51
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
52
|
Oetjen E, Blume R, Cierny I, Schlag C, Kutschenko A, Krätzner R, Stein R, Knepel W. Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 2007; 50:1678-87. [PMID: 17583797 DOI: 10.1007/s00125-007-0712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/17/2007] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Inappropriate insulin secretion and biosynthesis are hallmarks of beta cell dysfunction and contribute to the progression from a prediabetic state to overt diabetes mellitus. During the prediabetic state, beta cells are exposed to elevated levels of proinflammatory cytokines. In the present study the effect of these cytokines and mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is known to be activated by these cytokines, on human insulin gene (INS) transcription was investigated. METHODS Biochemical methods and reporter gene assays were used in a beta cell line and in primary pancreatic islets from transgenic mice. RESULTS IL-1beta and MEKK1 specifically inhibited basal and membrane depolarisation and cAMP-induced INS transcription in the beta cell line. Also, in primary islets of reporter gene mice, IL-1beta reduced glucose-stimulated INS transcription. A 5'- and 3'-deletion and internal mutation analysis revealed the rat insulin promoter element 3b (RIPE3b) to be a decisive MEKK1-responsive element of the INS. RIPE3b conferred strong transcriptional activity to a heterologous promoter, and this activity was markedly inhibited by MEKK1 and IL-1beta. RIPE3b is also known to recruit the transcription factor MafA. We found here that MafA transcription activity is markedly inhibited by MEKK1 and IL-1beta. CONCLUSIONS/INTERPRETATION These data suggest that IL-1beta through MEKK1 inhibits INS transcription and does so, at least in part, by decreasing MafA transcriptional activity at the RIPE3b control element. Since inappropriate insulin biosynthesis contributes to beta cell dysfunction, inhibition of MEKK1 might decelerate or prevent progression from a prediabetic state to diabetes mellitus.
Collapse
Affiliation(s)
- E Oetjen
- Department of Molecular Pharmacology, University of Göttingen, Robert-Koch-Strasse 40, 37099 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Coffman JA, Denegre JM. Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol 2007; 308:266-80. [PMID: 17586486 DOI: 10.1016/j.ydbio.2007.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
Mitochondria are not only the major energy generators of the eukaryotic cell but they are also sources of signals that control gene expression and cell fate. While mitochondria are often asymmetrically distributed in early embryos, little is known about how they contribute to axial patterning. Here we review studies of mitochondrial distribution in metazoan eggs and embryos and the mechanisms of redox signaling, and speculate on the role that mitochondrial anisotropies might play in the developmental specification of cell fate during embryogenesis of sea urchins and other animals.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| | | |
Collapse
|
54
|
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM) and Department of Chemistry – University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, Fax: +39‐055‐457‐4271
| | - Antonio Rosato
- Magnetic Resonance Center (CERM) and Department of Chemistry – University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, Fax: +39‐055‐457‐4271
| |
Collapse
|
55
|
Andreini C, Banci L, Bertini I, Elmi S, Rosato A. Non-heme iron through the three domains of life. Proteins 2007; 67:317-24. [PMID: 17286284 DOI: 10.1002/prot.21324] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metalloproteins are proteins capable of binding one or more metal ions, which are often required for their biological function or for regulation of their activities or for structural purposes. In high-throughput genome-level protein investigation efforts, such as Structural Genomics, the systematic experimental characterization of metal-binding properties (i.e. the investigation of the metalloproteome) is not always pursued, and remains far from trivial. In the present work we have applied a bioinformatic approach to investigate the occurrence of (putative) non-heme iron-binding proteins in 57 different organisms spanning the entire tree of life. It is found that the non-heme iron-proteome constitutes between 1% and 10% of the entire proteome of an organism. However, the iron-proteome constitutes a higher fraction of the proteome in archaea (on average 7.1% +/- 2.1%) than in bacteria (3.9% +/- 1.6%) and in eukaryota (1.1% +/- 0.4%). The analysis of the function of each putative iron-protein identified suggests that extant organisms have inherited the large majority of their iron-proteome from the last common ancestor.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
56
|
Celsi F, Svedberg M, Unger C, Cotman CW, Carrì MT, Ottersen OP, Nordberg A, Torp R. Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis 2007; 26:342-52. [PMID: 17344052 DOI: 10.1016/j.nbd.2006.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/01/2006] [Accepted: 12/31/2006] [Indexed: 11/30/2022] Open
Abstract
Calcineurin is an abundant cytosolic protein that is implicated in the modulation of glutamate release. Here we show that the expression level of this enzyme is reduced in primary neuronal cultures treated with beta-amyloid. Parallel experiments in ETNA cell lines expressing SOD1 suggested that the effect of beta-amyloid on calcineurin expression is mediated by oxidative stress. The relevance of the in vitro experiments was assessed by analysis of tissue from patients with Alzheimer's disease (AD) and tissue from two strains of transgenic mice that mimic aspects of AD. The tissue from the AD brains displayed a pronounced downregulation of calcineurin immunoreactivity in profiles that were negative for glial fibrillary acidic protein (GFAP). In the hippocampus of the transgenic animals (which were analyzed in an early stage of the disease) the downregulation of calcineurin was restricted to mossy fiber terminals. A downregulation of the presynaptic pool of calcineurin may contribute to the dysregulation of glutamate release that is considered a hallmark of AD.
Collapse
Affiliation(s)
- F Celsi
- Laboratory of Molecular Neuroscience, Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Increasing evidence suggests that reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, act as necessary signaling molecules in processes underlying cognition. Moreover, ROS have been shown to be necessary in molecular process underlying signal transduction, synaptic plasticity, and memory formation. Research from several laboratories suggests that NADPH oxidase is an important source of superoxide in the brain. Evidence is presented here to show that ROS are in fact important signaling molecules involved in synaptic plasticity and memory formation. Moreover, evidence that the NADPH oxidase complex is a key regulator of ROS generation in synaptic plasticity and memory formation is discussed. Understanding redox signaling in the brain, including the sources and molecular targets of ROS, are important for a full understanding of the signaling pathways that underlie synaptic plasticity and memory. Knowledge of ROS function in the brain also is critical for understanding aging and neurodegenerative diseases of the brain given that several of these disorders, including Alzheimer's disease and Parkinson disease, may be exacerbated by the unregulated generation of ROS.
Collapse
Affiliation(s)
- Kenneth T Kishida
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
58
|
Sundaram JS, Rao VM, Meena AK, Anandaraj MPJS. Decreased calcineurin activity in circulation of Duchenne muscular dystrophy. Clin Biochem 2007; 40:443-6. [PMID: 17328882 DOI: 10.1016/j.clinbiochem.2007.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 12/04/2006] [Accepted: 01/17/2007] [Indexed: 01/11/2023]
Abstract
OBJECTIVES In an analysis of enzymes in easily accessible tissues like blood cells, serum can provide a valuable information and a simple tool for disease and carrier detection. In the study presented we have analyzed calcineurin activity in Duchenne muscular dystrophy (DMD) and carrier sera and lymphocytes for its diagnostic value and its status in DMD pathology. DESIGN AND METHODS We have monitored calcineurin activity in sera and lymphocytes of DMD, in carriers and in controls using colorimetric method by following the p-nitrophenol released in the presence and absence of Trifluoperazine (TFP), an inhibitor of calcineurin. RESULTS Results showed a significant decrease in serum and lymphocyte calcineurin activity in DMD (p<0.001) without alteration in carriers compared to normal. CONCLUSION Further studies are required to understand possible alterations mediated by calcineurin with reference to DMD lymphocytes as any alteration in phosphorylation/dephosphorylation pathway can disturb the normal functioning of these cells. The decreased calcineurin activity observed in DMD serum compared with controls could be further examined for its diagnostic utility.
Collapse
Affiliation(s)
- J Shanmuga Sundaram
- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad-500 016, India
| | | | | | | |
Collapse
|
59
|
Zingg JM. Modulation of signal transduction by vitamin E. Mol Aspects Med 2007; 28:481-506. [PMID: 17320164 DOI: 10.1016/j.mam.2006.12.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/16/2006] [Indexed: 01/22/2023]
Abstract
The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
60
|
Lee JE, Kim H, Jang H, Cho EJ, Youn HD. Hydrogen peroxide triggers the proteolytic cleavage and the inactivation of calcineurin. J Neurochem 2007; 100:1703-12. [PMID: 17217415 DOI: 10.1111/j.1471-4159.2006.04340.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increases in the levels of reactive oxygen species (ROS) are correlated with a decrease in calcineurin (CN) activity under oxidative or neuropathological conditions. However, the molecular mechanism underlying this ROS-mediated CN inactivation remains unclear. Here, we describe a mechanism for the inactivation of CN by hydrogen peroxide. The treatment of mouse primary cortical neuron cells with Abeta(1-42) peptide and hydrogen peroxide triggered the proteolytic cleavage of CN and decreased its enzymatic activity. In addition, hydrogen peroxide was found to cleave CN in different types of cells. Calcium influx was not involved in CN inactivation during hydrogen peroxide-mediated cleavage, but CN cleavage was partially blocked by chloroquine, indicating that an unidentified lysosomal protease is probably involved in its hydrogen peroxide-mediated cleavage. Treatment with hydrogen peroxide triggered CN cleavage at a specific sequence within its catalytic domain, and the cleaved form of CN had no enzymatic ability to dephosphorylate nuclear factor in activated T cells. Thus, our findings suggest a molecular mechanism by which hydrogen peroxide inactivates CN by proteolysis in ROS-related diseases.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
61
|
Basu SK, Kumar D, Singh DK, Ganguly N, Siddiqui Z, Rao KVS, Sharma P. Mycobacterium tuberculosis secreted antigen (MTSA-10) modulates macrophage function by redox regulation of phosphatases. FEBS J 2006; 273:5517-34. [PMID: 17212774 DOI: 10.1111/j.1742-4658.2006.05543.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophages are the primary host cells for Mycobacterium tuberculosis (Mtb). Although macrophages can mount a strong inflammatory response to dispose of invading microbial pathogens, the immune dysfunction of the Mtb-infected macrophage constitutes the hallmark of mycobacterial pathogenesis. A 10-kDa, Mtb secretory antigen (MTSA-10), encoded by ORF Rv3874, is one of the predominant members of the 'region of difference 1' locus of Mtb genome that has been strongly implicated in mycobacterial virulence. In this study, we investigated the possible role of MTSA-10 in modulating the macrophage dysfunction in a mouse macrophage cell line J774.1. We found that recombinant MTSA-10 caused extensive protein dephosphorylation in J774.1 cells as revealed by two-dimensional gel electrophoresis analysis. We also observed that MTSA-10 treatment downregulated the reactive oxygen species levels in the cells leading to activation of cellular protein phosphatases putatively responsible for the dephosphorylation phenomenon. This implied a direct role of MTSA-10 in the disruption of host cell signaling, resulting in downregulation of transcription of several genes essential for macrophage function.
Collapse
Affiliation(s)
- Sandip K Basu
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
62
|
Jackson C, Carr P, Kim HK, Liu JW, Herrald P, Mitić N, Schenk G, Smith C, Ollis D. Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 2006; 397:501-8. [PMID: 16686603 PMCID: PMC1533316 DOI: 10.1042/bj20060276] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and beta) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.
Collapse
Affiliation(s)
- Colin J. Jackson
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul D. Carr
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Hye-Kyung Kim
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul Herrald
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Nataša Mitić
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Clyde A. Smith
- ‡Stanford Linear Accelerator Center/Stanford Synchrotron Radiation Laboratory (SLAC/SSRL), MS:99, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
| | - David L. Ollis
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
63
|
Gantt SL, Gattis SG, Fierke CA. Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ion. Biochemistry 2006; 45:6170-8. [PMID: 16681389 DOI: 10.1021/bi060212u] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone deacetylases play a key role in regulating transcription and other cellular processes by catalyzing the hydrolysis of epsilon-acetyl-lysine residues. For this reason, inhibitors of histone deacetylases are potential targets for the treatment of cancer. A subset of these enzymes has previously been shown to require divalent metal ions for catalysis. Here we demonstrate that histone deacetylase 8 (HDAC8) is catalytically active with a number of divalent metal ions in a 1:1 stoichiometry with the following order of specific activity: Co(II) > Fe(II) > Zn(II) > Ni(II). The identity of the catalytic metal ion influences both the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the Michaelis constant, with Fe(II)- and Co(II)-HDAC8 having K(M) values that are over 5-fold lower than that of Zn(II)-HDAC8. These data suggest that Fe(II), rather than Zn(II), may be the in vivo catalytic metal. In further support of this hypothesis, recombinant HDAC8 purified from E. coli contains 8-fold more iron than zinc before dialysis, and the HDAC8 activity in cell lysates is oxygen-sensitive. Identification of the in vivo metal ion of HDAC8 is essential for understanding the biological function and regulation of HDAC8 and for the development of improved inhibitors of this class of enzymes.
Collapse
Affiliation(s)
- Stephanie L Gantt
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
64
|
Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res 2006; 5:196-201. [PMID: 16396512 DOI: 10.1021/pr050361j] [Citation(s) in RCA: 706] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, or for regulation of their activities or for structural purposes. Genome sequencing projects have provided a huge number of protein primary sequences, but, even though several different elaborate analyses and annotations have been enabled by a rich and ever-increasing portfolio of bioinformatic tools, metal-binding properties remain difficult to predict as well as to investigate experimentally. Consequently, the present knowledge about metalloproteins is only partial. The present bioinformatic research proposes a strategy to answer the question of how many and which proteins encoded in the human genome may require zinc for their physiological function. This is achieved by a combination of approaches, which include: (i) searching in the proteome for the zinc-binding patterns that, on their turn, are obtained from all available X-ray data; (ii) using libraries of metal-binding protein domains based on multiple sequence alignments of known metalloproteins obtained from the Pfam database; and (iii) mining the annotations of human gene sequences, which are based on any type of information available. It is found that 1684 proteins in the human proteome are independently identified by all three approaches as zinc-proteins, 746 are identified by two, and 777 are identified by only one method. By assuming that all proteins identified by at least two approaches are truly zinc-binding and inspecting the proteins identified by a single method, it can be proposed that ca. 2800 human proteins are potentially zinc-binding in vivo, corresponding to 10% of the human proteome, with an uncertainty of 400 sequences. Available functional information suggests that the large majority of human zinc-binding proteins are involved in the regulation of gene expression. The most abundant class of zinc-binding proteins in humans is that of zinc-fingers, with Cys4 and Cys2His2 being the most common types of coordination environment.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
65
|
Afanas'ev IB. Competition between superoxide and hydrogen peroxide signaling in heterolytic enzymatic processes. Med Hypotheses 2006; 66:1125-8. [PMID: 16500034 DOI: 10.1016/j.mehy.2005.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 11/11/2005] [Indexed: 11/22/2022]
Abstract
Signaling functions of superoxide and hydrogen peroxide in enzymatic phosphorylation/dephosphorylation reactions are now well documented, but their mechanisms are still not always clear. Now we propose the novel signaling mechanisms, by which superoxide and hydrogen peroxide mediate the activation and inhibition of phosphorylation/dephosphorylation catalyzed by protein kinases and protein phosphatases. We suggest that as a powerful nucleophile, superoxide is able to mediate phosphorylation of numerous proteins by protein kinases through the deprotonation of protein serine or threonine residues that sharply accelerates the rates of nucleophilic reaction between kinases and phosphorylating proteins. Furthermore the role of superoxide is enhanced due to its "chain" formation in the O(2)(-)--> PI 3-kinase --> protein kinases --> NADPH oxidase --> O(2)(-) cycle. Furthermore we suggest that hydrogen peroxide signaling in the dephosphorylation reactions by protein phosphatases and in the activation of protein kinases is actually mediated by superoxide formed during the conversion of H(2)O(2) into superoxide by the oxidized superoxide dismutase. This proposal is supported by the high rates of superoxide reactions with an anion of the catalytic cysteine residue of protein tyrosine phosphatases and the inability of hydrogen peroxide to react directly with protein serine and threonine residues in the reactions of protein kinases. Understanding of specific role of superoxide in the reactions catalyzed by protein kinases and protein phosphatases can be of importance for the selection of inhibitors of these enzymes playing a big role in numerous physiological and pathological processes.
Collapse
|
66
|
Oetjen E, Lechleiter A, Blume R, Nihalani D, Holzman L, Knepel W. Inhibition of membrane depolarisation-induced transcriptional activity of cyclic AMP response element binding protein (CREB) by the dual-leucine-zipper-bearing kinase in a pancreatic islet beta cell line. Diabetologia 2006; 49:332-42. [PMID: 16369771 DOI: 10.1007/s00125-005-0087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS The activation of the transcription factor cyclic AMP response element binding protein (CREB) by protein kinase A is inhibited by the human orthologue of the mitogen-activated protein kinase, dual-leucine-zipper-bearing kinase (DLK) in teratocarcinoma cells. However, pancreatic beta cells are electrically excitable and a major pathway regulating CREB in these cells is membrane depolarisation, leading to calcium influx and activation of the calcium/calmodulin-dependent protein phosphatase calcineurin. Therefore, the effect of DLK on CREB activity induced by membrane depolarisation was investigated in the beta cell line HIT. MATERIALS AND METHODS Reporter gene assays and biochemical techniques were used. RESULTS RT-PCR, Western blot analysis and immunohistochemistry demonstrated the expression of DLK in HIT cells and primary mouse islets. In transient transfection experiments, DLK inhibited both GAL4-CREB activity induced by membrane depolarisation, and transcription directed by the CREB binding site, the cyclic AMP response element. Furthermore, DLK inhibited the transcriptional activity conferred by the CREB coactivator, CREB binding protein, both under basal conditions and after membrane depolarisation. DLK was also effective in response to glucose, the most potent physiological stimulus and known to cause membrane depolarisation of beta cells. Inhibition of calcineurin enhanced DLK activity, whereas overexpression of calcineurin reduced the inhibition by DLK of transcription directed by cyclic AMP response element after membrane depolarisation. CONCLUSIONS/INTERPRETATION These results demonstrate a calcineurin-sensitive inhibition by DLK of CREB activity after membrane depolarisation in pancreatic islet beta cells. This inhibition may, at least partially, be mediated at the coactivator level. The results thus suggest that DLK plays a role in the regulation of beta cell function, including insulin gene transcription and beta cell apoptosis.
Collapse
Affiliation(s)
- E Oetjen
- Molecular Pharmacology, University of Göttingen, Robert-Koch Strasse 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Kang S, Li H, Rao A, Hogan PG. Inhibition of the Calcineurin-NFAT Interaction by Small Organic Molecules Reflects Binding at an Allosteric Site. J Biol Chem 2005; 280:37698-706. [PMID: 16148011 DOI: 10.1074/jbc.m502247200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional signaling from the Ca(2+)-calmodulin-activated phosphatase calcineurin to its substrate NFAT (nuclear factor of activated T cells, also termed NFATc) is critically dependent on a protein-protein docking interaction between calcineurin and the PXIXIT motif in NFAT. Several inhibitors of NFAT-calcineurin association (INCA compounds) prevent binding of NFAT or the peptide ligand PVIVIT to calcineurin. Here we show that the binding site on calcineurin for INCA1, INCA2, and INCA6 is centered on cysteine 266 of calcineurin Aalpha and does not coincide with the core PXIXIT-binding site. Although ample evidence indicates that INCA1 and INCA2 react covalently with cysteine 266, covalent derivatization alone is not sufficient for maximal inhibition of the calcineurin-PVIVIT interaction, because the maleimide INCA12 reacts with the same site and produces only very modest inhibition. Thus, inhibition arises through an allosteric change affecting the PXIXIT docking site, which may be assisted by covalent binding but depends on other specific features of the ligand. The spatial arrangement of the binding sites for PVIVIT and INCA makes it probable that the change in conformation involves the beta11-beta12 loop of calcineurin. The finding that an allosteric site controls NFAT binding opens new alternatives for inhibition of calcineurin-NFAT signaling.
Collapse
Affiliation(s)
- Sunghyun Kang
- CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
69
|
Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E, Kuhn M. Enhanced Activity of the Myocardial Na
+
/H
+
Exchanger NHE-1 Contributes to Cardiac Remodeling in Atrial Natriuretic Peptide Receptor–Deficient Mice. Circulation 2005; 112:2307-17. [PMID: 16216978 DOI: 10.1161/circulationaha.105.542209] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Atrial natriuretic peptide (ANP), through its guanylyl cyclase-A (GC-A) receptor, not only is critically involved in the endocrine regulation of arterial blood pressure but also locally moderates cardiomyocyte growth. The mechanisms underlying the antihypertrophic effects of ANP remain largely uncharacterized. We examined the contribution of the Na
+
/H
+
exchanger NHE-1 to cardiac remodeling in GC-A–deficient (GC-A
−/−
) mice.
Methods and Results—
Fluorometric measurements in isolated adult cardiomyocytes demonstrated that cardiac hypertrophy in GC-A
−/−
mice was associated with enhanced NHE-1 activity, alkalinization of intracellular pH, and increased Ca
2+
levels. Chronic treatment of GC-A
−/−
mice with the NHE-1 inhibitor cariporide normalized cardiomyocyte pH and Ca
2+
levels and regressed cardiac hypertrophy and fibrosis, despite persistent arterial hypertension. To characterize the molecular pathways driving cardiac hypertrophy in GC-A
−/−
mice, we evaluated the activity of 4 prohypertrophic signaling pathways: the mitogen-activated protein kinases (MAPK), the serine-threonine kinase Akt, calcineurin, and Ca
2+
/calmodulin-dependent kinase II (CaMKII). The results demonstrate that all 4 pathways were activated in GC-A
−/−
mice, but only CaMKII and Akt activity regressed during reversal of the hypertrophic phenotype by cariporide treatment. In contrast, the MAPK and calcineurin/NFAT signaling pathways remained activated during regression of hypertrophy.
Conclusions—
On the basis of these results, we conclude that the ANP/GC-A system moderates the cardiac growth response to pressure overload by preventing excessive activation of NHE-1 and subsequent increases in cardiomyocyte intracellular pH, Ca
2+
, and CaMKII as well as Akt activity.
Collapse
Affiliation(s)
- Ana Kilic
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Frein D, Schildknecht S, Bachschmid M, Ullrich V. Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 2005; 70:811-23. [PMID: 15899473 DOI: 10.1016/j.bcp.2005.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
Redox signaling is evolving as a new field of biochemical and pharmacological research. Unlike oxidative stress which is characterized by a macroscopic shift in cellular redox potentials and usually accompanied by oxygen radical induced damage, redox regulation involves subtle and more chemically defined oxidations of short duration. Most important is the reductive component as a necessary part of a reversible regulatory process. Examples of redox regulation occur during early stages of the immune response, in hypoxia or in endothelial dysfunction. Persistent oxidative events together with a decline in the cellular reduction potential lead to oxidative stress as is seen in the pathophysiology of sepsis, reperfusion damage, atherosclerosis and diabetes. Oxidative signals involve superoxide and nitric oxide as the main players which form a system of oxidizing, nitrating or nitrosating species leading to posttranslational modifications of proteins. Modern techniques of immunohistochemistry and mass spectrometry allow a correlation of protein modification, e.g., disulfide, S-oxide, S-nitroso or nitrotyrosine formation, with enzyme activities and cellular responses. In this commentary, examples of the control of prostanoid synthesis by the NO/O2- system are described. Redox regulation represents an interesting challenge for the development of drugs that modulate the oxidative trigger mechanisms or enforce the reductive pathways.
Collapse
Affiliation(s)
- Daniel Frein
- University of Konstanz, Department of Biology, Fach X910-Sonnenbühl, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
71
|
Barthel A, Klotz LO. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 2005; 386:207-16. [PMID: 15843166 DOI: 10.1515/bc.2005.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress is linked to the pathogenesis and pathobiochemistry of various diseases, including cancer, diabetes and cardiovascular disorders. The non-specific damaging effect of reactive oxygen species (ROS) generated during oxidative stress is involved in the development of diseases, as well as the activation of specific signaling cascades in cells exposed to the higher oxidant load. A cellular signaling cascade that is activated by several types of reactive oxygen species is the phosphoinositide 3'-kinase (PI 3-kinase)/protein kinase B (PKB) pathway, which regulates cellular survival and fuel metabolism, thus establishing a link between oxidative stress and signaling in neoplastic, metabolic or degenerative diseases. Several links of PI 3-kinase/PKB signaling to ROS are discussed in this review, with particular focus on the molecular mechanisms involved in the regulation of PI 3-kinase signaling by oxidative stress and important players such as (i) the glutathione and glutaredoxin system, (ii) the thioredoxin system and (iii) Ser/Thr- and Tyr phosphatases.
Collapse
Affiliation(s)
- Andreas Barthel
- Abteilung für Endokrinologie, Diabetologie und Rheumatologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
72
|
Hu J, Yang X, Wang K. La3+ stimulate the activity of calcineurin in two different ways. J Biol Inorg Chem 2005; 10:704-11. [PMID: 16177924 DOI: 10.1007/s00775-005-0021-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
It is well known that the activity of calcineurin (CaN) could be modulated by several transitional metal ions. In the present work, the effects of a calcium analog, lanthanum ion (La(3+)), on the activity of CaN were studied. It was found that La(3+) exerted multiple effects on CaN activity. La(3+) could stimulate CaN in the absence of calmodulin (CaM); whereas at low concentrations of La(3+), there was a slight inhibition of activation of CaN in the presence of CaM. Competitive experiments and limited trypsin proteolysis confirmed that La(3+) did not act on the catalytic core of CaN, but exerted its effect through direct action on the CaN regulatory domain similar to Mg(2+). In activity titration and spot blotting studies, La(3+)-containing CaM complexes were less effective in stimulating CaN than Ca(2+) or Mn(2+)-containing CaM; however, the binding affinity of these metal-CaM complexes to CaN was similar. These effects of La(3+) on CaN activity are unique among metal ions and may provide clues to understand the biological effects of La(3+).
Collapse
Affiliation(s)
- Jian Hu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100083, People's Republic of China
| | | | | |
Collapse
|
73
|
Narayan AV, Stadel R, Hahn AB, Bhoiwala DL, Cornielle G, Sarazin E, Koleilat I, Crawford DR. Redox response of the endogenous calcineurin inhibitor Adapt 78. Free Radic Biol Med 2005; 39:719-27. [PMID: 16109302 DOI: 10.1016/j.freeradbiomed.2005.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 02/20/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
Adapt 78 (DSCR 1/calcipressin/MCIP 1) is a potent natural inhibitor of calcineurin, an important intracellular phosphatase that mediates many cellular responses to calcium. We previously reported two major cytosolic isoforms (1 and 4) of Adapt 78, and that isoform 4 is an oxidative and calcium stress-response protein. Using a higher cell culture density and new antibody, we again observed that both major isoforms localized to the cytosol, but a significant level of isoform 4 (but not isoform 1) was also detected in the nucleus where it was present in the non-soluble region and not associated with RNA. Exposure of cells to hydrogen peroxide led to the significant loss of isoform 4 from the nucleus with a moderate increase in cytosolic localization. The change in isoform 4 phosphorylation state in response to oxidative stress, characterized by a loss of the lesser (hypo) phosphorylated Adapt 78, was not due to accelerated degradation, although general Adapt 78 degradation was proteosome mediated. Finally, stimulation of Jurkat and primary T-lymphocyte signaling led to isoform 4 induction. This induction was BAPTA, diphenylene iodonium, and N-acetylcysteine inhibitable, and accompanied by induction of the classic immune response mediator and calcineurin-pathway-stimulated interleukin-2. These studies reveal new redox-related activities for Adapt 78 isoform 4, which may contribute to its known calcineurin-regulating and cytoprotective activities, and further suggest that Adapt 78 plays a role in basic T-cell response.
Collapse
Affiliation(s)
- Ananth V Narayan
- Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Namgaladze D, Shcherbyna I, Kienhöfer J, Hofer HW, Ullrich V. Superoxide targets calcineurin signaling in vascular endothelium. Biochem Biophys Res Commun 2005; 334:1061-7. [PMID: 16038879 DOI: 10.1016/j.bbrc.2005.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/27/2022]
Abstract
Superoxide emerges as key regulatory molecule in many aspects of vascular physiology and disease, but identification of superoxide targets in the vasculature remains elusive. In this work, we investigated the possibility of inhibition of protein phosphatase calcineurin by superoxide in endothelial cells. We employed a redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) to generate superoxide inside the cells. DMNQ caused inhibition of cellular calcineurin phosphatase activity, which was reversible upon DMNQ removal. Inhibition was suppressed by pre-incubating the cells with copper/zinc superoxide dismutase (Cu,ZnSOD). In addition, reducing cellular Cu,ZnSOD activity by diethylthiocarbamic acid treatment resulted in calcineurin inhibition and enhanced sensitivity to DMNQ. Further, we could show that DMNQ inhibits calcineurin-dependent nuclear translocation and transcriptional activation of NFAT transcription factor, and Cu,ZnSOD or superoxide scavenger Tiron reduced the inhibition. Thus, superoxide generation in endothelial cells results in inhibition of calcineurin signaling, which could have important pathophysiological implications in the vasculature.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
75
|
Bachschmid M, Schildknecht S, Ullrich V. Redox regulation of vascular prostanoid synthesis by the nitric oxide-superoxide system. Biochem Biophys Res Commun 2005; 338:536-42. [PMID: 16153593 DOI: 10.1016/j.bbrc.2005.08.157] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/05/2005] [Indexed: 02/06/2023]
Abstract
Oxygen is involved in cell signaling through oxygenases and oxidases and this applies especially for the vascular system. Nitric oxide (*NO) and epoxyarachidonic acids are P450-dependent monooxygenase products and prostacyclin is formed via cyclooxygenase and a heme-thiolate isomerase. The corresponding vasorelaxant mechanisms are counteracted by superoxide which not only traps *NO but through the resulting peroxynitrite blocks prostacyclin synthase by nitration of an active site tyrosine residue. In a model of septic shock, this leads to vessel constriction by activation of the thromboxane A2-prostaglandin endoperoxide H2 receptor. This sequence of events is part of endothelial dysfunction in which the activated vascular smooth muscle counteracts and regenerates vessel tone by cyclooxygenase-2-dependent prostacyclin synthesis. Peroxynitrite was found to activate cyclooxygenases by providing the peroxide tone at nanomolar concentrations. Such new insights into the control of vascular function have allowed us to postulate a concept of redox regulation in which a progressive increase of superoxide production by NADPH-oxidase, mitochondria, xanthine oxidase, and even uncoupled NO-synthase triggers a network of signals originating from an interaction of *NO with superoxide.
Collapse
Affiliation(s)
- Markus Bachschmid
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany.
| | | | | |
Collapse
|
76
|
Bigelow DJ, Squier TC. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:121-34. [PMID: 15680220 DOI: 10.1016/j.bbapap.2004.09.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 09/09/2004] [Accepted: 09/13/2004] [Indexed: 01/14/2023]
Abstract
Adaptive responses associated with environmental stressors are critical to cell survival. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met(144) or Met(145) results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylation-dependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in response to beta-adrenergic signaling in the heart. We suggest that under acute conditions, such as inflammation or ischemia, these types of mechanisms ensure minimal nonspecific cellular damage, allowing for rapid restoration of cellular function through repair of oxidized methionines by methionine sulfoxide reductases and degradation pathways after restoration of normal cellular redox conditions.
Collapse
Affiliation(s)
- Diana J Bigelow
- Cell Biology and Biochemistry Group, Biological Sciences Division; Fundamental Sciences Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richland, WA 99352, USA
| | | |
Collapse
|
77
|
Padma S, Sowjanya AP, Poli UR, Jain M, Rao BN, Ramakrishna G. Downregulation of calcineurin activity in cervical carcinoma. Cancer Cell Int 2005; 5:7. [PMID: 15801986 PMCID: PMC1087859 DOI: 10.1186/1475-2867-5-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 04/01/2005] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND: Calcineurin (CaN) is an important serine-threonine phosphatase (PP2B), which plays a crucial role in calcium-calmodulin mediated signal transduction events. Calcineurin has been implicated in pathogenesis of various diseases cardiac hypertrophy, diabetic neuropathy and Alzheimer's, however its role in neoplasia remains unclear. RESULTS: In view of this we evaluated the calcineurin activity in serum and biopsy samples collected from women diagnosed with invasive squamous cell carcinoma of cervix. A significant reduction was observed in the calcineurin activity in cancer cervix patients compared to the control group. However the calcineurin activity remained unaltered in the cervical scrapes obtained from patients diagnosed with low-grade squamous intra epithelial lesions (LSIL). Interestingly the downregulation of calcineurin activity in squamous cell carcinomas was not accompanied by any significant change in DNA-binding affinity of the transcriptional factor NFAT (Nuclear Factor of Activated T-cells). All the squamous cell carcinoma samples used in the present study were positive for high-risk human papillomavirus (HPV) types. CONCLUSION: The present study demonstrates the downregulation of calcineurin activity in squamous cell carcinoma of cervix with high risk HPV infection. We conclude that perturbations in calcineurin-mediated pathway may be involved in development of cervical neoplasia.
Collapse
Affiliation(s)
- S Padma
- Centre for DNA Fingerprinting and Diagnostics, Nacharam, Hyderabad, A.P, India
| | - A Pavani Sowjanya
- Centre for DNA Fingerprinting and Diagnostics, Nacharam, Hyderabad, A.P, India
| | - Usha Rani Poli
- M.N.J Institute of Oncology and Regional cancer centre, Hyderabad, A.P, India
| | | | - BN Rao
- M.N.J Institute of Oncology and Regional cancer centre, Hyderabad, A.P, India
| | - Gayatri Ramakrishna
- Centre for DNA Fingerprinting and Diagnostics, Nacharam, Hyderabad, A.P, India
| |
Collapse
|
78
|
Sankaranarayanan TK, Sethi BK, Subramanyam C. Serum calcineurin activity in relation to oxidative stress and glycemic control in type II diabetes mellitus. Clin Biochem 2005; 38:218-22. [PMID: 15708541 DOI: 10.1016/j.clinbiochem.2004.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/07/2004] [Accepted: 12/13/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In view of the well-recognized prevalence of oxidative stress in diabetes mellitus and the susceptibility of calcineurin (Ca(2+)-calmodulin dependent protein phosphatase 2 B) to free radicals, calcineurin was assayed in the sera of type II diabetic patients. DESIGN AND METHODS Serum contents of thiobarbituric acid reactive substances, calcineurin and calmodulin, as well as activities of calcineurin and superoxide dismutase were measured in 81 diabetic patients and compared with age-matched controls. RESULTS Oxidative stress in diabetic subjects was evidenced by increased thiobarbituric acid reactive substances, decreased superoxide dismutase activity concomitant with decreased calcineurin activity in sera. The observed decrease in calcineurin activity had a reciprocal correlation with fasting blood sugar, thiobarbituric acid reactive substances, and glycosylated hemoglobin. CONCLUSION The inverse correlation observed between serum calcineurin activity and glycosylated hemoglobin levels suggests that an assay of serum calcineurin activity may be useful in simultaneous assessment of oxidative stress and glycemic control in type II diabetes mellitus.
Collapse
|
79
|
Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 2004; 322:1178-91. [PMID: 15336966 DOI: 10.1016/j.bbrc.2004.07.121] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Indexed: 12/21/2022]
Abstract
Cardiac hypertrophy is a leading predicator of progressive heart disease that often leads to heart failure and a loss of cardiac contractile performance associated with profound alterations in intracellular calcium handling. Recent investigation has centered on identifying the molecular signaling pathways that regulate cardiac myocyte hypertrophy, as well as the mechanisms whereby alterations in calcium handling are associated with progressive heart failure. One potential focal regulator of cardiomyocyte hypertrophy that also responds to altered calcium handling is the calmodulin-activated serine/threonine protein phosphatase calcineurin (PP2B). Once activated by increases in calcium, calcineurin mediates the hypertrophic response through its downstream transcriptional effector nuclear factor of activated T cells (NFAT), which is directly dephosphorylated by calcineurin resulting in nuclear translocation. While previous studies have convincingly demonstrated the sufficiency of calcineurin to mediate cardiac hypertrophy and progressive heart failure, its necessity remains an area of ongoing investigation. Here we weigh an increasing body of literature that suggests a causal link between calcineurin signaling and the cardiac hypertrophic response and heart failure through the use of pharmacologic inhibitors (cyclosporine A and FK506) and genetic approaches. We will also discuss the manner in which calcineurin-NFAT signaling is negatively regulated in the heart through a diverse array of kinases and inhibitory proteins. Finally, we will discuss emerging theories as to the mechanisms whereby alterations in intracellular calcium handling might stimulate calcineurin within the context of a contractile cell continually experiencing calcium flux.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
80
|
Michtalik HJ, Narayan AV, Bhatt N, Lin HY, Mulligan MT, Zhang SL, Crawford DR. Multiple oxidative stress-response members of the Adapt78 family. Free Radic Biol Med 2004; 37:454-62. [PMID: 15256217 DOI: 10.1016/j.freeradbiomed.2004.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 03/31/2004] [Accepted: 05/14/2004] [Indexed: 01/13/2023]
Abstract
Adapt78 is an oxidative and calcium stress-response gene. Its protein product is a potent natural inhibitor of the intracellular calcium signaling protein calcineurin. Much of what is known about Adapt78 protein is based on cell-transfection studies. Toward understanding natural endogenous Adapt78, we used an antibody raised against cellular Adapt78 and recently determined that endogenous Adapt78 protein, like its mRNA, is oxidative and calcium stress responsive. Here we report the identification of a second endogenous form of this protein family of 41 kDa. Subcellular fractionation of human HeLa cells revealed that in contrast to results of previous transfection studies, most endogenous Adapt78, characterized as 29 and 41 kDa electrophoretic doublets, resides in the cellular cytosol. The 41 kDa form of Adapt78 was abundant and found to exhibit many characteristics in common with the previously reported oxidative stress-responsive 29 kDa form, including hypo- and hyperphosphorylation variants, rapid loss of the hypophosphorylated form following oxidative stress, response to various kinase and phosphatase inhibitors, and localization. However, it also exhibited some unique characteristics, most notably the lack of calcium inducibility. Finally, the 29 kDa form exhibited a much shorter half-life and strong stabilization following oxidant exposure compared with the 41 kDa Adapt78 form. These data reveal the presence of a novel oxidative stress-responsive 41 kDa Adapt78 species, lend further insight into the Adapt78 family of proteins and their distribution, and challenge previous conclusions obtained using transfection protocols.
Collapse
Affiliation(s)
- Henry J Michtalik
- Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Swingle MR, Honkanen RE, Ciszak EM. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5. J Biol Chem 2004; 279:33992-9. [PMID: 15155720 DOI: 10.1074/jbc.m402855200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serine/threonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp271-M1:M2-W1-His427-His304-Asp274 catalytic motif (where M1 and M2 are metals and W1 is a water molecule). The structure of PP5c provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
82
|
Li S, Wang X, Klee CB, Krieger C. Overexpressed mutant G93A superoxide dismutase protects calcineurin from inactivation. ACTA ACUST UNITED AC 2004; 125:156-61. [PMID: 15193434 DOI: 10.1016/j.molbrainres.2004.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2004] [Indexed: 11/30/2022]
Abstract
Previous studies have claimed that there is a failure of a mutant form of superoxide dismutase (mSOD) to protect the protein phosphatase, calcineurin (CN), against inactivation in the pathogenesis of amyotrophic lateral sclerosis (ALS), as determined in a murine model of ALS resulting from overexpression of mSOD (G93A). In contrast to previous studies, we find that mice overexpressing G93A mSOD have no statistically significant differences in the expression, or activity, of CN. However, CN from G93A mSOD overexpressing mice is significantly more protected against inactivation than non-transgenic mice that do not overexpress SOD. This reduced inactivation of CN is a consequence of increased expression of G93A mSOD. Thus, like wild-type SOD, G93A mSOD protects CN against inactivation.
Collapse
Affiliation(s)
- Shipeng Li
- Laboratory of Biochemistry, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
83
|
Reiter TA, Rusnak F. Electrochemical Studies of the Mono-Fe, Fe−Zn, and Fe−Fe Metalloisoforms of Bacteriophage λ Protein Phosphatase. Biochemistry 2003; 43:782-90. [PMID: 14730983 DOI: 10.1021/bi0356956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large superfamily of metallophosphoesterases, including serine/threonine protein phosphatases, purple acid phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. Members of this family share several common characteristics, including a common phosphoesterase motif, secondary structural fold (betaalphabetaalphabeta), and metal ligand environment, and often accommodate a dinuclear metal center. The identity of the active site metals often differs between family members. Despite the extensive spectroscopic studies of several family members, only the standard redox potential of porcine purple acid phosphate (PAP) has been measured. In this report, we investigate the redox properties of another member of this protein family. The standard redox potentials of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of lambdaPP were determined from anaerobic redox titration experiments. Two different S = 5/2, mono-Fe3+ lambdaPP species were identified: the first with an E/D approximately 0.17, g = 8.9 and 4.8, and an Eo' approximately +130 mV; the second with E/D approximately 0.05, g = 6.7, 5.9, and 4.4, and an Eo' approximately +120 mV. The first and second mono-Fe3+ species are thought to represent Fe present in the M2 and M1 sites, respectively. The addition of Zn2+ to mono-Fe3+ lambdaPP results in a decrease in both mono-Fe3+ species and the appearance of a new S = 5/2, Fe(3+)-Zn2+ species (E/D approximately 0.02, g = 5.9, and an Eo' > +175 mV). The Fe-Fe lambdaPP titration revealed an S = 1/2, Fe(3+)-Fe2+ (g < 2) species with an Eo' > +128 mV. These results suggest that the active site of lambdaPP supports a high oxidation potential for both metal sites and may indicate an equally oxidizing active site for other member metallophosphoesterases.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Section of Hematology Research and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
84
|
Krauskopf A, Lhote P, Mutter M, Dufour JF, Ruegg UT, Buetler TM. Vasopressin type 1A receptor up-regulation by cyclosporin A in vascular smooth muscle cells is mediated by superoxide. J Biol Chem 2003; 278:41685-90. [PMID: 12923165 DOI: 10.1074/jbc.m301181200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on our previous results, we investigated whether cyclosporin A (CsA)-induced vasopressin type 1A receptor up-regulation was mediated by free radicals. We report that CsA analogues with different affinities for cyclophilin and calcineurin were able to up-regulate vasopressin type 1A receptor and to generate free radicals in smooth muscle cells independently of calcineurin. Further, we demonstrate that the antioxidant N-acetyl-L-cysteine blocked the increase in vasopressin type 1A receptor mRNA and protein levels induced by CsA and that low concentrations of prooxidants were able to directly increase vasopressin type 1A receptor mRNA and protein levels. In addition, short exposure to CsA or pro-oxidants was sufficient to significantly increase vasopressin type 1A receptor mRNA and protein levels. Using cell-permeable forms of superoxide dismutase and catalase, we finally show that superoxide mediates the CsA-induced effects on vasopressin type 1A receptor. These results provide strong evidence that CsA-induced superoxide generation is causally involved in vasopressin type 1A receptor expression and demonstrate for the first time that low physiological concentrations of radicals, most probably superoxide, are able to directly affect cellular signaling to increase vasopressin type 1A receptor expression in rat aortic smooth muscle cells.
Collapse
Affiliation(s)
- Alexandra Krauskopf
- Pharmacology Group, School of Pharmacy, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
85
|
Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003; 22:5734-54. [PMID: 12947383 DOI: 10.1038/sj.onc.1206663] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO*) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO* levels.
Collapse
Affiliation(s)
- Ross B Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA.
| | | |
Collapse
|
86
|
Bloomfield G, Pears C. Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci 2003; 116:3387-97. [PMID: 12840076 DOI: 10.1242/jcs.00649] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are known to have a signalling role in many organisms. In bacteria and yeast various response systems have evolved to combat oxidative stress which are triggered by reactive oxygen species. Mammals and plants are known to actively generate reactive oxygen species such as superoxide during signalling responses to a variety of extracellular factors. We report here the generation of superoxide as a signalling molecule in early development of Dictyostelium discoideum. Dictyostelium grows as single amoebae but, on starvation, the single cells aggregate to form a multicellular organism. Superoxide is generated in response to a secreted factor during the transition to the multicellular phase of development. Scavenging superoxide, either pharmacologically or by overexpressing the enzyme superoxide dismutase, inhibits the formation of the aggregate. This report of the use of superoxide as a signalling molecule in a lower eukaryote as it switches to a multicellular phase suggests that this signalling mechanism arose early in the evolution of multicellular organisms, perhaps as a necessary consequence of the need to diversify the number and type of signalling pathways available to facilitate intercellular communication.
Collapse
Affiliation(s)
- Gareth Bloomfield
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
87
|
Affiliation(s)
- Manik C Ghosh
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
88
|
Rhode DJ, Imparl-Radosevich J, Bartleson C, Spannaus-Martin DJ, Martin BL. Response of recombinant calcineurin to metal ions, reduction-oxidation agents, and enzymatic modification. Protein Expr Purif 2002; 26:194-201. [PMID: 12406672 DOI: 10.1016/s1046-5928(02)00520-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recombinant calcineurin heterodimer with the full length delta-isoform of the catalytic subunit (CaN(500)) was expressed in insect cells using the baculovirus system and compared to native bovine brain enzyme in its response to divalent metal ions, redox reagents, and enzymatic modification of arginine residues. The response to various metal ions showed essentially the same profile as bovine brain calcineurin, although Co2+ and Zn2+ did not support recombinant activity as well. Kinetic analysis showed that metal ion and substrate binding were not independent, as found for the bovine brain calcineurin. Incubation with DTT or ascorbate alone caused similar effects on the activity of both enzymes, but different responses were observed when incubated with both DTT and ascorbate; only the recombinant enzyme showed activation. Arginine deimination of recombinant calcineurin by peptidylarginine deiminase resulted in the loss of 60-80% of its phosphatase activity with protection observed if calmodulin was present. Recombinant calcineurin was reactivated by treatment with the protease clostripain, suggesting that deimination of an arginine in the carboxyl terminal domain may be responsible for the loss of phosphatase activity and decreased calmodulin binding [Arch. Biochem. Biophys. 318 (1995) 370]. Supporting this conclusion, a truncated variant of the catalytic subunit lacking the carboxyl terminus showed no loss of phosphatase activity compared to full length calcineurin subunit and contained lower amounts of citrulline than the full length subunit after deimination. These different responses of recombinant calcineurin are consistent with conformational differences compared to bovine brain calcineurin and raise questions about its utility for studying the mechanism of calcineurin.
Collapse
Affiliation(s)
- David J Rhode
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
89
|
Sommer D, Coleman S, Swanson SA, Stemmer PM. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch Biochem Biophys 2002; 404:271-8. [PMID: 12147265 DOI: 10.1016/s0003-9861(02)00242-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.
Collapse
Affiliation(s)
- Debbie Sommer
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-6255, USA
| | | | | | | |
Collapse
|
90
|
Thabut G, El-Benna J, Samb A, Corda S, Megret J, Leseche G, Vicaut E, Aubier M, Boczkowski J. Tumor necrosis factor-alpha increases airway smooth muscle oxidants production through a NADPH oxidase-like system to enhance myosin light chain phosphorylation and contractility. J Biol Chem 2002; 277:22814-21. [PMID: 11940577 DOI: 10.1074/jbc.m200315200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor plays a critical role in airway smooth muscle hyperresponsiveness observed in asthma. However, the mechanisms underlying this phenomenon are poorly understood. We investigated if tumor necrosis factor-stimulated airway smooth muscle produced reactive oxygen species, leading to muscular hyperresponsiveness. Tumor necrosis factor increased intracellular and extracellular oxidants production in guinea pig airway smooth muscle cells and tissue homogenates. This production was abolished by inhibitors of NADPH oxidase (diphenylene iodinium or apocynin) and was enhanced by NADPH, whereas inhibitors of mitochondrial respiratory chain, nitric-oxide synthase, cyclooxygenase, and xanthine oxidase had no effect. NADPH oxidase subunits p22(phox) and p47(phox) were detected in smooth muscle cells and tissue homogenates by Western blot, immunohistochemistry, and spectral analysis. Furthermore, oxidants production was significantly reduced by transient transfection of smooth muscle cells with p22(phox) antisense oligonucleotides. Intracellular antioxidants and diphenylene iodinium abolished tumor necrosis factor-induced muscular hyperresponsiveness and increased in phosphorylation of the myosin light chain. Finally, NADPH oxidase subunits p22(phox) and p47(phox) were also detected in human airway smooth muscle. Collectively, these results demonstrate that tumor necrosis factor-stimulated airway smooth muscle produces oxidants through a NADPH oxidase-like system, which plays a pivotal role in muscle hyperresponsiveness and myosin light chain phosphorylation.
Collapse
Affiliation(s)
- Gabriel Thabut
- INSERM U408, Faculté de Médecine Xavier Bichat 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | | | |
Collapse
|