51
|
TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. Am J Hum Genet 2018; 102:1104-1114. [PMID: 29861107 DOI: 10.1016/j.ajhg.2018.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
Abstract
Transient neonatal hyperparathyroidism (TNHP) is etiologically a heterogeneous condition. One of the etiologies is an insufficient maternal-fetal calcium transport through the placenta. We report six subjects with homozygous and/or compound-heterozygous mutations in the gene encoding the transient receptor potential cation channel, subfamily V, member 6 (TRPV6), an epithelial Ca2+-selective channel associated with this condition. Exome sequencing on two neonates with skeletal findings consistent with neonatal hyperparathyroidism identified homozygous frameshift mutations before the first transmembrane domain in a subject born to first-cousins parents of Pakistani descent as well as compound-heterozygous mutations (a combination of a frameshift mutation and an intronic mutation that alters mRNA splicing) in an individual born to a non-consanguineous couple of African descent. Subsequently, targeted mutation analysis of TRPV6 performed on four other individuals (born to non-consanguineous Japanese parents) with similar X-rays findings identified compound-heterozygous mutations. The skeletal findings improved or resolved in most subjects during the first few months of life. We identified three missense variants (at the outer edges of the second and third transmembrane domains) that alter the localization of the TRPV6: one recurrent variant at the S2-S3 loop and two recurrent variants (in the fourth ankyrin repeat domain) that impair TRPV6 stability. Compound heterozygous loss-of-function mutations for the pathogenic frameshift allele and the allele with an intronic c.607+5G>A mutation resulted in the most severe phenotype. These results suggest that TNHP is an autosomal-recessive disease caused by TRPV6 mutations that affect maternal-fetal calcium transport.
Collapse
|
52
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
53
|
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2017; 68:88-96. [PMID: 29217255 DOI: 10.1016/j.jbior.2017.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Calcium signals arise by multiple mechanisms, including mechanisms of release of intracellular stored Ca2+, and the influx of Ca2+ through channels in the plasma membrane. One mechanism that links these two sources of Ca2+ is store-operated Ca2+ entry, the most commonly encountered version of which involves the extensively studied calcium-release-activated Ca2+ (CRAC) channel. The minimal and essential molecular components of the CRAC channel are the STIM proteins that function as Ca2+ sensors in the endoplasmic reticulum, and the Orai proteins that comprise the pore forming subunits of the CRAC channel. CRAC channels are known to play significant roles in a wide variety of physiological functions. This review discusses the multiple forms of STIM and Orai proteins encountered in mammalian cells, and discusses some specific examples of how these proteins modulate or mediate important physiological processes.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences - NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
54
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
55
|
Leukocyte TRP channel gene expressions in patients with non-valvular atrial fibrillation. Sci Rep 2017; 7:9272. [PMID: 28839241 PMCID: PMC5571177 DOI: 10.1038/s41598-017-10039-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a major cause of morbidity and mortality. The upregulation of TRP channels is believed to mediate the progression of electrical remodelling and the arrhythmogenesis of the diseased heart. However, there is limited data about the contribution of the TRP channels to development of AF. The aim of this study was to investigate leukocyte TRP channels gene expressions in non-valvular atrial fibrillation (NVAF) patients. The study included 47 NVAF patients and 47 sex and age matched controls. mRNA was extracted from blood samples, and real-time polymerase chain reaction was performed for gene expressions by using a dynamic array system. Low levels of TRP channel expressions in the controls were markedly potentiated in NVAF group. We observed marked increases in MCOLN1 (TRPML1), MCOLN2 (TRPML2), MCOLN3 (TRPML3), TRPA1, TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, TRPV6, and PKD2 (TRPP2) gene expressions in NVAF patients (P < 0.05). However, there was no change in PKD1 (TRPP1) gene expression. This is the first study to provide evidence that elevated gene expressions of TRP channels are associated with the pathogenesis of NVAF.
Collapse
|
56
|
Mignen O, Constantin B, Potier-Cartereau M, Penna A, Gautier M, Guéguinou M, Renaudineau Y, Shoji KF, Félix R, Bayet E, Buscaglia P, Debant M, Chantôme A, Vandier C. Constitutive calcium entry and cancer: updated views and insights. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:395-413. [PMID: 28516266 DOI: 10.1007/s00249-017-1216-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Abstract
Tight control of basal cytosolic Ca2+ concentration is essential for cell survival and to fine-tune Ca2+-dependent cell functions. A way to control this basal cytosolic Ca2+ concentration is to regulate membrane Ca2+ channels including store-operated Ca2+ channels and secondary messenger-operated channels linked to G-protein-coupled or tyrosine kinase receptor activation. Orai, with or without its reticular STIM partner and Transient Receptor Potential (TRP) proteins, were considered to be the main Ca2+ channels involved. It is well accepted that, in response to cell stimulation, opening of these Ca2+ channels contributes to Ca2+ entry and the transient increase in cytosolic Ca2+ concentration involved in intracellular signaling. However, in various experimental conditions, Ca2+ entry and/or Ca2+ currents can be recorded at rest, without application of any experimental stimulation. This led to the proposition that some plasma membrane Ca2+ channels are already open/activated in basal condition, contributing therefore to constitutive Ca2+ entry. This article focuses on direct and indirect observations supporting constitutive activity of channels belonging to the Orai and TRP families and on the mechanisms underlying their basal/constitutive activities.
Collapse
Affiliation(s)
- Olivier Mignen
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Bruno Constantin
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marie Potier-Cartereau
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aubin Penna
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Mathieu Gautier
- EA4667, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Maxime Guéguinou
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Yves Renaudineau
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Kenji F Shoji
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Romain Félix
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Elsa Bayet
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Paul Buscaglia
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marjolaine Debant
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aurélie Chantôme
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Christophe Vandier
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France.
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France.
| |
Collapse
|
57
|
A conserved gating element in TRPV6 channels. Cell Calcium 2017; 63:24-28. [DOI: 10.1016/j.ceca.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023]
|
58
|
Fecher-Trost C, Wissenbach U, Weissgerber P. TRPV6: From identification to function. Cell Calcium 2017; 67:116-122. [PMID: 28501141 DOI: 10.1016/j.ceca.2017.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany
| | - Petra Weissgerber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| |
Collapse
|
59
|
Skrzypski M, Billert M, Mergler S, Khajavi N, Nowak KW, Strowski MZ. Role of TRPV channels in regulating various pancreatic β-cell functions: Lessons from in vitro studies. Biosci Trends 2017; 11:9-15. [PMID: 28154245 DOI: 10.5582/bst.2016.01226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pancreatic β-cell functions are regulated by a variety of endogenous and exogenous factors. Calcium is one of the most potent triggers of β-cell growth, insulin production and exocytosis. Recently, others and we showed that TRPV channels are expressed in insulin producing cell lines and/or primary β-cells. These channels modulate calcium ions, insulin secretion and cell proliferation. Besides the classical roles of TRPV channels in the sensory system, there are also novel functions described in non-excitable cells such as in insulin-producing β-cells. This review summarises the current knowledge about the expression and the role of TRPV channels in controlling β-cell functions based upon studies performed in isolated primary β-cells as well as permanent β-cell models.
Collapse
Affiliation(s)
- Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences
| | | | | | | | | | | |
Collapse
|
60
|
First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest New Drugs 2017; 35:324-333. [PMID: 28150073 PMCID: PMC5418314 DOI: 10.1007/s10637-017-0438-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 10/25/2022]
Abstract
Introduction This was an open-label, dose escalation (3 + 3 design), Phase I study of SOR-C13 in patients with advanced tumors of epithelial origin. Primary objectives were to assess safety/tolerability and pharmacokinetics. Secondary goals were to assess pharmacodynamics and efficacy of SOR-C13. Methods SOR-C13 was administered IV QD on days 1-3 and 8-10 of a 21-day cycle. Doses were 2.75 and 5.5 mg/kg (20-min infusion) and 1.375, 2.75, 4.13 and 6.2 mg/kg (90-min infusion). Toxicity was assessed by National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Dose limiting toxicity (DLT) was assessed within the first treatment cycle. Tumors were evaluated, using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, after two cycles. Results Twenty-three patients were treated. No drug-related serious adverse events occurred. DLTs occurred in six patients: asymptomatic, drug-related, transient Grade 2 hypocalcemia (4 patients), and unrelated Grade 3 anemia and Grade 3 atrial fibrillation, 1 patient each. Calcium and vitamin D supplementation eliminated further Grade 2 hypocalcemia. One Grade 3 treatment emergent adverse event, urticaria, was definitely related to SOR-C13. Four possibly drug-related, Grade 3 events (alanine aminotransferase and aspartate aminotransferase elevation, headache, and hypokalemia) were observed. Of 22 evaluable patients, 54.5% showed stable disease ranging from 2.8 to 12.5 months. The best response was a 27% reduction in a pancreatic tumor with a 55% reduction in CA19-9 levels at 6.2 mg/kg. Conclusion SOR-C13 was safe and tolerated up to 6.2 mg/kg. The Maximal Tolerated Dose (MTD) was not established. Stable disease suggested antitumor activity.
Collapse
|
61
|
Evans JC, Malhotra M, Cryan JF, O'Driscoll CM. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br J Pharmacol 2016; 173:3041-3079. [PMID: 27526115 PMCID: PMC5056232 DOI: 10.1111/bph.13576] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) otherwise known as glutamate carboxypeptidase II (GCPII) is a membrane bound protein that is highly expressed in prostate cancer and in the neovasculature of a wide variety of tumours including glioblastomas, breast and bladder cancers. This protein is also involved in a variety of neurological diseases including schizophrenia and ALS. In recent years, there has been a surge in the development of both diagnostics and therapeutics that take advantage of the expression and activity of PSMA/GCPII. These include gene therapy, immunotherapy, chemotherapy and radiotherapy. In this review, we discuss the biological roles that PSMA/GCPII plays, both in normal and diseased tissues, and the current therapies exploiting its activity that are at the preclinical stage. We conclude by giving an expert opinion on the future direction of PSMA/GCPII based therapies and diagnostics and hurdles that need to be overcome to make them effective and viable.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
62
|
TRPV6 modulates proliferation of human pancreatic neuroendocrine BON-1 tumour cells. Biosci Rep 2016; 36:BSR20160106. [PMID: 27450545 PMCID: PMC4995500 DOI: 10.1042/bsr20160106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022] Open
Abstract
Highly Ca2+ permeable receptor potential channel vanilloid type 6 (TRPV6) modulates a variety of biological functions including calcium-dependent cell growth and apoptosis. So far, the role of TRPV6 in controlling growth of pancreatic neuroendocrine tumour (NET) cells is unknown. In the present study, we characterize the expression of TRPV6 in pancreatic BON-1 and QGP-1 NET cells. Furthermore, we evaluate the impact of TRPV6 on intracellular calcium, the activity of nuclear factor of activated T-cells (NFAT) and proliferation of BON-1 cells. TRPV6 expression was assessed by real-time PCR and Western blot. TRPV6 mRNA expression and protein production were down-regulated by siRNA. Changes in intracellular calcium levels were detected by fluorescence calcium imaging (fura-2/AM). NFAT activity was studied by NFAT reporter assay; cell proliferation by bromodeoxyuridine (BrdU), MTT and propidium iodine staining. TRPV6 mRNA and protein are present in BON-1 and QGP-1 NET-cells. Down-regulation of TRPV6 attenuates BON-1 cell proliferation. TRPV6 down-regulation is associated with decreased Ca2+ response pattern and reduced NFAT activity. In conclusion, TRPV6 is expressed in pancreatic NETs and modulates cell proliferation via Ca2+-dependent mechanism, which is accompanied by NFAT activation.
Collapse
|
63
|
Shapovalov G, Ritaine A, Skryma R, Prevarskaya N. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 2016; 38:357-69. [PMID: 26842901 DOI: 10.1007/s00281-015-0525-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.
Collapse
Affiliation(s)
- George Shapovalov
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Abigael Ritaine
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
64
|
Villalobos C, Sobradillo D, Hernández-Morales M, Núñez L. Remodeling of Calcium Entry Pathways in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:449-66. [DOI: 10.1007/978-3-319-26974-0_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
66
|
TRPV6 channel modulates proliferation of insulin secreting INS-1E beta cell line. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3202-10. [PMID: 26384871 DOI: 10.1016/j.bbamcr.2015.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022]
Abstract
Transient receptor potential channel vanilloid type 6 (TRPV6) is a non-selective cation channel with high permeability for Ca²⁺ ions. So far, the role of TRPV6 in pancreatic beta cells is unknown. In the present study, we characterized the role of TRPV6 in controlling calcium signaling, cell proliferation as well as insulin expression, and secretion in experimental INS-1E beta cell model. TRPV6 protein production was downregulated using siRNA by approx. 70%, as detected by Western blot. Intracellular free Ca²⁺ ([Ca²⁺]i) was measured by fluorescence Ca²⁺ imaging using fura-2. Calcineurin/NFAT signaling was analyzed using a NFAT reporter assay as well as a calcineurin activity assay. TRPV6 downregulation resulted in impaired cellular calcium influx. Its downregulation also reduced cell proliferation and decreased insulin mRNA expression. These changes were companied by the inhibition of the calcineurin/NFAT signaling. In contrast, insulin exocytosis was not affected by TRPV6 downregulation. In conclusion, this study demonstrates for the first time the expression of TRPV6 in INS-1E cells and rat pancreatic beta cells and describes its role in modulating calcium signaling, beta cell proliferation and insulin mRNA expression. In contrast, TRPV6 fails to influence insulin secretion.
Collapse
|
67
|
Kumar A, Kumari S, Majhi RK, Swain N, Yadav M, Goswami C. Regulation of TRP channels by steroids: Implications in physiology and diseases. Gen Comp Endocrinol 2015; 220:23-32. [PMID: 25449179 DOI: 10.1016/j.ygcen.2014.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.
Collapse
Affiliation(s)
- Ashutosh Kumar
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Shikha Kumari
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Rakesh Kumar Majhi
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Nirlipta Swain
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Manoj Yadav
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Chandan Goswami
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India.
| |
Collapse
|
68
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
69
|
Höll M, Koziel R, Schäfer G, Pircher H, Pauck A, Hermann M, Klocker H, Jansen-Dürr P, Sampson N. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 2015; 55:27-39. [PMID: 25559363 PMCID: PMC4949723 DOI: 10.1002/mc.22255] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA‐mediated knockdown of Nox5 impaired proliferation of Nox5‐expressing (PC‐3, LNCaP) but not Nox5‐negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N‐acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC‐3 cells. Concomitantly, protein kinase C zeta (PKCζ) protein levels and c‐Jun N‐terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC‐3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5‐derived ROS and subsequent depletion of PKCζ and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Höll
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Pauck
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
70
|
Zhang H, Liu MR, Liu W. TRPV6 and Ki-67 expression in ulcerative colitis and colon carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:5732-5736. [DOI: 10.11569/wcjd.v22.i36.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the TRPV6 and Ki-67 expression in ulcerative colitis and colon cancer.
METHODS: The expression of TRPV6 and Ki-67 was examined by immunohistochemistry in 20 ulcerative colitis tissues, 20 colon cancer tissues and 20 normal colonic mucosal tissues.
RESULTS: TRPV6 expression gradually increased from normal colon tissue to ulcerative colitis tissue and colonic cancer. The positive rates of TRPV6 in ulcerative colitis and colon cancer were significantly higher than that in the normal colon tissue (P < 0.05). TRPV6 expression was located in the cytoplasm and/or cell membrane. The positive rates of Ki-67 in ulcerative colitis and colon cancer were significantly higher than that in the normal colon tissue (P < 0.05). Ki-67 expression was located in the nucleus. The expression of TRPV6 had a positive correlation with that of Ki-67 in ulcerative colitis and colonic cancer (r = 0.48, P < 0.05; r = 0.69, P < 0.05).
CONCLUSION: The expression of TRPV6 and Ki-67 differs among ulcerative colitis, colon cancer and normal colon. The expression of TRPV6 in ulcerative colitis and colon cancer is significantly higher than that normal colon tissue, suggesting that TRPV6 may be related to the pathogenesis and development of ulcerative colitis and colon cancer.
Collapse
|
71
|
Liu W, Liu MR, Zhang H. Expression of TRPV5 and TRPV6 in development of colonic adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:5422-5431. [DOI: 10.11569/wcjd.v22.i35.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transient receptor potential cation channel, subfamily V, member 5 (TRPV5) and TRPV6 in the development of colon adenocarcinoma and to discuss the role of TRPV5 and TRPV6 in the carcinogenesis of this malignancy.
METHODS: TRPV5, TRPV6 and Ki-67 expression was examined by immunohistochemical staining, RT-PCR, and Western blot in 20 colonic hyperplastic polyp, 20 colonic adenoma (40 for immunohistochemical staining), 20 colonic adenocarcinoma, and 20 normal colonic mucosal tissues obtained by endoscopic biopsy, surgical resection or endoscopic polypectomy. The relationship between the expression of TRPV6 and TRPV5 and the carcinogenesis of colon adenocarcinoma was then assessed.
RESULTS: TRPV5 and TRPV6 expression was detectable in the normal colon, colonic polyp and colonic cancer tissues, mainly localized in the cytoplasm. The expression of Ki-67 increased with the increase in TRPV5 and TRPV6 expression (P < 0.05). TRPV5 and TRPV6 proteins and mRNAs were weakly or not expressed in normal intestinal mucosa and non-adenoma polyps (P > 0.05), but were highly expressed in colon adenoma and colon adenocarcinoma (P < 0.05). TRPV5 and TRPV6 expression had a significant correlation with histological type (P < 0.05). In the colonic mucosa, TRPV5 expression was lower than TRPV6 expression (P < 0.05).
CONCLUSION: TRPV5 and TRPV6 show high expression in colon adenoma and adenocarcinoma, and Ki-67 expression is correlated with TRPV5 and TRPV6 expression. TRPV5 and TRPV6 might be related with the extent of tissue proliferation and the risk of malignant transformation of polyps. TRPV5 and TRPV6 may play an important role in the carcinogenesis and development of colonic adenocarcinoma.
Collapse
|
72
|
TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci U S A 2014; 111:E3870-9. [PMID: 25172921 DOI: 10.1073/pnas.1413409111] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transient receptor potential vanilloid subfamily member 6 (TRPV6) is a highly selective calcium channel that has been considered as a part of store-operated calcium entry (SOCE). Despite its first discovery in the early 2000s, the role of this channel in prostate cancer (PCa) remained, until now, obscure. Here we show that TRPV6 mediates calcium entry, which is highly increased in PCa due to the remodeling mechanism involving the translocation of the TRPV6 channel to the plasma membrane via the Orai1/TRPC1-mediated Ca(2+)/Annexin I/S100A11 pathway, partially contributing to SOCE. The TRPV6 calcium channel is expressed de novo by the PCa cell to increase its survival by enhancing proliferation and conferring apoptosis resistance. Xenografts in nude mice and bone metastasis models confirmed the remarkable aggressiveness of TRPV6-overexpressing tumors. Immunohistochemical analysis of these demonstrated the increased expression of clinical markers such as Ki-67, prostate specific antigen, synaptophysin, CD31, and CD56, which are strongly associated with a poor prognosis. Thus, the TRPV6 channel acquires its oncogenic potential in PCa due to the remodeling mechanism via the Orai1-mediated Ca(2+)/Annexin I/S100A11 pathway.
Collapse
|
73
|
Giusti L, Cetani F, Da Valle Y, Pardi E, Ciregia F, Donadio E, Gargini C, Piano I, Borsari S, Jaber A, Caputo A, Basolo F, Giannaccini G, Marcocci C, Lucacchini A. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation. J Cell Mol Med 2014; 18:1944-52. [PMID: 25164318 PMCID: PMC4244010 DOI: 10.1111/jcmm.12372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022] Open
Abstract
The parathyroid glands play an overall regulatory role in the systemic calcium (Ca2+) homeostasis. The purpose of the present study was to demonstrate the presence of the Ca2+ channels transient receptor potential vanilloid (TRPV) 5 and TRPV6 in human parathyroid glands. Semi-quantitative and quantitative PCR was carried out to evaluate the presence of TRPV5 and TRPV6 mRNAs in sporadic parathyroid adenomas and normal parathyroid glands. Western blot and immunocytochemical assays were used to assess protein expression, cellular localization and time expression in primary cultures from human parathyroid adenoma. TRPV5 and TRPV6 transcripts were then identified both in normal and pathological tissues. Predominant immunoreactive bands were detected at 75–80 kD for both vanilloid channels. These channels co-localized with the calcium-sensing receptor (CASR) on the membrane surface, but immunoreactivity was also detected in the cytosol and around the nuclei. Our data showed that western blotting recorded an increase of protein expression of both channels in adenoma samples compared with normal glands suggesting a potential relation with the cell calcium signalling pathway and the pathological processes of these glands.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Stoerger C, Flockerzi V. The transient receptor potential cation channel subfamily V member 6 (TRPV6): genetics, biochemical properties, and functions of exceptional calcium channel proteins. Biochem Cell Biol 2014; 92:441-8. [PMID: 25372600 DOI: 10.1139/bcb-2014-0063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 6 (TRPV6) gene and cDNA were identified 15 years ago and exceptional observations on TrpV6 proteins and their function as a Ca(2+)-selective cation channel have been made since then. In this review we will summarize recent studies regarding the genetics, biochemical properties, and physiological functions of murine and human TrpV6 channel proteins. We will focus on TRPV6 gene polymorphisms, the start of TRPV6 translation at a non-AUG codon and the functions of TRPV6 in intestinal Ca(2+) uptake, sperm maturation, and male fertility.
Collapse
Affiliation(s)
- Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | |
Collapse
|
75
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|
76
|
Liu W, Liu MR, Zhang H. Novel calcium ion channels TRPV5 and TRPV6 and gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:1966-1971. [DOI: 10.11569/wcjd.v22.i14.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential cation channel, subfamily V, member 5 (TRPV5) and TRPV6 are the subfamily members of the transient receptor potential (TRP), representing new highly selective Ca2+ membrane transport channels, which are mainly responsible for active transport of Ca2+ across the cell membrane and participate in regulation of many physiological activities in the body. This paper discusses the structures and electrophysiological properties of TRPV5 and TRPV6, their related factors and their relationship with gastrointestinal tumors, highlighting the role of TRPV5 and TRPV6 in the formation of gastrointestinal tumors.
Collapse
|
77
|
Kim SY, Hong C, Wie J, Kim E, Kim BJ, Ha K, Cho NH, Kim IG, Jeon JH, So I. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells. Biochem Biophys Res Commun 2014; 447:192-6. [PMID: 24704446 DOI: 10.1016/j.bbrc.2014.03.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023]
Abstract
Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB-TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6-NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB-TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.
Collapse
Affiliation(s)
- Sung-Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jinhong Wie
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Euiyong Kim
- Department of Physiology, College of Medicine, Inje University, Busan 614-735, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - In-Gyu Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
78
|
Hoth M, Niemeyer BA. The neglected CRAC proteins: Orai2, Orai3, and STIM2. CURRENT TOPICS IN MEMBRANES 2014; 71:237-71. [PMID: 23890118 DOI: 10.1016/b978-0-12-407870-3.00010-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma-membrane-localized Orai1 ion channel subunits interacting with ER-localized STIM1 molecules comprise the major subunit composition responsible for calcium release-activated calcium channels. STIM1 "translates" the Ca(2+) store content into Orai1 activity, making it a store-operated channel. Surprisingly, in addition to being the physical activator, STIM1 also modulates Orai1 properties, including its inactivation and permeation (see Chapter 1). STIM1 is thus more than a pure Orai1 activator. Within the past 7 years following the discovery of STIM and Orai proteins, the molecular mechanisms of STIM1/Orai1 activity and their functional importance have been studied in great detail. Much less is currently known about the other isoforms STIM2, Orai2, and Orai3. In this chapter, we summarize the current knowledge about STIM2, Orai2, and Orai3 properties and function. Are these homologues mainly modulators of predominantly STIM1/Orai1-mediated complexes or do store-dependent or -independent functions such as regulation of basal Ca(2+) concentration and activation of Orai3-containing complexes by arachidonic acid or by estrogen receptors point toward their "true" physiological function? Is Orai2 the Orai1 of neurons? A major focus of the review is on the functional relevance of STIM2, Orai2, and Orai3, some of which still remains speculative.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Saarland University, Homburg, Germany
| | | |
Collapse
|
79
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
80
|
Abstract
Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins-referred to as toxins-that have evolved to specifically modulate and interfere with the function of diverse molecular targets within the envenomated animal. Many of the identified toxin targets are membrane receptors and ion channels. Due to their high specificity, toxins have emerged as an invaluable tool set for the molecular characterization of ion channels, and a selected group of toxins even have been developed into therapeutics. More recently, TRP ion channels have been included as targets for venomous toxins. In particular, a number of apparently unrelated peptide toxins target the capsaicin receptor TRPV1 to produce inflammatory pain. These toxins have turned out to be invaluable for structural and functional characterizations of the capsaicin receptor. If toxins will serve similar roles for other TRP ion channels, only future will tell.
Collapse
Affiliation(s)
- Jan Siemens
- Department of Pharmacology, University Clinic Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | |
Collapse
|
81
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
82
|
Fecher-Trost C, Wissenbach U, Beck A, Schalkowsky P, Stoerger C, Doerr J, Dembek A, Simon-Thomas M, Weber A, Wollenberg P, Ruppert T, Middendorff R, Maurer HH, Flockerzi V. The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. J Biol Chem 2013; 288:16629-16644. [PMID: 23612980 DOI: 10.1074/jbc.m113.469726] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV6 channels function as epithelial Ca(2+) entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca(2+) entry to prevent deleterious Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Pascal Schalkowsky
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Janka Doerr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Anna Dembek
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Martin Simon-Thomas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Armin Weber
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Peter Wollenberg
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ralf Middendorff
- Institut für Anatomie und Zellbiologie, Justus Liebig Universität Gieβen, Aulweg 123, 35385 Giessen, Germany
| | - Hans H Maurer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
83
|
Hofer A, Kovacs G, Zappatini A, Leuenberger M, Hediger MA, Lochner M. Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg Med Chem 2013; 21:3202-13. [PMID: 23602525 DOI: 10.1016/j.bmc.2013.03.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
2-Aminoethyl diphenylborinate (2-APB) is a known modulator of the IP3 receptor, the calcium ATPase SERCA, the calcium release-activated calcium channel Orai and TRP channels. More recently, it was shown that 2-APB is an efficient inhibitor of the epithelial calcium channel TRPV6 which is overexpressed in prostate cancer. We have conducted a structure-activity relationship study of 2-APB congeners to understand their inhibitory mode of action on TRPV6. Whereas modifying the aminoethyl moiety did not significantly change TRPV6 inhibition, substitution of the phenyl rings of 2-APB did. Our data show that the diaryl borinate moiety is required for biological activity and that the substitution pattern of the aryl rings can influence TRPV6 versus SOCE inhibition. We have also discovered that 2-APB is hydrolyzed and transesterified within minutes in solution.
Collapse
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
84
|
In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One 2013; 8:e58866. [PMID: 23554944 PMCID: PMC3598914 DOI: 10.1371/journal.pone.0058866] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/07/2013] [Indexed: 01/04/2023] Open
Abstract
Soricidin is a 54-amino acid peptide found in the paralytic venom of the northern short-tailed shrew (Blarina brevicauda) and has been found to inhibit the transient receptor potential of vallinoid type 6 (TRPV6) calcium channels. We report that two shorter peptides, SOR-C13 and SOR-C27, derived from the C-terminus of soricidin, are high-affinity antagonists of human TRPV6 channels that are up-regulated in a number of cancers. Herein, we report molecular imaging methods that demonstrate the in vivo diagnostic potential of SOR-C13 and SOR-C27 to target tumor sites in mice bearing ovarian or prostate tumors. Our results suggest that these novel peptides may provide an avenue to deliver diagnostic and therapeutic reagents directly to TRPV6-rich tumors and, as such, have potential applications for a range of carcinomas including ovarian, breast, thyroid, prostate and colon, as well as certain leukemia's and lymphomas.
Collapse
|
85
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
86
|
Kim SY, Yang D, Myeong J, Ha K, Kim SH, Park EJ, Kim IG, Cho NH, Lee KP, Jeon JH, So I. Regulation of calcium influx and signaling pathway in cancer cells via TRPV6-Numb1 interaction. Cell Calcium 2013; 53:102-11. [PMID: 23140583 DOI: 10.1016/j.ceca.2012.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022]
Abstract
Ca(2+) is a critical factor in the regulation of signal transduction and Ca(2+) homeostasis is altered in different human diseases. The level of Ca(2+) in cells is highly regulated through a diverse class of regulators. Among them is the transient receptor potential vanilloid 6 (TRPV6), which is a Ca(2+) selective channel that absorbs Ca(2+) in the small intestine. TRPV6 is overexpressed in some cancers and exhibits oncogenic potential, but its exact mechanism is still poorly understood. The Numb protein is a cell fate determinant that functions in endocytosis and as a tumor suppressor via the stabilization of p53. Numb protein consisted of four isoforms. Here, we showed a novel function of Numb1, which negatively regulates TRPV6 activity. The expression of Numb1 decreased cytosolic Ca(2+) concentrations in TRPV6-transfected HEK293 cells. When all the isoforms of Numb were depleted using siRNA in a TRPV6 stable cell line, the levels of cytosolic Ca(2+) increased. We observed an interaction between Numb1 and TRPV6 using co-immunoprecipitation. We confirmed this interaction using Fluorescence Resolution Energy Transfer (FRET). We identified the TRPV6 and Numb1 binding site using TRPV6 C-terminal truncation mutants and Numb1 deletion mutants. The binding site in TRPV6 was an aspartic acid at amino acid residue 716, and that binding site in Numb1 was arginine at amino acid residue 434. A Numb1 mutant, lacking TRPV6 binding activity, failed to inhibit TRPV6 activity. Every isoform of Numb knockdown, using an siRNA-based approach in MCF-7 breast cancer cells, not only showed enhanced TRPV6 expression but also both the cytosolic Ca(2+) concentration and cell proliferation were increased. The down-regulated expression of TRPV6 using siRNA increased Numb protein expression; however, the cytosolic influx of Ca(2+) and proliferation of the cell were decreased. To examine downstream signaling during Ca(2+) influx, we performed Western blotting analysis on TRPV6 upregulated cancer cells (MCF-7, PC-3). Taken together, these results demonstrated that Numb1 interacts with TRPV6 through charged residues and inhibits its activity via the regulation of protein expression. Moreover, we provided evidence for a Ca(2+)-regulated cancer cell signaling pathway and that the Ca(2+) channel is a target of cancer cells.
Collapse
Affiliation(s)
- Sung-Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl 2013; 6:596-607. [PMID: 23789027 PMCID: PMC3684741 DOI: 10.1111/eva.12045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/13/2012] [Indexed: 01/09/2023] Open
Abstract
Investigations of the legacy of natural selection in the human genome have proved particularly informative, pinpointing functionally important regions that have participated in our genetic adaptation to the environment. Furthermore, genetic dissection of the intensity and type of selection acting on human genes can be used to predict involvement in different forms and severities of human diseases. We review here the progress made in population genetics studies toward understanding the effects of selection, in its different forms and intensities, on human genome diversity. We discuss some outstanding, robust examples of genes and biological functions subject to strong dietary, climatic and pathogen selection pressures. We also explore the possible relationship between cancer and natural selection, a topic that has been largely neglected because cancer is generally seen as a late-onset disease. Finally, we discuss how the present-day incidence of some diseases of modern societies may represent a by-product of past adaptation to other selective forces and changes in lifestyle. This perspective thus illustrates the value of adopting a population genetics approach in delineating the biological mechanisms that have played a major evolutionary role in the way humans have genetically adapted to different environments and lifestyles over time.
Collapse
Affiliation(s)
- Estelle Vasseur
- Institut Pasteur, Unit of Human Evolutionary Genetics 75015, Paris, France ; Centre National de la Recherche Scientifique, URA 3012 75015, Paris, France ; Centre National de la Recherche Scientifique, UMR 5174, Evolution et Diversité Biologique 31062, Toulouse, France ; Université de Toulouse 31062, Toulouse, France
| | | |
Collapse
|
88
|
Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1603-11. [PMID: 23220009 DOI: 10.1016/j.bbamcr.2012.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Abstract
Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
89
|
Expression of Transient Receptor Potential Vanilloid Channels TRPV5 and TRPV6 in Human Blood Lymphocytes and Jurkat Leukemia T Cells. J Membr Biol 2012; 246:131-40. [DOI: 10.1007/s00232-012-9511-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
|
90
|
Peters AA, Simpson PT, Bassett JJ, Lee JM, Da Silva L, Reid LE, Song S, Parat MO, Lakhani SR, Kenny PA, Roberts-Thomson SJ, Monteith GR. Calcium Channel TRPV6 as a Potential Therapeutic Target in Estrogen Receptor–Negative Breast Cancer. Mol Cancer Ther 2012; 11:2158-68. [DOI: 10.1158/1535-7163.mct-11-0965] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR. Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One 2012; 7:e36923. [PMID: 22666335 PMCID: PMC3364242 DOI: 10.1371/journal.pone.0036923] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/17/2012] [Indexed: 12/30/2022] Open
Abstract
In addition to their well-defined roles in replenishing depleted endoplasmic reticulum (ER) Ca2+ reserves, molecular components of the store-operated Ca2+ entry pathway regulate breast cancer metastasis. A process implicated in cancer metastasis that describes the conversion to a more invasive phenotype is epithelial-mesenchymal transition (EMT). In this study we show that EGF-induced EMT in MDA-MB-468 breast cancer cells is associated with a reduction in agonist-stimulated and store-operated Ca2+ influx, and that MDA-MB-468 cells prior to EMT induction have a high level of non-stimulated Ca2+ influx. The potential roles for specific Ca2+ channels in these pathways were assessed by siRNA-mediated silencing of ORAI1 and transient receptor potential canonical type 1 (TRPC1) channels in MDA-MB-468 breast cancer cells. Non-stimulated, agonist-stimulated and store-operated Ca2+ influx were significantly inhibited with ORAI1 silencing. TRPC1 knockdown attenuated non-stimulated Ca2+ influx in a manner dependent on Ca2+ influx via ORAI1. TRPC1 silencing was also associated with reduced ERK1/2 phosphorylation and changes in the rate of Ca2+ release from the ER associated with the inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (time to peak [Ca2+]CYT = 188.7±34.6 s (TRPC1 siRNA) versus 124.0±9.5 s (non-targeting siRNA); P<0.05). These studies indicate that EMT in MDA-MB-468 breast cancer cells is associated with a pronounced remodeling of Ca2+ influx, which may be due to altered ORAI1 and/or TRPC1 channel function. Our findings also suggest that TRPC1 channels in MDA-MB-468 cells contribute to ORAI1-mediated Ca2+ influx in non-stimulated cells.
Collapse
Affiliation(s)
- Felicity M. Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia A. Peters
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Desma M. Grice
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
92
|
Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Mannebach S, Wissenbach U, Vennekens R, Middendorff R, Flockerzi V, Freichel M. Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J Biol Chem 2012; 287:17930-41. [PMID: 22427671 DOI: 10.1074/jbc.m111.328286] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Replacement of aspartate residue 541 by alanine (D541A) in the pore of TRPV6 channels in mice disrupts Ca(2+) absorption by the epididymal epithelium, resulting in abnormally high Ca(2+) concentrations in epididymal luminal fluid and in a dramatic but incomplete loss of sperm motility and fertilization capacity, raising the possibility of residual activity of channels formed by TRPV6(D541A) proteins (Weissgerber, P., Kriebs, U., Tsvilovskyy, V., Olausson, J., Kretz, O., Stoerger, C., Vennekens, R., Wissenbach, U., Middendorff, R., Flockerzi, V., and Freichel, M. (2011) Sci. Signal. 4, ra27). It is known from other cation channels that introducing pore mutations even if they largely affect their conductivity and permeability can evoke considerably different phenotypes compared with the deletion of the corresponding protein. Therefore, we generated TRPV6-deficient mice (Trpv6(-/-)) by deleting exons encoding transmembrane domains with the pore-forming region and the complete cytosolic C terminus harboring binding sites for TRPV6-associated proteins that regulate its activity and plasma membrane anchoring. Using this strategy, we aimed to determine whether the TRPV6(D541A) pore mutant still contributes to residual channel activity and/or channel-independent functions in vivo. Trpv6(-/-) males reveal severe defects in fertility and motility and viability of sperm and a significant increase in epididymal luminal Ca(2+) concentration that is mirrored by a lack of Ca(2+) uptake by the epididymal epithelium. Therewith, Trpv6 excision affects epididymal Ca(2+) handling and male fertility to the same extent as the introduction of the D541A pore mutation, arguing against residual functions of the TRPV6(D541A) pore mutant in epididymal epithelial cells.
Collapse
Affiliation(s)
- Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universitaet des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lehen'kyi V, Raphaël M, Prevarskaya N. The role of the TRPV6 channel in cancer. J Physiol 2012; 590:1369-76. [PMID: 22331416 DOI: 10.1113/jphysiol.2011.225862] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract The TRPV6 channel belongs to the superfamily of transient receptor potential (TRP) channels, subfamily vanilloid, member 6. Its expression in health is mainly confined to epithelial tissue of different organs such as digestive tract, kidney, testis, ovaries and skin. Due to its high calcium selectivity over other TRP channels, this channel was shown to participate in close regulation of calcium homeostasis in the body. In cancer a number of pieces of evidence demonstrate its upregulation and correlation with the advanced stages in prostate, colon, breast, thyroid, and ovarian carcinomas. Little is known about its role in initiation or progression for most of cancers, though in prostate cancer its oncogenic potential in vitro has been suggested. The most probable mechanisms involve calcium signalling in the control of processes such as proliferation and apoptosis resistance, though in some cases first evidence was reported as to its likely protective role in some cancers such as colon cancer. Further studies are needed to confirm whether this channel does really have an oncogenic potential or is just the last hope for transformed cells/tissues to stop cancer.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
94
|
Santoni G, Caprodossi S, Farfariello V, Liberati S, Gismondi A, Amantini C. Antioncogenic effects of transient receptor potential vanilloid 1 in the progression of transitional urothelial cancer of human bladder. ISRN UROLOGY 2012; 2012:458238. [PMID: 22523714 PMCID: PMC3302024 DOI: 10.5402/2012/458238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/24/2011] [Indexed: 11/23/2022]
Abstract
The progression of normal cells to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signaling proteins, encoded by oncogenes and tumor suppressor genes. Recently, members of the TRP channel family have been included in the oncogenic and tumor suppressor protein family. TRPM1, TRPM8, and TRPV6 are considered to be tumor suppressors and oncogenes in localized melanoma and prostate cancer, respectively. Herein, we focus our attention on the antioncogenic properties of TRPV1. Changes in TRPV1 expression occur during the development of transitional cell carcinoma (TCC) of human bladder. A progressive decrease in TRPV1 expression as the TCC stage increases triggers the development of a more aggressive gene phenotype and invasiveness. Finally, downregulation of TRPV1 represents a negative prognostic factor in TCC patients. The knowledge of the mechanism controlling TRPV1 expression might improve the diagnosis and new therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Madonna delle Carceri Street 9, 62032 Camerino, Italy
| | | | | | | | | | | |
Collapse
|
95
|
Wu Y, Miyamoto T, Li K, Nakagomi H, Sawada N, Kira S, Kobayashi H, Zakohji H, Tsuchida T, Fukazawa M, Araki I, Takeda M. Decreased expression of the epithelial Ca2+ channel TRPV5 and TRPV6 in human renal cell carcinoma associated with vitamin D receptor. J Urol 2011; 186:2419-25. [PMID: 22019165 DOI: 10.1016/j.juro.2011.07.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Indexed: 01/02/2023]
Abstract
PURPOSE We investigated the expression of epithelial Ca(2+) channel TRPV (transient receptor potential vanilloid subfamily) 5 and 6, and vitamin D receptor in primary human renal cell carcinoma and benign peritumor tissues, and assessed the possible association between TRPV5/6 and vitamin D receptor expression. MATERIALS AND METHODS Fresh-frozen primary tumor and peritumor tissues from 27 patients diagnosed with renal cell carcinoma were analyzed for TRPV5/6 and vitamin D receptor expression by quantitative reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. RESULTS Quantitative reverse transcriptase-polymerase chain reaction revealed that TRPV5/6 and vitamin D receptor expression was decreased 38.11, 4.44 and 3.20 times in renal cell carcinoma vs normal kidney tissue (p = 0.012, 0.002 and 0.020, respectively). Relatively higher expression was noted for chromophobe renal cell carcinoma than for the other renal cell carcinoma subtypes. Vitamin D receptor mRNA expression significantly correlated with that of TRPV6 (r = 0.508, p = 0.007) and TRPV5 (r = 0.697, p = 0.032) in renal cell carcinoma. Western blot showed results similar to those of reverse transcriptase-polymerase chain reaction. Different expression was detected between kidney and renal cell carcinoma tissue. Immunohistochemical analysis verified strong detection of TRPV5/6 and vitamin D receptor in distal nephrons but demonstrated weak or no immunostaining much more often in renal cell carcinoma. CONCLUSIONS Decreased TRPV5/V6 expression was noted in renal cell carcinoma, which correlated with vitamin D receptor. Different expression was also detected among the different renal cell carcinoma histopathological subtypes. Our observations suggest that altered vitamin D receptor expression may be associated with renal cell carcinoma carcinogenesis via TRPV5/6.
Collapse
Affiliation(s)
- Yongyang Wu
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Shapovalov G, Lehen’kyi V, Skryma R, Prevarskaya N. TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium 2011; 50:295-302. [DOI: 10.1016/j.ceca.2011.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 12/29/2022]
|
97
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
98
|
Gkika D, Prevarskaya N. TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl 2011; 13:673-6. [PMID: 21623387 DOI: 10.1038/aja.2011.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During the last decade, transient receptor potential (TRP) channels emerge as key proteins in central mechanisms of the carcinogenesis such as cell proliferation, apoptosis and migration. Initial studies showed that expression profile of some TRP channels, notably TRP melastatin 8 (TRPM8), TRP vanilloid 6 (TRPV6),TRP canonical (TRPC6) and TRPV2, is changing during the development and the progression of prostate cancer towards the hormone-refractory stages. The link between the change in expression levels and the functional role of these channels in prostate cancer is step by step being elucidated. These recent advances are here described and discussed.
Collapse
Affiliation(s)
- Dimitra Gkika
- Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France.
| | | |
Collapse
|
99
|
Lee JM, Davis FM, Roberts-Thomson SJ, Monteith GR. Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. Am J Physiol Cell Physiol 2011; 301:C969-76. [PMID: 21593447 DOI: 10.1152/ajpcell.00136.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Ca(2+) signal has major roles in cellular processes important in tumorigenesis, including migration, invasion, proliferation, and apoptotic sensitivity. New evidence has revealed that, aside from altered expression and effects on global cytosolic free Ca(2+) levels via direct transport of Ca(2+), some Ca(2+) pumps and channels are able to contribute to tumorigenesis via mechanisms that are independent of their ability to transport Ca(2+) or effect global Ca(2+) homeostasis in the cytoplasm. Here, we review some of the most recent studies that present evidence of altered Ca(2+) channel or pump expression in tumorigenesis and discuss the importance and complexity of localized Ca(2+) signaling in events critical for tumor formation.
Collapse
Affiliation(s)
- Jane M Lee
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
100
|
Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Vennekens R, Wissenbach U, Middendorff R, Flockerzi V, Freichel M. Male Fertility Depends on Ca2+ Absorption by TRPV6 in Epididymal Epithelia. Sci Signal 2011; 4:ra27. [DOI: 10.1126/scisignal.2001791] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|