51
|
Na+/H+ Exchangers as Therapeutic Targets for Cerebral Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
52
|
Kojima A, Toshima JY, Kanno C, Kawata C, Toshima J. Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:534-43. [PMID: 22210050 DOI: 10.1016/j.bbamcr.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/25/2022]
Abstract
Acidification of the lumen of intracellular organelles is important for post-transcriptional processing, endosomal maturation, receptor recycling, and vesicle trafficking, being regulated by an intricate balance between H+ influx through vacuolar-type H+-ATPase and efflux through ion channels and transporters, such as the Na+/H+ exchanger (NHE). The eukaryotic NHE family comprises two major subgroups, one residing in the plasma membrane and the other in intracellular organelles. While mammalian intracellular NHE isoforms are localized to various organelles, including the mid-trans-Golgi compartments, early and late endosomes, and recycling endosomes, Nhx1p, the sole NHE in yeast, has been reported to be localized predominantly to the late endosomal/prevacuolar compartment. Here, using live cell imaging, we demonstrated that Nhx1p is localized to the trans-Golgi network compartments, late endosomes, and recycling endosomes, similar to mammalian intracellular NHE isoforms. Loss of Nhx1p led to accumulation of components of the retromer and endosomal sorting complex required for transport complexes, but not trans-Golgi compartments, in aberrant prevacuolar compartments. Importantly, Nhx1p was also required for recycling of the plasma membrane vesicle SNAP receptor Snc1p. These observations suggest that Nhx1p plays an important role in regulation of the luminal pH of various intracellular organelles, and that this regulation is critical for the protein recycling pathway as well as the endocytic pathway.
Collapse
Affiliation(s)
- Ai Kojima
- Department of Biological Science and Technology, Tokyo University of Science, 2641Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
53
|
Mitsui K, Koshimura Y, Yoshikawa Y, Matsushita M, Kanazawa H. The endosomal Na(+)/H(+) exchanger contributes to multivesicular body formation by regulating the recruitment of ESCRT-0 Vps27p to the endosomal membrane. J Biol Chem 2011; 286:37625-38. [PMID: 21896492 DOI: 10.1074/jbc.m111.260612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Multivesicular bodies (MVBs) are late endosomal compartments containing luminal vesicles (MVB vesicles) that are formed by inward budding of the endosomal membrane. In budding yeast, MVBs are an important cellular mechanism for the transport of membrane proteins to the vacuolar lumen. This process requires a class E subset of vacuolar protein sorting (VPS) genes. VPS44 (allelic to NHX1) encodes an endosome-localized Na(+)/H(+) exchanger. The function of the VPS44 exchanger in the context of vacuolar protein transport is largely unknown. Using a cell-free MVB formation assay system, we demonstrated that Nhx1p is required for the efficient formation of MVB vesicles in the late endosome. The recruitment of Vps27p, a class E Vps protein, to the endosomal membrane was dependent on Nhx1p activity and was enhanced by an acidic pH at the endosomal surface. Taken together, we propose that Nhx1p contributes to MVB formation by the recruitment of Vps27p to the endosomal membrane, possibly through Nhx1p antiporter activity.
Collapse
Affiliation(s)
- Keiji Mitsui
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka City, Osaka, Japan
| | | | | | | | | |
Collapse
|
54
|
Xinhan L, Matsushita M, Numaza M, Taguchi A, Mitsui K, Kanazawa H. Na+/H+ exchanger isoform 6 (NHE6/SLC9A6) is involved in clathrin-dependent endocytosis of transferrin. Am J Physiol Cell Physiol 2011; 301:C1431-44. [PMID: 21881004 DOI: 10.1152/ajpcell.00154.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
In mammalian cells, nine conserved isoforms of the Na(+)/H(+) exchanger (NHE) are known to be important for pH regulation of the cytoplasm and organellar lumens. NHE1-5 are localized to the plasma membrane, whereas NHE6-9 are localized to distinct organelles. NHE6 is localized predominantly in endosomal compartments but is also found in the plasma membrane. To investigate the role of NHE6 in endocytosis, we established NHE6-knockdown HeLa cells and analyzed the effect of this knockdown on endocytotic events. The expression level of NHE6 in knockdown cells was decreased to ∼15% of the level seen in control cells. Uptake of transferrin was also decreased. No effect was found on the endocytosis of epidermal growth factor or on the cholera toxin B subunit. Moreover, in the NHE6-knockdown cells, transferrin uptake was found to be affected in the early stages of endocytosis. Microscopic analysis revealed that, at 2 min after the onset of endocytosis, colocalization of NHE6, clathrin, and transferrin was observed, which suggests that NHE6 was localized to endocytotic, clathrin-coated vesicles. In addition, in knockdown cells, transferrin-positive endosomes were acidified, but no effect was found on cytoplasmic pH. In cells overexpressing wild-type NHE6, increased transferrin uptake was observed, but no such increase was seen in cells overexpressing mutant NHE6 deficient in ion transport. The luminal pH in transferrin-positive endosomes was alkalized in cells overexpressing wild-type NHE6 but normal in cells overexpressing mutant NHE6. These observations suggest that NHE6 regulates clathrin-dependent endocytosis of transferrin via pH regulation.
Collapse
Affiliation(s)
- Lou Xinhan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka City, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport. Nat Neurosci 2011; 14:1285-92. [PMID: 21874016 PMCID: PMC3183113 DOI: 10.1038/nn.2898] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2011] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
The amount of neurotransmitter stored in a single synaptic vesicle can determine the size of the postsynaptic response, but the factors that regulate vesicle filling remain poorly understood. A proton electrochemical gradient (ΔμH+) generated by the vacuolar H+-ATPase drives the accumulation of classical transmitters into synaptic vesicles. The chemical component of ΔμH+ (ΔpH) has received particular attention for its role in the vesicular transport of cationic transmitters as well as protein sorting and degradation. Thus, considerable work has addressed the factors that promote ΔpH. However, synaptic vesicle uptake of the principal excitatory transmitter glutamate depends on the electrical component of ΔμH+ (Δψ). We now find that rat brain synaptic vesicles express monovalent cation/H+ exchange activity that converts ΔpH into Δψ, and this promotes synaptic vesicle filling with glutamate. Manipulating presynaptic K+ at a glutamatergic synapse influences quantal size, demonstrating that synaptic vesicle K+/H+ exchange regulates glutamate release and synaptic transmission.
Collapse
|
56
|
Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. THE PLANT CELL 2011; 23:224-39. [PMID: 21278129 PMCID: PMC3051250 DOI: 10.1105/tpc.110.079426] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/10/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 05/18/2023]
Abstract
Intracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Masa-aki Ohto
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Tomoya Esumi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Zhu Zhu
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Olivier Cagnac
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Mark Belmonte
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Zvi Peleg
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
57
|
Ohgaki R, van IJzendoorn SCD, Matsushita M, Hoekstra D, Kanazawa H. Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 2010; 50:443-50. [PMID: 21171650 DOI: 10.1021/bi101082e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Mammalian Na+/H+ exchangers (NHEs) play a fundamental role in cellular ion homeostasis. NHEs exhibit an appreciable variation in expression, regulation, and physiological function, dictated by their dynamics in subcellular localization and/or interaction with regulatory proteins. In recent years, a subgroup of NHEs consisting of four isoforms has been identified, and its members predominantly localize to the membranes of the Golgi apparatus and endosomes. These organellar NHEs constitute a family of transporters with an emerging function in the regulation of luminal pH and in intracellular membrane trafficking as expressed, for example, in cell polarity development. Moreover, specific roles of a variety of cofactors, regulating the intracellular dynamics of these transporters, are also becoming apparent, thereby providing further insight into their mechanism of action and overall functioning. Interestingly, organellar NHEs have been related to mental disorders, implying a potential role in the brain, thus expanding the physiological significance of these transporters.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, Japan
| | | | | | | | | |
Collapse
|
58
|
Saccharomyces cerevisiae glucose signalling regulator Mth1p regulates the organellar Na+/H+ exchanger Nhx1p. Biochem J 2010; 432:343-52. [PMID: 20858221 DOI: 10.1042/bj20100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.
Collapse
|
59
|
Blaesse AK, Broehan G, Meyer H, Merzendorfer H, Weihrauch D. Ammonia uptake in Manduca sexta midgut is mediated by an amiloride sensitive cation/proton exchanger: Transport studies and mRNA expression analysis of NHE7, 9, NHE8, and V-ATPase (subunit D). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:364-76. [DOI: 10.1016/j.cbpa.2010.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
|
60
|
Sun W, Yang XK, Wang DS. Role of Na +/H + exchanger 1 in tumor invasion and metastasis. Shijie Huaren Xiaohua Zazhi 2010; 18:3443-3447. [DOI: 10.11569/wcjd.v18.i32.3443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian Na+/H+ exchanger 1 (NHE1) is a membrane protein that regulates intracellular pH homeostasis by extruding one intracellular proton in exchange for one extracellular sodium. It has been demonstrated that NHE1 expression and activity are increased in tumor cells and contribute to the acidification of extracellular microenvironment. NHE1 and extracellular microenvironment play an important role in tumor invasion. In addition, NHE1 activation is involved in the formation of pseudopodia and invadopodia in tumor cells and therefore increases tumor invasion. Therefore, NHE1 may be a potential target for tumor therapy.
Collapse
|
61
|
Fukura N, Ohgaki R, Matsushita M, Nakamura N, Mitsui K, Kanazawa H. A membrane-proximal region in the C-terminal tail of NHE7 is required for its distribution in the trans-Golgi network, distinct from NHE6 localization at endosomes. J Membr Biol 2010; 234:149-58. [PMID: 20364249 DOI: 10.1007/s00232-010-9242-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2009] [Accepted: 03/04/2010] [Indexed: 12/12/2022]
Abstract
Mammalian Na(+)/H(+) exchanger (NHE) isoform NHE6 is localized in sorting/recycling endosomes, whereas NHE7 is localized in the trans-Golgi network (TGN) and mid-trans-Golgi stacks. The mechanism targeting each NHE to a specific organelle is largely unknown, although the targeting is thought to be important for pH control in the lumen of various organelles. NHE6 and NHE7 exhibit distinct localization despite conserved amino acid sequences. To specify the intramolecular region involved in the specific localization, we examined the intracellular localization of chimeric NHE6 and NHE7 constructs. NHEs are composed of an N-terminal transmembrane domain (TM) and a C-terminal hydrophilic tail domain (Ct). Exchange of the Ct between the isoforms suggested that the Ct is required for the specific localization. We further split the Ct into three regions, and chimeras with various combinations of these small regions indicated that the most membrane-proximal region among the three contributes to the specific localization. Mutant forms of NHE7 with sequential alanine substitutions in the most membrane-proximal region, between residues 530 and 589, showed that two regions (residues 553-559 and 563-568) are required for NHE7-like localization. However, NHE6 with alanine substitutions in the membrane-proximal region exhibited no apparent change in localization. These results suggest that two membrane proximal regions (residues 533-559 and 563-568) play an important role in targeting NHE7 to the TGN.
Collapse
Affiliation(s)
- Naomi Fukura
- Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka City, Osaka, 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Hypoxic regulation of ion channels and transporters in pulmonary vascular smooth muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:221-35. [PMID: 20204733 DOI: 10.1007/978-1-60761-500-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Exposure to prolonged alveolar hypoxia, as occurs with many chronic lung diseases or residence at high altitude, results in the development of pulmonary hypertension, significantly worsening patient prognosis. While the structural and functional changes that occur in the pulmonary vasculature in response to chronic hypoxia have been well characterized, less is known regarding the cellular mechanisms underlying this process. The use of animals models of hypoxic pulmonary hypertension have provided important insights into the changes that occur in the pulmonary vascular smooth muscle cells and some of the mediators involved. In this chapter, the effect of chronic hypoxia on various pulmonary arterial smooth muscle cell ion channels and transporters, and the role of the transcription factor, hypoxia-inducible factor 1, in regulating these changes, will be discussed.
Collapse
|
63
|
Abstract
Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Collapse
Affiliation(s)
- Joseph R Casey
- Departments of Physiology and Biochemistry, University of Alberta, Canada
| | | | | |
Collapse
|
64
|
Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 2009; 14:771-94. [PMID: 20015196 PMCID: PMC3823111 DOI: 10.1111/j.1582-4934.2009.00994.x] [Citation(s) in RCA: 475] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Maintenance of cellular pH homeostasis is fundamental to life. A number of key intracellular pH (pHi) regulating systems including the Na+/H+ exchangers, the proton pump, the monocarboxylate transporters, the HCO3− transporters and exchangers and the membrane-associated and cytosolic carbonic anhydrases cooperate in maintaining a pHi that is permissive for cell survival. A common feature of tumours is acidosis caused by hypoxia (low oxygen tension). In addition to oncogene activation and transformation, hypoxia is responsible for inducing acidosis through a shift in cellular metabolism that generates a high acid load in the tumour microenvironment. However, hypoxia and oncogene activation also allow cells to adapt to the potentially toxic effects of an excess in acidosis. Hypoxia does so by inducing the activity of a transcription factor the hypoxia-inducible factor (HIF), and particularly HIF-1, that in turn enhances the expression of a number of pHi-regulating systems that cope with acidosis. In this review, we will focus on the characterization and function of some of the hypoxia-inducible pH-regulating systems and their induction by hypoxic stress. It is essential to understand the fundamentals of pH regulation to meet the challenge consisting in targeting tumour metabolism and acidosis as an anti-tumour approach. We will summarize strategies that take advantage of intracellular and extracellular pH regulation to target the primary tumour and metastatic growth, and to turn around resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Johanna Chiche
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR, Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|
65
|
Donowitz M, Mohan S, Zhu CX, Chen TE, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R, Li X. NHE3 regulatory complexes. ACTA ACUST UNITED AC 2009; 212:1638-46. [PMID: 19448074 DOI: 10.1242/jeb.028605] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
The epithelial brush border Na/H exchanger NHE3 is active under basal conditions and functions as part of neutral NaCl absorption in the intestine and renal proximal tubule, where it accounts for the majority of total Na absorbed. NHE3 is highly regulated. Both stimulation and inhibition occur post-prandially. This digestion related regulation of NHE3 is mimicked by multiple extracellular agonists and intracellular second messengers. The regulation of NHE3 depends on its C-terminal cytoplasmic domain, which acts as a scaffold to bind multiple regulatory proteins and links NHE3 to the cytoskeleton. The cytoskeletal association occurs by both direct binding to ezrin and by indirect binding via ezrin binding to the C-terminus of the multi-PDZ domain containing proteins NHERF1 and NHERF2. This is a review of the domain structure of NHE3 and of the scaffolding function and role in the regulation of NHE3 of the NHE3 C-terminal domain.
Collapse
Affiliation(s)
- Mark Donowitz
- Johns Hopkins University School of Medicine, 720 Rutland Avenue Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Hernández A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM. Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem 2009; 284:14276-85. [PMID: 19307188 PMCID: PMC2682876 DOI: 10.1074/jbc.m806203200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2008] [Revised: 03/19/2009] [Indexed: 01/13/2023] Open
Abstract
Mutants of the plant cation/H(+) antiporter AtNHX1 that confer greater halotolerance were generated by random mutagenesis and selected in yeast by phenotypic complementation. The amino acid substitutions that were selected were conservative and occurred in the second half of the membrane-associated N terminus. AtNHX1 complemented the lack of endogenous ScNHX1 in endosomal protein trafficking assays. Growth enhancement on hygromycin B and vanadate media agreed with a generally improved endosomal/prevacuolar function of the mutated proteins. In vivo measurements by (31)P NMR revealed that wild-type and mutant AtNHX1 transporters did not affect cytosolic or vacuolar pH. Surprisingly, when yeast cells were challenged with lithium, a tracer for sodium, the main effect of the mutations in AtNHX1 was a reduction in the amount of compartmentalized lithium. When purified and reconstituted into proteoliposomes or assayed in intact vacuoles isolated from yeast cells, a representative mutant transporter (V318I) showed a greater cation discrimination favoring potassium transport over that of sodium or lithium. Together, our data suggest that the endosome/prevacuolar compartment is a target for salt toxicity. Poisoning by toxic cations in the endosome/prevacuolar compartment is detrimental for cell functions, but it can be alleviated by improving the discrimination of transported alkali cations by the resident cation/H(+) antiporter.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASE-CSIC), Avda. Reina Mercedes 10, Seville 41012, Spain
| | | | | | | | | | | | | |
Collapse
|
67
|
Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K. Plant NHX cation/proton antiporters. PLANT SIGNALING & BEHAVIOR 2009; 4:265-76. [PMID: 19794841 PMCID: PMC2664485 DOI: 10.4161/psb.4.4.7919] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 05/18/2023]
Abstract
Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na(+) accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K(+) homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
Collapse
|
68
|
Siddique I, Hasan F, Khan I. Suppression of Na+/H+ exchanger isoform-3 in human inflammatory bowel disease: lack of reversal by 5'-aminosalicylate treatment. Scand J Gastroenterol 2009; 44:56-64. [PMID: 18785066 DOI: 10.1080/00365520802321253] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Na+/H+ exchanger isoform 3 (NHE-3) is responsible for net uptake of NaCl and water from the gastrointestinal (GI) tract. However, its status in human inflammatory bowel diseases (IBDs) such as ulcerative colitis(UC) and Crohn's disease (CD) remains poorly understood. The aim of this study was to investigate the underlying mechanism of NHE-3 isoform expression and its modulation by 5'-aminosalicylate in human CD and UC. MATERIAL AND METHODS Subjects were divided into three groups: 1) controls; 2) untreated/new IBD cases (n = 13) and 3) 5'-aminosalicylate-treated IBD patients (n = 13). Subjects presenting with abdominal pain but with endoscopically normal colons served as normal controls. Inflammation was confirmed by the level of myeloperoxidase (MPO) activity, malondialdehyde (MDA) concentrations and by histologic evaluation. Expressions of NHE-3 protein and mRNA, sodium pump activity and IL-1beta and TNF-alpha mRNA were estimated in the colonic biopsies using ECL-Western blot analysis,reverse transcription-polymerase chain reaction (RT-PCR) and enzyme assays. RESULTS The level of NHE-3 protein and sodium pump activity was reduced (p < 0.05) in both the untreated and treated CD and UC patients. NHE-3 mRNA was reduced only in CD patients but not in those with UC. The treatment reversed the symptoms, but levels of MPO activity, MDA concentration, IL-1beta, TNF-alpha and infiltration of inflammatory cells remained high with the exception of IL-1beta mRNA in the treated patients. CONCLUSIONS NHE-3 suppression is regulated differentially in CD and UC, which together with suppression of sodium pump activity will reduce NaCl and water uptake from the colonic lumen. These findings suggest a role of TNF-a in the regulation of NHE-3 expression in IBD.
Collapse
Affiliation(s)
- Iqbal Siddique
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait
| | | | | |
Collapse
|
69
|
Mitsui K, Hatakeyama K, Matsushita M, Kanazawa H. Saccharomyces cerevisiae Na+/H+ Antiporter Nha1p Associates with Lipid Rafts and Requires Sphingolipid for Stable Localization to the Plasma Membrane. J Biochem 2009; 145:709-20. [DOI: 10.1093/jb/mvp032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
|
70
|
Xu H, Chen H, Dong J, Li J, Chen R, Uno JK, Ghishan FK. Tumor necrosis factor-{alpha} downregulates intestinal NHE8 expression by reducing basal promoter activity. Am J Physiol Cell Physiol 2009; 296:C489-97. [PMID: 19109523 PMCID: PMC2660270 DOI: 10.1152/ajpcell.00482.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2008] [Accepted: 12/17/2008] [Indexed: 11/22/2022]
Abstract
NHE8 transporter is a member of the sodium/hydrogen exchanger (NHE) family. This transporter protein is expressed at the apical membrane of epithelial cells of kidney and intestine and contributes to vectorial Na(+) transport in both tissues. Although NaCl absorption has been shown to be reduced in diarrhea associated with colitis and enteritis, little is known about the role of Na(+)/H(+) exchange and the involvement of NHE isoforms in the pathogenesis of inflammatory disorders and the mechanism of inflammation-associated diarrhea. This study investigated the role of NHE8 in the setting of inflammatory states. Jejunal mucosa was harvested from trinitrobenzene sulfonic acid (TNBS) colitis rats or lipopolysaccharide (LPS) rats for RNA extraction and brush-border membrane protein purification. The human NHE8 gene promoter was cloned from human genomic DNA and characterized in Caco-2 cells. The promoter was further used to study the mechanisms of TNF-alpha-mediated NHE8 expression downregulation in Caco-2 cells. Results from Western blot and real-time PCR indicated that NHE8 protein and mRNA were significantly reduced in TNBS rats and LPS rats. In Caco-2 cells, TNF-alpha produces similar reduction levels in the endogenous NHE8 mRNA expression observed in our in vivo studies. The downregulation of NHE8 expression mediated by TNF-alpha could be blocked by transcription inhibitor actinomycin D, suggesting the involvement of transcriptional regulation. Further studies indicated that the human NHE8 gene transcription could be activated by Sp3 transcriptional factor, and TNF-alpha inhibits human NHE8 expression by reducing Sp3 interaction at the minimal promoter region of the human NHE8 gene. In conclusion, our studies suggest that TNF-alpha decreases NHE8 expression in inflammation induced by TNBS and LPS, which may contribute to the diarrhea associated with inflammation.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Kagami T, Chen S, Memar P, Choi M, Foster LJ, Numata M. Identification and biochemical characterization of the SLC9A7 interactome. Mol Membr Biol 2008; 25:436-47. [PMID: 18654930 DOI: 10.1080/09687680802263046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Organellar and cytosolic pH homeostasis is central to most cellular processes, including vesicular trafficking, post-translational modification/processing of proteins, and receptor-ligand interactions. SLC9A7 (NHE7) was identified as a unique (Na+, K+)/H+ exchanger that dynamically cycles between the trans-Golgi network (TGN), endosomes and the plasma membrane. Here we have used mass spectrometry to explore the affinity-captured interactome of NHE7, leading to the identification of cytoskeletal proteins, cell adhesion molecules, membrane transporters, and signaling molecules. Among these binding proteins, calcium-calmodulin, but not apo-calmodulin, binds to NHE7 and regulates the organellar transporter activity. Vimentin was co-immunoprecipitated with endogenous NHE7 protein in human breast cancer MDA-MB-231 cells. A sizable population of NHE7 relocalized to focal complexes in migrating cells and showed colocalization with vimentin and actin in focal complexes. Among the NHE7-binding proteins identified, CD44, a cell surface glycoprotein receptor for hyaluronate and other ligands, showed regulated interaction with NHE7. Pretreatment of the cells with phorbol ester facilitated the NHE7-CD44 interaction and the lipid raft association of CD44. When lipid rafts were chemically disrupted, the NHE7-CD44 interaction was markedly reduced. These results suggest potential dual roles of NHE7 in intracellular compartments and subdomains of cell-surface membranes.
Collapse
Affiliation(s)
- Takashi Kagami
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
72
|
Ahmed KH, Pelster B. Ionic determinants of pH of acidic compartments under hypertonic conditions in trout hepatocytes. J Exp Biol 2008; 211:3306-14. [PMID: 18840665 DOI: 10.1242/jeb.020776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Exposure of trout hepatocytes to hypertonicity induced a decrease in acridine orange (AO) fluorescence, indicating a corresponding decrease in pH inside the lumen of acidic compartments (pH(L)). Pre-exposure of cells to the specific V-ATPase inhibitor bafilomycin A1 (0.3 micromol l(-1)) increased AO fluorescence - unmasking H(+) leaks under steady-state conditions - and partially removed the hypertonicity-induced pH(L) decrease. The sustainability of the luminal acidification, but not the acidification itself, appeared to depend on a low K(+) and a high Cl(-) conductance under hypertonic conditions. Increasing K(+) conductance using the specific ionophore valinomycin (10 micromol l(-1)) or removal of extracellular Cl(-) after an instant drop in AO fluorescence resulted in a reversal of luminal acidity. The alkalinization measured under hypertonic conditions in the absence of Cl(-) was largely attenuated when cells were bathed in HCO(3)(-)-free medium, signifying the possible presence of Cl(-)/HCO(3)(-) exchange. Under steady-state conditions, while a slight and brief pH(L) increase was measured upon exposure of cells to valinomycin, Cl(-) removal, unexpectedly, induced a decrease in pH(L), indicating a role for extracellular Cl(-) in limiting luminal acidification. This was confirmed by the substantial pH(L) decrease measured upon exposure of cells to the anion exchanger inhibitor SITS (0.5 mmol l(-1)). Furthermore, hypertonicity-induced acidification was still noticeable in the presence of SITS. On the other hand, the hypertonicity-induced acidification was significantly reduced in the absence of extracellular Na(+) or Ca(2+). However, BAPTA-AM induced an increase in steady-state pH(L) that was independent of V-ATPase inhibition. Moreover, the BAPTA-induced alkalinization was still apparent after depletion of intracellular Ca(2+) using the Ca(2+) ionophore A23187 in Ca(2+)-free medium. We conclude that pH(L) of trout hepatocytes is sensitive to hypertonicity and ionic determinants of hypertonicity. Thus, changes in pH(L) should be considered when studying pH adaptations to hypertonic stress.
Collapse
Affiliation(s)
- Khaled H Ahmed
- Institut für Zoologie and Center of Molecular Biosciences, Leopold Franzens Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
73
|
Spillman NJ, Allen RJW, Kirk K. Acid extrusion from the intraerythrocytic malaria parasite is not via a Na(+)/H(+) exchanger. Mol Biochem Parasitol 2008; 162:96-9. [PMID: 18675853 DOI: 10.1016/j.molbiopara.2008.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/16/2022]
Abstract
The intraerythrocytic malaria parasite, Plasmodium falciparum maintains an intracellular pH (pH(i)) of around 7.3. If subjected to an experimentally imposed acidification the parasite extrudes H(+), thereby undergoing a pH(i) recovery. In a recent study, Bennett et al. [Bennett TN, Patel J, Ferdig MT, Roepe PD. P. falciparum Na(+)/H(+) exchanger activity and quinine resistance. Mol Biochem Parasitol 2007;153:48-58] used the H(+) ionophore nigericin, in conjunction with an acidic medium, to acidify the parasite cytosol, and then used bovine serum albumin (BSA) to scavenge the nigericin from the parasite membrane. The ensuing Na(+)-dependent pH(i) recovery, seen following an increase in the extracellular pH, was attributed to a plasma membrane Na(+)/H(+) exchanger. This is at odds with previous reports that the primary H(+) extrusion mechanism in the parasite is a plasma membrane V-type H(+)-ATPase. Here we present evidence that the Na(+)-dependent efflux of H(+) from parasites acidified using nigericin/BSA is attributable to Na(+)/H(+) exchange via residual nigericin remaining in the parasite plasma membrane, rather than to endogenous transporter activity.
Collapse
Affiliation(s)
- Natalie J Spillman
- Biochemistry and Molecular Biology, School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
74
|
Rodríguez-Rosales MP, Jiang X, Gálvez FJ, Aranda MN, Cubero B, Venema K. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. THE NEW PHYTOLOGIST 2008; 179:366-377. [PMID: 19086176 DOI: 10.1111/j.1469-8137.2008.02461.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/19/2023]
Abstract
Here, the function of the tomato (Solanum lycopersicon) K+/H+ antiporter LeNHX2 was studied using 35S-driven gene overexpression of a histagged LeNHX2 protein in Arabidopsis thaliana and LeNHX2 gene silencing in tomato. Transgenic A. thaliana plants expressed the histagged LeNHX2 both in shoots and in roots, as assayed by western blotting. Transitory expression of a green fluorescent protein (GFP) tagged protein showed that the antiporter is present in small vesicles. Internal membrane vesicles from transgenic plants displayed enhanced K+/H+ exchange activity, confirming the K+/H+ antiporter function of this enzyme. Transgenic A. thaliana plants overexpressing the histagged tomato antiporter LeNHX2 exhibited inhibited growth in the absence of K+ in the growth medium, but were more tolerant to high concentrations of Na+ than untransformed controls. When grown in the presence of NaCl, transgenic plants contained lower concentrations of intracellular Na+, but more K+, as compared with untransformed controls. Silencing of LeNHX2 in S. lycopersicon plants produced significant inhibition of plant growth and fruit and seed production as well as increased sensitivity to NaCl. The data indicate that regulation of K+ homeostasis by LeNHX2 is essential for normal plant growth and development, and plays an important role in the response to salt stress by improving K+ accumulation.
Collapse
Affiliation(s)
- María Pilar Rodríguez-Rosales
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Xingyu Jiang
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Department of Plant Biology, Instituto de Recursos Naturales y Agrobiología, CSIC, 41012 Sevilla, Spain
| | - Francisco Javier Gálvez
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María Nieves Aranda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Beatriz Cubero
- Department of Plant Biology, Instituto de Recursos Naturales y Agrobiología, CSIC, 41012 Sevilla, Spain
| | - Kees Venema
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
75
|
Xu H, Chen H, Dong J, Lynch R, Ghishan FK. Gastrointestinal distribution and kinetic characterization of the sodium-hydrogen exchanger isoform 8 (NHE8). Cell Physiol Biochem 2008; 21:109-16. [PMID: 18209477 DOI: 10.1159/000113752] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/26/2007] [Indexed: 11/19/2022] Open
Abstract
NHE8 is a newly identified NHE isoform expressed in rat intestine. To date, the kinetic characteristics and the intestinal segmental distribution of this NHE isoform have not been studied. This current work was performed to determine the gene expression pattern of the NHE8 transporter along the gastrointestinal tract, as well as its affinity for Na(+), H(+), and sensitivity to known NHE inhibitors HOE694 and S3226. NHE8 was differentially expressed along the GI tract. Higher NHE8 expression was seen in stomach, duodenum, and ascending colon in human, while higher NHE8 expression was seen in jejunum, ileum and colon in adult mouse. Moreover, the expression level of NHE8 is much higher in the stomach and jejunum in young mice compared with adult mice. To evaluate the functional characterictics of NHE8, the pH indicator SNARF-4 was used to monitor the rate of intra-cellular pH (pH(i)) recovery after an NH(4)Cl induced acid load in NHE8 cDNA transfected PS120 cells. The NHE8 cDNA transfected cells exhibited a sodium-dependent proton exchanger activity having a Km for pH(i) of approximately pH 6.5, and a Km for sodium of approximately 23 mM. Low concentration of HOE694 (1 microM) had no effect on NHE8 activity, while high concentration (10 microM) significantly reduced NHE8 activity. In the presence of 80 microM S3226, the NHE8 activity was also inhibited significantly. In conclusion, our work suggests that NHE8 is expressed along the gastrointestinal tract and NHE8 is a functional Na(+)/H(+) exchanger with kinetic characteristics that differ from other apically expressed NHE isoforms.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
76
|
Nishimura M, Naito S. Tissue-specific mRNA Expression Profiles of Human Solute Carrier Transporter Superfamilies. Drug Metab Pharmacokinet 2008; 23:22-44. [DOI: 10.2133/dmpk.23.22] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
77
|
Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, Smith AM, Kazi S, Szerencsei RT, Winkfein RJ, Schnetkamp PPM, Green MR. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem 2007; 283:5486-95. [PMID: 18166528 DOI: 10.1074/jbc.m707521200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
A non-synonymous single nucleotide polymorphism in the human SLC24A5 gene is associated with natural human skin color variation. Multiple sequence alignments predict that this gene encodes a member of the potassium-dependent sodium-calcium exchanger family denoted NCKX5. In cultured human epidermal melanocytes we show using affinity-purified antisera that native human NCKX5 runs as a triplet of approximately 43 kDa on SDS-PAGE and is partially localized to the trans-Golgi network. Removal of the NCKX5 protein through small interfering RNA-mediated knockdown disrupts melanogenesis in human and murine melanocytes, causing a significant reduction in melanin pigment production. Using a heterologous expression system, we confirm for the first time that NCKX5 possesses the predicted exchanger activity. Site-directed mutagenesis of NCKX5 and NCKX2 in this system reveals that the non-synonymous single nucleotide polymorphism in SLC24A5 alters a residue that is important for NCKX5 and NCKX2 activity. We suggest that NCKX5 directly regulates human epidermal melanogenesis and natural skin color through its intracellular potassium-dependent exchanger activity.
Collapse
Affiliation(s)
- Rebecca S Ginger
- Unilever Corporate Research, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, England, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Fliegel L. Molecular biology of the myocardial Na+/H+ exchanger. J Mol Cell Cardiol 2007; 44:228-37. [PMID: 18191941 DOI: 10.1016/j.yjmcc.2007.11.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/22/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 11/17/2022]
Abstract
The mammalian Na(+)/H(+) exchanger is a pH regulatory membrane protein that uses the sodium gradient to translocate one intracellular proton in exchange for one extracellular sodium. There are nine isoforms of the protein with varying tissue and cellular distribution, some isoforms are predominantly intracellular. In the myocardium, the Na(+)/H(+) exchanger type 1 isoform (NHE1) is the only plasma membrane isoform present in significant quantities. It plays an important role during ischemia/reperfusion damage to the myocardium and has recently been implicated in myocardial hypertrophy. The NHE1 gene is made from 12 exons and a differentially spliced version mediates Na(+)/Li(+) exchange. The NHE1 promoter is regulated by several transcription factors. In the myocardium, transcription factors both proximal and distal to the start site affect expression, including AP-2 and a thyroid responsive element. Recently, reactive oxygen species have also been shown to be important regulators of the NHE1 promoter. Structural and functional analysis of the NHE1 protein has shown that transmembrane segments IV, VII and IX are important in ion transport and susceptibility to pharmacological inhibition. NHE1 protein and mRNA levels are elevated by cardiac ischemia/reperfusion, hypertrophy and acidosis. Understanding the mechanism by which NHE1 mediates transport and its regulation of expression will give novel insights into its contributions in cardiovascular disease.
Collapse
Affiliation(s)
- Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
79
|
Ohgaki R, Fukura N, Matsushita M, Mitsui K, Kanazawa H. Cell surface levels of organellar Na+/H+ exchanger isoform 6 are regulated by interaction with RACK1. J Biol Chem 2007; 283:4417-29. [PMID: 18057008 DOI: 10.1074/jbc.m705146200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, four Na(+)/H(+) exchangers (NHE6 - NHE9) are localized to intracellular compartments. NHE6 and NHE9 are predominantly localized to sorting and recycling endosomes, NHE7 to the trans-Golgi network, and NHE8 to the mid-trans-Golgi stacks. The unique localization of NHEs may contribute to establishing organelle-specific pH values and ion homeostasis in cells. Mechanisms underlying the regulation and targeting of organellar NHEs are largely unknown. We identified an interaction between NHE9 and RACK1 (receptor for activated C kinase 1), a cytoplasmic scaffold protein, by yeast two-hybrid screening using the NHE9 C terminus as bait. The NHE9 C terminus is exposed to the cytoplasm, verifying that the interaction is topologically possible. The binding region was further delineated to the central region of the NHE9 C terminus. RACK1 also bound NHE6 and NHE7, but not NHE8, in vitro. Endogenous association between NHE6 and RACK1 was confirmed by co-immunoprecipitation and co-localization in HeLa cells. The luminal pH of the recycling endosome was elevated in RACK1 knockdown cells, accompanied by a decrease in the amount of NHE6 on the cell surface, although the total level of NHE6 was not significantly altered. These results indicate that RACK1 plays a role in regulating the distribution of NHE6 between endosomes and the plasma membrane and contributes to maintaining luminal pH of the endocytic recycling compartments.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
80
|
Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2007; 32:322-34. [PMID: 18056784 DOI: 10.1152/physiolgenomics.00160.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Production and excretion of acids are balanced to maintain systemic acid-base homeostasis. During metabolic acidosis (MA) excess acid accumulates and is removed from the body, a process achieved, at least in part, by increasing renal acid excretion. This acid-secretory process requires the concerted regulation of metabolic and transport pathways, which are only partially understood. Chronic MA causes also morphological remodeling of the kidney. Therefore, we characterized transcriptional changes in mammalian kidney during MA to gain insights into adaptive pathways. Total kidney RNA from control and 2- and 7-days NH(4)Cl treated mice was subjected to microarray gene profiling. We identified 4,075 transcripts significantly (P < 0.05) regulated after 2 and/or 7 days of treatment. Microarray results were confirmed by qRT-PCR. Analysis of candidate genes revealed that a large group of regulated transcripts was represented by different solute carrier transporters, genes involved in cell growth, proliferation, apoptosis, water homeostasis, and ammoniagenesis. Pathway analysis revealed that oxidative phosphorylation was the most affected pathway. Interestingly, the majority of acutely regulated genes after 2 days, returned to normal values after 7 days suggesting that adaptation had occurred. Besides these temporal changes, we detected also differential regulation of selected genes (SNAT3, PEPCK, PDG) between early and late proximal tubule. In conclusion, the mammalian kidney responds to MA by temporally and spatially altering the expression of a large number of genes. Our analysis suggests that many of these genes may participate in various processes leading to adaptation and restoration of normal systemic acid-base and electrolyte homeostasis.
Collapse
Affiliation(s)
- Marta Nowik
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich
| | | | | | | | | | | |
Collapse
|
81
|
Rheault MR, Okech BA, Keen SBW, Miller MM, Meleshkevitch EA, Linser PJ, Boudko DY, Harvey WR. Molecular cloning, phylogeny and localization of AgNHA1: the first Na+/H+ antiporter (NHA) from a metazoan,Anopheles gambiae. J Exp Biol 2007; 210:3848-61. [DOI: 10.1242/jeb.007872] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have cloned a cDNA encoding a new ion transporter from the alimentary canal of larval African malaria mosquito, Anopheles gambiae Giles sensu stricto. Phylogenetic analysis revealed that the corresponding gene is in a group that has been designated NHA, and which includes(Na+ or K+)/H+ antiporters; so the novel transporter is called AgNHA1. The annotation of current insect genomes shows that both AgNHA1 and a close relative, AgNHA2, belong to the cation proton antiporter 2 (CPA2) subfamily and cluster in an exclusive clade of genes with high identity from Aedes aegypti, Drosophila melanogaster, D. pseudoobscura, Apis mellifera and Tribolium castaneum. Although NHA genes have been identified in all phyla for which genomes are available, no NHA other than AgNHA1 has previously been cloned,nor have the encoded proteins been localized or characterized.The AgNHA1 transcript was localized in An. gambiae larvae by quantitative real-time PCR (qPCR) and in situ hybridization. AgNHA1 message was detected in gastric caeca and rectum, with much weaker transcription in other parts of the alimentary canal. Immunolabeling of whole mounts and longitudinal sections of isolated alimentary canal showed that AgNHA1 is expressed in the cardia, gastric caeca, anterior midgut, posterior midgut, proximal Malpighian tubules and rectum, as well as in the subesophageal and abdominal ganglia.A phylogenetic analysis of NHAs and KHAs indicates that they are ubiquitous. A comparative molecular analysis of these antiporters suggests that they catalyze electrophoretic alkali metal ion/hydrogen ion exchanges that are driven by the voltage from electrogenic H+ V-ATPases. The tissue localization of AgNHA1 suggests that it plays a key role in maintaining the characteristic longitudinal pH gradient in the lumen of the alimentary canal of An. gambiae larvae.
Collapse
Affiliation(s)
- Mark R. Rheault
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Bernard A. Okech
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | - Melissa M. Miller
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | - Paul J. Linser
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Dmitri Y. Boudko
- Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - William R. Harvey
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| |
Collapse
|
82
|
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2007; 52:905-19. [PMID: 18061308 DOI: 10.1016/j.neuint.2007.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that accompany metabolic stress but have no distinct implications for the pH regulatory mechanisms are not dealt with. In most cases, the vast body of knowledge derived from in vitro studies remains to be verified in in vivo settings.
Collapse
Affiliation(s)
- Marta Obara
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
83
|
NHE1, NHE2, and NHE4 contribute to regulation of cell pH in T84 colon cancer cells. Pflugers Arch 2007; 455:799-810. [PMID: 17943310 DOI: 10.1007/s00424-007-0333-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2007] [Revised: 07/04/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
The isoforms of the Na+/H+ exchanger present in T84 human colon cells were identified by functional and molecular methods. Cell pH was measured by fluorescence microscopy using the probe BCECF. Based on the pH recovery after an ammonium pulse and determination of buffering capacity of these cells, the rate of H+ extrusion (JH) was 3.68 mM/min. After the use of the amiloride derivative HOE-694 at 25 microM, which inhibits the isoforms NHE1 and NHE2, there remained 43% of the above transport rate, the nature of which was investigated. Evidence of the presence of NHE1, NHE2, and NHE4 was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) (mRNA) and Western blot. There was no decrease of JH by the NHE3 inhibitor S3226 (1 microM) and no evidence of this isoform by RT-PCR was found. The following functional evidence for the presence of NHE4 was obtained: 25 microM EIPA abolished JH entirely, but NHE4 was not inhibited at 10 microM; substitution of Na by K increased the remainder, a property of NHE4; hypertonicity also increased this fraction of JH. Cl--dependent NHE was not detected: in 0 Cl- solutions JH was increased and not reduced. In 0 Cl- cell volume decreased significantly, which was abolished by the Cl- channel blocker NPPB, indicating that the 0 Cl- effect was because of reduction of cell volume. In conclusion, T84 human colon cells contain three isoforms of the Na+/H+ exchanger, NHE1, NHE2, and NHE4, but not the Cl-dependent NHE.
Collapse
|
84
|
Orlowski J, Grinstein S. Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr Opin Cell Biol 2007; 19:483-92. [PMID: 17646094 PMCID: PMC5021530 DOI: 10.1016/j.ceb.2007.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2007] [Revised: 05/31/2007] [Accepted: 06/08/2007] [Indexed: 11/28/2022]
Abstract
The regulated movement of monovalent cations such as H(+), Li(+), Na(+) and K(+) across biological membranes influences a myriad of cellular processes and is fundamental to all living organisms. This is accomplished by a multiplicity of ion channels, pumps and transporters. Our insight into their molecular, cellular and physiological diversity has increased greatly in the past few years with the advent of genome sequencing, genetic manipulation and sophisticated imaging techniques. One of the revelations from these studies is the emergence of novel alkali cation/protons exchangers that are present in endomembranes, where they function to regulate not only intraorganellar pH but also vesicular biogenesis, trafficking and other aspects of cellular homeostasis.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, McIntyre Medical Science Bldg. 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
85
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
86
|
Matsushita M, Sano Y, Yokoyama S, Takai T, Inoue H, Mitsui K, Todo K, Ohmori H, Kanazawa H. Loss of calcineurin homologous protein-1 in chicken B lymphoma DT40 cells destabilizes Na+/H+ exchanger isoform-1 protein. Am J Physiol Cell Physiol 2007; 293:C246-54. [PMID: 17392381 DOI: 10.1152/ajpcell.00464.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
NHE1/SLC9A1 is a ubiquitous isoform of vertebrate Na+/H+ exchangers (NHEs) functioning in maintaining intracellular concentrations of Na+ and H+ ions. Calcineurin homologous protein-1 (CHP1) binds to the hydrophilic region of NHE1 and regulates NHE1 activity but reportedly does not play a role in translocating NHE1 from the endoplasmic reticulum to the plasma membrane. However, an antiport function of NHE1 requiring CHP1 remains to be clarified. Here we established CHP1-deficient chicken B lymphoma DT40 cells by gene targeting to address CHP1 function. CHP1-deficient cells showed extensive decreases in Na+/H+ activities in intact cells. Although NHE1 mRNA levels were not affected, NHE1 protein levels were significantly reduced not only in the plasma membrane but in whole cells. The expression of a CHP1 transgene in CHP1-deficient cells rescued NHE1 protein expression. Expression of mutant forms of CHP1 defective in Ca2+ binding or myristoylation also partially decreased NHE1 protein levels. Knockdown of CHP1 also caused a moderate decrease in NHE1 protein in HeLa cells. These data indicate that CHP1 primarily plays an essential role in stabilization of NHE1 for reaching of NHE1 to the plasma membrane and its exchange activity.
Collapse
Affiliation(s)
- Masafumi Matsushita
- Dept. of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka City, Osaka, Japan 560-0043
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Stiernet P, Nenquin M, Moulin P, Jonas JC, Henquin JC. Glucose-induced cytosolic pH changes in beta-cells and insulin secretion are not causally related: studies in islets lacking the Na+/H+ exchangeR NHE1. J Biol Chem 2007; 282:24538-46. [PMID: 17599909 DOI: 10.1074/jbc.m702862200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.
Collapse
Affiliation(s)
- Patrick Stiernet
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
88
|
Lin PJC, Williams WP, Kobiljski J, Numata M. Caveolins bind to (Na+, K+)/H+ exchanger NHE7 by a novel binding module. Cell Signal 2007; 19:978-88. [PMID: 17207967 DOI: 10.1016/j.cellsig.2006.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/30/2022]
Abstract
NHE7 was identified as the first mammalian organelle-membrane type (Na+, K+)/H+ exchanger that may contribute to the ion homeostasis in the trans-Golgi network (TGN) and endosomes. Here we show that caveolins directly bind to the C-terminal extension of NHE7 by an unconventional binding-module. NHE7 is partly associated with caveolae/lipid raft fractions, and heterologous expression of caveolin dominant-negative mutants as well as cholesterol depriving drugs diminished such associations. In contrast to the wild type NHE7, a deletion mutant lacking the C-terminal extension was predominantly detected in non-caveolae/lipid rafts. We further show that a small fraction of NHE7 is targeted to the cell surface and subsequently internalized. Endocytosis of NHE7 was efficiently inhibited by pharmacological maneuvers that block clathrin-dependent endocytosis, whereas dominant-negative caveolin mutants or methyl beta-cyclodextrin did not affect NHE7-internalization. Thus, NHE7 associates with both caveolae/lipid rafts and non-caveolae/lipid raft, and the two pools likely exhibit separate dynamics.
Collapse
Affiliation(s)
- Paulo J C Lin
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Canada
| | | | | | | |
Collapse
|
89
|
Slepkov E, Rainey J, Sykes B, Fliegel L. Structural and functional analysis of the Na+/H+ exchanger. Biochem J 2007; 401:623-33. [PMID: 17209804 PMCID: PMC1770851 DOI: 10.1042/bj20061062] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The mammalian NHE (Na+/H+ exchanger) is a ubiquitously expressed integral membrane protein that regulates intracellular pH by removing a proton in exchange for an extracellular sodium ion. Of the nine known isoforms of the mammalian NHEs, the first isoform discovered (NHE1) is the most thoroughly characterized. NHE1 is involved in numerous physiological processes in mammals, including regulation of intracellular pH, cell-volume control, cytoskeletal organization, heart disease and cancer. NHE comprises two domains: an N-terminal membrane domain that functions to transport ions, and a C-terminal cytoplasmic regulatory domain that regulates the activity and mediates cytoskeletal interactions. Although the exact mechanism of transport by NHE1 remains elusive, recent studies have identified amino acid residues that are important for NHE function. In addition, progress has been made regarding the elucidation of the structure of NHEs. Specifically, the structure of a single TM (transmembrane) segment from NHE1 has been solved, and the high-resolution structure of the bacterial Na+/H+ antiporter NhaA has recently been elucidated. In this review we discuss what is known about both functional and structural aspects of NHE1. We relate the known structural data for NHE1 to the NhaA structure, where TM IV of NHE1 shows surprising structural similarity with TM IV of NhaA, despite little primary sequence similarity. Further experiments that will be required to fully understand the mechanism of transport and regulation of the NHE1 protein are discussed.
Collapse
Affiliation(s)
- Emily R. Slepkov
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jan K. Rainey
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- To whom correspondence should be addressed (email )
| |
Collapse
|
90
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Rangel-Mata F, Méndez-Márquez R, Martínez-Cadena G, López-Godínez J, Nishigaki T, Darszon A, García-Soto J. Rho, Rho-kinase, and the actin cytoskeleton regulate the Na+–H+ exchanger in sea urchin eggs. Biochem Biophys Res Commun 2007; 352:264-9. [PMID: 17113032 DOI: 10.1016/j.bbrc.2006.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.
Collapse
Affiliation(s)
- Francisco Rangel-Mata
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Guanajuato, Gto. 36000, Mexico
| | | | | | | | | | | | | |
Collapse
|
92
|
Hill JK, Brett CL, Chyou A, Kallay LM, Sakaguchi M, Rao R, Gillespie PG. Vestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9. J Neurosci 2006; 26:9944-55. [PMID: 17005858 PMCID: PMC6674470 DOI: 10.1523/jneurosci.2990-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023] Open
Abstract
In hair cells of the inner ear, robust Ca2+/H+ exchange mediated by plasma-membrane Ca2+-ATPase would rapidly acidify mechanically sensitive hair bundles without efficient removal of H+. We found that, whereas the basolateral membrane of vestibular hair cells from the frog saccule extrudes H+ via an Na+-dependent mechanism, bundles rapidly remove H+ in the absence of Na+ and HCO3(-), even when the soma is acidified. K+ was fully effective and sufficient for H+ removal; in contrast, Rb+ failed to support pH recovery. Na+/H+-exchanger isoform 1 (NHE1) was present on hair-cell soma membranes and was likely responsible for Na+-dependent H+ extrusion. NHE6 and NHE9 are organellar isoforms that can appear transiently on plasma membranes and have been proposed to mediate K+/H+ exchange. We identified NHE6 in a subset of hair bundles; NHE9 was present in all bundles. Heterologous expression of these isoforms in yeast strains lacking endogenous exchangers conferred pH-dependent tolerance to high levels of KCl and NaCl. NHE9 preferred cations in the order K+, Na+ >> Rb+, consistent with the relative efficacies of these ions in promoting pH recovery in hair bundles. Electroneutral K+/H+ exchange, which we propose is performed by NHE9 in hair bundles, exploits the high-K+ endolymph, responds only to pH imbalance across the bundle membrane, is unaffected by the +80 mV endocochlear potential, and uses mechanisms already present in the ear for K+ recycling. This mechanism allows the hair cell to remove H+ generated by Ca2+ pumping without ATP hydrolysis in the cell.
Collapse
Affiliation(s)
- Jennifer K. Hill
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Christopher L. Brett
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Anthony Chyou
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Laura M. Kallay
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Masao Sakaguchi
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Peter G. Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
93
|
Mukherjee S, Kallay L, Brett C, Rao R. Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem J 2006; 398:97-105. [PMID: 16671892 PMCID: PMC1525006 DOI: 10.1042/bj20060388] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Yeast Nhx1 [Na+(K+)/H+ exchanger 1] is an intracellular Na+(K+)/H+ exchanger, localizing to the late endosome where it is important for ion homoeostasis and vesicle trafficking. Phylogenetic analysis of NHE (Na+/H+ exchanger) sequences has identified orthologous proteins, including HsNHE6 (human NHE6), HsNHE7 and HsNHE9 of unknown physiological role. These appear distinct from well-studied mammalian plasma membrane isoforms (NHE1-NHE5). To explore the differences between plasma membrane and intracellular NHEs and understand the link between ion homoeostasis and vesicle trafficking, we examined the consequence of replacing residues in the intramembranous H10 loop of Nhx1 between transmembrane segments 9 and 10. The critical role for the carboxy group of Glu355 in ion transport is consistent with the invariance of this residue in all NHEs. Surprisingly, residues specifically conserved in the intracellular isoforms (such as Phe357 and Tyr361) could not be replaced with closely similar residues (leucine and phenylalanine) found in the plasma membrane isoforms without loss of function, revealing unexpected side chain specificity. The trafficking phenotypes of all Nhx1 mutants, including hygromycin-sensitivity and missorting of carboxypeptidase Y, were found to directly correlate with pH homoeostasis defects and could be proportionately corrected by titration with weak base. The present study demonstrates the importance of the H10 loop of the NHE family, highlights the differences between plasma membrane and intracellular isoforms and shows that trafficking defects are tightly coupled with pH homoeostasis.
Collapse
Affiliation(s)
- Sanchita Mukherjee
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Laura Kallay
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Christopher L. Brett
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
94
|
De Vito P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 2006; 240:69-85. [PMID: 16930575 DOI: 10.1016/j.cellimm.2006.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Immune cells such as macrophages and neutrophils provide the first line of defence of the immune system using phagocytosis, cytokine and chemokine synthesis and release, as well as Reactive Oxygen Species (ROS) generation. Many of these functions are positively coupled with cytoplasmic pH (pHi) and/or phagosomal pH (pHp) modification; an increase in pHi represents an important signal for cytokine and chemokine release, whereas a decrease in pHp can induce an efficient antigen presentation. However, the relationship between pHi and ROS generation is not well understood. In immune cells two main transport systems have been shown to regulate pHi: the Na+/H+ Exchanger (NHE) and the plasmalemmal V-type H+ ATPase. NHE is a family of proteins which exchange Na+ for H+ according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and immunity, this review outlines the contribution of NHE to different aspects of innate and adaptive immune responses such as phagosomal acidification, NADPH oxidase activation and ROS generation, cytokine and chemokine release as well as T cell apoptosis. The possibility that several pro-inflammatory diseases may be modulated by NHE activity is evaluated.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
95
|
Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291:L941-9. [PMID: 16766575 DOI: 10.1152/ajplung.00528.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Vascular remodeling resulting from altered pulmonary arterial smooth muscle cell (PASMC) growth is a contributing factor to the pathogenesis of hypoxic pulmonary hypertension. PASMC growth requires an alkaline shift in intracellular pH (pH(i)) and we previously showed that PASMCs isolated from mice exposed to chronic hypoxia exhibited increased Na(+)/H(+) exchanger (NHE) expression and activity, which resulted in increased pH(i). However, the mechanism by which hypoxia caused these changes was unknown. In this study we tested the hypothesis that hypoxia-induced changes in PASMC pH homeostasis are mediated by the transcriptional regulator hypoxia-inducible factor 1 (HIF-1). Consistent with previous results, increased NHE isoform 1 (NHE1) mRNA and protein, enhanced NHE activity, and an alkaline shift in pH(i) were observed in PASMCs isolated from wild-type mice exposed to chronic hypoxia (3 wk at 10% O(2)). In contrast, these changes were absent in PASMCs isolated from chronically hypoxic mice with partial deficiency for HIF-1. Exposure of PASMCs to hypoxia ex vivo (48 h at 4% O(2)) or overexpression of HIF-1 in the absence of hypoxia also increased NHE1 mRNA and protein expression. Our results indicate that full expression of HIF-1 is essential for hypoxic induction of NHE1 expression and changes in PASMC pH homeostasis and suggest a novel mechanism by which HIF-1 mediates pulmonary vascular remodeling during the pathogenesis of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, JHAAC 4A.52, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
96
|
Abstract
BACKGROUND Long-term storage of platelets (PLTs) in the dry state would greatly improve options for PLT storage. Whether trehalose-loaded freeze-dried and rehydrated PLTs could regulate intracellular pH (pHi) was evaluated. STUDY DESIGN AND METHODS Previously it was shown that human PLTs can be successfully preserved by freeze-drying with trehalose. Trehalose-loaded freeze-dried rehydrated PLTs and fresh control PLTs were labeled with the pH dye BCECF-AM. pHi was measured in resting cells, cells acidified with nigericin, and cells treated with thrombin. The sodium-proton pump was blocked by treatment with 5-(N-methyl-N-isobutyl)amiloride (MIA). RESULTS The pHi of rehydrated PLTs is the same as that of fresh control PLTs, 7.27+/-0.03 (SD; n=5) and 7.27+/-0.02 (n=5), respectively. Nigericin treatment of cells showed that the recovery in pHi was Na+-dependent and followed Michaelis-Menten kinetics. The Vmax values (DeltapH/9 sec) were 0.21+/-0.039 (n=3) and 0.22+/-0.025 (n=3) for rehydrated and control PLTs, respectively. The exchange constants were 17.7+/-2.3 mmol per L (n=3) and 17.0+/-1.9 mmol per L (n=3) for rehydrated and control PLTs, respectively. Treatment of cells with MIA showed that NHE1 remained sensitive to the inhibitor after freeze-drying and rehydration. CONCLUSION The results show that the pHi regulation system is largely preserved during freeze-drying and rehydration of PLTs.
Collapse
Affiliation(s)
- Minke Tang
- Center for Biostabilization, the Section of Molecular and Cellular Biology, and the Department of Anatomy, Physiology, and Cell Biology, the University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
97
|
Radchenko MV, Tanaka K, Waditee R, Oshimi S, Matsuzaki Y, Fukuhara M, Kobayashi H, Takabe T, Nakamura T. Potassium/proton antiport system of Escherichia coli. J Biol Chem 2006; 281:19822-9. [PMID: 16687400 DOI: 10.1074/jbc.m600333200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular level of potassium (K(+)) in Escherichia coli is regulated through multiple K(+) transport systems. Recent data indicate that not all K(+) extrusion system(s) have been identified (15). Here we report that the E. coli Na(+) (Ca(2+))/H(+) antiporter ChaA functions as a K(+) extrusion system. Cells expressing ChaA mediated K(+) efflux against a K(+) concentration gradient. E. coli strains lacking the chaA gene were unable to extrude K(+) under conditions in which wild-type cells extruded K(+). The K(+)/H(+) antiporter activity of ChaA was detected by using inverted membrane vesicles produced using a French press. Physiological growth studies indicated that E. coli uses ChaA to discard excessive K(+), which is toxic for these cells. These results suggest that ChaA K(+)/H(+) antiporter activity enables E. coli to adapt to K(+) salinity stress and to maintain K(+) homeostasis.
Collapse
Affiliation(s)
- Martha V Radchenko
- Department of Microbiology, Niigata University of Pharmacy and Applied Life Sciences, Niigata 950-2081, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Luo J, Chen H, Kintner DB, Shull GE, Sun D. Decreased neuronal death in Na+/H+ exchanger isoform 1-null mice after in vitro and in vivo ischemia. J Neurosci 2006; 25:11256-68. [PMID: 16339021 PMCID: PMC6725894 DOI: 10.1523/jneurosci.3271-05.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Na+/H+ exchanger isoform 1 (NHE1) is a major acid extrusion mechanism after intracellular acidosis. We hypothesized that stimulation of NHE1 after cerebral ischemia contributes to the disruption of Na+ homeostasis and neuronal death. In the present study, expression of NHE1 was detected in cultured mouse cortical neurons. Three hours of oxygen and glucose deprivation (OGD) followed by 21 h of reoxygenation (REOX) led to 68 +/- 10% cell death. Inhibition of NHE1 with the potent inhibitor cariporide (HOE 642) or genetic ablation of NHE1 reduced OGD-induced cell death by approximately 40-50% (p < 0.05). In NHE1(+/+) neurons, OGD caused a twofold increase in [Na+]i, and 60 min REOX triggered a sevenfold increase. Genetic ablation of NHE1 or HOE 642 treatment had no effects on the OGD-mediated initial Na+(i) rise but reduced the second phase of Na+(i) rise by approximately 40-50%. In addition, 60 min REOX evoked a 1.5-fold increase in [Ca2+]i in NHE1(+/+) neurons, which was abolished by inhibition of either NHE1 or reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX-mediated mitochondrial Ca2+ accumulation and cytochrome c release were attenuated by inhibition of NHE1 activity. In an in vivo focal ischemic model, 2 h of left middle cerebral artery occlusion followed by 24 h of reperfusion induced 84.8 +/- 8.0 mm3 infarction in NHE1(+/+) mice. NHE1(+/+) mice treated with HOE 642 or NHE1 heterozygous mice exhibited a approximately 33% decrease in infarct size (p < 0.05). These results imply that NHE1 activity disrupts Na+ and Ca2+ homeostasis and contributes to ischemic neuronal damage.
Collapse
Affiliation(s)
- Jing Luo
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
99
|
Zhang L, Wang T, Wright AF, Suri M, Schwartz CE, Stevenson RE, Valle D. A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred. Am J Med Genet A 2006; 140:349-57. [PMID: 16419135 DOI: 10.1002/ajmg.a.31080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
In a previous report, Aldred et al. [1994] described a 5-generation family in which severe retinitis pigmentosa (RP) co-segregates with mild-moderate mental retardation as an X-linked recessive phenotype mapping to the broad interval between Xp21-q21. We re-examined this family, initially analyzing RP2, a gene in the disease interval that was identified as a cause of RP after the initial report of this family. We found that the male propositus lacked the 5' three exons of RP2 and that RP2 marks the centromeric boundary of a 1.27 Mb deletion that includes two other annotated genes (SLC9A7, CHST7), one predicted transcript encoding a zinc finger protein (FLJ20344) and two highly conserved miRNAs (mir221, mir222). We conclude that this family is segregating a contiguous gene deletion and that the absence of a functional RP2 accounts, at least in part, for the retinal degeneration while deletion of one or more of the other genes is likely responsible for the mental retardation phenotype.
Collapse
Affiliation(s)
- Lilei Zhang
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, USA, and MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
100
|
Pardo JM, Cubero B, Leidi EO, Quintero FJ. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1181-99. [PMID: 16513813 DOI: 10.1093/jxb/erj114] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/06/2023]
Abstract
Uptake and translocation of cations play essential roles in plant nutrition, signal transduction, growth, and development. Among them, potassium (K+) and sodium (Na+) have been the focus of numerous physiological studies because K+ is an essential macronutrient and the most abundant inorganic cation in plant cells, whereas Na+ toxicity is a principal component of the deleterious effects associated with salinity stress. Although the homeostasis of these two ions was long surmised to be fine tuned and under complex regulation, the myriad of candidate membrane transporters mediating their uptake, intracellular distribution, and long-distance transport is nevertheless perplexing. Recent advances have shown that, in addition to their function in vacuolar accumulation of Na+, proteins of the NHX family are endosomal transporters that also play critical roles in K+ homeostasis, luminal pH control, and vesicle trafficking. The plasma membrane SOS1 protein from Arabidopsis thaliana, a highly specific Na+/H+ exchanger that catalyses Na+ efflux and that regulates its root/shoot distribution, has also revealed surprising interactions with K+ uptake mechanisms by roots. Finally, the function of individual members of the large CHX family remains largely unknown but two CHX isoforms, AtCHX17 and AtCH23, have been shown to affect K+ homeostasis and the control of chloroplast pH, respectively. Recent advances on the understanding of the physiological processes that are governed by these three families of cation exchangers are reviewed and discussed.
Collapse
Affiliation(s)
- José M Pardo
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Reina Mercedes 10, Seville 41012, Spain.
| | | | | | | |
Collapse
|