51
|
Differential Activation of P-TEFb Complexes in the Development of Cardiomyocyte Hypertrophy following Activation of Distinct G Protein-Coupled Receptors. Mol Cell Biol 2020; 40:MCB.00048-20. [PMID: 32341082 DOI: 10.1128/mcb.00048-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Pathological cardiac hypertrophy is driven by neurohormonal activation of specific G protein-coupled receptors (GPCRs) in cardiomyocytes and is accompanied by large-scale changes in cardiomyocyte gene expression. These transcriptional changes require activity of positive transcription elongation factor b (P-TEFb), which is recruited to target genes by the bromodomain protein Brd4 or the super elongation complex (SEC). Here, we describe GPCR-specific regulation of these P-TEFb complexes and a novel mechanism for activating Brd4 in primary neonatal rat cardiomyocytes. The SEC was required for the hypertrophic response downstream of either the α1-adrenergic receptor (α1-AR) or the endothelin receptor (ETR). In contrast, Brd4 inhibition selectively impaired the α1-AR response. This was corroborated by the finding that the activation of α1-AR, but not ETR, increased Brd4 occupancy at promoters and superenhancers of hypertrophic genes. Transcriptome analysis demonstrated that the activation of both receptors initiated similar gene expression programs, but that Brd4 inhibition attenuated hypertrophic genes more robustly following α1-AR activation. Finally, we show that protein kinase A (PKA) is required for α1-AR stimulation of Brd4 chromatin occupancy. The differential role of the Brd4/P-TEFb complex in response to distinct GPCR pathways has potential clinical implications, as therapies targeting this complex are currently being explored for heart failure.
Collapse
|
52
|
Tan YF, Yu J, Pan WJ, Qi JY, Zhang MZ. Protective Mechanisms of Suxiao Jiuxin Pills () on Myocardial Ischemia-Reperfusion Injury in vivo and in vitro. Chin J Integr Med 2020; 26:583-590. [PMID: 32524394 PMCID: PMC7283981 DOI: 10.1007/s11655-020-2726-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To study the protective mechanism of Chinese medicine Suxiao Jiuxin Pills (, SXJ) on myocardial ischemia and reperfusion (I/R) injury. METHODS Mouse myocardial I/R injury model was created by 30-min coronary artery occlusion followed by 24-h reperfusion, the mice were then divided into the sham group (n=7), the I/R group (n=13), the tirofiban group (TIR, positive drug treatment, n=9), and the SXJ group (n=11). Infarct size (IS), risk region (RR), and left ventricle (LV) were analyzed with double staining methods. In addition, H9C2 rat cardiomyocytes were cultured with Na2S2O4 to simulate I/R in vitro. The phosphorylation of extracellular regulated protein kinases1/2 (ERK1/2), protein kinase B (AKT), glycogen synthase kinase-3β (GSK3β), and protein expression of GATA4 in nucleus were detected with Western blot assay. RESULTS The ratio of IS/RR in SXJ and TIR groups were lower than that in I/R group (SXJ, 22.4% ±6.6%; TIR, 20.8%±3.3%; vs. I/R, 35.4%±3.7%, P<0.05, respectively). In vitro experiments showed that SXJ increased the Na2S2O4-enhanced phosphorylation of AKT/GSK3β and nuclear expression of GATA4. CONCLUSION SXJ prevents myocardial I/R injury in mice by activating AKT/GSK3β and GATA4 signaling pathways.
Collapse
Affiliation(s)
- Ya-Fang Tan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Juan Yu
- Animal Laboratory, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Wen-Jun Pan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Jian-Yong Qi
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Min-Zhou Zhang
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China. .,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.
| |
Collapse
|
53
|
De Majo F, da Costa Martins PA. CircRNAs in the heart: bricks in Brunelleschi's Dome. Cardiovasc Res 2020; 116:1240-1241. [PMID: 32031589 PMCID: PMC7243273 DOI: 10.1093/cvr/cvaa020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Federica De Majo
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
54
|
Yang JJ, Zhang XH, Ma XH, Duan WJ, Xu NG, Chen YJ, Liang L. Astragaloside IV enhances GATA-4 mediated myocardial protection effect in hypoxia/reoxygenation injured H9c2 cells. Nutr Metab Cardiovasc Dis 2020; 30:829-842. [PMID: 32278611 DOI: 10.1016/j.numecd.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM The transcription factor GATA-4 plays an important role in myocardial protection. Astragaloside IV (Ast-IV) was reported with the effects on improving cardiac function after ischemia. In this study, we explored how Ast-IV interacts with GATA-4 to protect myocardial cells H9c2 against Hypoxia/Reoxygenation (H/R) stress. METHODS AND RESULTS H9c2 cells were cultured under the H/R condition. Various cell activity and morphology assays were used to assess the rates of apoptosis and autophagy. In these H/R injured H9c2 cells, increased apoptosis (P < 0.01) and autophagosome number (P < 0.01) were observed, and the addition of Ast-IV ameliorated this tendency. Mechanistically, we used the RT-qPCR and Western blot to evaluate the expressions of various molecules. The results showed that Ast-IV treatment upregulated gene expression of GATA-4 (P < 0.01) and the survival factors (Bcl-2, P < 0.05; p62, P < 0.01), but suppressed apoptosis and autophagy related genes (PARP, Caspase-3, Beclin-1, and LC3-II; All P < 0.01). Furthermore, overexpressing of GATA-4 by its agonist phenylephrine can also protect H/R injured H9c2 cells, and the addition of Ast-IV further enhanced this protection of GATA-4. In contrast, silencing GATA-4 expression abolished the H/R protection of Ast-IV, which demonstrated that the myocardial protection of Ast-IV is mediated by GATA-4. Lastly, along with GATA overexpression, enhanced interactions between Bcl-2 and Beclin-1 were detected by Chromatin immunoprecipitation (P < 0.01). CONCLUSION Ast-IV rescued the H/R injury induced apoptosis and autophagy in H9c2 cells. Ast-IV treatment can stimulate the overexpression of GATA-4, and further enhanced the myocardial protection effect of GATA-4.
Collapse
Affiliation(s)
- Jing-Jing Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Pharmacy Department, Huizhou Traditional Chinese Medical Hospital, Huizhou, 516000, China
| | - Xu-Hui Zhang
- Second Department of Oncology, Guangdong Second Provincial General Hospital, 466 Xingangzhong Road, Guangzhou, 510317, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
55
|
Huang JJ, Xie Y, Li H, Zhang XX, Huang Q, Zhu Y, Gu P, Jiang WM. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med 2020; 17:746-755. [PMID: 31703755 DOI: 10.1016/s1875-5364(19)30091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/20/2022]
Abstract
To investigate the effect of Yiqi Wenyang (YQWY) decoction on reversing cardiac hypertrophy induced by the transverse aortic constriction (TAC). Wistar rats aged 7-8 weeks were subjected to TAC surgery and then randomly divided into 4 groups (n = 5/group): Sham group, TAC group, low-dose group and high dose group. After 16-week intragastric administration of YQWY decoction, the effect of YQWY decoction on alleviating cardiomyocyte hypertrophy was examined by transthoracic echocardiography (TTE), hematoxylin/eosin (HE), wheat germ agglutinin (WGA) staining, enzyme linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC) and immunofluorescence (IF), respectively. The results showed significant differences in left ventricle volume-diastole/systole (LV Vol d/s), N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) (P < 0.01), Ejection Fraction (EF), LV mass and fractional shortening (FS) (P < 0.05) between YQWY-treated group and TAC group. HE and WGA staining showed that treatment with YQWY decoction dramatically prevented TAC-induced cardiomycyte hypertrophy. Moreover, the results of WB, IHC and IF indicated that administration of YQWY could suppress the expressions of cardiac hypertrophic markers, which included the atrial natriuretic peptide (ANP), BNP and myosin heavy chain 7 (MYH7) (P < 0.05) and inhibit phosphorylation of GATA binding protein 4 (P-GATA4) (P < 0.05), phosphorylation of extracellular signal-regulated kinase (P-ERK) (P < 0.05), phosphorylation of P38 mitogen activated protein kinase (P-P38) (P < 0.05) and phosphorylation of c-Jun N-terminal kinase (P-JNK) (P < 0.05). Thus, we concluded that YQWY decoction suppressed cardiomyocyte hypertrophy and reversed the impaired heart function, and the curative effects of YQWY decoction were associated with the decreased phosphorylation of GATA4 and mitogen activated protein kinases (MAPKs), as well as the reduced expression of the downstream targets of GATA4, including ANP, BNP, and MYH7.
Collapse
Affiliation(s)
- Jing-Jing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yong Xie
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - He Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Xiao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Qing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yao Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 21002, China.
| | - Wei-Min Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
56
|
GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Arch Toxicol 2020; 94:2113-2130. [PMID: 32185414 PMCID: PMC7303099 DOI: 10.1007/s00204-020-02711-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1–3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.
Collapse
|
57
|
Su G, Guo D, Chen J, Liu M, Zheng J, Wang W, Zhao X, Yin Q, Zhang L, Zhao Z, Shi J, Lu W. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation. Nucleic Acids Res 2020; 47:6737-6752. [PMID: 31147716 PMCID: PMC6649716 DOI: 10.1093/nar/gkz482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) induces rapid differentiation of embryonic stem cells (ESCs), partly by activating expression of the transcription factor Hoxa1, which regulates downstream target genes that promote ESCs differentiation. However, mechanisms of RA-induced Hoxa1 expression and ESCs early differentiation remain largely unknown. Here, we identify a distal enhancer interacting with the Hoxa1 locus through a long-range chromatin loop. Enhancer deletion significantly inhibited expression of RA-induced Hoxa1 and endoderm master control genes such as Gata4 and Gata6. Transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in Hoxa1 enhancer knockout cells, suggesting a requirement for the enhancer. Restoration of Hoxa1 expression partly rescued expression levels of ∼40% of genes whose expression changed following enhancer deletion, and ∼18% of promoters of those rescued genes were directly bound by Hoxa1. Our data show that a distal enhancer maintains Hoxa1 expression through long-range chromatin loop and that Hoxa1 directly regulates downstream target genes expression and then orchestrates RA-induced early differentiation of ESCs. This discovery reveals mechanisms of a novel enhancer regulating RA-induced Hoxa genes expression and early ESCs differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Qingqing Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
58
|
Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy. Cell Death Dis 2019; 10:890. [PMID: 31767831 PMCID: PMC6877536 DOI: 10.1038/s41419-019-2121-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Kindlin-2 plays an important role in the regulation of cardiac structure and function. Depletion of Kindlin-2 contributes to cardiac hypertrophy and progressive heart failure, however, the precise mechanisms involved in this process remain unclear. GATA4 is a critical transcription factor in regulating cardiogenesis. We found that Kindlin-2 suppresses the expression of GATA4 through binding to its promoter and prevents cardiomyocytes from hypertrophy induced by isoproterenol (ISO) treatment. Mechanistically, Kindlin-2 interacts with histone methyltransferase SUV39H1 and recruits it to GATA4 promoter leading to the occupancy of histone H3K9 di- and tri-methylation. Furthermore, to confirm the function of Kindlin-2 in vivo, we generated mice with targeted deletion of cardiac Kindlin-2. We found that 6-month-old Kindlin-2 cKO mice have developed hypertrophic cardiomyopathy and that this pathological process can be accelerated by ISO-treatment. GATA4 expression was markedly activated in cardiac tissues of Kindlin-2 cKO mice compared to wild-type animals. Collectively, our data revealed that Kindlin-2 suppresses GATA4 expression by triggering histone H3K9 methylation in part and protects heart from pathological hypertrophy.
Collapse
|
59
|
Yamamura S, Izumiya Y, Araki S, Nakamura T, Kimura Y, Hanatani S, Yamada T, Ishida T, Yamamoto M, Onoue Y, Arima Y, Yamamoto E, Sunagawa Y, Yoshizawa T, Nakagata N, Bober E, Braun T, Sakamoto K, Kaikita K, Morimoto T, Yamagata K, Tsujita K. Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4. Hypertension 2019; 75:98-108. [PMID: 31735083 DOI: 10.1161/hypertensionaha.119.13357] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sirt (Sirtuin) 7, the most recently identified mammalian sirtuin, has been shown to contribute to appropriate wound healing processes after acute cardiovascular insult. However, its role in the development of cardiac remodeling after pressure overload is unclear. Cardiomyocyte-specific Sirt7-knockout and control mice were subjected to pressure overload induced by transverse aortic constriction. Cardiac hypertrophy and functions were then examined in these mice. Sirt7 protein expression was increased in myocardial tissue after pressure overload. Transverse aortic constriction-induced increases in heart weight/tibial length were significantly augmented in cardiomyocyte-specific Sirt7-knockout mice compared with those of control mice. Histological analysis showed that the cardiomyocyte cross-sectional area and fibrosis area were significantly larger in cardiomyocyte-specific Sirt7-deficient mice. Cardiac contractile functions were markedly decreased in cardiomyocyte-specific Sirt7-deficient mice. Mechanistically, we found that Sirt7 interacted directly with GATA4 and that the exacerbation of phenylephrine-induced cardiac hypertrophy by Sirt7 knockdown was decreased by GATA4 knockdown. Sirt7 deacetylated GATA4 in cardiomyocytes and regulated its transcriptional activity. Interestingly, we demonstrated that treatment with nicotinamide mononucleotide, a known key NAD+ intermediate, ameliorated agonist-induced cardiac hypertrophies in a Sirt7-dependent manner in vitro. Sirt7 deficiency in cardiomyocytes promotes cardiomyocyte hypertrophy in response to pressure overload. Sirt7 exerts its antihypertrophic effect by interacting with and promoting deacetylation of GATA4.
Collapse
Affiliation(s)
- Satoru Yamamura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Japan (Y.I.)
| | - Satoshi Araki
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Taishi Nakamura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yuichi Kimura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Shinsuke Hanatani
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Toshihiro Yamada
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Toshifumi Ishida
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Masahiro Yamamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoshiro Onoue
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yuichiro Arima
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Eiichiro Yamamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Tatsuya Yoshizawa
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (N.N.), Kumamoto University, Japan
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (E.B., T.B.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (E.B., T.B.)
| | - Kenji Sakamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Koichi Kaikita
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Kazuya Yamagata
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences (K.Y., K.T.), Kumamoto University, Japan
| | - Kenichi Tsujita
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences (K.Y., K.T.), Kumamoto University, Japan
| |
Collapse
|
60
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
61
|
Tanner MA, Thomas TP, Grisanti LA. Death receptor 5 contributes to cardiomyocyte hypertrophy through epidermal growth factor receptor transactivation. J Mol Cell Cardiol 2019; 136:1-14. [PMID: 31473246 PMCID: PMC12071187 DOI: 10.1016/j.yjmcc.2019.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Cardiomyocyte survival and death contributes to many cardiac diseases. A common mechanism of cardiomyocyte death is through apoptosis however, numerous death receptors (DR) have been virtually unstudied in the context of cardiovascular disease. Previous studies have identified TNF-related apoptosis inducing ligand (TRAIL) and its receptor, DR5, as being altered in a chronic catecholamine administration model of heart failure, and suggest a role of non-canonical signaling in cardiomyocytes. Furthermore, multiple clinical studies have identified TRAIL or DR5 as biomarkers in the prediction of severity and mortality following myocardial infarction and in heart failure development risk suggesting a role of DR5 signaling in the heart. While TRAIL/DR5 have been extensively studied as a potential cancer therapeutic due to their ability to selectively activate apoptosis in cancer cells, TRAIL and DR5 are highly expressed in the heart where their function is uncharacterized. However, many non-transformed cell types are resistant to TRAIL-induced apoptosis suggesting non-canonical functions in non-cancerous cell types. Our goal was to determine the role of DR5 in the heart with the hypothesis that DR5 does not induce cardiomyocyte apoptosis but initiates non-canonical signaling to promote cardiomyocyte growth and survival. Histological analysis of hearts from mice treated with a DR5 agonists showed increased hypertrophy with no differences in cardiomyocyte death, fibrosis or function. Mechanistic studies in the heart and isolated cardiomyocytes identified ERK1/2 activation with DR5 agonist treatment which contributed to hypertrophy. Furthermore, epidermal growth factor receptor (EGFR) was activated following DR5 agonist treatment through activation of MMP and HB-EGFR cleavage and specific inhibitors of MMP and EGFR prevented DR5-mediated ERK1/2 signaling and hypertrophy. Taken together, these studies identify a previously unidentified role for DR5 in the heart, which does not promote apoptosis but acts through non-canonical MMP-EGFR-ERK1/2 signaling mechanisms to contribute to cardiomyocyte hypertrophy.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiomegaly/metabolism
- Cell Enlargement
- Cell Survival
- Cells, Cultured
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- GATA4 Transcription Factor/metabolism
- Gene Expression Regulation
- Hypertrophy
- MAP Kinase Signaling System/drug effects
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phthalimides/pharmacology
- Rats, Sprague-Dawley
- Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
62
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
63
|
Lai CH, Pandey S, Day CH, Ho TJ, Chen RJ, Chang RL, Pai PY, Padma VV, Kuo WW, Huang CY. β-catenin/LEF1/IGF-IIR Signaling Axis Galvanizes the Angiotensin-II- induced Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20174288. [PMID: 31480672 PMCID: PMC6747093 DOI: 10.3390/ijms20174288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases have a high prevalence worldwide and constitute the leading causes of mortality. Recently, malfunctioning of β-catenin signaling has been addressed in hypertensive heart condition. Ang-II is an important mediator of cardiovascular remodeling processes which not only regulates blood pressure but also leads to pathological cardiac changes. However, the contribution of Ang-II/β-catenin axis in hypertrophied hearts is ill-defined. Employing in vitro H9c2 cells and in vivo spontaneously hypertensive rats (SHR) cardiac tissue samples, western blot analysis, luciferase assays, nuclear-cytosolic protein extracts, and immunoprecipitation assays, we found that under hypertensive condition β-catenin gets abnormally induced that co-activated LEF1 and lead to cardiac hypertrophy changes by up-regulating the IGF-IIR signaling pathway. We identified putative LEF1 consensus binding site on IGF-IIR promoter that could be regulated by β-catenin/LEF1 which in turn modulate the expression of cardiac hypertrophy agents. This study suggested that suppression of β-catenin expression under hypertensive condition could be exploited as a clinical strategy for cardiac pathological remodeling processes.
Collapse
Affiliation(s)
- Chin-Hu Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung 411, Taiwan.
- National Defense Medical Center, Taipei 114, Taiwan.
| | - Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 912, Taiwan.
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Ruey-Lin Chang
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan.
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
64
|
Lu CH, Shen CY, Hsieh DJY, Lee CY, Chang RL, Ju DT, Pai PY, Viswanadha VP, Ou HC, Huang CY. Deep ocean minerals inhibit IL-6 and IGFIIR hypertrophic signaling pathways to attenuate diabetes-induced hypertrophy in rat hearts. J Appl Physiol (1985) 2019; 127:356-364. [PMID: 31095463 DOI: 10.1152/japplphysiol.00184.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that deep sea water (DSW) prolongs the life span of streptozotocin (STZ)-induced diabetic rats by the compensatory augmentation of the insulin like growth factor (IGF)-I survival signaling and inhibition of apoptosis. Here, we investigated the effects of DSW on cardiac hypertrophy in diabetic rats. Cardiac hypertrophy was induced in rats by using STZ (65 mg/kg) administered via IP injection. DSW was prepared by mixing DSW mineral extracts and desalinated water. Different dosages of DSW-1X (equivalent to 37 mg Mg2+·kg-1·day-1), 2X (equivalent to 74 mg Mg2+·kg-1·day-1) and 3X (equivalent to 111 mg Mg2+·kg-1·day-1) were administered to the rats through gavage for 4 wk. Cardiac hypertrophy was evaluated by the heart weight-to-body weight ratio and the cardiac tissue cross-sectional area after hematoxylin and eosin staining. The protein levels of the cardiac hypertrophy signaling molecules were determined by Western blot. Our results showed that the suppressive effects of the DSW treatment on STZ-induced cardiac hypertrophy were comparable to those of MgSO4 administration and that the hypertrophic marker brain natriuretic peptide (BNP) was decreased by DSW. In addition, DSW attenuated both the eccentric hypertrophy signaling pathway, IL-6-MEK-STAT3, and the concentric signaling pathway, IGF-II-PKCα-CaMKII, in DM rat hearts. The cardiac hypertrophy-associated activation of extracellular signal-regulated kinase (ERK) and the upregulation of the transcription factor GATA binding protein 4 (GATA4) were also negated by treatment with DSW. The results from this study suggest that DSW could be a potential therapeutic agent for the prevention and treatment of diabetic cardiac hypertrophy.NEW & NOTEWORTHY Deep sea water, containing high levels of minerals, improve cardiac hypertrophy in diabetic rats through attenuating the eccentric signaling pathway, IL-6-MEK5-STAT3, and concentric signaling pathway, IGF2-PKCα-CaMKII. The results from this study suggest that deep sea water could be a potential therapeutic agent for the prevention and treatment of diabetic cardiac hypertrophy.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yu Lee
- Department of Cardiology, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Cardiovascular and Mitochondrial Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
65
|
Lin SS, Liu CX, Wang XL, Mao JY. Intervention Mechanisms of Xinmailong Injection, a Periplaneta Americana Extract, on Cardiovascular Disease: A Systematic Review of Basic Researches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8512405. [PMID: 32454845 PMCID: PMC7219279 DOI: 10.1155/2019/8512405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND At present, the prevention and treatment of cardiovascular disease in the world are facing severe challenges. Xinmailong injection, which is derived from the animal medicine Periplaneta Americana, has certain advantages in the clinical treatment of cardiovascular disease. This study systematically evaluated the basic research reports of Xinmailong Injection on cardiovascular disease and made its pharmacological mechanisms more clear. METHODS Basic research reports on the intervention mechanisms of Xinmailong Injection on cardiovascular disease in PubMed, EMBASE, Cochrane Library (No. 2, 2019), CNKI, Wan Fang, and VIP databases were searched. The search time limit was from the establishment of the database to February 2019. The literature was screened according to inclusion and exclusion criteria, and then the data were extracted and a descriptive analysis of the pharmacological mechanisms of Xinmailong Injection on cardiovascular disease was performed. RESULTS Finally, twenty-two basic research reports were included. The intervention mechanisms of Xinmailong Injection on cardiovascular disease mainly includes the following: inhibiting oxidative stress and inflammatory reaction; regulating autophagy; promoting Ca2+ influx by activating excitability of excitation-contraction coupling (ECC); inhibiting overexpressions of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) to regulate the dynamic balance of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs); inhibiting the phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (AKT), and glycogen synthase kinase 3β (GSK3β) proteins and overexpression of the downstream transcription factor GATA4 in the nucleus; regulating vascular endothelial factors and so on. CONCLUSIONS Xinmailong Injection can protect cardiomyocytes and maintain the normal function of the heart in various ways, thus effectively preventing the development of cardiovascular disease. Therefore, Xinmailong Injection has great potential for clinical application, and more basic researches need to be carried out to explore the medicinal value of Xinmailong Injection.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Chun-Xiang Liu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xian-Liang Wang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Jing-Yuan Mao
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| |
Collapse
|
66
|
Sun B, Chang E, Gerhartl A, Szele FG. Polycomb Protein Eed is Required for Neurogenesis and Cortical Injury Activation in the Subventricular Zone. Cereb Cortex 2019; 28:1369-1382. [PMID: 29415247 PMCID: PMC6093351 DOI: 10.1093/cercor/bhx289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
The postnatal subventricular zone (SVZ) harbors neural stem cells (NSCs) that exhibit robust neurogenesis. However, the epigenetic mechanisms that maintain NSCs and regulate neurogenesis remain unclear. We report that label-retaining SVZ NSCs express Eed, the core component of Polycomb repressive complex 2. In vivo and in vitro conditional knockout and knockdown show Eed is necessary for maintaining NSC proliferation, neurogenesis and neurosphere formation. We discovered that Eed functions to maintain p21 protein levels in NSCs by repressing Gata6 transcription. Both Gata6 overexpression and p21 knockdown reduced neurogenesis, while Gata6 knockdown or p21 overexpression partially rescued neurogenesis after Eed loss. Furthermore, genetic deletion of Eed impaired injury induced SVZ proliferation and emigration. These data reveal a novel epigenetic regulated pathway and suggest an essential role for Eed in SVZ homeostasis and injury.
Collapse
Affiliation(s)
- Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Eunhyuk Chang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anna Gerhartl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Address correspondence to Francis G. Szele, PhD, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|
67
|
Chang RL, Nithiyanantham S, Huang CY, Pai PY, Chang TT, Hu LC, Chen RJ, VijayaPadma V, Kuo WW, Huang CY. Synergistic cardiac pathological hypertrophy induced by high-salt diet in IGF-IIRα cardiac-specific transgenic rats. PLoS One 2019; 14:e0216285. [PMID: 31211784 PMCID: PMC6581245 DOI: 10.1371/journal.pone.0216285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Stress-induced cardiac hypertrophy leads to heart failure. Our previous studies demonstrate that insulin-like growth factor-II receptor (IGF-IIR) signaling is pivotal to hypertrophy regulation. In this study, we show a novel IGF-IIR alternative spliced transcript, IGF-IIRα (150 kDa) play a key role in high-salt induced hypertrophy mechanisms. Cardiac overexpression of IGF-IIRα and high-salt diet influenced cardiac dysfunction by increasing pathophysiological changes with up-regulation of hypertrophy markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). We found that, cardiac hypertrophy under high-salt conditions were amplified in the presence of IGF-IIRα overexpression. Importantly, high-salt induced angiotensin II type I receptor (AT1R) up regulation mediated IGF-IIR expressions via upstream mitogen activated protein kinase (MAPK)/silent mating type information regulation 2 homolog 1 (SIRT1)/heat shock factor 1 (HSF1) pathway. Further, G-coupled receptors (Gαq) activated calcineurin/nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3)/protein kinase C (PKC) signaling was significantly up regulated under high-salt conditions. All these effects were observed to be dramatically over-regulated in IGF-IIRα transgenic rats fed with a high-salt diet. Altogether, from the findings, we demonstrate that IGF-IIRα plays a crucial role during high-salt conditions leading to synergistic cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lai-Chin Hu
- Department of Internal Medicine, Division of Cardiology, Armed Forces Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V. VijayaPadma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
68
|
Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2019.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
69
|
Lu D, Wang J, Li J, Guan F, Zhang X, Dong W, Liu N, Gao S, Zhang L. Meox1 accelerates myocardial hypertrophic decompensation through Gata4. Cardiovasc Res 2019; 114:300-311. [PMID: 29155983 DOI: 10.1093/cvr/cvx222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Aims Pathological hypertrophy is the result of gene network regulation, which ultimately leads to adverse cardiac remodelling and heart failure (HF) and is accompanied by the reactivation of a 'foetal gene programme'. The Mesenchyme homeobox 1 (Meox1) gene is one of the foetal programme genes. Meox1 may play a role in embryonic development, but its regulation of pathological hypertrophy is not known. Therefore, this study investigated the effect of Meox1 on pathological hypertrophy, including familial and pressure overload-induced hypertrophy, and its potential mechanism of action. Methods and results Meox1 expression was markedly down-regulated in the wild-type adult mouse heart with age, and expression was up-regulated in heart tissues from familial dilated cardiomyopathy (FDCM) mice of the cTnTR141W strain, familial hypertrophic cardiomyopathy (FHCM) mice of the cTnTR92Q strain, pressure overload-induced HF mice, and hypertrophic cardiomyopathy (HCM) patients. Echocardiography, histopathology, and hypertrophic molecular markers consistently demonstrated that Meox1 overexpression exacerbated the phenotypes in FHCM and in mice with thoracic aorta constriction (TAC), and that Meox1 knockdown improved the pathological changes. Gata4 was identified as a potential downstream target of Meox1 using digital gene expression (DGE) profiling, real-time PCR, and bioinformatics analysis. Promoter activity data and chromatin immunoprecipitation (ChIP) and Gata4 knockdown analyses indicated that Meox1 acted via activation of Gata4 transcription. Conclusion Meox1 accelerated decompensation via the downstream target Gata4, at least in part directly. Meox1 and other foetal programme genes form a highly interconnected network, which offers multiple therapeutic entry points to dampen the aberrant expression of foetal genes and pathological hypertrophy.
Collapse
Affiliation(s)
- Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishilu, Beijing 100037, China
| | - Jing Li
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
70
|
Matsuhashi T, Endo J, Katsumata Y, Yamamoto T, Shimizu N, Yoshikawa N, Kataoka M, Isobe S, Moriyama H, Goto S, Fukuda K, Tanaka H, Sano M. Pressure overload inhibits glucocorticoid receptor transcriptional activity in cardiomyocytes and promotes pathological cardiac hypertrophy. J Mol Cell Cardiol 2019; 130:122-130. [PMID: 30946837 DOI: 10.1016/j.yjmcc.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/07/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Glucocorticoid receptor (GR) is abundantly expressed in cardiomyocytes. However, the role of GR in regulating cardiac hypertrophy and heart failure in response to pressure overload remains unclear. Cardiomyocyte-specific GR knockout (GRcKO) mice, mineralocorticoid receptor (MR) knockout (MRcKO), and GR and MR double KO (GRMRdcKO) mice were generated using the Cre-lox system. In response to pressure overload, GRcKO mice displayed worse cardiac remodeling compared to control (GRf/f) mice, including a greater increase in heart weight to body weight ratio with a greater increase in cardiomyocytes size, a greater decline in left ventricular contractility, and higher reactivation of fetal genes. MRcKO mice showed a comparable degree of cardiac remodeling compared to control (MRf/f) mice. The worse cardiac remodeling in pressure overloaded GRcKO mice is not due to compensatory activation of cardiomyocyte MR, since pressure overloaded GRMRdcKO mice displayed cardiac remodeling to the same extent as GRcKO mice. Pressure overload suppressed GR-target gene expression in the heart. Although plasma corticosterone levels and subcellular localization of GR (nuclear/cytoplasmic GR) were not changed, a chromatin immunoprecipitation assay revealed that GR recruitment onto the promoter of GR-target genes was significantly suppressed in response to pressure overload. Rescue of the expression of GR-target genes to the same extent as sham-operated hearts attenuated adverse cardiac remodeling in pressure-overloaded hearts. Thus, GR works as a repressor of adverse cardiac remodeling in response to pressure overload, but GR-mediated transcription is suppressed under pressure overload. Therapies that maintain GR-mediated transcription in cardiomyocytes under pressure overload can be a promising therapeutic strategy for heart failure.
Collapse
Affiliation(s)
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Noriaki Shimizu
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Noritada Yoshikawa
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotoshi Tanaka
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
71
|
Xu Y, Liang C, Luo Y, Xing W, Zhang T. Possible mechanism of GATA4 inhibiting myocardin activity during cardiac hypertrophy. J Cell Biochem 2018; 120:9047-9055. [PMID: 30582211 DOI: 10.1002/jcb.28178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023]
Abstract
Myocardin is an important factor that regulates cardiac hypertrophy, and its activity can be regulated by GATA4. However, the molecular mechanism of the above process remains unclear. This paper presents three kinds of possible molecular mechanisms of GATA4 inhibiting myocardin activity in the process of cardiac hypertrophy. First, a competitive combination of GATA4 and SRF with myocardin could reduce the formation of the myocardin-SRF-CarG box complex when GATA4 was overexpressed. Second, overexpression of GATA4 could inhibit the combination of myocardin and p300 and downregulate acetylated myocardin levels. Finally, GATA4 could upregulate the phosphorylation of myocardin protein upon activation of the ERK pathway. These findings may provide insight into the function of GATA4 and myocardin in the occurrence and development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yao Xu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chen Liang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ying Luo
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Weibing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
72
|
Tamura S, Marunouchi T, Tanonaka K. Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. J Mol Cell Cardiol 2018; 127:134-142. [PMID: 30582930 DOI: 10.1016/j.yjmcc.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
The Raf/MAPK/ERK kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is activated in cardiac hypertrophy after a myocardial infarction. Although heat-shock protein 90 (Hsp90) may regulate the Raf/Mek/Erk signal pathway, the role of Hsp90 in pathophysiological cardiac hypertrophy remains unclear. In this study, we examined the role of Hsp90 in this pathway in cardiac hypertrophy under in vivo and in vitro experimental conditions. Cultured rat cardiomyocytes were treated with the Hsp90 inhibitor 17-(allylamino)-17-dimethoxy-geldanamycin (17-AAG) and proteasome inhibitor MG-132, and then incubated with endothelin-1 (ET) to induce hypertrophy of the cells. The ET-induced increase in the cell size was attenuated by 17-AAG pretreatment. Immunoblot analysis revealed that the c-Raf content of ET-treated cardiomyocytes was decreased in the presence of 17-AAG. An increase in phosphorylation levels of Erk1/2 and GATA4 in ET-treated cardiomyocytes was also attenuated by the 17-AAG pretreatment. Myocardial infarction was produced by ligation of the left ventricular coronary artery in rats, and then 17-AAG was intraperitoneally administered to the animals starting from the 2ndweek after coronary artery ligation (CAL). CAL-induced increases in the heart weight and cross-sectional area were attenuated by 17-AAG treatment. CAL rats showed signs of chronic heart failure with cardiac hypertrophy, whereas cardiac function in CAL rats treated with 17-AAG was not reduced. Treatment of CAL rats with 17-AAG caused a decrease in the c-Raf content and Erk1/2 and GATA4 phosphorylation levels. These findings suggest that Hsp90 is involved in the activation of the Raf/Mek/Erk pathway via stabilization of c-Raf in cardiomyocytes, resulting in the development of cardiac hypertrophy following myocardial infarction.
Collapse
Affiliation(s)
- Shoko Tamura
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan
| | - Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan.
| |
Collapse
|
73
|
Cui M, Wang Z, Bassel-Duby R, Olson EN. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development 2018; 145:145/24/dev171983. [PMID: 30573475 DOI: 10.1242/dev.171983] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic and postnatal life depend on the uninterrupted function of cardiac muscle cells. These cells, termed cardiomyocytes, display many fascinating behaviors, including complex morphogenic movements, interactions with other cell types of the heart, persistent contractility and quiescence after birth. Each of these behaviors depends on complex interactions between both cardiac-restricted and widely expressed transcription factors, as well as on epigenetic modifications. Here, we review recent advances in our understanding of the genetic and epigenetic control of cardiomyocyte differentiation and proliferation during heart development, regeneration and disease. We focus on those regulators that are required for both heart development and disease, and highlight the regenerative principles that might be manipulated to restore function to the injured adult heart.
Collapse
Affiliation(s)
- Miao Cui
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
74
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
75
|
Sun S, Kee HJ, Jin L, Ryu Y, Choi SY, Kim GR, Jeong MH. Gentisic acid attenuates pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway. J Cell Mol Med 2018; 22:5964-5977. [PMID: 30256522 PMCID: PMC6237595 DOI: 10.1111/jcmm.13869] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
We previously reported that gentisic acid (2,5‐dihydroxybenzoic acid) is the third most abundant phenolic component of Dendropanax morbifera branch extracts. Here, we investigated its effects on cardiac hypertrophy and fibrosis in a mouse model of pressure overload and compared them to those of the beta blocker bisoprolol and calcium channel blocker diltiazem. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC). Beginning 2 weeks after this procedure, the mice were given daily intraperitoneal injections of gentisic acid (100 mg/kg/d), bisoprolol (5 mg/kg/d) or diltiazem (10 mg/kg/d) for 3 weeks. Cardiac hypertrophy was evaluated by the heart weight‐to‐body weight ratio, the cardiomyocyte cross‐sectional area after haematoxylin and eosin staining, and echocardiography. Markers of cardiac hypertrophy and fibrosis were tested by reverse transcription‐quantitative real‐time polymerase chain reaction, western blotting and Masson's trichrome staining. The suppressive effects of gentisic acid treatment on TAC‐induced cardiac hypertrophy and fibrosis were comparable to those of bisoprolol administration. Cardiac hypertrophy was reversed and left ventricular septum and posterior wall thickness were restored by gentisic acid, bisoprolol and diltiazem treatment. Cardiac hypertrophic marker gene expression and atrial and brain natriuretic peptide levels were decreased by gentisic acid and bisoprolol, as were cardiac (interstitial and perivascular) fibrosis and fibrosis‐related gene expression. Cardiac hypertrophy‐associated upregulation of the transcription factors GATA4 and Sp1 and activation of extracellular signal‐regulated kinase 1/2 were also negated by these drugs. These results suggest that gentisic acid could serve as a therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Simei Sun
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Molecular Medicine, Brain Korea 21 PLUS, Chonnam National University Graduate School, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Li Jin
- The Second Affiliated Hospital & Yuying Children's Hospital Wenzhou Medical University, Wenzhou, China
| | - Yuhee Ryu
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sin Young Choi
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwi Ran Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
76
|
Sun S, Li T, Jin L, Piao ZH, Liu B, Ryu Y, Choi SY, Kim GR, Jeong JE, Wi AJ, Lee SJ, Kee HJ, Jeong MH. Dendropanax morbifera Prevents Cardiomyocyte Hypertrophy by Inhibiting the Sp1/GATA4 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1021-1044. [PMID: 29986596 DOI: 10.1142/s0192415x18500532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An extract of Dendropanax morbifera branch exerts antioxidant, anti-inflammatory, antithrombotic, and anticancer activities. The purpose of this study was to investigate the effect of the extract in isoproterenol-induced cardiac hypertrophy. Phalloidin staining showed that treatment with the extract dramatically prevents isoproterenol-induced H9c2 cell enlargement and the expression of cardiac hypertrophic marker genes, including atrial natriuretic peptide (ANP) and B-type brain natriuretic peptide (BNP). Further, pretreatment with the extract decreased isoproterenol-induced GATA4 and Sp1 expression in H9c2 cells. Overexpression of Sp1 induced the expression of GATA4. The forced expression of Sp1 or its downstream target GATA4, as well as the co-transfection of Sp1 and GATA4 increased the expression of ANP, which was decreased by treatment with the extract. To further elucidate the regulation of the Sp1/GATA4-mediated expression of ANP, knockdown experiments were performed. Transfection with small interfering RNAs (siRNAs) for Sp1 or GATA4 decreased ANP expression. The extract did not further inhibit the expression of ANP reduced by the transfection of GATA4 siRNA. Sp1 knockdown did not affect the expression of ANP that was induced by the overexpression of GATA4; however, GATA4 knockdown abolished the expression of ANP that had been induced by Sp1 overexpression. The extract treatment also attenuated the isoproterenol-induced activation of p38 MAPK, ERK1/2, and JNK1. Hesperidin, catechin, 2,5-dihydroxybenzoic acid, and salicylic acid are the main phenolic compounds present in the extract as observed by high performance liquid chromatography. Hesperidin and 2,5-dihydroxybenzoic acid attenuated isoproterenol-induced cardiac hypertrophy. These findings suggest that the D. morbifera branch extract prevents cardiac hypertrophy by downregulating the activation of Sp1/GATA4 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Simei Sun
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Zhengjiang Rongjun Hospital, 352 Zhongshan Road, Jianxing City, Zhejiang Province 314000, P. R. China
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
| | - Tianyi Li
- The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- The Second Affiliated Hospital and Yuying Children’s Hospital, Jilin 132011, P. R. China
| | - Zhe Hao Piao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Bin Liu
- The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Ji Eun Jeong
- Jeonnam Forest Resources Research Institute, Naju 58213, Republic of Korea
| | - An Jin Wi
- Jeonnam Forest Resources Research Institute, Naju 58213, Republic of Korea
| | - Song Ju Lee
- Department of Food & Nutrition, Gwangju Health University, Gwangju 62287, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
77
|
Frank DU, Sutcliffe MD, Saucerman JJ. Network-based predictions of in vivo cardiac hypertrophy. J Mol Cell Cardiol 2018; 121:180-189. [PMID: 30030017 DOI: 10.1016/j.yjmcc.2018.07.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Cardiac hypertrophy is a common response of cardiac myocytes to stress and a predictor of heart failure. While in vitro cell culture studies have identified numerous molecular mechanisms driving hypertrophy, it is unclear to what extent these mechanisms can be integrated into a consistent framework predictive of in vivo phenotypes. To address this question, we investigate the degree to which an in vitro-based, manually curated computational model of the hypertrophy signaling network is able to predict in vivo hypertrophy of 52 cardiac-specific transgenic mice. After minor revisions motivated by in vivo literature, the model concordantly predicts the qualitative responses of 78% of output species and 69% of signaling intermediates within the network model. Analysis of four double-transgenic mouse models reveals that the computational model robustly predicts hypertrophic responses in mice subjected to multiple, simultaneous perturbations. Thus the model provides a framework with which to mechanistically integrate data from multiple laboratories and experimental systems to predict molecular regulation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Deborah U Frank
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States.
| |
Collapse
|
78
|
Patel SK, Velkoska E, Gayed D, Ramchand J, Lesmana J, Burrell LM. Left ventricular hypertrophy in experimental chronic kidney disease is associated with reduced expression of cardiac Kruppel-like factor 15. BMC Nephrol 2018; 19:159. [PMID: 29970016 PMCID: PMC6029153 DOI: 10.1186/s12882-018-0955-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Left ventricular hypertrophy (LVH) increases the risk of death in chronic kidney disease (CKD). The transcription factor Kruppel-like factor 15 (KLF15) is expressed in the heart and regulates cardiac remodelling through inhibition of hypertrophy and fibrosis. It is unknown if KLF15 expression is changed in CKD induced LVH, or whether expression is modulated by blood pressure reduction using angiotensin converting enzyme (ACE) inhibition. Methods CKD was induced in Sprague–Dawley rats by subtotal nephrectomy (STNx), and rats received vehicle (n = 10) or ACE inhibition (ramipril, 1 mg/kg/day, n = 10) for 4 weeks. Control, sham-operated rats (n = 9) received vehicle. Cardiac structure and function and expression of KLF15 were assessed. Results STNx caused impaired kidney function (P < 0.001), hypertension (P < 0.01), LVH (P < 0.001) and fibrosis (P < 0.05). LVH was associated with increased gene expression of hypertrophic markers, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP, P < 0.01) and connective tissue growth factor (CTGF) (P < 0.05). Cardiac KLF15 mRNA and protein expression were reduced (P < 0.05) in STNx and levels of the transcription regulator, GATA binding protein 4 were increased (P < 0.05). Ramipril reduced blood pressure (P < 0.001), LVH (P < 0.001) and fibrosis (P < 0.05), and increased cardiac KLF15 gene (P < 0.05) and protein levels (P < 0.01). This was associated with reduced ANP, BNP and CTGF mRNA (all P < 0.05). Conclusion This is the first evidence that loss of cardiac KLF15 in CKD induced LVH is associated with unchecked trophic and fibrotic signalling, and that ACE inhibition ameliorates loss of cardiac KLF15.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Elena Velkoska
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Daniel Gayed
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jay Ramchand
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jessica Lesmana
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
79
|
Khalilimeybodi A, Daneshmehr A, Sharif-Kashani B. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways. J Physiol Sci 2018; 68:503-520. [PMID: 28674776 PMCID: PMC10717155 DOI: 10.1007/s12576-017-0557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Daneshmehr
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Babak Sharif-Kashani
- Department of Cardiology, Massih-Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
80
|
Ushida T, Macdonald-Goodfellow SK, Quadri A, Tse MY, Winn LM, Pang SC, Adams MA, Kotani T, Kikkawa F, Graham CH. Persistence of risk factors associated with maternal cardiovascular disease following aberrant inflammation in rat pregnancy. Biol Reprod 2018; 97:143-152. [PMID: 28859286 DOI: 10.1093/biolre/iox072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
Introduction Pre-eclampsia is associated with increased risk of subsequent cardiovascular and metabolic disease in the affected mothers. While aberrant inflammation contributes to the pathophysiology of pre-eclampsia, it is unclear whether maternal inflammation contributes to the increased risk of disease. Here, we determined the effect of aberrant inflammation in pregnancy on cardiovascular and metabolic disease risk factors. Methods Wistar rats were administered low doses of lipopolysaccharide (LPS) on gestational days (GD) 13.5-16.5 to induce inflammation. Controls included pregnant rats treated with saline and nonpregnant rats treated with LPS or saline. We previously showed that LPS-treated pregnant rats exhibit key features of pre-eclampsia. Echocardiographic parameters, heart weight, blood pressure, blood lipids, pulse-wave velocity, and glucose tolerance, were assessed at 16 weeks postpartum. Messenger RNA levels of transcription factors associated with cardiac growth were measured in left ventricular tissue; histone modifications and global DNA methylation were determined in hearts and livers at GD 17.5 and at 16 weeks postpartum. Results Compared with saline-treated pregnant rats and nonpregnant rats treated with LPS or saline, LPS-treated pregnant rats exhibited left ventricular hypertrophy and increased blood cholesterol and low-density lipoprotein levels at 16 weeks postdelivery. LPS-treated rats had increased left ventricular mRNA levels of hypertrophy-associated transcription factors at GD 17.5 and increased levels of modified histones in hearts and livers at GD 17.5 and 16 weeks postpartum. Other parameters remained unchanged. Conclusion Aberrant inflammation during pregnancy results in persistent alterations in maternal physiological parameters and epigenetic modifications that could contribute to the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Takafumi Ushida
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | - Allegra Quadri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tomomi Kotani
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
81
|
Reifsnyder PC, Ryzhov S, Flurkey K, Anunciado-Koza RP, Mills I, Harrison DE, Koza RA. Cardioprotective effects of dietary rapamycin on adult female C57BLKS/J-Lepr db mice. Ann N Y Acad Sci 2018; 1418:106-117. [PMID: 29377150 PMCID: PMC5934313 DOI: 10.1111/nyas.13557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Rapamycin (RAPA), an inhibitor of mTORC signaling, has been shown to extend life span in mice and other organisms. Recently, animal and human studies have suggested that inhibition of mTORC signaling can alleviate or prevent the development of cardiomyopathy. In view of this, we used a murine model of type 2 diabetes (T2D), BKS-Leprdb , to determine whether RAPA treatment can mitigate the development of T2D-induced cardiomyopathy in adult mice. Female BKS-Leprdb mice fed diet supplemented with RAPA from 11 to 27 weeks of age showed reduced weight gain and significant reductions of fat and lean mass compared with untreated mice. No differences in plasma glucose or insulin levels were observed between groups; however, RAPA-treated mice were more insulin sensitive (P < 0.01) than untreated mice. Urine albumin/creatinine ratio was lower in RAPA-treated mice, suggesting reduced diabetic nephropathy and improved kidney function. Echocardiography showed significantly reduced left ventricular wall thickness in mice treated with RAPA compared with untreated mice (P = 0.02) that was consistent with reduced heart weight/tibia length ratios, reduced myocyte size and cardiac fibrosis measured by histomorphology, and reduced mRNA expression of Col1a1, a marker for cardiomyopathy. Our results suggest that inhibition of mTORC signaling is a plausible strategy for ameliorating complications of obesity and T2D, including cardiomyopathy.
Collapse
Affiliation(s)
| | - Sergey Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | | | - Rea P Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Ian Mills
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | | | - Robert A Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
82
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
83
|
Hauck L, Stanley-Hasnain S, Fung A, Grothe D, Rao V, Mak TW, Billia F. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS One 2017; 12:e0189861. [PMID: 29267372 PMCID: PMC5739440 DOI: 10.1371/journal.pone.0189861] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, Toronto, Ontario, Canada
| | | | - Amelia Fung
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, UHN, Toronto, Ontario, Canada
| | - Tak W. Mak
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Research Institute, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network (UHN), Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- * E-mail:
| |
Collapse
|
84
|
Ye M, Ye F, He L, Luo B, Yang F, Cui C, Zhao X, Yin H, Li D, Xu H, Wang Y, Zhu Q. Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation. PLoS One 2017; 12:e0189476. [PMID: 29236749 PMCID: PMC5728575 DOI: 10.1371/journal.pone.0189476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down and overexpressed Myoz3 in chicken embryonic fibroblasts (CEFs) and chicken myoblasts, then utilized RNA-seq technology to screen genes, pathways and biological processes associated with Myoz3. Multiple differentially expressed genes were identified, including MYH10, MYLK2, NFAM1, MYL4, MYL9, PDZLIM1; those can in turn regulate each other and influence the development of muscle fibres. Gene ontology (GO) terms including some involved in positive regulation of cell proliferation were enriched. We further validated our results by testing the activity of cells by cell counting kit-8(CCK-8) and confirmed that under the condition of Myoz3 overexpression, the proliferation rate of CEFs and myoblasts was significantly upregulated, in addition, expression level of fast muscle specific gene was also significantly upregulated in myoblasts. Pathway enrichment analysis revealed that the PPAR (Peroxisome Proliferator-Activated Receptor) pathway was enriched, suggesting the possibility that Myoz3 regulates muscle fibre development and differentiation through the PPAR pathway. Our results provide valuable evidence regarding the regulatory functions of Myoz3 in embryonic cells by screening multiple candidate genes, biological processes and pathways associated with Myoz3.
Collapse
Affiliation(s)
- Maosen Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fei Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Liutao He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Bin Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fuling Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| |
Collapse
|
85
|
Yi X, Leung KMY. Assessing the toxicity of triphenyltin to different life stages of the marine medaka Oryzias melastigma through a series of life-cycle based experiments. MARINE POLLUTION BULLETIN 2017; 124:847-855. [PMID: 28242277 DOI: 10.1016/j.marpolbul.2017.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Toxic effects of triphenyltin (TPT) to different life stages of the marine medaka Oryzias melastigma were investigated through a series of life-cycle based exposure experiments. In embryo stage, TPT exposure could elevate the heartbeat rate at Day 6-8 post-fertilization and increase the expression levels of five heart development related genes (i.e., ATPase, COX2, BMP4, GATA4 and NKX2.5). In larval stage, TPT shortened the body length at ≥10μg/L and suppressed the swimming activity of the fish larvae at Day 1 post-hatching at 50μg/L. In reproductive stage, TPT exposure resulted in a male-biased sex ratio (2μg/L) and reduced the gonadosomatic index (GSI) in females (≥ 0.1μg/L), which might in turn lead to a decline in their population fitness. The reproductive stage of O. melastigma was more sensitive to TPT than other stages, while the GSI of female medaka was the most sensitive endpoint.
Collapse
Affiliation(s)
- Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China.
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
86
|
Gallic Acid Reduces Blood Pressure and Attenuates Oxidative Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Sci Rep 2017; 7:15607. [PMID: 29142252 PMCID: PMC5688141 DOI: 10.1038/s41598-017-15925-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/04/2017] [Indexed: 12/22/2022] Open
Abstract
Gallic acid (GA) has been reported to have beneficial effects on cancer, vascular calcification, and diabetes-induced myocardial dysfunction. We hypothesized that GA controls hypertension via oxidative stress response regulation in an animal model for essential hypertension. Spontaneously hypertensive rats (SHRs) were administered GA for 16 weeks. GA treatment lowered elevated systolic blood pressure in SHRs through the inhibition of vascular contractility and components of the renin-angiotensin II system. In addition, GA administration reduced aortic wall thickness and body weight in SHRs. In SHRs, GA attenuated left ventricular hypertrophy and reduced the expression of cardiac-specific transcription factors. NADPH oxidase 2 (Nox2) and GATA4 mRNA expression was induced in SHR hearts and angiotensin II-treated H9c2 cells; this expression was downregulated by GA treatment. Nox2 promoter activity was increased by the synergistic action of GATA4 and Nkx2-5. GA seems to regulate oxidative stress by inhibiting the DNA binding activity of GATA4 in the rat Nox2 promoter. GA reduced the GATA4-induced Nox activity in SHRs and angiotensin II-treated H9c2 cells. GA administration reduced the elevation of malondialdehyde levels in heart tissue obtained from SHRs. These findings suggest that GA is a potential therapeutic agent for treating cardiac hypertrophy and oxidative stress in SHRs.
Collapse
|
87
|
Zhang E, Hong N, Chen S, Fu Q, Li F, Yu Y, Sun K. Targeted sequencing identifies novel GATA6 variants in a large cohort of patients with conotruncal heart defects. Gene 2017; 641:341-348. [PMID: 29101065 DOI: 10.1016/j.gene.2017.10.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023]
Abstract
Studies have highlighted the critical role of GATA6 in conotruncal heart defects (CTDs). Nevertheless, relationship between GATA6 variants and different CTDs remains largely unknown. Here GATA6 gene was screened in 542 patients with CTDs using targeted sequencing. Variant frequency was 2.0% (11/542). Three novel variants: c.86C>A (p.A29E), c.296T>A (p.V99D) and c.1254delC (p.S418fs) were identified in patients with transposition of the great arteries, double outlet right ventricle and persistent truncus arteriosus, respectively, but in none of the 400 controls. Western blot revealed that A29E and V99D mutant protein had similar expression pattern with wild-type GATA6 protein, but S418fs mutant protein appeared as a truncated doublet. Reporter gene assay demonstrated that A29E and V99D mutant protein retained the ability to activate BNP and ANF promoter, whereas S418fs mutant protein failed to transactivate both of them, compared with wild-type. Subcellular localization of wild-type, A29E and V99D mutant protein were in the nucleus, while S418fs mutant protein was expressed both in the nucleus and cytoplasm. In conclusion, GATA6 variant frequency in sporadic CTDs patients was higher than that in other congenital heart diseases. Variant c.1254delC was a pathogenic variant associated with CTDs, especially PTA, whereas c.86C>A and c.296T>A should be considered as likely pathogenic variants.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China.
| |
Collapse
|
88
|
Jiang DS, Yi X, Li R, Su YS, Wang J, Chen ML, Liu LG, Hu M, Cheng C, Zheng P, Zhu XH, Wei X. The Histone Methyltransferase Mixed Lineage Leukemia (MLL) 3 May Play a Potential Role on Clinical Dilated Cardiomyopathy. Mol Med 2017; 23:196-203. [PMID: 28805231 PMCID: PMC5630473 DOI: 10.2119/molmed.2017.00012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a critical role in the pathological processes of dilated cardiomyopathy (DCM). While the role and expression pattern of histone methyltransferases (HMTs), especially mixed lineage leukemia (MLL) families on DCM are unclear. To this end, twelve normal and fifteen DCM heart samples were included in the present study. A murine cardiac remodelling model was induced by transverse aortic constriction (TAC). Real-time PCR was performed to detect the expression levels of MLL families in the mouse and human left ventricles. The mRNA level of MLL3 was significantly increased in the mouse hearts treated by TAC surgery. Compared with normal hearts, higher mRNA and protein level of MLL3 was detected in the DCM hearts, and its expression level was closely associated with left ventricular end systolic diameter (LVEDD) and left ventricular ejection fraction (LVEF). However, the expression level of other MLL families (MLL, MLL2, MLL4, MLL5, SETD1A, and SETD1B) had no obvious change between control and DCM hearts or remodeled mouse hearts. Furthermore, the di-methylated histone H3 lysine 4 (H3K4me2) but not H3K4me3 was significantly increased in the DCM hearts. The protein levels of Smad3, GATA4, EGR1, which might regulate by MLL3, were remarkably elevated in the DCM hearts. Our hitherto unrecognized findings indicate that MLL3 has a potential role on pathological processes of DCM via regulating H3K4me2 and the expression of Smad3, GATA4, and EGR1.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Shu Su
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min-Lai Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Gang Liu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Hu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Sun R, Zhu B, Xiong K, Sun Y, Shi D, Chen L, Zhang Y, Li Z, Xue L. Senescence as a novel mechanism involved in β-adrenergic receptor mediated cardiac hypertrophy. PLoS One 2017; 12:e0182668. [PMID: 28783759 PMCID: PMC5544424 DOI: 10.1371/journal.pone.0182668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Pathological cardiac hypertrophy used to be elucidated by biomechanical, stretch-sensitive or neurohumoral mechanisms. However, a series of hints have indicated that hypertrophy process simulates senescence program. However, further evidence need to be pursued. To verify this hypothesis and examine whether cardiac senescence is a novel mechanism of hypertrophy induced by isoproterenol, 2-month-old male Sprague Dawley rats were subjected to isoproterenol infusion (0.25mg/kg/day) for 7 days by subcutaneous injection). Key characteristics of senescence (senescence-associated β-galactosidase activity, lipofuscin, expression of cyclin-dependent kinase inhibitors) were examined in cardiac hypertrophy model. Senescence-like phenotype, such as increased senescence-associated β-galactosidase activity, accumulation of lipofuscin and high levels of cyclin-dependent kinase inhibitors (e.g. p16, p19, p21 and p53) was found along the process of cardiac hypertrophy. Cardiac-specific transcription factor GATA4 increased in isoproterenol-treated cardiomyocytes as well. We further found that myocardial hypertrophy could be inhibited by resveratrol, an anti-aging compound, in a dose-dependent manner. Our results showed for the first time that cardiac senescence is involved in the process of pathological cardiac hypertrophy induced by isoproterenol.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Baoling Zhu
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Kai Xiong
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Dandan Shi
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| | - Lixiang Xue
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| |
Collapse
|
90
|
Dong C, Yang XZ, Zhang CY, Liu YY, Zhou RB, Cheng QD, Yan EK, Yin DC. Myocyte enhancer factor 2C and its directly-interacting proteins: A review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:22-30. [DOI: 10.1016/j.pbiomolbio.2017.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 11/27/2022]
|
91
|
Chen Z, Zhang S, Guo C, Li J, Sang W. Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med 2017; 39:1589-1596. [PMID: 28440427 DOI: 10.3892/ijmm.2017.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-induced cardiomyocyte apoptosis plays an important role in the development of ischemic heart disease. MicroRNAs (miRNAs or miRs) are emerging as critical regulators of hypoxia-induced cardiomyocyte apoptosis. miR-200c is an miRNA that has been reported to be related to apoptosis in various pathological processes; however, its role in hypoxia‑induced cardiomyocyte apoptosis remains unclear. In the present study, we aimed to investigate the potential role and underlying mechanism of miR-200c in regulating hypoxia‑induced cardiomyocyte apoptosis. We found that miR-200c was significantly upregulated by hypoxia in cardiomyocytes, as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The lactate dehydrogenase, MTT, Annexin V/propidium iodide apoptosis and caspase-3 activity assays showed that downregulation of miR-200c markedly improved cell survival and suppressed the apoptosis of cardiomyocytes in response to hypoxia. Bioinformatics analysis and the dual-luciferase reporter assay demonstrated that miR-200c directly targeted the 3'-untranslated region of GATA-4, an important transcription factor for cardiomyocyte survival. RT-qPCR and western blot analysis showed that suppression of miR-200c significantly increased GATA-4 expression. Furthermore, downregulation of miR-200c upregulated the expression of the anti-apoptotic gene Bcl-2. However, the protective effects against hypoxia induced by the downregulation of miR‑200c were significantly abolished by GATA-4 knockdown. Taken together, our results suggest that downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4, providing a potential therapeutic molecular target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shaoli Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Changlei Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianhua Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wenfeng Sang
- Department of Internal Medicine Nursing, College of Nursing, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
92
|
Nam D, Reineke EL. Timing and Targeting of Treatment in Left Ventricular Hypertrophy. Methodist Debakey Cardiovasc J 2017; 13:9-14. [PMID: 28413576 DOI: 10.14797/mdcj-13-1-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In most clinical cases, left ventricular hypertrophy (LVH) occurs over time from persistent cardiac stress. At the molecular level, this results in both transient and long-term changes to metabolic, sarcomeric, ion handling, and stress signaling pathways. Although this is initially an adaptive change, the mechanisms underlying LVH eventually lead to maladaptive changes including fibrosis, decreased cardiac function, and failure. Understanding the regulators of long-term changes, which are largely driven by transcriptional remodeling, is a crucial step in identifying novel therapeutic targets for preventing the downstream negative effects of LVH and treatments that could reverse or prevent it. The development of effective therapeutics, however, will require a critical understanding of what to target, how to modify important pathways, and how to identify the stage of pathology in which a specific treatment should be used.
Collapse
Affiliation(s)
- Deokhwa Nam
- Houston Methodist Research Institute, Houston, Texas
| | | |
Collapse
|
93
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
94
|
Alonso-Montes C, Rodríguez-Reguero J, Martín M, Gómez J, Coto E, Naves-Díaz M, Morís C, Cannata-Andía JB, Rodríguez I. Rare genetic variants in GATA transcription factors in patients with hypertrophic cardiomyopathy. J Investig Med 2017; 65:926-934. [PMID: 28381408 DOI: 10.1136/jim-2016-000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/03/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a very heterogeneous disease. Although primarily caused by mutations in genes encoding sarcomeric proteins, other genes might explain that heterogeneity. Potential candidate genes are GATA transcription factors that regulate the expression of proteins associated with HCM. Exons of GATA2, GATA4, and GATA6 genes were sequenced in 212 patients with unrelated HCM previously analyzed for genes encoding the most frequently mutated sarcomeric proteins. Functional effects of variants were predicted by in silico analyses. 3 potentially pathogenic variants were identified: c.-77G>A in GATA2, p.Ala343Thr (rs370588269) in GATA4, and p.Pro555Ala (rs146243018) in GATA6 Multivariate analyses showed that angina was more frequent in patients carrying sarcomeric and GATA rare variants (55% vs 23.2% in non-carriers of GATA rare variants, OR (95% CI) 7.12 (1.23 to 41.27), p=0.029). Among patients without a known causal mutation, GATA rare variants were associated with a greater maximum posterior wall thickness (16.4±4.4 vs 14.0±3.1 mm in non-carriers, p=0.021). Thus, variants having a putative effect on GATA genes would alter the expression of their target genes and could modify the hypertrophic response. Therefore, although relatively infrequent in patients with HCM, they may represent a novel insight into the molecular mechanisms related to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - Julián Rodríguez-Reguero
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Martín
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Gómez
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Eliecer Coto
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - César Morís
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| |
Collapse
|
95
|
Wilson RA, Deasy W, Hayes A, Cooke MB. High fat diet and associated changes in the expression of micro-RNAs in tissue: Lessons learned from animal studies. Mol Nutr Food Res 2017; 61. [PMID: 28233461 DOI: 10.1002/mnfr.201600943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
Environment and genetic factors play an important role in the development of obesity, and diet is one of the main contributing factors to this disease. High fat intake is associated with body weight gain, leading to obesity and other metabolic diseases. MicroRNAs (miRNAs) are a group of small, noncoding RNAs that are important regulators of gene expression at posttranscriptional level. Studies have shown that high fat intake, independent of body weight status, can significantly impact both negatively and positively the expression of miRNAs and thus the biological function of tissues such as adipose, skeletal, and cardiac muscle, liver, neuronal, and endothelial. This review will summarize the effects of high calorie diet in the form of high fat intake on miRNA expression in various tissues of animal models and of high fat fed offspring. We will also briefly review the impact of different dietary lipids on miRNA expression. Given changes in miRNA expression have been associated with the development of many diseases including obesity, understanding their biological role could have important clinical implications and offer tangible therapeutic targets for the prevention, management, and/or treatment of obesity and other lifestyle-related disorders.
Collapse
Affiliation(s)
- Robin A Wilson
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - William Deasy
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Alan Hayes
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Matthew B Cooke
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| |
Collapse
|
96
|
Qi J, Yu J, Tan Y, Chen R, Xu W, Chen Y, Lu J, Liu Q, Wu J, Gu W, Zhang M. Mechanisms of Chinese Medicine Xinmailong's protection against heart failure in pressure-overloaded mice and cultured cardiomyocytes. Sci Rep 2017; 7:42843. [PMID: 28205629 PMCID: PMC5311956 DOI: 10.1038/srep42843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Patients with heart failure (HF) have high mortality and mobility. Xinmailong (XML) injection, a Chinese Medicine, is clinically effective in treating HF. However, the mechanism of XML's effectiveness on HF was unclear, and thus, was the target of the present study. We created a mouse model of pressure-overload-induced HF with transverse aortic constriction (TAC) surgery and compared among 4 study groups: SHAM (n = 10), TAC (n = 12), MET (metoprolol, positive drug treatment, n = 7) and XML (XML treatment, n = 14). Dynamic changes in cardiac structure and function were evaluated with echocardiography in vivo. In addition, H9C2 rat cardiomyocytes were cultured in vitro and the phosphorylation of ERK1/2, AKT, GSK3β and protein expression of GATA4 in nucleus were detected with Western blot experiment. The results showed that XML reduced diastolic thickness of left ventricular posterior wall, increased ejection fraction and fraction shortening, so as to inhibit HF at 2 weeks after TAC. Moreover, XML inhibited the phosphorylation of ERK1/2, AKT and GSK3β, subsequently inhibiting protein expression of GATA4 in nucleus (P < 0.001). Together, our data demonstrated that XML inhibited the TAC-induced HF via inactivating the ERK1/2, AKT/GSK3β, and GATA4 signaling pathway.
Collapse
Affiliation(s)
- Jianyong Qi
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juan Yu
- Animal Laboratory, Southern Medical University, Guangzhou, 510515, China.,Animal Laboratory, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yafang Tan
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Renshan Chen
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wen Xu
- Lab of Chinese Materia Medica Preparation, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanfen Chen
- Puning Hospital of Chinese Medicine, Puning, Guangdong Province, 515300, China
| | - Jun Lu
- Puning Hospital of Chinese Medicine, Puning, Guangdong Province, 515300, China
| | - Qin Liu
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Weiwang Gu
- Animal Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Minzhou Zhang
- AMI Key Laboratory of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
97
|
Zhrebker L, Cherni I, Gross LM, Hinshelwood MM, Reese M, Aldrich J, Guileyardo JM, Roberts WC, Craig D, Von Hoff DD, Mennel RG, Carpten JD. Case report: whole exome sequencing of primary cardiac angiosarcoma highlights potential for targeted therapies. BMC Cancer 2017; 17:17. [PMID: 28056866 PMCID: PMC5217318 DOI: 10.1186/s12885-016-3000-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023] Open
Abstract
Background Primary cardiac angiosarcomas are rare, but they are the most aggressive type of primary cardiac neoplasms. When patients do present, it is with advanced pulmonary and/or cardiac symptoms. Therefore, many times the correct diagnosis is not made at the time of initial presentation. These patients have metastatic disease and the vast majority of these patients die within a few months after diagnosis. Currently the treatment choices are limited and there are no targeted therapies available. Case presentation A 56-year-old male presented with shortness of breath, night sweats, and productive cough for a month. Workup revealed pericardial effusion and multiple bilateral pulmonary nodules suspicious for metastatic disease. Transthoracic echocardiogram showed a large pericardial effusion and a large mass in the base of the right atrium. Results of biopsy of bilateral lung nodules established a diagnosis of primary cardiac angiosarcoma. Aggressive pulmonary disease caused rapid deterioration; the patient went on hospice and subsequently died. Whole exome sequencing of the patient’s postmortem tumor revealed a novel KDR (G681R) mutation, and focal high-level amplification at chromosome 1q encompassing MDM4, a negative regulator of TP53. Conclusion Mutations in KDR have been reported previously in angiosarcomas. Previous studies also demonstrated that KDR mutants with constitutive KDR activation could be inhibited with specific KDR inhibitors in vitro. Thus, patients harboring activating KDR mutations could be candidates for treatment with KDR-specific inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3000-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leah Zhrebker
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA. .,Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA.
| | - Irene Cherni
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Lara M Gross
- Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA
| | - Margaret M Hinshelwood
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA
| | - Merrick Reese
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA.,Texas Oncology/US Oncology, 3410 Worth Street, Dallas, TX, 75246, USA
| | - Jessica Aldrich
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Joseph M Guileyardo
- Anatomic Pathology and Clinical Pathology, Baylor University Medical Center at Dallas, 3600 Gaston Ave, Dallas, TX, 75246, USA
| | - William C Roberts
- Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA.,Anatomic Pathology and Clinical Pathology, Baylor University Medical Center at Dallas, 3600 Gaston Ave, Dallas, TX, 75246, USA
| | - David Craig
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Daniel D Von Hoff
- Clinical Translational Research Division Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert G Mennel
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA.,Texas Oncology/US Oncology, 3410 Worth Street, Dallas, TX, 75246, USA.,College of Medicine, Texas A&M Health Sciences Center, 3410 Worth Street, Dallas, TX, 75246, USA
| | - John D Carpten
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
98
|
Kamaraj US, Gough J, Polo JM, Petretto E, Rackham OJL. Computational methods for direct cell conversion. Cell Cycle 2016; 15:3343-3354. [PMID: 27736295 PMCID: PMC5224461 DOI: 10.1080/15384101.2016.1238119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
Directed cell conversion (or transdifferentiation) of one somatic cell-type to another can be achieved by ectopic expression of a set of transcription factors. Since the experimental identification of transcription factors for transdifferentiation is extremely time-consuming and expensive, there are still relatively few transdifferentiations achieved in comparison to the number of human cell-types. However, the growing volume of transcriptional data available and the recent introduction of data-driven algorithmic approaches that predict factors for transdifferentiation holds great promise for accelerating this field. Here we review those computational methods whose in-silico predictions have been experimentally validated, highlighting differences and similarities. Our analysis reveals that the factors predicted by each method tend to be different due to varying source cells used, gene expression quantification and algorithmic steps. We show these differences have an impact on the regulatory influences downstream, with some methods favoring transcription factors regulating developmental progression and others favoring factors regulating mature cell processes. These computational approaches offer a starting point to predict and test novel factors for transdifferentiation. We argue that collecting high-quality gene expression data from single-cells or pure cell-populations across a broader set of cell-types would be necessary to improve the quality and consistency of the in-silico predictions.
Collapse
Affiliation(s)
- Uma S. Kamaraj
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol, UK
| | - Jose M. Polo
- Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Owen J. L. Rackham
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
99
|
Abstract
GATA transcription factors are emerging as critical players in mammalian reproductive development and function. GATA-4 contributes to fetal male gonadal development by regulating genes mediating Müllerian duct regression and the onset of testosterone production. GATA-2 expression appears to be sexually dimorphic being transiently expressed in the germ cell lineage of the fetal ovary but not the fetal testis. In the reproductive system, GATA-1 is exclusively expressed in Sertoli cells at specific seminiferous tubule stages. In addition, GATA-4 and GATA-6 are localized primary to ovarian and testicular somatic cells. The majority of cell transfection studies demonstrate that GATA-1 and GATA-4 can stimulate inhibin subunit gene promoter constructs. Other studies provide strong evidence that GATA-4 and GATA-6 can activate genes mediating gonadal cell steroidogenesis. GATA-2 and GATA-3 are found in pituitary and placental cells and can regulate alpha-glycoprotein subunit gene expression. Gonadal expression and activation of GATAs appear to be regulated in part by gonadotropin signaling via the cyclic AMP-protein kinase A pathway. This review will cover the current knowledge regarding GATA expression and function at all levels of the reproductive axis.
Collapse
Affiliation(s)
- Holly A LaVoie
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA.
| |
Collapse
|
100
|
Yu J, Chen R, Tan Y, Wu J, Qi J, Zhang M, Gu W. Salvianolic Acid B Alleviates Heart Failure by Inactivating ERK1/2/GATA4 Signaling Pathway after Pressure Overload in Mice. PLoS One 2016; 11:e0166560. [PMID: 27893819 PMCID: PMC5125602 DOI: 10.1371/journal.pone.0166560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Heart failure(HF) is a dangerous disease that affects millions of patients. Radix Salvia is widely used in Chinese clinics to treat heart diseases. Salvianolic acid B(SalB) is the major active component of Radix Salvia. This study investigated the mechanisms of action and effects of SalB on HF in an experimental mouse model of HF. METHODS We created a mouse model of HF by inducing pressure overload with transverse aortic constriction(TAC) surgery for 2 weeks and compared among 4 study groups: SHAM group (n = 10), TAC group (n = 9), TAC+MET group (metprolol, positive drug treatment, n = 9) and TAC+SalB group (SalB, 240 mg•kg-1•day-1, n = 9). Echocardiography was used to evaluate the dynamic changes in cardiac structure and function in vivo. Plasma brain natriuretic peptide (BNP) concentration was detected by Elisa method. In addition, H9C2 rat cardiomyocytes were cultured and Western blot were implemented to evaluate the phosphorylation of ERK1/2, AKT, and protein expression of GATA4. RESULTS SalB significantly inhibited the phosphorylation of Thr202/Tyr204 sites of ERK1/2, but not Ser473 site of AKT, subsequently inhibited protein expression of GATA4 and plasma BNP(P < 0.001), and then inhibited HF at 2 weeks after TAC surgery. CONCLUSIONS Our data provide a mechanism of inactivating the ERK1/2/GATA4 signaling pathway for SalB inhibition of the TAC-induced HF.
Collapse
Affiliation(s)
- Juan Yu
- Laboratory Animal Center, Southern Medical University, Guangzhou city, Guangdong province, China
- Animal Laboratory, Guangdong Province Academy of Chinese Medicine, Guangzhou city, Guangdong province, China
| | - Renshan Chen
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
| | - Yafang Tan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, Unitd States of America
| | - Jianyong Qi
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| | - Minzhou Zhang
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Academy of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, 2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou city,Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| | - Weiwang Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou city, Guangdong province, China
- * E-mail: (WG); (JQ); (MZ)
| |
Collapse
|