51
|
Yin H, Copley CO, Goodrich LV, Deans MR. Comparison of phenotypes between different vangl2 mutants demonstrates dominant effects of the Looptail mutation during hair cell development. PLoS One 2012; 7:e31988. [PMID: 22363783 PMCID: PMC3282788 DOI: 10.1371/journal.pone.0031988] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Experiments utilizing the Looptail mutant mouse, which harbors a missense mutation in the vangl2 gene, have been essential for studies of planar polarity and linking the function of the core planar cell polarity proteins to other developmental signals. Originally described as having dominant phenotypic traits, the molecular interactions underlying the Looptail mutant phenotype are unclear because Vangl2 protein levels are significantly reduced or absent from mutant tissues. Here we introduce a vangl2 knockout mouse and directly compare the severity of the knockout and Looptail mutant phenotypes by intercrossing the two lines and assaying the planar polarity of inner ear hair cells. Overall the vangl2 knockout phenotype is milder than the phenotype of compound mutants carrying both the Looptail and vangl2 knockout alleles. In compound mutants a greater number of hair cells are affected and changes in the orientation of individual hair cells are greater when quantified. We further demonstrate in a heterologous cell system that the protein encoded by the Looptail mutation (Vangl2S464N) disrupts delivery of Vangl1 and Vangl2 proteins to the cell surface as a result of oligomer formation between Vangl1 and Vangl2S464N, or Vangl2 and Vangl2S464N, coupled to the intracellular retention of Vangl2S464N. As a result, Vangl1 protein is missing from the apical cell surface of vestibular hair cells in Looptail mutants, but is retained at the apical cell surface of hair cells in vangl2 knockouts. Similarly the distribution of Prickle-like2, a putative Vangl2 interacting protein, is differentially affected in the two mutant lines. In summary, we provide evidence for a direct physical interaction between Vangl1 and Vangl2 through a combination of in vitro and in vivo approaches and propose that this interaction underlies the dominant phenotypic traits associated with the Looptail mutation.
Collapse
Affiliation(s)
- Haifeng Yin
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine O. Copley
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lisa V. Goodrich
- The Department of Neurobiology, Harvard Medical School, Boston, Maryland, United States of America
| | - Michael R. Deans
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
52
|
|
53
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
54
|
Canel M, Serrels A, Anderson KI, Frame MC, Brunton VG. Use of photoactivation and photobleaching to monitor the dynamic regulation of E-cadherin at the plasma membrane. Cell Adh Migr 2011; 4:491-501. [PMID: 20595808 DOI: 10.4161/cam.4.4.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The dynamic control of E-cadherin is critical for establishing and maintaining cell-cell junctions in epithelial cells. The concentration of E-cadherin molecules at adherens junctions (AJs) is regulated by lateral movement of E-cadherin within the plasma membrane and endocytosis. Here we set out to study the interplay between these processes and their contribution to E-cadherin dynamics. Using photoactivation (PA) and fluorescence recovery after photobleaching (FRAP) we were able to monitor the fate of E-cadherin molecules within the plasma membrane. Our results suggest that the motility of E-cadherin within, and away from, the cell surface are not exclusive or independent mechanisms and there is a fine balance between the two which when perturbed can have dramatic effects on the regulation of AJs.
Collapse
Affiliation(s)
- Marta Canel
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
55
|
Fu Y, Zheng S, An N, Athanasopoulos T, Popplewell L, Liang A, Li K, Hu C, Zhu Y. β-catenin as a potential key target for tumor suppression. Int J Cancer 2011; 129:1541-51. [PMID: 21455986 DOI: 10.1002/ijc.26102] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/02/2023]
Abstract
β-catenin is a multifunctional protein identified to be pivotal in embryonic patterning, organogenesis and adult homeostasis. It plays a critical structural role in mediating cadherin junctions and is also an essential transcriptional co-activator in the canonical Wnt pathway. Evidence has been documented that both the canonical Wnt pathway and cadherin junctions are deregulated or impaired in a plethora of human malignancies. In the light of this, there has been a recent surge in elucidating the mechanisms underlying the etiology of cancer development from the perspective of β-catenin. Here, we focus on the emerging roles of β-catenin in the process of tumorigenesis by discussing novel functions of old players and new proteins, mechanisms identified to mediate or interact with β-catenin and the most recently unraveled clinical implications of β-catenin regulatory pathways toward tumor suppression.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Khan AA, Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:668-82. [PMID: 21238504 PMCID: PMC3079059 DOI: 10.1016/j.bbamcr.2011.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 12/31/2010] [Accepted: 01/06/2011] [Indexed: 12/19/2022]
Abstract
Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Anwar A. Khan
- Department of Medicine, Section of Hematology/Oncology, University of Illinois College of Medicine, 909 South Wolcott Avenue, Chicago, IL-60612
| | - John G. Quigley
- Department of Medicine, Section of Hematology/Oncology, University of Illinois College of Medicine, 909 South Wolcott Avenue, Chicago, IL-60612
| |
Collapse
|
57
|
Canel M, Serrels A, Miller D, Timpson P, Serrels B, Frame MC, Brunton VG. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res 2010; 70:9413-22. [PMID: 21045155 DOI: 10.1158/0008-5472.can-10-1454] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most cancer-related deaths are due to the development of metastatic disease, and several new molecularly targeted agents in clinical development have the potential to prevent disease progression. However, it remains difficult to assess the efficacy of antimetastatic agents in the clinical setting, and an increased understanding of how such agents work at different stages of the metastatic cascade is important in guiding their clinical use. We used optical window chambers combined with photobleaching, photoactivation, and photoswitching to quantitatively measure (a) tumor cell movement and proliferation by tracking small groups of cells in the context of the whole tumor, and (b) E-cadherin molecular dynamics in vivo following perturbation of integrin signaling by inhibiting focal adhesion kinase (FAK) and Src. We show that inhibition of Src and FAK suppresses E-cadherin-dependent collective cell movement in a complex three-dimensional tumor environment, and modulates cell-cell adhesion strength and endocytosis in vitro. This shows a novel role for integrin signaling in the regulation of E-cadherin internalization, which is linked to regulation of collective cancer cell movement. This work highlights the power of fluorescent, direct, in vivo imaging approaches in the preclinical evaluation of chemotherapeutic agents, and shows that inhibition of the Src/FAK signaling axis may provide a strategy to prevent tumor cell spread by deregulating E-cadherin-mediated cell-cell adhesions.
Collapse
Affiliation(s)
- Marta Canel
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
58
|
Ryan S, Verghese S, Cianciola NL, Cotton CU, Carlin CR. Autosomal recessive polycystic kidney disease epithelial cell model reveals multiple basolateral epidermal growth factor receptor sorting pathways. Mol Biol Cell 2010; 21:2732-45. [PMID: 20519437 PMCID: PMC2912358 DOI: 10.1091/mbc.e09-12-1059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have discovered that multiple basolateral pathways mediate EGF receptor sorting in renal epithelial cells. The polycystic kidney disease allele in the BPK mouse model, Bicc1, interferes with one specific EGF receptor pathway, causing nonpolar delivery of the receptor without affecting overall cell polarity. Sorting and maintenance of the EGF receptor on the basolateral surface of renal epithelial cells is perturbed in polycystic kidney disease and apical expression of receptors contributes to severity of disease. The goal of these studies was to understand the molecular basis for EGF receptor missorting using a well-established mouse model for the autosomal recessive form of the disease. We have discovered that multiple basolateral pathways mediate EGF receptor sorting in renal epithelial cells. The polycystic kidney disease allele in this model, Bicc1, interferes with one specific EGF receptor pathway without affecting overall cell polarity. Furthermore one of the pathways is regulated by a latent basolateral sorting signal that restores EGF receptor polarity in cystic renal epithelial cells via passage through a Rab11-positive subapical compartment. These studies give new insights to possible therapies to reconstitute EGF receptor polarity and function in order to curb disease progression. They also indicate for the first time that the Bicc1 gene that is defective in the mouse model used in these studies regulates cargo-specific protein sorting mediated by the epithelial cell specific clathrin adaptor AP-1B.
Collapse
Affiliation(s)
- Sean Ryan
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | |
Collapse
|
59
|
p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene 2010; 29:3677-90. [DOI: 10.1038/onc.2010.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
60
|
Kurisu J, Fukuda T, Yokoyama S, Hirano T, Kengaku M. Polarized targeting of DNER into dendritic plasma membrane in hippocampal neurons depends on endocytosis. J Neurochem 2010; 113:1598-610. [PMID: 20367751 DOI: 10.1111/j.1471-4159.2010.06714.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targeting of membrane proteins into axons and dendrites is of critical importance for directional signal transmission within specific neural circuits. Many dendritic proteins have been shown to reach the somatodendritic membrane based on selective sorting and transport of carrier vesicles. Using rat hippocampal neurons in culture, we investigated the trafficking pathways of Delta/Notch-like EGF-related receptor (DNER), a transmembrane Notch ligand which is specifically expressed in CNS dendrites. Mutations in the cytoplasmic domain of DNER that abolished somatodendritic localization also increased its surface expression. Furthermore, inhibition of endocytosis resulted in disruption of the somatodendritic localization of DNER, indicating that the somatodendritic targeting of DNER is dependent on endocytosis. The DNER cytoplasmic domain binds to a clathrin adaptor protein complex-2 via a proximal tyrosine motif and a 40 amino acid stretch in the mid-domain, but not by the C-terminal tail. Molecular and pharmacological inhibition revealed that the surface expression of DNER is regulated by clathrin-dependent and -independent endocytosis. In contrast, the somatodendritic targeting of DNER is predominantly regulated by clathrin- and adaptor protein complex-2-independent endocytosis via the C-terminal tail of DNER. Our data suggest that clathrin-independent endocytosis is critical for the polarized targeting of somatodendritic proteins.
Collapse
Affiliation(s)
- Junko Kurisu
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|
61
|
Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 2010; 29:2427-40. [PMID: 20118984 DOI: 10.1038/onc.2009.523] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) receptor expression is often elevated in ovarian cancer, but its potential role in ovarian cancer metastasis has just begun to be revealed. Cadherin switching is a crucial step during tumorigenesis, particularly in metastasis. Here, we showed that GnRH is an inducer of E- to P-cadherin switching, which is reminiscent of that seen during ovarian tumor progression. Overexpression of P-cadherin significantly enhanced, whereas knockdown of P-cadherin reduced migration and invasion regardless of E-cadherin expression, suggesting that inappropriate expression of P-cadherin contributes to the invasive phenotype. These effects of P-cadherin were mediated by activation of the Rho GTPases, Rac1, and Cdc42, through accumulation of p120 catenin (p120(ctn)) in the cytoplasm. The use of p120(ctn) small interfering RNA or chimeric cadherin construct to inhibit p120(ctn) expression and cytoplasmic localization, respectively, resulted in significant inhibition of cell migration and invasion, with a concomitant reduction in Rac1 and Cdc42 activation, confirming that the effect was p120(ctn) specific. Similarly, the migratory/invasive phenotype could be reversed by expression of dominant-negative Rac1 and Cdc42. These results identify for the first time cadherin switching and p120(ctn) signaling as important targets of GnRH function and as novel mediators of invasiveness and tumor progression in ovarian cancer.
Collapse
|
62
|
Peng X, Cuff LE, Lawton CD, DeMali KA. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci 2010; 123:567-77. [PMID: 20086044 DOI: 10.1242/jcs.056432] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vinculin was identified as a component of adherens junctions 30 years ago, yet its function there remains elusive. Deletion studies are consistent with the idea that vinculin is important for the organization of cell-cell junctions. However, this approach removes vinculin from both cell-matrix and cell-cell adhesions, making it impossible to distinguish its contribution at each site. To define the role of vinculin in cell-cell junctions, we established a powerful short hairpin-RNA-based knockdown/substitution model system that perturbs vinculin preferentially at sites of cell-cell adhesion. When this system was applied to epithelial cells, cell morphology was altered, and cadherin-dependent adhesion was reduced. These defects resulted from impaired E-cadherin cell-surface expression. We have investigated the mechanism for the effects of vinculin and found that the reduced surface E-cadherin expression could be rescued by introduction of vinculin, but not of a vinculin A50I substitution mutant that is defective for beta-catenin binding. These findings suggest that an interaction between beta-catenin and vinculin is crucial for stabilizing E-cadherin at the cell surface. This was confirmed by analyzing a beta-catenin mutant that fails to bind vinculin. Thus, our study identifies vinculin as a novel regulator of E-cadherin function and provides important new insight into the dynamic regulation of adherens junctions.
Collapse
Affiliation(s)
- Xiao Peng
- Department of Biochemistry, University of Iowa Roy J. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
63
|
Abstract
The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking contributes to cell polarization through delivery of polarity determinants and regulators to the plasma membrane.
Collapse
Affiliation(s)
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
64
|
Immunoregulatory functions of KLRG1 cadherin interactions are dependent on forward and reverse signaling. Blood 2009; 114:5299-306. [PMID: 19855082 DOI: 10.1182/blood-2009-06-228353] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
KLRG1 is an inhibitory receptor expressed on a subset of mature T and NK cells. Recently, E-, N-, and R-cadherin have been identified as ligands for KLRG1. Cadherins are a large family of transmembrane or membrane-associated glycoproteins that were thought to only bind specifically to other cadherins to mediate specific cell-to-cell adhesion in a Ca(2+)-dependent manner. The consequences of cadherin KLRG1 molecular interactions are not well characterized. Here, we report that the first 2 extracellular domains of cadherin are sufficient to initiate a KLRG1-dependent signaling. We also demonstrate that KLRG1 engagement inhibits cadherin-dependent cellular adhesion and influences dendritic cell secretion of inflammatory cytokines, thereby exerting immunosuppressive effects. Consistent with this, engagement of cadherin by KLRG1 molecule induces cadherin tyrosine phosphorylation. Therefore, KLRG1/cadherin interaction leads to the generation of a bidirectional signal in which both KLRG1 and cadherin activate downstream signaling cascades simultaneously. Taken together, our results provide novel insights on how KLRG1 and E-cadherin interactions are integrated to differentially regulate not only KLRG1(+) cells, but also E-cadherin-expressing cells, such as dendritic cells.
Collapse
|
65
|
Gonzalez A, Rodriguez-Boulan E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett 2009; 583:3784-95. [PMID: 19854182 DOI: 10.1016/j.febslet.2009.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022]
Abstract
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
Collapse
Affiliation(s)
- Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Centro de Regulación Celular y Patología and Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile.
| | | |
Collapse
|
66
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
67
|
Kondylis V, Pizette S, Rabouille C. The early secretory pathway in development: A tale of proteins and mRNAs. Semin Cell Dev Biol 2009; 20:817-27. [DOI: 10.1016/j.semcdb.2009.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
|
68
|
Farr GA, Hull M, Mellman I, Caplan MJ. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. ACTA ACUST UNITED AC 2009; 186:269-82. [PMID: 19620635 PMCID: PMC2717640 DOI: 10.1083/jcb.200901021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
69
|
den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 2009; 20:3740-50. [PMID: 19553471 DOI: 10.1091/mbc.e09-01-0023] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.
Collapse
Affiliation(s)
- Nicole den Elzen
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Brisbane, Australia
| | | | | | | | | |
Collapse
|
70
|
Elwi AN, Damaraju VL, Kuzma ML, Mowles DA, Baldwin SA, Young JD, Sawyer MB, Cass CE. Transepithelial fluxes of adenosine and 2′-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol 2009; 296:F1439-51. [DOI: 10.1152/ajprenal.90411.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the roles of human nucleoside transporters (hNTs) in mediating transepithelial fluxes of adenosine, 2′-deoxyadenosine, and three purine nucleoside anti-cancer drugs across polarized monolayers of human renal proximal tubule cells (hRPTCs), which were shown in previous studies to have human equilibrative NT 1 (hENT1) and 2 (hENT2) and human concentrative NT 3 (hCNT3) activities ( 11 ). Early passage hRPTCs were cultured on transwell inserts under conditions that induced formation of polarized monolayers with experimentally accessible apical and basolateral domains. Polarized hRPTC cultures were monitored for inhibitor sensitivities and sodium-dependence of the following: 1) transepithelial fluxes of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine (9-β-d-arabinosyl-2-fluoroadenine), cladribine (2-chloro-2′-deoxyadenosine), and clofarabine (2-chloro-2′-fluoro-deoxy-9-β-d-arabinofuranosyladenine); 2) mediated uptake of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine, cladribine, and clofarabine from either apical or basolateral surfaces; and 3) relative apical cell surface hCNT3 protein levels. Transepithelial fluxes of adenosine were mediated from apical-to-basolateral sides by apical hCNT3 and basolateral hENT2, whereas transepithelial fluxes of 2′-deoxyadenosine were mediated from basolateral-to-apical sides by apical hENT1 and basolateral human organic anion transporters (hOATs). The transepithelial fluxes of adenosine, hCNT3-mediated cellular uptake of adenosine, and relative apical cell surface hCNT3 protein levels correlated positively in polarized hRPTCs. The purine nucleoside anti-cancer drugs fludarabine, cladribine, and clofarabine, like adenosine exhibited apical-to-basolateral fluxes. Collectively, this evidence suggested that apical hCNT3 and basolateral hENT2 are involved in proximal tubular reabsorption of adenosine and some nucleoside drugs and that apical hENT1 and basolateral hOATs are involved in proximal tubular secretion of 2′-deoxyadenosine.
Collapse
|
71
|
Sequence- or Position-Specific Mutations in the Carboxyl-Terminal FL Motif of the Kidney Sodium Bicarbonate Cotransporter (NBC1) Disrupt Its Basolateral Targeting and α-Helical Structure. J Membr Biol 2009; 228:111-24. [DOI: 10.1007/s00232-009-9164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
|
72
|
Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J 2009; 418:247-60. [PMID: 19196245 DOI: 10.1042/bj20081844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The morphogenesis of epithelial cells in the tissue microenvironment depends on the regulation of the forces and structures that keep cells in contact with their neighbours. The formation of cell-cell contacts is integral to the establishment and maintenance of epithelial morphogenesis. In epithelial tissues, the misregulation of the signalling pathways that control epithelial polarization induces migratory and invasive cellular phenotypes. Many cellular processes influence cadherin targeting and function, including exocytosis, endocytosis and recycling. However, the localized generation of the lipid messenger PtdIns(4,5)P(2) is emerging as a fundamental signal controlling all of these processes. The PtdIns(4,5)P(2)-generating enzymes, PIPKs (phosphatidylinositol phosphate kinases) are therefore integral to these pathways. By the spatial and temporal targeting of PIPKs via the actions of its functional protein associates, PtdIns(4,5)P(2) is generated at discrete cellular locales to provide the cadherin-trafficking machinery with its required lipid messenger. In the present review, we discuss the involvement of PtdIns(4,5)P(2) and the PIPKs in the regulation of the E-cadherin (epithelial cadherin) exocytic and endocytic machinery, the modulation of actin structures at sites of adhesion, and the direction of cellular pathways which determine the fate of E-cadherin and cell-cell junctions. Recent work is also described that has defined phosphoinositide-mediated E-cadherin regulatory pathways by the use of organismal models.
Collapse
|
73
|
Abstract
Morphogenesis of epithelial tissues involves various forms of reshaping of cell layers, such as invagination or bending, convergent extension, and epithelial-mesenchymal transition. At the cellular level, these processes include changes in the shape, position, and assembly pattern of cells. During such morphogenetic processes, epithelial sheets in general maintain their multicellular architecture, implying that they must engage the mechanisms to change the spatial relationship with their neighbors without disrupting the junctions. A major junctional structure in epithelial tissues is the "adherens junction," which is composed of cadherin adhesion receptors and associated proteins including F-actin. The adherens junctions are required for the firm associations between cells, as disruption of them causes disorganization of the epithelial architecture. The adherens junctions, however, appear to be a dynamic entity, allowing the rearrangement of cells within cell sheets. This dynamic nature of the adherens junctions seems to be supported by various mechanisms, such as the interactions of cadherins with actin cytoskeleton, endocytosis and recycling of cadherins, and the cooperation of cadherins with other adhesion receptors. In this chapter, we provide an overview of these mechanisms analyzed in vitro and in vivo.
Collapse
|
74
|
Abstract
Cadherins are a large family of cell-cell adhesion molecules that tether cytoskeletal networks of actin and intermediate filaments to the plasma membrane. This function of cadherins promotes tissue organization and integrity, as demonstrated by numerous disease states that are characterized by the loss of cadherin-based adhesion. However, plasticity in cell adhesion is often required in cellular processes such as tissue patterning during development and epithelial migration during wound healing. Recent work has revealed a pivotal role for various membrane trafficking pathways in regulating cellular transitions between quiescent adhesive states and more dynamic phenotypes. The regulation of cadherins by membrane trafficking is emerging as a key player in this balancing act, and studies are beginning to reveal how this process goes awry in the context of disease. This review summarizes the current understanding of how cadherins are routed and how the interface between cadherins and membrane trafficking pathways regulates cell surface adhesive potential. Particular emphasis is placed on the regulation of cadherin trafficking by catenins and the interplay between growth factor signaling pathways and cadherin endocytosis.
Collapse
Affiliation(s)
- Emmanuella Delva
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30332, USA
| | | |
Collapse
|
75
|
Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 2008; 296:F459-69. [PMID: 18971212 DOI: 10.1152/ajprenal.90340.2008] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polarized distribution of plasma membrane transporters and receptors in epithelia is essential for vectorial functions of epithelia. This polarity is maintained by sorting of membrane proteins into apical or basolateral transport containers in the trans-Golgi network and/or endosomes followed by their delivery to the appropriate plasma membrane domains. Sorting depends on the recognition of sorting signals in proteins by specific sorting machinery. In the present review, we summarize experimental evidence for and against the hypothesis that N-glycans attached to the membrane proteins can act as apical sorting signals. Furthermore, we discuss the roles of N-glycans in the apical sorting event per se and their contribution to folding and quality control of glycoproteins in the endoplasmic reticulum or retention of glycoproteins in the plasma membrane. Finally, we review existing hypotheses on the mechanism of apical sorting and discuss the potential roles of the lectins, VIP36 and galectin-3, as putative apical sorting receptors.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, David Geffen School of Medicine at University of California, Bldg. 113, Rm. 324, 11301 Wilshire Blvd., Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
76
|
Ludwig T, Theissen SM, Morton MJ, Caplan MJ. The cytoplasmic tail dileucine motif LL572 determines the glycosylation pattern of membrane-type 1 matrix metalloproteinase. J Biol Chem 2008; 283:35410-8. [PMID: 18955496 DOI: 10.1074/jbc.m801816200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP-14) drives fundamental physiological and pathological processes, due to its ability to process a broad spectrum of substrates. Because subtle changes in its activity can produce profound physiological effects, MT1-MMP is tightly regulated. Currently, many aspects of this regulation remain to be elucidated. It has recently been discovered that O-linked glycosylation defines the substrate spectrum of MT1-MMP. We hypothesized that a mutual interdependency exists between MT1-MMP trafficking and glycosylation. Lectin precipitation, metabolic labeling, enzymatic deglycosylation, and site-directed mutagenesis studies demonstrate that the LL(572) motif in the cytoplasmic tail of MT1-MMP influences the composition of the complex O-linked carbohydrates attached to the hinge region of the protein. This influence appears to be independent from major effects on cell surface trafficking. MT1-MMP undergoes extensive processing after its synthesis. The origins and the molecular characters of its multiple forms are incompletely understood. Here, we develop and present a model for the sequential, post-translational processing of MT1-MMP that defines stages in the post-synthetic pathway pursued by the protein.
Collapse
Affiliation(s)
- Thomas Ludwig
- German Cancer Research Center Heidelberg, Microenvironment of Tumor Cell Invasion, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.
| | | | | | | |
Collapse
|
77
|
Tingaud-Sequeira A, Chauvigné F, Fabra M, Lozano J, Raldúa D, Cerdà J. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication. BMC Evol Biol 2008; 8:259. [PMID: 18811940 PMCID: PMC2564943 DOI: 10.1186/1471-2148-8-259] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/23/2008] [Indexed: 12/31/2022] Open
Abstract
Background Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear. Results By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms. Conclusion We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma membrane.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
78
|
Carmosino M, Giménez I, Caplan M, Forbush B. Exon loss accounts for differential sorting of Na-K-Cl cotransporters in polarized epithelial cells. Mol Biol Cell 2008; 19:4341-51. [PMID: 18667527 DOI: 10.1091/mbc.e08-05-0478] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The renal Na-K-Cl cotransporter (NKCC2) is selectively expressed in the apical membranes of cells of the mammalian kidney, where it is the target of the clinically important loop diuretics. In contrast, the "secretory" NKCC1 cotransporter is localized in the basolateral membranes of many epithelia. To identify the sorting signal(s) that direct trafficking of NKCCs, we generated chimeras between the two isoforms and expressed these constructs in polarized renal epithelial cell lines. This analysis revealed an amino acid stretch in NKCC2 containing apical sorting information. The NKCC1 C terminus contains a dileucine motif that constitutes the smallest essential component of its basolateral sorting signal. NKCC1 lacking this motif behaves as an apical protein. Examination of the NKCC gene structure reveals that this dileucine motif is encoded by an additional exon in NKCC1 absent in NKCC2. Phylogenetic analysis of this exon suggests that the evolutionary loss of this exon from the gene encoding the basolateral NKCC1 constitutes a novel mechanism that accounts for the apical sorting of the protein encoded by the NKCC2 gene.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
79
|
Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 2008; 295:C545-56. [PMID: 18579802 DOI: 10.1152/ajpcell.00097.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The correct targeting and trafficking of the adherens junction protein epithelial cadherin (E-cadherin) is a major determinant for the acquisition of epithelial cell polarity and for the maintenance of epithelial integrity. The compartments and trafficking components required to sort and transport E-cadherin to the basolateral cell surface remain to be fully defined. On the basis of previous data, we know that E-cadherin is trafficked via the recycling endosome (RE) in nonpolarized and newly polarized cells. Here we explore the role of the RE throughout epithelial morphogenesis in MDCK monolayers and cysts. Time-lapse microscopy in live cells, altering RE function biochemically, and expressing a dominant-negative form of Rab11 (DN-Rab11), each showed that the RE is always requisite for E-cadherin sorting and trafficking. The RE remained important for E-cadherin trafficking in MDCK cells from a nonpolarized state through to fully formed, polarized epithelial monolayers. During the development of epithelial cysts, DN-Rab11 disrupted E-cadherin targeting and trafficking, the subapical localization of pERM and actin, and cyst lumen formation. This final effect demonstrated an early and critical interdependence of Rab11 and the RE for E-cadherin targeting, apical membrane formation, and cell polarity in cysts.
Collapse
Affiliation(s)
- Marion Desclozeaux
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072 Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
80
|
Ruiz A, Hill MS, Schmitt K, Guatelli J, Stephens EB. Requirements of the membrane proximal tyrosine and dileucine-based sorting signals for efficient transport of the subtype C Vpu protein to the plasma membrane and in virus release. Virology 2008; 378:58-68. [PMID: 18579178 DOI: 10.1016/j.virol.2008.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/18/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
Previously, we showed that the Vpu protein from HIV-1 subtype C is more efficiently transported to the cell surface than the well studied subtype B Vpu (Pacyniak et al., 2005) and that a SHIV expressing the subtype C Vpu exhibited a decreased rate of CD4+ T cell loss following inoculation in macaques (Hill et al., 2008). In this study, we examined the role of overlapping tyrosine-based (YXXPhi) and dileucine-based ([D/E]XXXL[L/I]) motifs in the membrane proximal region of the subtype C Vpu (EYRKLL) in Vpu intracellular transport, CD4 surface expression and virus release from the cell surface. We constructed three site-directed mutants of the subtype C vpu and fused these genes to the gene for enhanced green fluorescent protein (EGFP). The first mutation made altered the tyrosine (EARKLL; VpuSCEGFPY35A), the second altered the dileucine motif (EYRKLG; VpuSCEGFPL39G), and the third contained both amino acid substitutions (EARKLG; VpuSCEGFPYL35,39AG) in this region of the Vpu protein. The VpuSCEGFPY35A protein was transported to the cell surface similar to the unmodified VpuSCEGFP1 while VpuSCEGFPL39G was expressed at the cell surface at significantly reduced levels. The VpuSCEGFPYL35,39AG was found to have an intermediate level of cell surface expression. All three mutant Vpu proteins were analyzed for the ability to prevent cell surface expression of CD4. We found that both single mutants did not significantly effect CD4 surface expression while the double mutant (VpuSCEGFPYL35,39AG) was significantly less efficient at preventing cell surface CD4 expression. Chimeric simian human immunodeficiency viruses were constructed with these mutations in vpu (SHIVSCVpuY35A, SHIVSCVpuL39G and SHIVSCVpuYL35,39AG). Our results indicate that SHIVSCVpuL39G replicated much more efficiently and was much more cytopathic than SHIVSCVpu. In contrast, SHIVSCVpuY35A and SHIVSCVpuYL35,39AG replicated less efficiently when compared to the parental SHIVSCVpu. Taken together, these results show for the first time that the membrane proximal tyrosine-based sorting motif in the cytoplasmic domain of Vpu is essential for efficient virus release. These results also indicate that the dileucine-based sorting motif affects the intracellular trafficking of subtype C Vpu proteins, virus replication, and release.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
81
|
Clathrin is a key regulator of basolateral polarity. Nature 2008; 452:719-23. [PMID: 18401403 DOI: 10.1038/nature06828] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/07/2008] [Indexed: 12/20/2022]
Abstract
Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.
Collapse
|
82
|
Théard D, Raspe MA, Kalicharan D, Hoekstra D, van IJzendoorn SCD. Formation of E-cadherin/beta-catenin-based adherens junctions in hepatocytes requires serine-10 in p27(Kip1). Mol Biol Cell 2008; 19:1605-13. [PMID: 18272788 DOI: 10.1091/mbc.e07-07-0661] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adhesion between epithelial cells at adherens junctions is regulated by signaling pathways that mediate the intracellular trafficking and assembly of its core components. Insight into the molecular mechanisms of this is necessary to understand how adherens junctions contribute to the functional organization of epithelial tissues. Here, we demonstrate that in human hepatic HepG2 cells, oncostatin M-p42/44 mitogen-activated protein kinase signaling stimulates the phosphorylation of p27(Kip1) on Ser-10 and promotes cell-cell adhesion. The overexpression of wild-type p27 or a phospho-mimetic p27S10D mutant in HepG2 cells induces a hyper-adhesive phenotype. In contrast, the overexpression of a nonphosphorylatable p27S10A mutant prevents the mobilization of E-cadherin and beta-catenin at the cell surface, reduces basal cell-cell adhesion strength, and prevents the stimulatory effect of oncostatin M on cell-cell adhesion. As part of the underlying molecular mechanism, it is shown that in p27S10A-expressing cells beta-catenin interacts with p27 and is prevented from interacting with E-cadherin. The intracellular retention of E-cadherin and beta-catenin is also observed in hepatocytes from p27S10A knockin mice that express the p27S10A mutant instead of wild-type p27. Together, these data suggest that the formation of adherens junctions in hepatocytes requires Ser-10 in p27.
Collapse
Affiliation(s)
- Delphine Théard
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
83
|
Yamamura R, Nishimura N, Nakatsuji H, Arase S, Sasaki T. The interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of tight junctions and adherens junctions. Mol Biol Cell 2007; 19:971-83. [PMID: 18094055 DOI: 10.1091/mbc.e07-06-0551] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca(2+)-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.
Collapse
Affiliation(s)
- Rie Yamamura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
84
|
Miyashita Y, Ozawa M. A dileucine motif in its cytoplasmic domain directs β-catenin-uncoupled E-cadherin to the lysosome. J Cell Sci 2007; 120:4395-406. [DOI: 10.1242/jcs.03489] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The E-cadherin-catenin complex regulates Ca2+-dependent cell-cell adhesion and is localized to the basolateral membrane of polarized epithelial cells. Uncoupling β-catenin from E-cadherin by deletion or substitution mutations causes accumulation of these proteins in intracellular compartments, including the trans-Golgi network and early endosomes, and degradation in lysosomes. Expression of a dominant-negative dynamin did not change the pattern of the mutant E-cadherin localization, indicating that the endocytosis of the protein from the cell surface does not contribute significantly to the accumulation of the protein in the intracellular compartments. Alternatively, E-cadherin lacking its entire cytoplasmic domain (tail-less E-cadherin) was detected on the surface of cells and targeted to the basolateral membrane. We found that 20 amino acid residues within the juxtamembrane region contain the signal responsible for intracellular accumulation and the lysosomal targeting of E-cadherin. A dileucine motif within this region seems crucial, because substitution of these residues to alanines resulted in efficient surface expression of the protein. The tail-less E-cadherin construct and the dileucine-substitution construct were detected on the basolateral membranes. Thus, the dileucine motif of E-cadherin is not required for its basolateral targeting.
Collapse
Affiliation(s)
- Yayoi Miyashita
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
85
|
Bryant DM, Kerr MC, Hammond LA, Joseph SR, Mostov KE, Teasdale RD, Stow JL. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J Cell Sci 2007; 120:1818-28. [PMID: 17502486 DOI: 10.1242/jcs.000653] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In epithelia, junction proteins are endocytosed for modulation of cell-cell adhesion and cell polarity. In response to growth factors, the cell-cell adhesion protein E-cadherin is internalized from the cell surface with degradation or recycling as potential fates. However, the cellular machinery involved in cadherin internalization and recycling remains controversial. Here we investigated EGF-induced E-cadherin internalization. EGF stimulation of MCF-7 cells resulted in Rac1-modulated macropinocytosis of the E-cadherin-catenin complex into endosomal compartments that colocalized with EEA1 and the sorting nexin, SNX1. Depletion of cellular SNX1 levels by siRNA resulted in increased intracellular accumulation and turnover of E-cadherin internalized from the cell surface in response to EGF. Moreover, SNX1 was also required for efficient recycling of internalized E-cadherin and re-establishment of epithelial adhesion. Together, these findings demonstrate a role for SNX1 in retrieval of E-cadherin from a degradative endosomal pathway and in membrane trafficking pathways that regulate E-cadherin recycling.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
86
|
Murphy SJ, Shapira KE, Henis YI, Leof EB. A unique element in the cytoplasmic tail of the type II transforming growth factor-beta receptor controls basolateral delivery. Mol Biol Cell 2007; 18:3788-99. [PMID: 17634290 PMCID: PMC1995729 DOI: 10.1091/mbc.e06-10-0930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF)-beta receptors stimulate diverse signaling processes that control a wide range of biological responses. In polarized epithelia, the TGFbeta type II receptor (T2R) is localized at the basolateral membranes. Sequential cytoplasmic truncations resulted in receptor missorting to apical surfaces, and they indicated an essential targeting element(s) near the receptor's C terminus. Point mutations in the full-length receptor confirmed this prediction, and a unique basolateral-targeting region was elucidated between residues 529 and 538 (LTAxxVAxxR) that was distinct, but colocalized within a clinically significant signaling domain essential for TGFbeta-dependent activation of the Smad2/3 cascade. Transfer of a terminal 84 amino-acid fragment, containing the LTAxxVAxxR element, to the apically sorted influenza hemagglutinin (HA) protein was dominant and directed basolateral HA expression. Although delivery to the basolateral surfaces was direct and independent of any detectable transient apical localization, fluorescence recovery after photobleaching demonstrated similar mobility for the wild-type receptor and a missorted mutant lacking the targeting motif. This latter finding excludes the possibility that the domain acts as a cell membrane retention signal, and it supports the hypothesis that T2R sorting occurs from an intracellular compartment.
Collapse
Affiliation(s)
- Stephen J. Murphy
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Keren E. Shapira
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I. Henis
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward B. Leof
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| |
Collapse
|
87
|
Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BLM, Bennett V. Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 2007; 282:26552-61. [PMID: 17620337 DOI: 10.1074/jbc.m703158200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-cadherin is a ubiquitous component of lateral membranes in epithelial tissues and is required to form the first lateral membrane domains in development. Here, we identify ankyrin-G as a molecular partner of E-cadherin and demonstrate that ankyrin-G and beta-2-spectrin are required for accumulation of E-cadherin at the lateral membrane in both epithelial cells and early embryos. Ankyrin-G binds to the cytoplasmic domain of E-cadherin at a conserved site distinct from that of beta-catenin. Ankyrin-G also recruits beta-2-spectrin to E-cadherin-beta-catenin complexes, thus providing a direct connection between E-cadherin and the spectrin/actin skeleton. In addition to restricting the membrane mobility of E-cadherin, ankyrin-G and beta-2-spectrin also are required for exit of E-cadherin from the trans-Golgi network in a microtubule-dependent pathway. Ankyrin-G and beta-2-spectrin co-localize with E-cadherin in preimplantation mouse embryos. Moreover, knockdown of either ankyrin-G or beta-2-spectrin in one cell of a two-cell embryo blocks accumulation of E-cadherin at sites of cell-cell contact. E-cadherin thus requires both ankyrin-G and beta-2-spectrin for its cellular localization in early embryos as well as cultured epithelial cells. We have recently reported that ankyrin-G and beta-2-spectrin collaborate in biogenesis of the lateral membrane ( Kizhatil, K., Yoon, W., Mohler, P. J., Davis, L. H., Hoffman, J. A., and Bennett, V. (2007) J. Biol. Chem. 282, 2029-2037 ). Together with the current findings, these data suggest a ankyrin/spectrin-based mechanism for coordinating membrane assembly with extracellular interactions of E-cadherin at sites of cell-cell contact.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
88
|
Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. ACTA ACUST UNITED AC 2007; 176:343-53. [PMID: 17261850 PMCID: PMC2063960 DOI: 10.1083/jcb.200606023] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Assembly of E-cadherin–based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIγ also interacts with the μ subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIγ or disruption of PIPKIγ binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIγ binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIγ serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.
Collapse
Affiliation(s)
- Kun Ling
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
89
|
Miyashita Y, Ozawa M. Increased Internalization of p120-uncoupled E-cadherin and a Requirement for a Dileucine Motif in the Cytoplasmic Domain for Endocytosis of the Protein. J Biol Chem 2007; 282:11540-8. [PMID: 17298950 DOI: 10.1074/jbc.m608351200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. E-cadherin associates with beta-catenin at the membrane-distal region of its cytosolic domain and with p120 at the membrane-proximal region of its cytoplasmic domain. It has been shown that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. Further, p120 knockdown by small interference RNA resulted in dose-dependent elimination of cell surface E-cadherin. Consistent with these observations, we found that selective uncoupling of p120 from E-cadherin by introduction of amino acid substitutions in the p120-binding site increased the level of E-cadherin endocytosis. The increased endocytosis was clathrin-dependent, because it was blocked by expression of a dominant-negative form of dynamin or by hypertonic shock. A dileucine motif in the juxtamembrane cytoplasmic domain is required for E-cadherin endocytosis, because substitution of these residues to alanine resulted in impaired internalization of the protein. The alanine substitutions in the p120-uncoupled construct reduced endocytosis of the protein, indicating that this motif was dominant to p120 binding in the control of E-cadherin endocytosis. Therefore, these results are consistent with the idea that p120 regulates E-cadherin endocytosis by masking the dileucine motif and preventing interactions with adaptor proteins required for internalization.
Collapse
Affiliation(s)
- Yayoi Miyashita
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | |
Collapse
|
90
|
Xiao K, Oas RG, Chiasson CM, Kowalczyk AP. Role of p120-catenin in cadherin trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:8-16. [PMID: 16949165 DOI: 10.1016/j.bbamcr.2006.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
p120-catenin (p120) has emerged over the past several years as an important regulatory component of the cadherin adhesive complex. A core function of p120 in mammalian cells is to stabilize cadherins at the cell membrane by modulating cadherin membrane trafficking and degradation. In this way, p120 levels act as a set point mechanism that tunes cell-cell adhesive interactions. The primary control point for this regulatory activity appears to be at the level of cadherin internalization from the plasma membrane, although p120 may also impact other aspects of cadherin trafficking and turnover. In the following review, the general mechanisms of cadherin trafficking are discussed, and models for how p120 may influence cadherin membrane dynamics are presented. In one model, p120 may function as a "cap" to bind the cadherin cytoplasmic tail and prevent cadherin interactions with endocytic membrane trafficking machinery. Alternatively, p120 may stabilize cell junctions or regulate membrane trafficking machinery through interactions with small GTPases such as Rho A, Rac and Cdc42. Through these mechanisms p120 exerts influence over a wide range of biological processes that are dependent upon tight regulation of cell surface cadherin levels.
Collapse
Affiliation(s)
- Kanyan Xiao
- Department of Cell Biology and Dermatology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
91
|
Li HC, Li EY, Neumeier L, Conforti L, Soleimani M. Identification of a novel signal in the cytoplasmic tail of the Na+:HCO3- cotransporter NBC1 that mediates basolateral targeting. Am J Physiol Renal Physiol 2006; 292:F1245-55. [PMID: 17182531 DOI: 10.1152/ajprenal.00410.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+):HCO(3)(-) cotransporter NBC1 (SLC4A4, variant A, kidney specific) is located exclusively on the basolateral membrane of epithelial cells, implying that this molecule has acquired specific signals for targeting to the basolateral membrane. A motif with the sequence QQPFLS (positions 1010-1015) in the cytoplasmic tail of NBC1 was recently demonstrated to mediate targeting of NBC1 to the basolateral membrane. Here, we demonstrate that mutating the amino acid F (phenylalanine) or L (leucine) at positions 1013 or 1014 to alanine, respectively, resulted in the retargeting of NBC1 to the apical membrane. Furthermore, mutation of the FL motif to FF showed similar properties as the wild-type; however, mutation of the FL motif to LL showed significant intracellular retention of NBC1. Mutating the amino acids Q-Q-P and S (positions 1010-1011-1012 and 1015) to A-A-A and A, respectively, did not affect the membrane targeting of NBC1. Functional studies in oocytes with microelectrode demonstrated that the apically targeted mutants, as well as basolaterally targeted mutants, are all functional. We propose that the FL motif in the COOH-terminal tail of NBC1 is essential for the targeting of NBC1 to the basolateral membrane but is distinct from the membrane-targeting di-leucine motif identified in other membrane proteins.
Collapse
Affiliation(s)
- Hong C Li
- Dept. of Internal Medicine, Div. of Nephrology and Hypertension, Univ. of Cincinnati, 231 Albert Sabin Way, MSB G259, Cincinnati, OH 45267-0585, USA
| | | | | | | | | |
Collapse
|
92
|
Hodson CA, Ambrogi IG, Scott RO, Mohler PJ, Milgram SL. Polarized apical sorting of guanylyl cyclase C is specified by a cytosolic signal. Traffic 2006; 7:456-64. [PMID: 16536743 DOI: 10.1111/j.1600-0854.2006.00398.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Receptor guanylyl cyclases respond to ligand stimulation by increasing intracellular cGMP, thereby initiating a variety of cell-signaling pathways. Furthermore, these proteins are differentially localized at the apical and basolateral membranes of epithelial cells. We have identified a region of 11 amino acids in the cytosolic COOH terminus of guanylyl cyclase C (GCC) required for normal apical localization in Madin-Darby canine kidney (MDCK) cells. These amino acids share no significant sequence homology with previously identified cytosolic apical sorting determinants. However, these amino acids are highly conserved and are sufficient to confer apical polarity to the interleukin-2 receptor alpha-chain (Tac). Additionally, we find two molecular weight species of GCC in lysates prepared from MDCK cells over-expressing GCC but observe only the fully mature species on the cell surface. Using pulse-chase analysis in polarized MDCK cells, we followed the generation of this mature species over time finding it to be detectable only at the apical cell surface. These data support the hypothesis that selective apical sorting can be determined using short, cytosolic amino acid motifs and argue for the existence of apical sorting machinery comparable with the machinery identified for basolateral protein traffic.
Collapse
Affiliation(s)
- Caleb A Hodson
- Graduate Program in Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
93
|
Grati M, Aggarwal N, Strehler EE, Wenthold RJ. Molecular determinants for differential membrane trafficking of PMCA1 and PMCA2 in mammalian hair cells. J Cell Sci 2006; 119:2995-3007. [PMID: 16803870 DOI: 10.1242/jcs.03030] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane Ca2+-ATPase-2 (PMCA2) is expressed in stereocilia of hair cells of the inner ear, whereas PMCA1 is expressed in the basolateral plasma membrane of hair cells. Both extrude excess Ca2+ from the cytosol. They are predicted to contain ten membrane-spanning segments, two large cytoplasmic loops as well as cytosolic N- and C-termini. Several isoform variants are generated for both PMCA1 and PMCA2 by alternative splicing, affecting their first cytosolic loop (A-site) and their C-terminal tail. To understand how these isoforms are differentially targeted in hair cells, we investigated their targeting regions and expression in hair cells. Our results show that a Leu-Ile motif in 'b'-tail splice variants promotes PMCA1b and PMCA2b basolateral sorting in hair cells. Moreover, apical targeting of PMCA2 depends on the size of the A-site-spliced insert, suggesting that the conformation of the cytoplasmic loop plays a role in apical targeting.
Collapse
Affiliation(s)
- M'hamed Grati
- Laboratory of Neurochemistry, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
94
|
Wild-Bode C, Fellerer K, Kugler J, Haass C, Capell A. A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J Biol Chem 2006; 281:23824-9. [PMID: 16777847 DOI: 10.1074/jbc.m601542200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAM10 (a disintegrin and metalloprotease) initiates regulated intramembrane proteolysis by shedding the ectodomain of a number of different substrates. Shedding is followed by subsequent intramembrane proteolysis leading to the liberation of intracellular domains capable of nuclear signaling. ADAM10 substrates have been found at cell-cell contacts and are apparently involved in cell-cell interaction and cell migration. Here we have investigated the cellular mechanism that guides ADAM10 to substrates at cell-cell contacts. We demonstrate that intracellular trafficking of ADAM10 critically requires a novel sorting signal within its cytoplasmic domain. Sequential deletion of the cytoplasmic domain and site-directed mutagenesis suggest that a potential Src homology 3-binding domain is essential for ADAM10 sorting. In a polarized epithelial cell line this motif not only targets ADAM10 to adherens junctions but is also strictly required for ADAM10 function in E-cadherin processing and cell migration.
Collapse
Affiliation(s)
- Christine Wild-Bode
- Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
95
|
Guezguez B, Vigneron P, Alais S, Jaffredo T, Gavard J, Mège RM, Dunon D. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett 2006; 580:3649-56. [PMID: 16756976 DOI: 10.1016/j.febslet.2006.05.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 01/28/2023]
Abstract
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.
Collapse
Affiliation(s)
- Borhane Guezguez
- Université Pierre et Marie, Curie-Paris 6, CNRS UMR 7622, Bat C 6ème étage, Case 24, 9 quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
96
|
Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B, Shi S. Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3. J Cell Physiol 2006; 206:821-30. [PMID: 16331647 DOI: 10.1002/jcp.20553] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sodium-dependent dicarboxylate transporters (NaDC) include low-affinity NaDC1 and high-affinity NaDC3. Despite high similarities structurally and functionally, both are localized to opposite surfaces of renal tubular cells. The molecular mechanisms and localization signals leading to this polarized distribution remain unknown. In this study, distribution of NaDC3 in human kidney tissue was firstly observed by immunohistochemistry and immunofluorescence. Then, EGFP-fused wild-type, NH2- and COOH-terminal deletion and point mutants of NaDC3, and chimera between NaDC3 and NaDC1, were generated and transfected into polarized renal cells lines, LLC-PK1 and MDCK. Their subcellular localizations were analyzed by laser confocal microscopy. Immunolocalization results revealed that NaDC3 was expressed at basolateral membrane of human renal proximal tubular epithelia. Confocal examinations showed that wild-type NaDC3 was targeted to the basolateral membrane of MDCK and LLC-PK1. Deletion mutations indicated that the basolateral targeting signal of NaDC3 located within a short sequence AKKVWSARR of its amino-terminal cytoplasmic domain. Addition of this sequence could redirect apical NaDC1 to the basolateral membrane of LLC-PK1. Point mutagenesis revealed that mutation of either of two hydrophobic amino acids V and W in this short sequence largely redirected NaDC3 to both apical and basolateral surfaces of LLC-PK, indicating that the two hydrophobic amino acids are critical for the basolateral targeting of NaDC3. Our studies provide direct evidence of the localization of NaDC3 at the basolateral membrane of human renal proximal tubule cells and identify a di-hydrophobic amino acid motif VW as basolateral localization signal in the N-terminal cytoplasmic domain of NaDC3.
Collapse
Affiliation(s)
- Xueyuan Bai
- Chinese PLA Kidney Center & Key Lab of Nephrology, Chinese PLA General Hospital & Medical Postgraduate College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
97
|
Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 2006; 6:1142-56. [PMID: 16262725 DOI: 10.1111/j.1600-0854.2005.00349.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.
Collapse
Affiliation(s)
- John G Lock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
98
|
Castelletti D, Fracasso G, Alfalah M, Cingarlini S, Colombatti M, Naim HY. Apical Transport and Folding of Prostate-specific Membrane Antigen Occurs Independent of Glycan Processing. J Biol Chem 2006; 281:3505-12. [PMID: 16221666 DOI: 10.1074/jbc.m509460200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an integral cell-surface membrane glycoprotein that is overexpressed in prostate carcinomas rendering it an appropriate target for antibody-based therapeutic strategies. The biosynthesis of PSMA in transfected COS-1 cells reveals a slow conversion of mannose-rich to complex glycosylated PSMA compatible with slow transport kinetics from the endoplasmic reticulum to the Golgi. Importantly, mannose-rich PSMA persists as a trypsin-sensitive protein throughout its entire life cycle, and only Golgi-located PSMA glycoforms acquire trypsin resistance. This resistance, used here as a tool to examine correct folding, does not depend on the type of glycosylation, because different PSMA glycoforms generated in the presence of inhibitors of carbohydrate processing in the Golgi are also trypsin resistant. The conformational transition of PSMA to a correctly folded molecule is likely to occur in the Golgi and does not implicate ER molecular chaperones, such as BiP. We show here that PSMA is not only heavily N-but also O-glycosylated. The question arising is whether glycans, which do not play a role in folding of PSMA, are implicated in its transport to the cell surface. Neither the cell-surface expression of PSMA nor its efficient apical sorting in polarized Madin-Darby canine kidney cells are influenced by modulators of N- and O-glycosylation. The acquisition of folding determinants in the Golgi, therefore, is an essential prerequisite for protein trafficking and sorting of PSMA and suggests that altered or aberrant glycosylation often occurring during tumorigenesis has no regulatory effect on the cell-surface expression of PSMA.
Collapse
Affiliation(s)
- Deborah Castelletti
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Rai T, Sasaki S, Uchida S. Polarized trafficking of the aquaporin-3 water channel is mediated by an NH2-terminal sorting signal. Am J Physiol Cell Physiol 2006; 290:C298-304. [PMID: 16135541 DOI: 10.1152/ajpcell.00356.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3.
Collapse
Affiliation(s)
- Tatemitsu Rai
- Dept. of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
100
|
Newton EE, Wu Z, Simister NE. Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci 2005; 118:2461-9. [PMID: 15923659 DOI: 10.1242/jcs.02367] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neonatal Fc receptor, FcRn, transports proteins through cells, avoiding degradative compartments. FcRn is used in many physiological processes where proteins must remain intact while they move through cells. These contexts include the transport of IgG antibodies from mother to offspring, and the protection of IgG and albumin from catabolism. In polarized cell models, FcRn in the plasma membrane is predominantly at the basolateral surface. This distribution depends on two signals that overlap endocytosis signals. One of these signals resembles a YXXPhi motif, but with a tryptophan in place of the critical tyrosine residue; the other is a DDXXXLL signal. We examined the effects of mutations in and around these signals on the basolateral targeting of rat FcRn in rat inner medullary collecting duct cells. We also studied a second acidic cluster, Glu331/Glu333, some distance from either endocytosis signal. Some amino acid substitutions in the W-2 and W+3 positions disrupted the tryptophan-based basolateral-targeting signal without impairing its function in endocytosis. The tryptophan-based basolateral targeting and endocytosis signals are thus distinct but overlapping, as has been seen for collinear tyrosine-based signals. Surprisingly, the tryptophan-based basolateral-targeting signal required the aspartate pair of the dileucine-based signal. This acidic cluster, separated by two amino acids from the Phi residue of the tryptophan signal, is therefore a component of both of the basolateral-targeting signals. The acidic cluster Glu-331/Glu333 was not required for basolateral targeting, but its replacement reduced endocytosis.
Collapse
Affiliation(s)
- Estelle E Newton
- Rosenstiel Center for Basic Biomedical Sciences and Biology Department, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | |
Collapse
|