51
|
Ettelaie C, Li C, Collier MEW, Pradier A, Frentzou GA, Wood CG, Chetter IC, McCollum PT, Bruckdorfer KR, James NJ. Differential functions of tissue factor in the trans-activation of cellular signalling pathways. Atherosclerosis 2007; 194:88-101. [PMID: 17137581 DOI: 10.1016/j.atherosclerosis.2006.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/29/2006] [Accepted: 10/06/2006] [Indexed: 11/16/2022]
Abstract
In this study we examined the ability of tissue factor (TF) alone, or in conjunction with factor VIIa, factor Xa and TFPI in activating a number of key signalling pathways associated with cellular growth, stress and differentiation responses in human endothelial cells. We used luciferase reporter systems to demonstrate the activation of p42/44 MAPK by the TF-FVIIa complex, mediated via the PAR1 receptor. TF alone was capable of interacting with the cell surface and was sufficient to activate the JNK-SAPK pathway and subsequently AP-1, but the level of activation was enhanced by the activity of FXa on PAR1 and 2. Furthermore, the phosphorylated form of the transmembrane-cytoplasmic domain of TF was directly responsible for activation of these pathways. CREB activation occurred in response to TF-FVIIa in a non-protease dependent manner but was lowered on addition of FXa. Finally, NFkappaB activation occurred in response to FVIIa or FXa, with the latter exhibiting higher levels of activation. In conclusion, we have shown that TF is capable of activating differing signalling pathways, via more than one mechanism. The differential influence of TF is modified depending on the presence of other coagulation factors and ultimately acts as a deciding factor in the determination of cellular fate.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S. Royal jelly-induced neurite outgrowth from rat pheochromocytoma PC12 cells requires integrin signal independent of activation of extracellular signal-regulated kinases. ACTA ACUST UNITED AC 2007; 28:139-46. [PMID: 17625346 DOI: 10.2220/biomedres.28.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We showed earlier that neurite outgrowth of rat pheochromocytoma PC12 cells was stimulated by royal jelly extract (PERJ) or its unique component, AMP N(1)-oxide, via adenosine A2a receptors. In this study, we found that stimulated neurite outgrowth occurred in medium supplemented with serum, but not in serum-free medium. The pentapeptide GRGDS, which includes the RGD sequence commonly shared by extracellular matrix (ECM) components, could attenuate the effect of serum, suggesting that integrin receptor signaling was essential for the neurite outgrowth induced by PERJ or AMP N(1)-oxide. PERJ or AMP N(1)-oxide also activated extracellular signal-regulated kinases 1 or 2 (ERK1/2); however, this activation was not associated with the neurite outgrowth. As it is known that Mn(2+) induces neurite outgrowth from PC12 cells and activates ERK1/2 through integrin signals and that activation of ERK1/2 is essential for Mn2+-induced neurite outgrowth, a difference in the mechanism between Mn(2+)-induced and PERJ- or AMP N(1)-oxide-induced neurite outgrowth is suggested. Furthermore, we demonstrated that PERJ contained no ECM component-like substances. These results demonstrate that AMP N(1)-oxide and its analogues were the only entities in PERJ with neurite outgrowth-inducing activity and that they required integrin signaling in addition to activation of A2a receptors to induce neurite outgrowth.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
53
|
Fredholm BB, Chern Y, Franco R, Sitkovsky M. Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 2007; 83:263-76. [PMID: 17804147 DOI: 10.1016/j.pneurobio.2007.07.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/05/2007] [Accepted: 07/19/2007] [Indexed: 01/10/2023]
Abstract
Many of our current hopes of finding better ways to treat Parkinson's disease or to stop its progression rely on studies of adenosine A2A receptors in the brain. Yet any drug targeting central receptors will also potentially affect receptors in other sites. Furthermore, several fundamental aspects of adenosine receptor biology must be taken into account. For these reasons the "Targeting adenosine A2A receptors in Parkinson's disease and other CNS disorders" meeting in Boston included selected aspects of the general biology of adenosine A2A receptor signaling. Some of the presentations from this part of the meeting are summarized in this first chapter. As will be apparent to the reader, these different parts do not form an integrated whole, but they do indicate areas the organizers felt might illuminate remaining questions regarding the roles of adenosine A2A receptors. The contributors to this part of the meeting have summarized some of the key questions below.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Dimerization
- Encephalitis/genetics
- Encephalitis/immunology
- Encephalitis/metabolism
- Humans
- Hypoxia, Brain/genetics
- Hypoxia, Brain/immunology
- Hypoxia, Brain/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Parkinson Disease/genetics
- Parkinson Disease/immunology
- Parkinson Disease/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
54
|
Hattori N, Nomoto H, Mishima S, Inagaki S, Goto M, Sako M, Furukawa S. Identification of AMP N1-oxide in royal jelly as a component neurotrophic toward cultured rat pheochromocytoma PC12 cells. Biosci Biotechnol Biochem 2006; 70:897-906. [PMID: 16636457 DOI: 10.1271/bbb.70.897] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An extract of royal jelly (RJ) induced processes from cultured rat pheochromocytoma PC12 cells. Active components were isolated, and identified as adenosine monophosphate (AMP) and AMP N1-oxide. AMP N1-oxide was more than 20 times as active as AMP, judging from the minimal concentration to elicit activity. AMP N1-oxide was thought to be responsible for about half of the process-forming activity of whole RJ. Chemically-synthesized AMP N1-oxide was active similarly to the molecule purified from RJ, confirming AMP N1-oxide as the active entity. AMP N1-oxide also suppressed proliferation of PC12 cells and stimulated expression of neurofilament M, a specific protein of mature neurons, demonstrating the stimulatory activity of AMP N1-oxide to induce neuronal differentiation of PC12 cells. Pharmacological experiments suggested that AMP N1-oxide actions are mediated by adenyl cyclase-coupled adenosine receptors, including A2A. Thus AMP N1-oxide is a key molecule that characterizes RJ, and is not found in natural products other than RJ.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Boucher M, Wann BP, Kaloustian S, Cardinal R, Godbout R, Rousseau G. Reduction of apoptosis in the amygdala by an A2A adenosine receptor agonist following myocardial infarction. Apoptosis 2006; 11:1067-74. [PMID: 16832713 DOI: 10.1007/s10495-006-6313-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A(2A) adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A(2A) adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A(2A) agonist CGS21680 (0.2 mug/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 +/- 1.8% and 52.3 +/- 2.8% respectively; p < 0.05), with no difference compared to the Late group (40.1 +/- 6.1%). Apoptosis regression was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFalpha was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A(2A) adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction.
Collapse
Affiliation(s)
- M Boucher
- Centre de Biomédecine, Hôpital du Sacré-Coeur de Montréal, 5400 boulevard Gouin Ouest, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
56
|
Gsandtner I, Freissmuth M. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways. Mol Pharmacol 2006; 70:447-9. [PMID: 16707626 DOI: 10.1124/mol.106.026757] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.
Collapse
Affiliation(s)
- Ingrid Gsandtner
- Institute of Pharmacology, Medical University of Vienna, Währinger Str. 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
57
|
Selkirk JV, Nottebaum LM, Ford IC, Santos M, Malany S, Foster AC, Lechner SM. A novel cell-based assay for G-protein-coupled receptor-mediated cyclic adenosine monophosphate response element binding protein phosphorylation. ACTA ACUST UNITED AC 2006; 11:351-8. [PMID: 16751331 DOI: 10.1177/1087057106286608] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Currently, the most popular means of assessing functional activity of Gs/olf-coupled receptors is via the measurement of intracellular cyclic adenosine monophosphate (cAMP) accumulation. An additional readout is the downstream phosphorylation of cAMP response element binding protein (CREB), which gives an indication of gene transcription, the ultimate response of many G-protein-coupled receptor (GPCR) signals. Current methods of quantifying CREB phosphorylation are low throughput, and so we have designed a novel higher throughput method using the Odyssey infrared imaging system. Functional potencies of both agonists and antagonists correlate well with radioligand binding affinities determined using examples of both an endogenous (adenosine(2A) receptor in PC-12 cells) and a heterologous (human melanocortin 4 receptor in HEK-293 cells) expression system. For example, the antagonist ZM241385 demonstrates 0.23+/-0.03 nM affinity for the A(2A) receptor and has a functional potency of 0.26+/-0.04 nM determined using cAMP and 0.15+/-0.06 nM using CREB phosphorylation. These data demonstrate that this novel approach for the measurement of CREB phosphorylation is a useful tool for the assessment of GPCR activity in whole cells and is more amenable to the throughput required for the purposes of drug discovery.
Collapse
Affiliation(s)
- Julie V Selkirk
- Department of Neuroscience, Neurocrine Biosciences Inc., San Diego, CA 92130, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Sun CN, Cheng HC, Chou JL, Lee SY, Lin YW, Lai HL, Chen HM, Chern Y. Rescue of p53 Blockage by the A2AAdenosine Receptor via a Novel Interacting Protein, Translin-Associated Protein X. Mol Pharmacol 2006; 70:454-66. [PMID: 16617164 DOI: 10.1124/mol.105.021261] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blockage of the p53 tumor suppressor has been found to impair nerve growth factor (NGF)-induced neurite outgrowth in PC-12 cells. We report herein that such impairment could be rescued by stimulation of the A(2A) adenosine receptor (A(2A)-R), a G protein-coupled receptor implicated in neuronal plasticity. The A(2A)-R-mediated rescue occurred in the presence of protein kinase C (PKC) inhibitors or protein kinase A (PKA) inhibitors and in a PKA-deficient PC-12 variant. Thus, neither PKA nor PKC was involved. In contrast, expression of a truncated A(2A)-R mutant harboring the seventh transmembrane domain and its C terminus reduced the rescue effect of A(2A)-R. Using the cytoplasmic tail of the A(2A)-R as bait, a novel-A(2A)-R-interacting protein [translin-associated protein X (TRAX)] was identified in a yeast two-hybrid screen. The authenticity of this interaction was verified by pull-down experiments, coimmunoprecipitation, and colocalization of these two molecules in the brain. It is noteworthy that reduction of TRAX using an antisense construct suppressed the rescue effect of A(2A)-R, whereas overexpression of TRAX alone caused the same rescue effect as did A(2A)-R activation. Results of [(3)H]thymidine and bromodeoxyuridine incorporation suggested that A(2A)-R stimulation inhibited cell proliferation in a TRAX-dependent manner. Because the antimitotic activity is crucial for NGF function, the A(2A)-R might exert its rescue effect through a TRAX-mediated antiproliferative signal. This antimitotic activity of the A(2A)-R also enables a mitogenic factor (epidermal growth factor) to induce neurite outgrowth. We demonstrate that the A(2A)-R modulates the differentiation ability of trophic factors through a novel interacting protein, TRAX.
Collapse
Affiliation(s)
- Chung-Nan Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Bilodeau ML, Ji M, Paris M, Andrisani OM. Adenosine signaling promotes neuronal, catecholaminergic differentiation of primary neural crest cells and CNS-derived CAD cells. Mol Cell Neurosci 2005; 29:394-404. [PMID: 15886017 DOI: 10.1016/j.mcn.2005.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/22/2022] Open
Abstract
In neural crest (NC) cultures cAMP signaling is an instructive signal in catecholaminergic, sympathoadrenal cell development. However, the extracellular signals activating the cAMP pathway during NC cell development have not been identified. We demonstrate that in avian NC cultures, evidenced by tyrosine hydroxylase expression and catecholamine biosynthesis, adenosine and not adrenergic signaling, together with BMP2, promotes sympathoadrenal cell development. In NC cultures, addition of the adenosine receptor agonist NECA in the presence of BMP2 promotes sympathoadrenal cell development, whereas the antagonist CGS 15943 or the adenosine degrading enzyme adenosine deaminase (ADA) suppresses TH expression. Importantly, NC cells express A2A and A2B receptors which couple with Gsalpha increasing intracellular cAMP. Employing the CNS-derived catecholaminergic CAD cell line, we also demonstrate that neuronal differentiation mediated by serum withdrawal is further enhanced by treatment with IBMX, a cAMP-elevating agent, or the adenosine receptor agonist NECA, acting via cAMP. By contrast, the adenosine receptor antagonist CGS 15943 or the adenosine degrading enzyme ADA inhibits CAD cell neuronal differentiation mediated by serum withdrawal. These results support that adenosine is a physiological signal in neuronal differentiation of the CNS-derived catecholaminergic CAD cell line and suggest that adenosine signaling is involved in NC cell development in vivo.
Collapse
Affiliation(s)
- Matthew L Bilodeau
- Department of Basic Medical Sciences, 1246 Lynn Hall, Purdue University, West Lafayette, IN 47907-1246, USA
| | | | | | | |
Collapse
|
60
|
Hur EM, Park YS, Huh YH, Yoo SH, Woo KC, Choi BH, Kim KT. Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling. ACTA ACUST UNITED AC 2005; 169:657-67. [PMID: 15911880 PMCID: PMC2171708 DOI: 10.1083/jcb.200411034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.
Collapse
Affiliation(s)
- Eun-Mi Hur
- National Research Laboratory of Molecular Neurophysiology, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
61
|
Mori Y, Higuchi M, Masuyama N, Gotoh Y. Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct Funct 2005; 29:101-10. [PMID: 15665505 DOI: 10.1247/csf.29.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adenosine modulates a variety of cellular functions including calcium-dependent exocytosis. Activation of adenosine A(2A) receptor (A(2A)-R) facilitates neurotransmitter release in some cell types, although the underlying mechanisms are not fully understood. In this study, we found that treatment of PC12 cells with the A(2A)-R agonist CGS21680 promotes calcium-evoked secretion of the fusion protein between neuropeptide Y and modified yellow fluorescence protein (NPY-Venus). CGS21680 treatment of PC12 cells transiently increased the phosphorylation of p38 and JNK MAP kinases and Akt, as well as that of ATF2 and CREB, reaching maximal levels at around 10-15 min of CGS21680 treatment. Importantly, pretreatment of PC12 cells with the PI3K inhibitor LY294002, together with the protein kinase A (PKA) inhibitor KT5720, significantly inhibited CGS21680 enhancement of calcium-dependent NPY-Venus release. Moreover, expression of a dominant-negative form of Akt and the PKA inhibitory polypeptide protein kinase inhibitor (PKI) co-operatively inhibited the facilitating effect of CGS21680 on secretion of NPY-Venus. These data suggest that the PI3K-Akt and PKA pathways play a critical role in A(2A)-R-mediated facilitation of calcium-dependent secretion. We also found that CGS21680 treatment promoted recruitment of the NPY-Venus-containing vesicles to the proximity of the plasma membrane at around 10-15 min of CGS21680 treatment, which may in part account for the facilitated secretion by A(2A)-R activation.
Collapse
Affiliation(s)
- Yasunori Mori
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
62
|
Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y. CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 2005; 93:310-20. [PMID: 15816854 DOI: 10.1111/j.1471-4159.2005.03029.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.
Collapse
Affiliation(s)
- Szu-Yi Chou
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol Ther 2005; 105:267-310. [PMID: 15737407 DOI: 10.1016/j.pharmthera.2004.10.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In the pursuit of improved treatments for Parkinson's disease (PD), the adenosine A(2A) receptor has emerged as an attractive nondopaminergic target. Based on the compelling behavioral pharmacology and selective basal ganglia expression of this G-protein-coupled receptor, its antagonists are now crossing the threshold of clinical development as adjunctive symptomatic treatment for relatively advanced PD. The antiparkinsonian potential of A(2A) antagonism has been boosted further by recent preclinical evidence that A(2A) antagonists might favorably alter the course as well as the symptoms of the disease. Convergent epidemiological and laboratory data have suggested that A(2A) blockade may confer neuroprotection against the underlying dopaminergic neuron degeneration. In addition, rodent and nonhuman primate studies have raised the possibility that A(2A) receptor activation contributes to the pathophysiology of dyskinesias-problematic motor complications of standard PD therapy--and that A(2A) antagonism might help prevent them. Realistically, despite being targeted to basal ganglia pathophysiology, A(2A) antagonists may be expected to have other beneficial and adverse effects elsewhere in the central nervous system (e.g., on mood and sleep) and in the periphery (e.g., on immune and inflammatory processes). The thoughtful design of new clinical trials of A(2A) antagonists should take into consideration these counterbalancing hopes and concerns and may do well to shift toward a broader set of disease-modifying as well as symptomatic indications in early PD.
Collapse
Affiliation(s)
- Kui Xu
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
64
|
Weng C, Li Y, Xu D, Shi Y, Tang H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 2005; 280:10491-500. [PMID: 15637055 DOI: 10.1074/jbc.m412819200] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death through the caspase activation cascade and translocation of cleaved Bid (tBid) by the apical caspase-8 to mitochondria to induce oligomerization of multidomain Bax and Bak. However, the roles of prosurvival Bcl-2 family proteins in TRAIL apoptosis remain elusive. Here we showed that, besides the specific cleavage and activation of Bid by caspase-8 and caspase-3, TRAIL-induced apoptosis in Jurkat T cells required the specific cleavage of Mcl-1 at Asp-127 and Asp-157 by caspase-3, while other prototypic antiapoptotic factors such as Bcl-2 or Bcl-X(L) seemed not to be affected. Mutation at Asp-127 and Asp-157 of Mcl-1 led to cellular resistance to TRAIL-induced apoptosis. In sharp contrast to cycloheximide-induced Mcl-1 dilapidation, TRAIL did not activate proteasomal degradation of Mcl-1 in Jurkat cells. We further established for the first time that the C-terminal domain of Mcl-1 became proapoptotic as a result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak, and voltage-dependent anion-selective channel 1 promoted mitochondrial apoptosis. These results suggested that removal of N-terminal domains of Bid by caspase-8 and Mcl-1 by caspase-3 enabled the maximal mitochondrial perturbation that potentiated TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Changjiang Weng
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 100080
| | | | | | | | | |
Collapse
|
65
|
O'Driscoll CM, Gorman AM. Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience 2005; 131:321-9. [PMID: 15708476 DOI: 10.1016/j.neuroscience.2004.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2004] [Indexed: 11/20/2022]
Abstract
Development of the nervous system is a complex process, involving coordinated regulation of diverse cellular processes including proliferation, differentiation and synaptogenesis. Disturbances to brain development such as pre- and perinatal hypoxia have been linked to behavioural and late onset of neurological disorders. This study examines the effect of hypoxia on neurite outgrowth in PC12 cells. Hypoxia not only caused a rapid induction of neurite outgrowth, but also synergistically enhanced nerve growth factor (NGF)-induced neurite outgrowth up to 24 h. Transactivation of TrkA receptors was ruled out since the TrkA inhibitor K252a did not block hypoxia-induced neurite outgrowth. Adenosine deaminase prevented hypoxia-induced neurite outgrowth indicating that the effect is mediated by adenosine. Use of the specific adenosine A2A receptor agonist CGS21680 and antagonist 8-3(chlorostyryl)caffeine demonstrated that activation of this receptor is critical for hypoxia-induced neurite outgrowth. Hypoxia-induced neurite outgrowth was blocked by the adenylate cyclase inhibitor, MDL-12,330A, indicating a role for activation of this enzyme in the pathway. Hypoxia was further shown to cause a decrease in growth-associated protein (GAP)-43 levels and a lack of induction of betaIII tubulin, in contrast to NGF treatment which resulted in increased cellular levels of both of these proteins. These findings suggest that hypoxia induces neurite outgrowth in PC12 cells via a pathway distinct from that activated by NGF. Thus, exposure to hypoxia at critical stages of development may contribute to aberrant neurite outgrowth and could be a factor in the pathogenesis of certain delayed developmental neurological disorders.
Collapse
Affiliation(s)
- C M O'Driscoll
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
66
|
Canals M, Angulo E, Casadó V, Canela EI, Mallol J, Viñals F, Staines W, Tinner B, Hillion J, Agnati L, Fuxe K, Ferré S, Lluis C, Franco R. Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. J Neurochem 2005; 92:337-48. [PMID: 15663481 DOI: 10.1111/j.1471-4159.2004.02856.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A(2A)R-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A(2A)R agonists but not by A1R agonists. PKA activation is therefore necessary for A(2A)R-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A(2A) receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.
Collapse
Affiliation(s)
- Meritxell Canals
- Department de Bioquimica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible domain, however, mediates signal-induced activation of CREB-mediated transcription. It is generally believed that recruitment of the coactivators CREB-binding protein (CBP) and p300 after signal-induced phosphorylation of this domain at serine-133 strongly enhances CREB-dependent transcription. Transcriptional activity of CREB can also be potentiated by phosphoserine-133-independent mechanisms, and not all stimuli that provoke phosphorylation of serine-133 stimulate CREB-dependent transcription. This review presents an overview of the diversity of stimuli that induce CREB phosphorylation at Ser-133, focuses on phosphoserine-133-dependent and -independent mechanisms that affect CREB-mediated transcription, and discusses different models that may explain the discrepancy between CREB Ser-133 phosphorylation and activation of CREB-mediated transcription.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037, Norway
| | | | | |
Collapse
|
68
|
Ramirez SH, Fan S, Maguire CA, Perry S, Hardiek K, Ramkumar V, Gelbard HA, Dewhurst S, Maggirwar SB. Activation of adenosine A2A receptor protects sympathetic neurons against nerve growth factor withdrawal. J Neurosci Res 2004; 77:258-69. [PMID: 15211592 DOI: 10.1002/jnr.20150] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine mediates a range of effects in the central nervous system (CNS), including the promotion of neuronal survival, but its actions on sympathetic neurons are less well characterized. We therefore sought to understand the role of endogenous adenosine in contributing to the survival of neurotrophin-dependent sympathetic neurons. Rat superior cervical ganglion (SCG) cultures were maintained in the continuous presence of nerve growth factor (NGF) and then exposed to adenosine deaminase (ADA), to deplete endogenous adenosine. This resulted in a marked increase in cellular apoptosis, to a level that approximated the effect of NGF withdrawal. Furthermore, the addition of exogenous adenosine to NGF-deprived SCG neurons resulted in enhanced cell survival. Analysis of adenosine receptor (AR) subtypes on these neurons, using real-time RT-PCR and receptor binding analyses, revealed that the A2A receptor was the major subtype present. Accordingly, the A2A receptor agonist CGS21680 significantly reduced both ADA-induced and NGF-withdrawal-induced neuronal apoptosis, whereas the A1 receptor agonist R-PIA had no such effect. The survival-promoting effect of CGS21680 was eliminated when cells were coincubated with a molar excess of an A2A receptor antagonist. Finally, follow-up experiments revealed that CGS21680 prevented the induction of early apoptotic events, such as changes in mitochondrial integrity and caspase activation, and that it also triggered an increase in ERK activation, which was essential for neurotrophin-independent cell survival. Taken together, these findings provide evidence that endogenous adenosine may be important in mediating protection of sympathetic neurons and that it may act via the A2A receptor subtype.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/antagonists & inhibitors
- Adenosine/deficiency
- Adenosine/pharmacology
- Adenosine A1 Receptor Agonists
- Adenosine A2 Receptor Antagonists
- Adenosine Deaminase/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Caspases/drug effects
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/growth & development
- Ganglia, Sympathetic/metabolism
- Mitochondria/drug effects
- Mitogen-Activated Protein Kinases/drug effects
- Nerve Growth Factor/deficiency
- Nerve Growth Factor/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Neuroprotective Agents/pharmacology
- Phenethylamines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Diógenes MJ, Fernandes CC, Sebastião AM, Ribeiro JA. Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 2004; 24:2905-13. [PMID: 15044529 PMCID: PMC6729859 DOI: 10.1523/jneurosci.4454-03.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both brain-derived neurotrophic factor (BDNF) and adenosine influence neuronal plasticity. We now investigated how adenosine influences the action of BDNF on synaptic transmission in the CA1 area of the rat hippocampal slices. Alone, BDNF (20-100 ng/ml) did not significantly affect field EPSPs (fEPSPs). However, a 2 min pulse of high-K(+) (10 mm) 46 min before the application of BDNF (20 ng/ml) triggered an excitatory action, an effect blocked by the TrkB receptor inhibitor K252a (200 nm), by the adenosine A(2A) receptor antagonist ZM 241385 (50 nm), and by the protein kinase A inhibitor H-89 (1 microm). Presynaptic, rather than postsynaptic depolarization was required to trigger the BDNF action because after K(+) depolarization BDNF also increased EPSCs recorded from pyramidal neurons voltage-clamped at -60 mV, and transient postsynaptic depolarization was unable to unmask the BDNF action. A weak theta burst stimulation of the afferents could elicit potentiation of synaptic transmission only when applied in the presence of BDNF. Activation of adenosine A(2A) receptors with CGS 21680 (10 nm), or the increase in extracellular adenosine levels induced by 5-iodotubercidin (100 nm) triggered the excitatory action of BDNF, a process prevented by ZM 241385 and by H-89. In the presence of dibutyryl-cAMP (0.5 mm), BDNF also increased fEPSPs but postsynaptic cAMP (0.5 mm) was unable to trigger the BDNF action. It is concluded that presynaptic activity-dependent release of adenosine, through activation of A(2A) receptors, facilitates BDNF modulation of synaptic transmission at hippocampal synapses.
Collapse
Affiliation(s)
- Maria José Diógenes
- Laboratory of Neurosciences and Institute of Pharmacology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | | |
Collapse
|
70
|
Johnston CA, Beazely MA, Bilodeau ML, Andrisani O, Watts VJ. Differentiation-induced alterations in cyclic AMP signaling in the Cath.a differentiated (CAD) neuronal cell line. J Neurochem 2004; 88:1497-508. [PMID: 15009651 DOI: 10.1046/j.1471-4159.2004.02285.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of intracellular cyclic AMP is critical to the modulation of many cellular activities, including cellular differentiation. Moreover, morphological differentiation has been linked to subsequent alterations in the cAMP signaling pathway in various cellular models. The current study was designed to explore the mechanism for the previously reported enhancement of adenylate cyclase activity in Cath.a differentiated cells following differentiation. Differentiation of Cath.a differentiated cells stably expressing the D2L dopamine receptor markedly potentiated both forskolin- and A2-adenosine receptor-stimulated cAMP accumulation. This enhancement was accompanied by a twofold increase in adenylate cyclase 6 (AC6) expression and a dramatic loss in the expression of AC9. The ability of Ca2+ to inhibit drug-stimulated cAMP accumulation was enhanced following differentiation, as was D2L dopamine receptor-mediated inhibition of Galphas-stimulated cAMP accumulation. Differentiation altered basal and drug-stimulated phosphorylation of the cAMP-response element-binding protein, which was independent of changes in protein kinase A expression. The current data suggest that differentiation of the neuronal cell model, Cath.a differentiated cells induces significant alterations in the expression and function of both the proximal and distal portions of the cAMP signaling pathway and may impact cellular operations dependent upon this pathway.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
71
|
Németh ZH, Leibovich SJ, Deitch EA, Sperlágh B, Virág L, Vizi ES, Szabó C, Haskó G. Adenosine stimulates CREB activation in macrophages via a p38 MAPK-mediated mechanism. Biochem Biophys Res Commun 2004; 312:883-8. [PMID: 14651954 DOI: 10.1016/j.bbrc.2003.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adenosine is an endogenously released autocoid that has potent receptor-mediated modulatory effects on macrophage function. The intracellular pathways mediating these effects are incompletely understood. Since adenosine receptor occupancy has been associated with activation of the cAMP-PKA system as well as of p38 MAPK and p42/44 MAPK, all of which can activate the CREB transcription factor system, we hypothesized that adenosine would activate CREB in macrophages. Using RAW 264.7 macrophages, we found that extracellular adenosine enhanced CREB transcriptional activity and increased phosphorylation of nuclear CREB. On the other hand, adenosine failed to alter CREB DNA binding. Adenosine stimulated both p38 and p42/44 MAPK activation. The p38 MAPK pathway inhibitor SB203580 but not the p42/44 MAPK pathway blocker PD98059 decreased adenosine-induced CREB activation, indicating that p38 MAPK but not p42/44 MAPK is an upstream mediator of CREB activation. Thus, some of the immunomodulatory effects of adenosine in macrophages may be explained by its augmenting effect on CREB activation.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 2004; 77:100-7. [PMID: 15197743 DOI: 10.1002/jnr.20138] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.
Collapse
|
73
|
Abstract
The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated protein kinases (MAPK), which could give them a role in cell growth, survival, death and differentiation. Although each of the adenosine receptors can activate one or more of the MAPKs, the mechanisms appear to differ substantially, both between receptor subtypes in the same cell type and between the same receptor in different cell types.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
74
|
A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 2003. [PMID: 12832562 DOI: 10.1523/jneurosci.23-12-05361.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reduction of A2A receptor expression is one of the earliest events occurring in both Huntington's disease (HD) patients and mice overexpressing the N-terminal part of mutated huntingtin. Interestingly, increased activity of A2A receptors has been found in striatal cells prone to degenerate in experimental models of this neurodegenerative disease. However, the role of A2A receptors in the pathogenesis of HD remains obscure. In the present study, using A2A-/- mice and pharmacological compounds in rat, we demonstrate that striatal neurodegeneration induced by the mitochondrial toxin 3-nitropropionic acid (3NP) is regulated by A2A receptors. Our results show that the striatal outcome induced by 3NP depends on a balance between the deleterious activity of presynaptic A2A receptors and the protective activity of postsynaptic A2A receptors. Moreover, microdialysis data demonstrate that this balance is anatomically determined, because the A2A presynaptic control on striatal glutamate release is absent within the posterior striatum. Therefore, because blockade of A2A receptors has differential effects on striatal cell death in vivo depending on its ability to modulate presynaptic over postsynaptic receptor activity, therapeutic use of A2A antagonists in Huntington's as well as in other neurodegenerative diseases could exhibit undesirable biphasic neuroprotective-neurotoxic effects.
Collapse
|