after ischemic injury. J Neurochem 2019; 151:732-748. [PMID: 31553812 DOI: 10.1111/jnc.14878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
NAD+ is a cofactor required for glycolysis, tricarboxylic acid cycle, and complex I enzymatic reaction. In mammalian cells, NAD+ is predominantly synthesized through the salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme. Previously, we demonstrated that NAMPT exerts a neuroprotective effect in ischemia through the suppression of mitochondrial dysfunction. Mammalian cells maintain distinct NAD+ pools in the cytosol, mitochondria, and nuclei. However, it is unknown whether mitochondria have an intact machinery for NAD+ salvage, and if so, whether it plays a dominant role in bioenergetics, mitochondrial function, and neuronal protection after ischemia. Here, using mouse primary cortical neuron and cortical tissue preparations, and multiple technologies including cytosolic and mitochondrial subfractionation, viral over-expression of transgenes, molecular biology, and confocal microscopy, we provided compelling evidence that neuronal mitochondria possess an intact machinery of NAMPT-mediated NAD+ salvage pathway, and that NAMPT and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3) are localized in the mitochondrial matrix. By knocking down NMNAT1-3 and NAMPT with siRNA, we found that NMNAT3 has a larger effect on basal and ATP production-related mitochondrial respiration than NMNAT1-2 in primary cultured neurons, while NMNAT1-2 have a larger effect on glycolytic flux than NMNAT3. Using an oxygen glucose deprivation model, we found that mitochondrial, cytoplasmic, and non-subcellular compartmental over-expressions of NAMPT have a comparable effect on neuronal protection and suppression of apoptosis-inducing factor translocation. The current study provides novel insights into the roles of subcellular compartmental NAD+ salvage pathways in NAD+ homeostasis, bioenergetics, and neuronal protection in ischemic conditions.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Zhe Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Hailong Li
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Li Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical Science, University of Missouri, Columbia, Missouri, USA
| | - Shinghua Ding
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
71
|
Gorbenko NI, Borikov OY, Ivanova OV. The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
72
|
Paggio A, Checchetto V, Campo A, Menabò R, Di Marco G, Di Lisa F, Szabo I, Rizzuto R, De Stefani D. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 2019; 572:609-613. [PMID: 31435016 PMCID: PMC6726485 DOI: 10.1038/s41586-019-1498-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/25/2019] [Indexed: 11/09/2022]
Abstract
Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.
Collapse
Affiliation(s)
- Angela Paggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Antonio Campo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Giulia Di Marco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
73
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
74
|
Hopp AK, Grüter P, Hottiger MO. Regulation of Glucose Metabolism by NAD + and ADP-Ribosylation. Cells 2019; 8:cells8080890. [PMID: 31412683 PMCID: PMC6721828 DOI: 10.3390/cells8080890] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
Cells constantly adapt their metabolic pathways to meet their energy needs and respond to nutrient availability. During the last two decades, it has become increasingly clear that NAD+, a coenzyme in redox reactions, also mediates several ubiquitous cell signaling processes. Protein ADP-ribosylation is a post-translational modification that uses NAD+ as a substrate and is best known as part of the genotoxic stress response. However, there is increasing evidence that NAD+-dependent ADP-ribosylation regulates other cellular processes, including metabolic pathways. In this review, we will describe the compartmentalized regulation of NAD+ biosynthesis, consumption, and regeneration with a particular focus on the role of ADP-ribosylation in the regulation of glucose metabolism in different cellular compartments.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, CH-8057 Zurich, Switzerland
| | - Patrick Grüter
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
75
|
Han Y, Zhou S, Coetzee S, Chen A. SIRT4 and Its Roles in Energy and Redox Metabolism in Health, Disease and During Exercise. Front Physiol 2019; 10:1006. [PMID: 31447696 PMCID: PMC6695564 DOI: 10.3389/fphys.2019.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
NAD+-dependent SIRT4 has been reported to be a key regulator of metabolic enzymes and antioxidant defense mechanisms in mitochondria. It also plays an important role in regulation of mitochondrial metabolism in response to exercise. Recent studies have shown that SIRT4 is involved in a wide range of mitochondrial metabolic processes, including depressing insulin secretion in pancreatic beta cells, promoting lipid synthesis, regulating mitochondrial adenosine triphosphate (ATP) homeostasis, controlling apoptosis and regulating redox. SIRT4 also appears to have enzymatic functions involved in posttranslational modifications such as ADP-ribosylation, lysine deacetylation and lipoamidation. However, the effects on SIRT4 by metabolic diseases and changes in metabolic homeostasis such as during exercise, along with the roles of SIRT4 in the regulation of metabolism during disease, are not well understood. The main goal of this review is to critically analyse and summarise the current research evidence on the significance of the SIRT4 as a metabolic regulator and in mitochondrial function and its putative roles in relation to metabolic diseases and exercise.
Collapse
Affiliation(s)
- Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Sonja Coetzee
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
76
|
Liu L, Wang Q, Zhao B, Wu Q, Wang P. Exogenous nicotinamide adenine dinucleotide administration alleviates ischemia/reperfusion-induced oxidative injury in isolated rat hearts via Sirt5-SDH-succinate pathway. Eur J Pharmacol 2019; 858:172520. [PMID: 31278893 DOI: 10.1016/j.ejphar.2019.172520] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023]
Abstract
The metabolic disorder of succinate in myocardial tissue during ischemia-reperfusion can lead to the myocardial oxidative injury. The activation of succinate dehydrogenase (SDH) plays a vital role in the process. Silent information regulator 5 (Sirt5), a nicotinamide adenine dinucleotide (NAD)-dependent desuccinylase, desuccinylates and inactivates SDH thus exerting a protective effect on the myocardium. This research was designed to investigate whether exogenous NAD protects the myocardium from the ischemia-reperfusion-induced oxidative injury through regulating Sirt5-SDH pathway and succinate metabolism. We first found that myocardial total NAD level was remarkably increased with NAD treatment (10 mg/kg) for 14 days. NAD administration significantly decreased the lactate dehydrogenase (LDH) level in coronary leakage, decreased the malondialdehyde (MDA) level and increased the reduced glutathione/oxidized glutathione disulfide ratio (GSH/GSSG) in myocardial tissue. In addition, NAD treatment effectively attenuated the depression of cardiac function in the isolated rat hearts after ischemia-reperfusion. Furthermore, we found that exogenous NAD attenuated the succinate accumulation during ischemia and decreased its depleting rate during reperfusion. We also found that NAD administration had no obvious effects on myocardial Sirt5 and SDH-a expressions. However, the results of immunofluorescence showed that Sirt5 and SDH-a interacted in ischemia-reperfused myocardium. Utilizing co-immunoprecipitation method, we found that NAD administration promoted the Sirt5 and SDH-a interaction and decreased the succinylation level of SDH-a. These results implied that exogenous NAD administration promoted Sirt5-mediated SDH-a desuccinylation and decreased the activity of SDH-a, which attenuated the succinate accumulation during ischemia and its depleting rate during reperfusion and finally alleviated reactive oxygen species generation.
Collapse
Affiliation(s)
- Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qunying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bangshu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ping Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
77
|
Yazdani I, Majdani R, Ghasemnejad-Berenji M, Dehpour AR. Comparison of multiple doses of cyclosporine A on germ cell apoptosis and epididymal sperm parameters after testicular ischemia/reperfusion in rats. Exp Mol Pathol 2019; 110:104271. [PMID: 31251898 DOI: 10.1016/j.yexmp.2019.104271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Testicular torsion/detorsion (T/D) is an inflammatory problem in men genital system with infertility effects. Cyclosporine A (CsA) as an immunosuppressant medication, exerts anti-inflammatory properties in tissue injuries. We sought to compare the efficacy of 3 doses of CsA on oxidative stress, apoptosis and epididymal sperm quality after ipsilateral testicular T/D. METHODS 96 mature male rats were divided into six groups 16 each in: Control group (Group1), Sham operated (Group2), In rest groups, the right testis was twisted 720° in a clockwise direction for 1 h; T/D + 0.1% dimethylsulfoxide) DMSO((Group3), and in groups 4-6; CsA were administered 1, 5, and 10 mg/kg, intravenously (iv) 30 and 90 min after torsion, respectively. RESULTS Tissue malondialdehyde (MDA) level and caspase-3 activity increased and catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities decreased in compared with control group 4 h after detorsion (p < .001). In six rats of each group 24 h after detorsion, histopathological changes and germ cell apoptosis were significantly deteriorated by determining mean of seminiferous tubules diameters (MSTD) and TUNEL assay. Moreover, 30 days after T/D, sperm concentration and motility were examined in rest of animals. CONCLUSIONS Pre- and post-reperfusion CsA diminished MDA and caspase-3levels and normalized antioxidant enzymes activities. Germ cell apoptosis was significantly reduced, as well as, MSTD and long-term sperm insults were improved. Inhibition of mitochondrial permeability transition pore opening is suggested mechanism for cell protection against testicular T/D insults.
Collapse
Affiliation(s)
- Iraj Yazdani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Majdani
- Department of Cellular and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
78
|
Koentges C, Cimolai MC, Pfeil K, Wolf D, Marchini T, Tarkhnishvili A, Hoffmann MM, Odening KE, Diehl P, von Zur Mühlen C, Alvarez S, Bode C, Zirlik A, Bugger H. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis. J Mol Cell Cardiol 2019; 133:138-147. [PMID: 31201798 DOI: 10.1016/j.yjmcc.2019.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy contributes to the high mortality of septic shock in critically ill patients. Since the underlying mechanisms are incompletely understood, we hypothesized that sepsis-induced impairment of sirtuin 3 (SIRT3) activity contributes to the development of septic cardiomyopathy. METHODS AND RESULTS Treatment of mice with lipopolysaccharide (LPS) for 6 h resulted in myocardial NAD+ depletion and increased mitochondrial protein acetylation, indicating impaired myocardial SIRT3 activity due to NAD+ depletion. LPS treatment also resulted in impaired cardiac output in isolated working hearts, indicating endotoxemia-induced cardiomyopathy. Maintaining normal myocardial NAD+ levels in LPS-treated mice by Poly(ADP-ribose)polymerase 1 (PARP1) deletion prevented cardiac dysfunction, whereas additional SIRT3 deficiency blunted this beneficial effect, indicating that impaired SIRT3 activity contributes to cardiac dysfunction in endotoxemia. Measurements of mitochondrial ATP synthesis suggest that LPS-induced contractile dysfunction may result from cardiac energy depletion due to impaired SIRT3 activity. Pharmacological inhibition of mitochondrial calpains using MDL28170 normalized LPS-induced cleavage of the ATP5A1 subunit of ATP synthase and normalized contractile dysfunction, suggesting that cardiac energy depletion may result from calpain-mediated cleavage of ATP5A1. These beneficial effects were completely blunted by SIRT3 deficiency. Finally, a gene set enrichment analysis of hearts of patients with septic, ischemic or dilated cardiomyopathy revealed a sepsis-specific suppression of SIRT3 deacetylation targets, including ATP5A1, indicating a functional relevance of SIRT3-dependent pathways in human sepsis. CONCLUSIONS Impaired SIRT3 activity may mediate cardiac dysfunction in endotoxemia by facilitating calpain-mediated disruption of ATP synthesis, suggesting SIRT3 activation as a potential therapeutic strategy to treat septic cardiomyopathy.
Collapse
Affiliation(s)
- Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany
| | - María C Cimolai
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Departamento de Ciencias Básicas, Universidad Nacional de Luján, CONICET, Luján, Buenos Aires, Argentina
| | - Katharina Pfeil
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Institute of Biochemistry and Molecular Medicine, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Germany
| | - Katja E Odening
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Heart Center Freiburg University, Department of Cardiology and Angiology, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
79
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
80
|
Ringel AE, Tucker SA, Haigis MC. Chemical and Physiological Features of Mitochondrial Acylation. Mol Cell 2019; 72:610-624. [PMID: 30444998 DOI: 10.1016/j.molcel.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Growing appreciation of the diversity of post-translational modifications (PTMs) in the mitochondria necessitates reevaluation of the roles these modifications play in both health and disease. Compared to the cytosol and nucleus, the mitochondrial proteome is highly acylated, and remodeling of the mitochondrial "acylome" is a key adaptive mechanism that regulates fundamental aspects of mitochondrial biology. It is clear that we need to understand the underlying chemistry that regulates mitochondrial acylation, as well as how chemical properties of the acyl chain impact biological functions. Here, we dissect the sources of PTMs in the mitochondria, review major mitochondrial pathways that control levels of PTMs, and highlight how sirtuin enzymes respond to the bioenergetic state of the cell via NAD+ availability to regulate mitochondrial biology. By providing a framework connecting the chemistry of these modifications, their biochemical consequences, and the pathways that regulate the levels of acyl PTMs, we will gain a deeper understanding of the physiological significance of mitochondrial acylation and its role in mitochondrial adaptation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Sarah A Tucker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
81
|
Šileikytė J, Forte M. The Mitochondrial Permeability Transition in Mitochondrial Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3403075. [PMID: 31191798 PMCID: PMC6525910 DOI: 10.1155/2019/3403075] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial permeability transition pore (PTP), a (patho)physiological phenomenon discovered over 40 years ago, is still not completely understood. PTP activation results in a formation of a nonspecific channel within the inner mitochondrial membrane with an exclusion size of 1.5 kDa. PTP openings can be transient and are thought to serve a physiological role to allow quick Ca2+ release and/or metabolite exchange between mitochondrial matrix and cytosol or long-lasting openings that are associated with pathological conditions. While matrix Ca2+ and oxidative stress are crucial in its activation, the consequence of prolonged PTP opening is dissipation of the inner mitochondrial membrane potential, cessation of ATP synthesis, bioenergetic crisis, and cell death-a primary characteristic of mitochondrial disorders. PTP involvement in mitochondrial and cellular demise in a variety of disease paradigms has been long appreciated, yet the exact molecular entity of the PTP and the development of potent and specific PTP inhibitors remain areas of active investigation. In this review, we will (i) summarize recent advances made in elucidating the molecular nature of the PTP focusing on evidence pointing to mitochondrial FoF1-ATP synthase, (ii) summarize studies aimed at discovering novel PTP inhibitors, and (iii) review data supporting compromised PTP activity in specific mitochondrial diseases.
Collapse
Affiliation(s)
- Justina Šileikytė
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Forte
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
82
|
Palee S, Minta W, Mantor D, Sutham W, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Chattipakorn SC, Chattipakorn N. Combination of exercise and calorie restriction exerts greater efficacy on cardioprotection than monotherapy in obese-insulin resistant rats through the improvement of cardiac calcium regulation. Metabolism 2019; 94:77-87. [PMID: 30796936 DOI: 10.1016/j.metabol.2019.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Long-term high-fat diet (HFD) consumption causes obese-insulin resistance which is known to be a major risk factor for cardiovascular diseases due to its impact on the impairment of left ventricular (LV) contractile function and cardiac mitochondrial function. Intracellular calcium [Ca2+]i regulation plays an important role in the maintenance of LV function. Although either caloric restriction (CR) or exercise (Ex) are shown to strongly affect metabolic status and LV function, the combined effects of exercise and calorie restriction on cardiometabolic status, cardiac mitochondrial dynamics and cardiac [Ca2+]i transient homeostasis under conditions of obese-insulin resistance have never been investigated. METHODS Female rats were fed with either a high-fat diet (HFD: fat, 59.28%; protein, 26.45%; carbohydrate, 14.27%) or a normal diet (fat, 19.77%; protein, 28.24%; carbohydrate, 51.99%) for 13 weeks. HFD rats were then divided into 4 groups: 1) Vehicle (HFD + Veh); 2) Calorie restriction (HFD + CR); 3) Exercise (HFD + Ex) and 4) Combined therapy (HFD + CR + Ex). After 6-week intervention, the metabolic status, heart rate variability (HRV), LV function, cardiac mitochondrial dynamics, and [Ca2+]i transients were determined. RESULTS Insulin resistance developed in HFD rats as indicated by increased plasma insulin and HOMA index. Although HFD + Veh rats had markedly impaired LV function, indicated by reduced %LVFS and impaired cardiac mitochondrial dynamics and [Ca2+]i transients, these impairments were attenuated in the HFD + CR, HFD + Ex and HFD + CR + Ex rats. However, the greatest improvement in cardiometabolic function was observed in HFD + CR + Ex rats. CONCLUSIONS Our findings indicated that a combination of calorie restriction and exercise exerted greater cardioprotection than a monotherapy through the improvement of cardiometabolic status, cardiac mitochondrial dynamics and cardiac [Ca2+]i homeostasis in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanitchaya Minta
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duangkamol Mantor
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wissuta Sutham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
83
|
Minor T, von Horn C. Rewarming Injury after Cold Preservation. Int J Mol Sci 2019; 20:ijms20092059. [PMID: 31027332 PMCID: PMC6539208 DOI: 10.3390/ijms20092059] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Organ dysfunction pertinent to tissue injury related to ischemic ex vivo preservation during transport from donor to recipient still represents a pivotal impediment in transplantation medicine. Cold storage under anoxic conditions minimizes metabolic activity, but eventually cannot prevent energetic depletion and impairment of cellular signal homeostasis. Reoxygenation of anoxically injured tissue may trigger additional damage to the graft, e.g., by abundant production of oxygen free radicals upon abrupt reactivation of a not yet equilibrated cellular metabolism. Paradoxically, this process is driven by the sudden restoration of normothermic conditions upon reperfusion and substantially less pronounced during re-oxygenation in the cold. The massive energy demand associated with normothermia is not met by the cellular systems that still suffer from hypothermic torpor and dys-equilibrated metabolites and eventually leads to mitochondrial damage, induction of apoptosis and inflammatory responses. This rewarming injury is partly alleviated by preceding supply of oxygen already in the cold but more effectively counteracted by an ensuing controlled and slow oxygenated warming up of the organ prior to implantation. A gentle restitution of metabolic turnover rates in line with the resumption of enzyme kinetics and molecular homeostasis improves post transplantation graft function and survival.
Collapse
Affiliation(s)
- Thomas Minor
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| | - Charlotte von Horn
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| |
Collapse
|
84
|
Jiang DQ, Ma YJ, Wang Y, Lu HX, Mao SH, Zhao SH. Microglia activation induces oxidative injury and decreases SIRT3 expression in dopaminergic neuronal cells. J Neural Transm (Vienna) 2019; 126:559-568. [PMID: 31004314 DOI: 10.1007/s00702-019-02005-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022]
Abstract
Microglia activation-mediated neuroinflammation plays an important role in the progression of Parkinson's disease (PD). However, effects of microglia activation on dopaminergic neuronal cell (DAC) fate are still poorly understood. The objective of this study was to explore the neurotoxic effects of microglia activation-mediated oxidative injury in DACs and its possible mechanisms. In the present study, microglia-DACs co-culture systems (murine BV-2 and MN9D cells, or primary microglia and mesencephalic neurons) were used to display the crosstalk between both cell types. The cytotoxicity of lipopolysaccharide-induced microglia activation led to the accumulation of intracellular reactive oxygen species, increased cell apoptosis rate, reduced number of DACs, concomitant to cell cycle arrest at G1 phase. Molecular mechanisms of apoptosis caused by microglia activation-induced oxidative injury included the increased opening of mitochondrial permeability transition pore and enhanced membrane potential depolarization in MN9D cells, down-regulation of Bcl-2 and up-regulation of Bax, caspase-3 expression in DACs. In addition, microglia activation made a significant reduction of SIRT3 and superoxide dismutase 2 gene expression in DACs. Taken together, these data imply that microglia activation promotes cell apoptosis through mitochondrial pathway and decreases SIRT3 expression in DACs, which may provide some support for PD progression promoted by neuroinflammation.
Collapse
Affiliation(s)
- De-Qi Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Jiao Ma
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Hai-Xiao Lu
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China.
| | - Shu-Hui Mao
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China
| | - Shi-Hua Zhao
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
85
|
Raupach A, Reinle J, Stroethoff M, Mathes A, Heinen A, Hollmann MW, Huhn R, Bunte S. Milrinone-Induced Pharmacological Preconditioning in Cardioprotection: Hints for a Role of Mitochondrial Mechanisms. J Clin Med 2019; 8:jcm8040507. [PMID: 31013843 PMCID: PMC6517902 DOI: 10.3390/jcm8040507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The activation of mitochondrial calcium-sensitive potassium (mBKCa) channels is crucially involved in cardioprotection induced by preconditioning. For milrinone (Mil)-induced preconditioning, the involvement of mBKCa-channels and further mitochondrial signaling is unknown. We hypothesize that (1) Mil-induced preconditioning is concentration-dependent and (2) that the activation of mBKCa-channels, release of reactive oxygen species (ROS), and the mitochondrial permeability transition pore (mPTP) could be involved. Isolated hearts of male Wistar rats were perfused with Krebs-Henseleit buffer and underwent 33 min of ischemia followed by 60 min of reperfusion. For determination of a concentration-dependent effect of Mil, hearts were perfused with different concentrations of Mil (0.3–10 µM) over 10 min before ischemia. In a second set of experiments, in addition to controls, hearts were pretreated with the lowest protective concentration of 1 µM Mil either alone or combined with the mBKCa-channel blocker paxilline (Pax + Mil), or paxilline alone (Pax). In additional groups, Mil was administered with and without the ROS scavenger N-2-mercaptopropionylglycine (MPG + Mil, MPG) or the mPTP inhibitor cyclosporine A (MPG + Mil + CsA, CsA + Mil), respectively. Infarct sizes were determined by triphenyltetrazolium chloride (TTC) staining. The lowest and most cardioprotective concentration was 1 µM Mil (Mil 1: 32 ± 6%; p < 0.05 vs. Con: 63 ± 8% and Mil 0.3: 49 ± 6%). Pax and MPG blocked the infarct size reduction of Mil (Pax + Mil: 53 ± 6%, MPG + Mil: 59 ± 7%; p < 0.05 vs. Mil: 34 ± 6%) without having an effect on infarct size when administered alone (Pax: 53 ± 7%, MPG: 58 ± 5%; ns vs. Con). The combined administration of CsA completely restored the MPG-inhibited cardioprotection of Mil (MPG + Mil + CsA: 35 ± 7%, p < 0.05 vs. MPG + Mil). Milrinone concentration-dependently induces preconditioning. Cardioprotection is mediated by the activation of mBKCa-channels, release of ROS and mPTP inhibition.
Collapse
Affiliation(s)
- Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Julia Reinle
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Martin Stroethoff
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Sebastian Bunte
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
86
|
Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC, Caldwell ST, Gruszczyk AV, Deshwal S, Hartley RC, Kaludercic N, Murphy MP, Di Lisa F, Krieg T. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radic Biol Med 2019; 134:678-687. [PMID: 30731114 PMCID: PMC6607027 DOI: 10.1016/j.freeradbiomed.2019.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Disease Models, Animal
- Herbicides/pharmacology
- Hormesis
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Paraquat/pharmacology
- Rats
- Rats, Wistar
- Superoxides/metabolism
Collapse
Affiliation(s)
- Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Nils Burger
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Andrew R Hall
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Elizabeth C Hinchy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | | | - Anja V Gruszczyk
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Michael P Murphy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
87
|
Ostadal B, Drahota Z, Houstek J, Milerova M, Ostadalova I, Hlavackova M, Kolar F. Developmental and sex differences in cardiac tolerance to ischemia-reperfusion injury: the role of mitochondria 1. Can J Physiol Pharmacol 2019; 97:808-814. [PMID: 30893574 DOI: 10.1139/cjpp-2019-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Age and sex play an essential role in the cardiac tolerance to ischemia-reperfusion injury: cardiac resistance significantly decreases during postnatal maturation and the female heart is more tolerant than the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac ischemia-reperfusion injury. We have observed that the MPTP sensitivity to the calcium load differs in mitochondria isolated from neonatal and adult myocardium, as well as from adult male and female hearts. Neonatal and female mitochondria are more resistant both in the extent and in the rate of mitochondrial swelling induced by high calcium concentration. Our data further suggest that age- and sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and cyclophilin D: neonatal and adult hearts, similarly as the male and female hearts, contain comparable amounts of MPTP and its regulatory protein cyclophilin D. We can speculate that the lower sensitivity of MPTP to the calcium-induced swelling may be related to the higher ischemic tolerance of both neonatal and female myocardium.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Z Drahota
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - J Houstek
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - M Milerova
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - I Ostadalova
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - M Hlavackova
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| | - F Kolar
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4 Czech Republic
| |
Collapse
|
88
|
Fimasartan for Remodeling after Myocardial Infarction. J Clin Med 2019; 8:jcm8030366. [PMID: 30875971 PMCID: PMC6463200 DOI: 10.3390/jcm8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
An angiotensin receptor blocker (ARB) mitigates cardiac remodeling after myocardial infarction (MI). Here, we investigated the effect of fimasartan, a new ARB, on cardiac remodeling after MI. Sprague–Dawley rats were assigned into 3 groups: surgery only (sham group, n = 7), MI without (MI-only group, n = 13), and MI with fimasartan treatment (MI + Fima group, n = 16). MI was induced by the permanent ligation of the left anterior descending artery. Treatment with fimasartan (10 mg/kg) was initiated 24 h after MI and continued for 7 weeks. Rats in the MI + Fima group had a higher mean ejection fraction (66.3 ± 12.5% vs. 51.3 ± 14.8%, P = 0.002) and lower left ventricular end-diastolic diameter (9.14 ± 1.11 mm vs. 9.91 ± 1.43 mm, P = 0.045) than those in the MI-only group at 7 weeks after MI. The infarct size was lower in the MI + Fima than in the MI group (P < 0.05). A microarray analysis revealed that the expression of genes related to the lipid metabolism and mitochondrial membrane ion transporters were upregulated, and those involved in fibrosis and inflammation were downregulated by fimasartan. Fimasartan attenuates cardiac remodeling and dysfunction in rats after MI and may prevent the progression to heart failure after MI.
Collapse
|
89
|
Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20:381-395. [PMID: 30838484 DOI: 10.1007/s10522-019-09805-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) has been described as central coenzyme of redox reactions and is a key regulator of stress resistance and longevity. Aging is a multifactorial and irreversible process that is characterized by a gradual diminution in physiological functions in an organism over time, leading to development of age-associated pathologies and eventually increasing the probability of death. Ischemia is the lack of nutritive blood flow that causes damage and mortality that mostly occurs in various organs during aging. During the process of aging and related ischemic conditions, NAD+ levels decline and lead to nuclear and mitochondrial dysfunctions, resulting in age-related pathologies. The majority of studies have shown that restoring of NAD+ using supplementation with intermediates such as nicotinamide mononucleotide and nicotinamide riboside can be a valuable strategy for recovery of ischemic injury and age-associated defects. This review summarizes the molecular mechanisms responsible for the reduction in NAD+ levels during ischemic disorders and aging, as well as a particular focus is given to the recent progress in the understanding of NAD+ precursor's effects on aging and ischemia.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr S Vafaee
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.,Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
90
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
91
|
Sciuto KJ, Deng SW, Moreno A, Zaitsev AV. Chronology of critical events in neonatal rat ventricular myocytes occurring during reperfusion after simulated ischemia. PLoS One 2019; 14:e0212076. [PMID: 30730997 PMCID: PMC6366697 DOI: 10.1371/journal.pone.0212076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
While an ischemic insult poses a lethal danger to myocardial cells, a significant proportion of cardiac myocytes remain viable throughout the ischemic episode and die, paradoxically, only after the blood flow is reinstated. Despite decades of research, the actual chronology of critical events leading to cardiomyocyte death during the reperfusion phase remains poorly understood. Arguably, identification of the pivotal event in this setting is necessary to design effective strategies aimed at salvaging the myocardium after an ischemic attack. Here we used neonatal rat ventricular myocytes (NRVMs) subjected to 20–30 min of simulated ischemia followed by 1 hour of “reperfusion”. Using different combinations of spectrally-compatible fluorescent indicators, we analyzed the relative timing of the following events: (1) abnormal increase in cytoplasmic [Ca2+] (TCaCy); (2) abnormal increase in mitochondrial [Ca2+] (TCaMi); (3) loss of mitochondrial inner membrane potential (ΔΨm) indicating mitochondrial permeability transitions (TMPT); (4) sacrolemmal permeabilization (SP) to the normally impermeable small fluorophore TO-PRO3 (TSP). In additional experiments we also analyzed the timing of abnormal uptake of Zn2+ into the cytoplasm (TZnCy) relative to TCaCy and TSP. We focused on those NRVMs which survived anoxia, as evidenced by at least 50% recovery of ΔΨm and the absence of detectable SP. In these cells, we found a consistent sequence of critical events in the order, from first to last, of TCaCy, TCaMi, TMPT, TSP. After detecting TCaCy and TCaMi, abrupt switches between 1.1 mM and nominally zero [Ca2+] in the perfusate quickly propagated to the cytoplasmic and mitochondrial [Ca2+]. Depletion of the sarcoplasmic reticulum with ryanodine (5 μM)/thapsigargin (1 μM) accelerated all events without changing their order. In the presence of ZnCl2 (10–30 μM) in the perfusate we found a consistent timing sequence TCaCy < TZn ≤ TSP. In some cells ZnCl2 interfered with Ca2+ uptake, causing “steps” or “gaps” in the [Ca2+]Cy curve, a phenomenon never observed in the absence of ZnCl2. Together, these findings suggest an evolving permeabilization of NRVM’s sarcolemma during reoxygenation, in which the expansion of the pore size determines the timing of critical events, including TMPT.
Collapse
Affiliation(s)
- Katie J. Sciuto
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Steven W. Deng
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Alonso Moreno
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Alexey V. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
92
|
Lee H, Lee DG. The Potential of Gold and Silver Antimicrobials: Nanotherapeutic Approach and Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
93
|
Qiao SG, Sun Y, Sun B, Wang A, Qiu J, Hong L, An JZ, Wang C, Zhang HL. Sevoflurane postconditioning protects against myocardial ischemia/reperfusion injury by restoring autophagic flux via an NO-dependent mechanism. Acta Pharmacol Sin 2019; 40:35-45. [PMID: 30002490 DOI: 10.1038/s41401-018-0066-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Volatile anesthetics improve postischemic cardiac function and reduce infarction even when administered for only a brief time at the onset of reperfusion. A recent study showed that sevoflurane postconditioning (SPC) attenuated myocardial reperfusion injury, but the underlying mechanisms remain unclear. In this study, we examined the effects of sevoflurane on nitric oxide (NO) release and autophagic flux during the myocardial ischemia/reperfusion (I/R) injury in rats in vivo and ex vivo. Male rats were subjected to 30 min ischemia and 2 h reperfusion in the presence or absence of sevoflurane (1.0 minimum alveolar concentration) during the first 15 min of reperfusion. We found that SPC significantly improved hemodynamic performance after reperfusion, alleviated postischemic myocardial infarction, reduced nicotinamide adenine dinucleotide content loss, and cytochrome c release in heart tissues. Furthermore, SPC significantly increased the phosphorylation of endothelial nitric oxide synthase (NOS) and neuronal nitric oxide synthase, and elevated myocardial NOS activity and NO production. All these effects were abolished by treatment with an NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.v.). We also observed myocardial I/R-induced accumulation of autophagosomes in heart tissues, as evidenced by increased ratios of microtubule-associated protein 1 light chain 3 II/I, up-regulation of Beclin 1 and P62, and reduced lysosome-associated membrane protein-2 expression. SPC significantly attenuated I/R-impaired autophagic flux, which were blocked by L-NAME. Moreover, pretreatment with the autophagic flux blocker chloroquine (10 mg/kg, i.p.) increased autophagosome accumulation in SPC-treated heart following I/R and blocked SPC-induced cardioprotection. The same results were also observed in a rat model of myocardial I/R injury ex vivo, suggesting that SPC protects rat hearts against myocardial reperfusion injury by restoring I/R-impaired autophagic flux via an NO-dependent mechanism.
Collapse
|
94
|
Davargaon RS, Sambe AD, Muthangi V V S. Toxic effect of high glucose on cardiomyocytes, H9c2 cells: Induction of oxidative stress and ameliorative effect of trolox. J Biochem Mol Toxicol 2018; 33:e22272. [PMID: 30512247 DOI: 10.1002/jbt.22272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
Oxidative stress (OS) has been implicated in a variety of pathological conditions, including diabetes mellitus, characterized by hyperglycemia. In the present study, OS induced by hyperglycemia and the effect of trolox, a vitamin E analog, were studied in cardiomyocytes and H9c2 cells exposed to 15 to 33 mM glucose (HG) for 24 to 72 hours in Dulbecco modified Eagle medium. Cells treated wirh 24 or 33 mM glucose for 24 hours or above showed decreased viability and adenosine triphosphate (ATP) content with a concomitant increase in radicals of oxygen species, calcium (Ca2+ ), mitochondrial permeability transition, and oxidative markers, confirming that the cells were under stress. However, upon exposure to 15 mM glucose for 24 hours, H9c2 cells maintained homeostasis and ATP generation. Pretreatment of cells with trolox reduced HG-induced OS to control levels. Here, we report that the toxic effect of HG is highly regulated and that OS induction can be prevented with Trolox, a potential inhibitor of membrane damage.
Collapse
Affiliation(s)
| | - Asha Devi Sambe
- Department of Zoology, Laboratory of Gerontology, J.B. Campus, Bangalore University, Bangalore, India
| | | |
Collapse
|
95
|
Baburina Y, Odinokova I, Azarashvili T, Akatov V, Sotnikova L, Krestinina O. Possible Involvement of 2',3'-Cyclic Nucleotide-3'-Phosphodiesterase in the Protein Phosphorylation-Mediated Regulation of the Permeability Transition Pore. Int J Mol Sci 2018; 19:ijms19113499. [PMID: 30405014 PMCID: PMC6274948 DOI: 10.3390/ijms19113499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening. 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+] decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody. H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that CNPase may be involved in the regulation of these kinases, which in turn plays an important role in mPTP functioning.
Collapse
Affiliation(s)
- Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
96
|
Vilahur G, Casaní L, Peña E, Crespo J, Juan-Babot O, Ben-Aicha S, Mendieta G, Béjar MT, Borrell M, Badimon L. Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis. Int J Cardiol 2018; 270:28-35. [PMID: 29936043 DOI: 10.1016/j.ijcard.2018.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/15/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
AIMS Milk thistle (Silybum marianum; SM) is an herb commonly used for hepatoprotection with antioxidant and antifibrotic properties. We investigated in pigs the cardiac effects of SM intake during the acute phase of myocardial infarction (MI) and remodeling period post-MI. METHODS Study-1 tested the effect of SM use on the acute phase of MI. Hence, animals were distributed to a control group or to receive SM prior infarction (1.5 h ischemia). Animals were sacrificed after 2.5 h of reperfusion. Study-2 tested the effect of SM use in the cardiac remodeling phase. Accordingly, animals received for 10 d diet ± SM prior MI and followed the same regime for 3 weeks and then sacrificed. Study-3 tested the effect of SM in a non-infarcted heart; therefore, animals received for 10 d diet ± SM and then sacrificed. RESULTS Animals taking SM before MI showed a reduction in cardiac damage (decreased oxidative damage, ROS production and xanthine oxidase levels; preserved mitochondrial function; and increased myocardial salvage; p < 0.05) versus controls. Animals that remained on chronic SM intake post-MI improved left ventricular remodeling. This was associated with the attenuation of the TGFß1/TßRs/SMAD2/3 signaling, lower myofibroblast transdifferentiation and collagen content in the border zone (p < 0.05 vs. all other groups). Cardiac contractility improved in animals taking SM (p < 0.05 vs. post-MI-control). No changes in cardiac function or fibrosis were detected in animals on SM but without MI. CONCLUSION Intake of SM protects the heart against the deleterious effects of an MI and favors cardiac healing. These benefits may be attributed to the antioxidant and antifibrotic properties of SM.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Spain
| | - Laura Casaní
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Spain
| | - Esther Peña
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Spain
| | - Javier Crespo
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Guiomar Mendieta
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - María Borrell
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Spain
| | - Lina Badimon
- Cardiovascular Program - ICCC - IR Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Spain; Cardiovascular Research Chair UAB, Autonomous University of Barcelona, Spain.
| |
Collapse
|
97
|
Murata H, Khine CC, Nishikawa A, Yamamoto KI, Kinoshita R, Sakaguchi M. c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD + cleavage activity to inhibit mitochondrial respiration. J Biol Chem 2018; 293:18933-18943. [PMID: 30333228 DOI: 10.1074/jbc.ra118.004578] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/03/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological feature of many different types of neurodegenerative disease. Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) has been attracting much attention as an important molecule for inducing axonal degeneration and neuronal cell death by causing loss of NAD (NADH). However, it has remained unclear what exactly regulates the SARM1 activity. Here, we report that NAD+ cleavage activity of SARM1 is regulated by its own phosphorylation at serine 548. The phosphorylation of SARM1 was mediated by c-jun N-terminal kinase (JNK) under oxidative stress conditions, resulting in inhibition of mitochondrial respiration concomitant with enhanced activity of NAD+ cleavage. Nonphosphorylatable mutation of Ser-548 or treatment with a JNK inhibitor decreased SARM1 activity. Furthermore, neuronal cells derived from a familial Parkinson's disease (PD) patient showed a congenitally increased level of SARM1 phosphorylation compared with that in neuronal cells from a healthy person and were highly sensitive to oxidative stress. These results indicate that JNK-mediated phosphorylation of SARM1 at Ser-548 is a regulator of SARM1 leading to inhibition of mitochondrial respiration. These findings suggest that an abnormal regulation of SARM1 phosphorylation is involved in the pathogenesis of Parkinson's disease and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hitoshi Murata
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Cho Cho Khine
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Akane Nishikawa
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- From the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
98
|
PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol Res 2018; 137:104-113. [PMID: 30278221 DOI: 10.1016/j.phrs.2018.09.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Cisplatin, carboplatin and oxaliplatin represent the backbone of platinum therapy for several malignancies including head and neck, lung, colorectal, ovarian, breast, and genitourinary cancer. However, the efficacy of platinum-based drugs is often compromised by a plethora of severe toxicities including sensory and enteric neuropathy. Acute and chronic neurotoxicity following platinum chemotherapy is a major constraint, contributing to dose-reductions, treatment delays, and cessation of treatment. Identifying drugs that effectively prevent these toxic complications is imperative to improve the efficacy of anti-cancer treatment and patient quality of life. Oxidative stress and mitochondrial dysfunction have been highlighted as key players in the pathophysiology of platinum chemotherapy-induced neuropathy. Inhibition of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated upon DNA damage, has demonstrated substantial sensory and enteric neuroprotective capacity when administered in combination with platinum chemotherapeutics. Furthermore, administration of PARP inhibitors alongside platinum chemotherapy has been found to significantly improve progression-free survival in patients with breast and ovarian cancer when compared to those receiving chemotherapy alone. This review summarises the current knowledge surrounding mitochondrial damage and oxidative stress in platinum chemotherapy-induced neuropathy and highlights a potential role for PARP in chemopotentiation and neuroprotection.
Collapse
|
99
|
Interplay between NAD + and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2060-2067. [PMID: 30261291 DOI: 10.1016/j.bbadis.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl‑CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl‑CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP‑ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl‑CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.
Collapse
|
100
|
Li F, Guo S, Wang C, Huang X, Wang H, Tan X, Cai Q, Wu J, Zhang Y, Chen X, Lin W, Zhang B. Yiqihuoxue decoction protects against post-myocardial infarction injury via activation of cardiomyocytes PGC-1α expression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:253. [PMID: 30223807 PMCID: PMC6142634 DOI: 10.1186/s12906-018-2319-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitochondrial dysfunction has been implicated in the pathogenesis of ischemic heart disease, exacerbating cardiomyocytes injury in myocardial infarction (MI). Peroxisome proliferator-activated receptor gamma co-activator (PGC-1α) has been recognized as the key regulator of mitochondrial biogenesis and energy metabolism. Yiqihuoxue decoction (YQHX), a Traditional Chinese Medicine (TCM) prescription, can prevent and treat ischemic heart disease. However, the mechanisms of YQHX on PGC-1α expression in the ischemic heart have remained unclear. METHODS Myocardial ischemia rat model and ischemia/hypoxia injury model in the cardiomyocytes were used to minic human cardiovascular disease. Rats were randomly assigned into 4 groups: Sham, Model, YQHX (8.2 g/kg) and Trimetazidine (10 mg/kg) group. 28 days after MI, cardiac functions and morphology were detected by echocardiography and HE staining, respectively. In vitro, the effects of YQHX on H9c2 cell viability, LDH and ROS were detected, respectively. PGC-1α relevant proteins were evaluated by Western blotting. RESULTS In vivo, echocardiography and HE staining results showed that YQHX improved cardiac functions and modified pathological changes. YQHX enhanced PGC-1α expression and improved the mitochondrial ultrastructure and functions in rats MI model for 4 weeks. Further, we explored its potential mechanisms in cardiomyocytes. In vitro, YQHX significantly enhanced cell viability and reduced LDH release and ROS production induced by hypoxia in cardiomyocytes. Interestingly, exposure of cardiomyocytes to hypoxic conditions for 12 h induced the downregulation of PGC-1α expression, but the expression levels nearly returned to the normal state after hypoxia for 24 h. YQHX significantly enhanced PGC-1α expression between 12 h and 24 h induced by hypoxia through a mechanism associated with the activation of AMPK phosphorylation in H9c2 cells. In addition, YQHX upregulated the expression of Tfam and NRF-1, while NRF-1 expression was completely blocked by an AMPK inhibitor. YQHX largely restored the mitochondrial morphology and increased mitochondrial membrane potential in hypoxia-induced injury. Furthermore, the UHPLC-LTQ-Orbitrap-MSn analysis found that there were 87 chemical constituents in YQHX. CONCLUSIONS These results suggest that the protective effect of YQHX on cardiomyocytes against hypoxia-induced injury may be attributed to activation of PGC-1α and maintenance of mitochondrial functions through a mechanism involving the activation of AMPK phosphorylation.
Collapse
Affiliation(s)
- Fanghe Li
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Shuwen Guo
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaolou Huang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Hui Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaobo Tan
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qian Cai
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jiani Wu
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yuqin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xi Chen
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wangou Lin
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Binyue Zhang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|