51
|
Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A. down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 2011; 286:28097-110. [PMID: 21673106 PMCID: PMC3151055 DOI: 10.1074/jbc.m111.236950] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/09/2011] [Indexed: 11/06/2022] Open
Abstract
In the postnatal vasculature, fully differentiated and quiescent vascular smooth muscle cells (VSMCs) in a "contractile" phenotype are required for the normal regulation of vascular tone. The transforming growth factor-β (TGF-β) superfamily of growth factors (TGF-βs and bone morphogenetic proteins (BMPs)) are potent inducers of contractile phenotype and mediate (i) induction of contractile genes, and (ii) inhibition of VSMC growth and migration. Transcription of contractile genes is positively regulated by a regulatory DNA element called a CArG box. The CArG box is activated by the binding of serum response factor and its coactivators, myocardin (Myocd) or Myocd-related transcription factors (MRTFs). Krüppel-like factor-4 (KLF4) is known to inhibit activation of the CArG box. However, the potential role of KLF4 in the contractile activities of TGF-β or BMP has not been explored. Here, we demonstrate that TGF-β and BMP4 rapidly down-regulate KLF4 through induction of microRNA-143 (miR-143) and miR-145, which leads to a reduction of KLF4 transcripts and decreased KLF4 protein expression. Inhibition of miR-145 prevents down-regulation of KLF4 and activation of contractile genes by TGF-β or BMP4, suggesting that modulation of KLF4 is a prerequisite for induction of contractile genes by TGF-β and BMP4. Interestingly, both TGF-β and BMP4 activate transcription of the miR-143/145 gene cluster through the CArG box, however, TGF-β mediates this effect through induction of Myocd expression, whereas BMP4 utilizes nuclear translocation of MRTF-A. Thus, this study sheds light on both the similarities and the differences of TGF-β and BMP4 signaling in the regulation of KLF4 and contractile genes.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/physiology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/biosynthesis
- Kruppel-Like Transcription Factors/genetics
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Contraction/physiology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
| | - Mun Chun Chan
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Kelsey E. Reno
- the Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | | | - Matthew D. Layne
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Giorgio Lagna
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Akiko Hata
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| |
Collapse
|
52
|
Sur I. Krüppel-like factors 4 and 5: unity in diversity. Curr Genomics 2011; 10:594-603. [PMID: 20514221 PMCID: PMC2817890 DOI: 10.2174/138920209789503932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/26/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 belong to a family of zinc finger-containing transcription factors that share homology with the Drosophila gene Krüppel. They regulate proliferation and differentiation of a wide variety of cells and have been linked to tumorigenesis. Their most striking role so far has turned out to be their ability to reprogram/ maintain embryonic stem cell fate. In this review, the data available in the field regarding their role in proliferation and differentiation and their coupling to carcinogenesis are summarized. The emphasis is on their context dependence and how they might be able to regulate diverse transcriptional outputs from the genome.
Collapse
Affiliation(s)
- Inderpreet Sur
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 57 Huddinge, Sweden
| |
Collapse
|
53
|
Guerra-Crespo M, Pérez-Monter C, Janga SC, Castillo-Ramírez S, Gutiérrez-Rios RM, Joseph-Bravo P, Pérez-Martínez L, Charli JL. Transcriptional profiling of fetal hypothalamic TRH neurons. BMC Genomics 2011; 12:222. [PMID: 21569245 PMCID: PMC3126781 DOI: 10.1186/1471-2164-12-222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons.
Collapse
Affiliation(s)
- Magdalena Guerra-Crespo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Klco JM, Kulkarni S, Kreisel FH, Nguyen TDT, Hassan A, Frater JL. Immunohistochemical analysis of monocytic leukemias: usefulness of CD14 and Kruppel-like factor 4, a novel monocyte marker. Am J Clin Pathol 2011; 135:720-30. [PMID: 21502426 DOI: 10.1309/ajcpz46pmmawjrot] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Detection of monocytic differentiation in myeloid neoplasms by immunohistochemical analysis is challenging owing to a lack of sensitive and/or specific antibodies. We tested the usefulness of immunohistochemical analysis for CD14, an antigen commonly detected by flow cytometry, and Krüppel-like factor 4 (KLF4), a potentially novel marker of monocytic differentiation, in a series of myeloid leukemias, including 53 acute myeloid leukemias with monocytic differentiation. These findings were compared with immunohistochemical findings for CD68 (KP-1), CD34, and CD163 and were also correlated with flow cytometric and enzyme cytochemical results. CD163 and CD14 are the most specific markers of monocytic differentiation, followed by KLF4. CD68, in contrast, is the most sensitive monocytic marker, and KLF4 is also significantly more sensitive than CD14 and CD163. These studies show that KLF4 is another marker of monocytic differentiation and that the combination of CD14 and CD163 can increase the diagnostic sensitivity for monocytic neoplasms.
Collapse
|
55
|
Changes in proteomic features induced by insulin on vascular smooth muscle cells from spontaneous hypertensive rats in vitro. Cell Biochem Biophys 2011; 58:97-106. [PMID: 20803099 DOI: 10.1007/s12013-010-9096-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyperinsulinemia is a risk factor in atherosclerosis formation that it stimulated vascular smooth muscle cells (VSMCs) proliferation and migration. To understand the underlying molecular mechanism involved in the processes of cellular response to insulin, VSMCs from Wistar-Kyoto rat (WKY) and spontaneous hypertensive rat (SHR) were isolated and cultured, and its proteome was comparatively analyzed with normal control by two-dimensional gel electrophoresis (2-DE). Results showed that the proliferation of VSMCs from SHR be more sensitive to insulin stimulation than that VSMCs from WKY. The detectable spots ranged from 537 to 608 on the gels in VSMCs of SHR, and 413 ± 31 spots in VSMCs of WKY. The different expressed protein spots in VSMCs of SHR were then isolated and measured by matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 18 spots showed a sharp clear spectrum, and 13 spots matched with the known proteins from database. These proteins were mainly involved in cytoskeleton, glycometabolism, and post-translational processes. Among these proteins, OPN and matrix gla protein were up-regulated expression proteins, while α-SM actin was down-regulated. Furthermore, these preliminarily identified proteins confirmed by RT-PCR and western blotting analysis were coincident with the changes in 2-DE check. In addition, the cytoskeleton changes and migration rate of VSMCs from SHR treated by insulin increased significantly. The results showed that insulin plays a crucial role in activating proliferation and migration of VSMCs, by regulating the phenotype switch of VSMCs.
Collapse
|
56
|
Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30:2161-72. [PMID: 21242971 PMCID: PMC3088782 DOI: 10.1038/onc.2010.591] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kruppel-like factor 4 (KLF4) is highly expressed in more than 70% of breast cancers and functions as an oncogene. However, an exact mechanism by which KLF4 enhances tumorigenesis of breast cancer remains unknown. In this study, we show that KLF4 was highly expressed in cancer stem cell (CSC)-enriched populations in mouse primary mammary tumor and breast cancer cell lines. Knockdown of KLF4 in breast cancer cells (MCF-7 and MDA-MB-231) decreased the proportion of stem/progenitor cells as demonstrated by expression of stem cell surface markers such as aldehyde dehydrogenase 1 (ALDH1), side-population (SP), and by in vitro mammosphere assay. Consistently KLF4 overexpression led to an increase of the cancer stem cell population. KLF4 knockdown also suppressed cell migration and invasion in MCF-7 and MDA-MB-231 cells. Furthermore, knockdown of KLF4 reduced colony formation in vitro and inhibited tumorigenesis in immunocompromised NOD/SCID mice, supporting an oncogenic role for KLF4 in breast cancer development. Further mechanistic studies revealed that the Notch signaling pathway was required for KLF4-mediated cell migration and invasion, but not for CSC maintenance. Taken together, our study provides evidence that KLF4 plays a potent oncogenic role in mammary tumorigenesis likely by maintaining stem cell-like features and by promoting cell migration and invasion. Thus, targeting KLF4 may provide an effective therapeutic approach to suppress tumorigenicity in breast cancer.
Collapse
Affiliation(s)
- F Yu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Vascular smooth muscle cells (VSMCs) exhibit extraordinary plasticity during postnatal development. Vascular injury initiates VSMC phenotypic switch from the contractile to proliferative phenotype, which plays a central role in vascular lesion formation and diverse vascular diseases. MicroRNAs (miRNAs) regulate gene expression posttranscriptionally by either degrading target mRNAs or repressing their translation. Emerging evidence has revealed miRNAs are critical regulators in VSMC differentiation from stem cells, phenotypic switch, and various vascular pathogenesis. Here, we review recent advances regarding functions of specific miRNAs in vasculature and discuss possible mechanisms by which miRNAs affect VSMC biology.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
58
|
Hu D, Wan Y. Regulation of Krüppel-like factor 4 by the anaphase promoting complex pathway is involved in TGF-beta signaling. J Biol Chem 2010; 286:6890-901. [PMID: 21177849 DOI: 10.1074/jbc.m110.179952] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger-containing transcriptional factor, regulates a variety of biological processes, including cell proliferation, differentiation, apoptosis, and stem cell reprogramming. Post-translational modifications of KLF4, including phosphorylation, acetylation, and sumoylation, regulate its transcriptional activity. Most recent studies also demonstrate that KLF4 is targeted for ubiquitin-dependent proteolysis during cell cycle progression. However, the underlying mechanism remains largely unknown. In this study, we demonstrated that KLF4 is profoundly degraded in response to TGF-β signaling. We have identified the Cdh1-anaphase promoting complex as a putative E3 ligase that governs TGF-β-induced KLF4 degradation. The TGF-β-induced KLF4 degradation is mediated by the destruction box on the KLF4. Either depletion of Cdh1 by RNA interference or stabilization of KLF4 by disruption of its destruction box significantly attenuates TGF-β-induced ubiquitylation and degradation. In addition, depletion of Cdh1 or stabilization of KLF4 antagonizes TGF-β-induced activation of transcription. Determining the role of KLF4 proteolysis in response to TGF-β signaling has opened a new perspective to understand the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Dong Hu
- Department of Cell Biology and Physiology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
59
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
60
|
Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, Shi Z, Kilsdonk EPC, Gui Y, Wang DZ, Zheng XL. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol 2010; 31:368-75. [PMID: 21051663 DOI: 10.1161/atvbaha.110.218149] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Myocardin is a cardiac- and smooth muscle-specific transcription co-factor that potently activates the expression of downstream target genes. Previously, we demonstrated that overexpression of myocardin inhibited the proliferation of smooth muscle cells (SMCs). Recently, myocardin was reported to induce the expression of microRNA-1 (miR-1) in cardiomyocytes. In this study, we investigated whether myocardin induces miR-1 expression to mediate its inhibitory effects on SMC proliferation. METHODS AND RESULTS Using tetracycline-regulated expression (T-REx) inducible system expressing myocardin in human vascular SMCs, we found that overexpression of myocardin resulted in significant induction of miR-1 expression and inhibition of SMC proliferation, which was reversed by miR-1 inhibitors. Consistently, introduction of miR-1 into SMCs inhibited their proliferation. We isolated spindle-shaped and epithelioid human SMCs and demonstrated that spindle-shaped SMCs were more differentiated and less proliferative. Correspondingly, spindle-shaped SMCs had significantly higher expression levels of both myocardin and miR-1 than epithelioid SMCs. We identified Pim-1, a serine/threonine kinase, as a target gene for miR-1 in SMCs. Western blot and luciferase reporter assays further confirmed that miR-1 targeted Pim-1 directly. Furthermore, neointimal lesions of mouse carotid arteries displayed downregulation of myocardin and miR-1 with upregulation of Pim-1. CONCLUSIONS Our data demonstrate that miR-1 participates in myocardin-dependent of SMC proliferation inhibition.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2010; 20:205-10. [PMID: 20799856 DOI: 10.1089/scd.2010.0283] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of microRNA-1 (miR-1) has been studied in cardiac and skeletal muscle differentiation. However, it remains unexplored in vascular smooth muscle cells (SMCs) differentiation. The aim of this study was to uncover novel targets of and shed light on the function of miR-1 in the context of embryonic stem cell (ESC) differentiation of SMCs in vitro. miR-1 expression is steadily increased during differentiation of mouse ESC to SMCs. Loss-of-function approaches using miR-1 inhibitors uncovered that miR-1 is required for SMC lineage differentiation in ESC-derived SMC cultures, as evidenced by downregulation of SMC-specific markers and decrease of derived SMC population. In addition, bioinformatics analysis unveiled a miR-1 binding site on the Kruppel-like factor 4 (KLF4) 3' untranslated region (3'UTR), in a region that is highly conserved across species. Consistently, miR-1 mimic reduced KLF4 3'UTR luciferase activity, which can be rescued by mutating the miR-1 binding site on the KLF4 3'UTR in the reporter construct. Additionally, repression of the miR-1 expression by miR-1 inhibitor can reverse KLF4 downregulation during ESC-SMC differentiation, which subsequently inhibits SMC differentiation. We conclude that miR-1 plays a critical role in the determination of SMC fate during retinoid acid-induced ESC/SMC differentiation, which may indicate that miR-1 has a role to promote SMC differentiation.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Westerweel PE, van Velthoven CTJ, Nguyen TQ, den Ouden K, de Kleijn DPV, Goumans MJ, Goldschmeding R, Verhaar MC. Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovasc Diabetol 2010; 9:55. [PMID: 20858224 PMCID: PMC2954908 DOI: 10.1186/1475-2840-9-55] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic patients experience exaggerated intimal hyperplasia after endovascular procedures. Recently it has been shown that circulating smooth muscle progenitor cells (SPC) contribute to intimal hyperplasia. We hypothesized that SPC differentiation would be increased in diabetes and focused on modulation of TGF-β/BMP-6 signaling as potential underlying mechanism. Methods We isolated SPC from C57Bl/6 mice with streptozotocin-induced diabetes and controls. SPC differentiation was evaluated by immunofluorescent staining for αSMA and collagen Type I. SPC mRNA expression of TGF-β and BMP-6 was quantified using real-time PCR. Intima formation was assessed in cuffed femoral arteries. Homing of bone marrow derived cells to cuffed arterial segments was evaluated in animals transplanted with bone marrow from GFP-transgenic mice. Results We observed that SPC differentiation was accelerated and numeric outgrowth increased in diabetic animals (24.6 ± 8.8 vs 8.3 ± 1.9 per HPF after 10 days, p < 0.05). Quantitative real-time PCR showed increased expression of TGF-β and decreased expression of the BMP-6 in diabetic SPC. SPC were MAC-3 positive, indicative of monocytic lineage. Intima formation in cuffed arterial segments was increased in diabetic mice (intima/media ratio 0.68 ± 0.15 vs 0.29 ± 0.06, p < 0.05). In GFP-chimeric mice, bone marrow derived cells were observed in the neointima (4.4 ± 3.3 cells per section) and particularly in the adventitia (43.6 ± 9.3 cells per section). GFP-positive cells were in part MAC-3 positive, but rarely expressed α-SMA. Conclusions In conclusion, in a diabetic mouse model, SPC levels are increased and SPC TGF-β/BMP-6 expression is modulated. Altered TGF-β/BMP-6 expression is known to regulate smooth muscle cell differentiation and may facilitate SPC differentiation. This may contribute to exaggerated intimal hyperplasia in diabetes as bone marrow derived cells home to sites of neointima formation.
Collapse
Affiliation(s)
- Peter E Westerweel
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem 2010; 285:17846-56. [PMID: 20375011 DOI: 10.1074/jbc.m109.076992] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 (Krüppel-like factor 4) has been implicated in vascular smooth muscle cell (VSMC) differentiation induced by transforming growth factor beta (TGF-beta). However, the role of KLF4 and mechanism of KLF4 actions in regulating TGF-beta signaling in VSMCs remain unclear. In this study, we showed that TGF-beta1 inhibited cell cycle progression and induced differentiation in cultured rat VSMCs. This activity of TGF-beta1 was accompanied by up-regulation of KLF4, with concomitant increase in TbetaRI (TGF-beta type I receptor) expression. KLF4 was found to transduce TGF-beta1 signals via phosphorylation-mediated activation of Smad2, Smad3, and p38 MAPK. The activation of both pathways, in turn, increased the phosphorylation of KLF4, which enabled the formation of KLF4-Smad2 complex in response to TGF-beta1. Chromatin immunoprecipitation studies and oligonucleotide pull-down assays showed the direct binding of KLF4 to the KLF4-binding sites 2 and 3 of the TbetaRI promoter and the recruitment of Smad2 to the Smad-responsive region. Formation of a stable KLF4-Smad2 complex in the promoter's Smad-responsive region mediated cooperative TbetaRI promoter transcription in response to TGF-beta1. These results suggest that KLF4-dependent regulation of Smad and p38 MAPK signaling via TbetaRI requires prior phosphorylation of KLF4 through Smad and p38 MAPK pathways. This study demonstrates a novel mechanism by which TGF-beta1 regulates VSMC differentiation.
Collapse
Affiliation(s)
- Hui-xuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, China Ministry of Education, Hebei Medical University, No 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Zheng B, Han M, Wen JK. Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 2010; 62:132-9. [PMID: 20073036 DOI: 10.1002/iub.298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) are critical components in the development of many vascular proliferation diseases such as atherosclerosis and restenosis after percutaneous coronary interventions. Krüppel-like factor 4 (KLF4) has been shown to play a key role in VSMC proliferation and differentiation. The focus of this review is to provide an overview for understanding the physiological and pathobiological roles of KLF4 in phenotypic switching and proliferation of VSMCs.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | | | | |
Collapse
|
65
|
Popovic N, Bridenbaugh EA, Neiger JD, Hu JJ, Vannucci M, Mo Q, Trzeciakowski J, Miller MW, Fossum TW, Humphrey JD, Wilson E. Transforming growth factor-beta signaling in hypertensive remodeling of porcine aorta. Am J Physiol Heart Circ Physiol 2009; 297:H2044-53. [PMID: 19717726 DOI: 10.1152/ajpheart.01015.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A porcine aortic coarctation model was used to examine regulation of gene expression in early hypertensive vascular remodeling. Aortic segments were collected proximal (high pressure) and distal (low pressure) to the coarctation after 2 wk of sustained hypertension (mean arterial pressure>150 mmHg). Porcine 10K oligoarrays used for gene expression profiling of the two regions of aorta revealed downregulation of cytoskeletal and upregulation of extracellular region genes relative to the whole genome. A genomic database search for transforming growth factor-beta (TGF-beta) control elements showed that 19% of the genes that changed expression due to hypertension contained putative TGF-beta control elements. Real-time RT-PCR and microarray analysis showed no change in expression of TGF-beta1, TGF-beta2, TGF-beta3, or bone morphogenetic proteins-2 and -4, yet immunohistochemical staining for phosphorylated SMAD2, an indicator of TGF-beta signaling, and for phosphorylated SMAD1/5/8, an indicator of signaling through the bone morphogenetic proteins, showed the highest percentage of positively stained cells in the proximal aortic segments of occluded animals. For TGF-beta signaling, this increase was significantly different than for sham-operated controls. Western blot analysis showed no difference in total TGF-beta1 protein levels with respect to treatment or aortic segment. Immunohistochemistry showed that the protein levels of latency-associated peptide was decreased in proximal segments of occluded animals. Collectively, these results suggest that activation of TGF-beta, but not altered expression, may be a major mechanism regulating early hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Natasa Popovic
- Department of Systems Biology and Translational Medicine, TAMHSC, 336 Reynolds Medical Bldg., College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zheng B, Han M, Bernier M, Zhang XH, Meng F, Miao SB, He M, Zhao XM, Wen JK. Krüppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha-mediated, phosphatidylinositol 3-kinase and ERK signaling in vascular smooth muscle cells. J Biol Chem 2009; 284:22773-85. [PMID: 19531492 DOI: 10.1074/jbc.m109.026989] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation inhibition of vascular smooth muscle cells (VSMCs) is governed by the activity of a transcription factor network. Krüppel-like factor 4 (Klf4), retinoic acid receptor (RAR alpha), and platelet-derived growth factor receptor (PDGFR) are expressed in VSMCs and are components of such a network. However, the relationship among them in the regulation of VSMC proliferation remains unknown. Here, we investigated the mechanisms whereby Klf4 mediates the growth inhibitory effects in VSMCs through RAR alpha and PDGFR beta. We demonstrated that Klf4 directly binds to the 5' regulatory region of RAR alpha, down-regulates RAR alpha expression, and specifically inhibits RAR alpha-mediated phosphatidylinositol 3-kinase (PI3K) and ERK signaling in cultured VSMCs induced by the synthetic retinoid Am80. Of particular interest, Klf4 inhibits RAR alpha and PDGFR beta expression while blocking PI3K and ERK signaling induced by Am80 and PDGF-BB, respectively. The anti-proliferative effects of Klf4 on neointimal formation depend largely on PDGFR-mediated PI3K signaling without involvement of the RAR alpha-activated signaling pathways. These findings provide a novel mechanism for signal suppression and growth inhibitory effects of Klf4 in VSMCs. Moreover, the results of this study suggest that Klf4 is one of the key mediators of retinoid actions in VSMCs.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Kawai-Kowase K, Ohshima T, Matsui H, Tanaka T, Shimizu T, Iso T, Arai M, Owens GK, Kurabayashi M. PIAS1 mediates TGFbeta-induced SM alpha-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler Thromb Vasc Biol 2008; 29:99-106. [PMID: 18927467 DOI: 10.1161/atvbaha.108.172700] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE TGFbeta and proliferation/phenotypic switching of smooth muscle cells (SMCs) play a pivotal role in pathogenesis of atherosclerotic and restenotic lesions after angioplasty. We have previously shown that the protein inhibitor of activated STAT (PIAS)1 activates expression of SMC differentiation marker genes including smooth muscle (SM) alpha-actin by interacting with serum response factor (SRF) and class I bHLH proteins. Here, we tested the hypothesis that TGFbeta activates SM alpha-actin through PIAS1. METHODS AND RESULTS An siRNA specific for PIAS1 and ubc9, an E2-ligase for sumoylation, inhibited TGFbeta-induced expression of SM alpha-actin in cultured SMCs as determined by real-time RT-PCR. Overexpression of PIAS1 increased SM alpha-actin promoter activity in a TGFbeta control element (TCE)-dependent manner. Because the TCE within the SM alpha-actin promoter could mediate repression through interaction with KLF4, we tested whether PIAS1 regulates the function of KLF4 for SMC gene expression. PIAS1 interacted with KLF4 in mammalian two-hybrid and coimmunoprecipitation assays, and overexpression of PIAS1 inhibited KLF4-repression of SM alpha-actin promoter activity. Moreover, PIAS1 promoted degradation of KLF4 through sumoylation. CONCLUSIONS These results provide evidence that PIAS1 promotes TGFbeta-induced activation of SM alpha-actin gene expression at least in part by promoting sumoylation and degradation of the TCE repressor protein, KLF4.
Collapse
Affiliation(s)
- Keiko Kawai-Kowase
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sonic Hedgehog Mediator Gli2 Regulates Bladder Mesenchymal Patterning. J Urol 2008; 180:1543-50. [DOI: 10.1016/j.juro.2008.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Indexed: 01/24/2023]
|
69
|
Evans PM, Liu C. Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40:554-64. [PMID: 18604447 DOI: 10.1111/j.1745-7270.2008.00439.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Krüpel-like factor 4 (KLF4) is a zinc finger-type transcription factor expressed in a variety of tissues, including the epithelium of the intestine and the skin, and it plays an important role in differentiation and cell cycle arrest. Depending on the gene targeted, KLF4 can both activate and repress transcription. Moreover, in certain cellular contexts, KLF4 can function as a tumor suppressor or an oncogene. Finally, KLF4 is important in reprogramming differentiated fibroblasts into inducible pluripotent stem cells, which highly resemble embryonic stem cells. This review summarizes what is known about the diverse functions of KLF4 as well as their molecular mechanisms.
Collapse
Affiliation(s)
- Paul M Evans
- Department of Biochemistry and Molecular Biology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1448, USA
| | | |
Collapse
|
70
|
Xu J, Deng X, Demetriou AA, Farkas DL, Hui T, Wang C. Factors released from cholestatic rat livers possibly involved in inducing bone marrow hepatic stem cell priming. Stem Cells Dev 2008; 17:143-55. [PMID: 18225978 DOI: 10.1089/scd.2007.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that bone marrow beta 2m(-)/Thy-1+ hepatic stem cells (BMHSCs) were able to engraft in vivo and differentiate into functioning hepatocytes in vitro. Our transcriptomic profiling on BMHSCs derived from rats subjected to common bile duct ligation (CBDL) demonstrated CBDL-derived beta 2m(-)/Thy-1+ BMHSCs expressed hepatocyte-like genes and shared more commonly expressed genes with hepatocytes, suggesting that an "on-site" priming of BMHSCs into hepatocyte lineage was initiated under the condition of CBDL. In this paper, transcriptomic profiling was carried out on livers from rats with CBDL to identify candidate factors released from cholestatic livers possibly involved in the priming of BMHSCs using Affymetrix Rat Genome U34A arrays. In CBDL rat livers, 1,091 probe sets were differentially expressed, of which 188 up-regulated probe sets were annotated as "extracellular" components. Gene ontology analysis showed many up-regulated genes belonged to cytokines, chemokines and growth factors, including Il1b, Il18, Ptn, Spp1, Grn, Ccl2, Cxcl1, Pf4, Tgfb, and Tgfb3. Cell differentiation and proliferation regulation factors such as Dmbt1, Efna1, Lgals1, Lep, Pmp2, and Gas6 were also induced in CBDL livers. Furthermore, many proteolysis and peptidolysis genes such as Mmp2, Mmp12, Mmp14, and Mmp23 were up-regulated in CBDL livers. Gene expression profiling showed that many cytokine-, chemokine-, growth factor- as well as certain extracellular protein-related genes were induced in CBDL livers, suggesting that these genes may be involved in hepatic BMHSCs priming.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine and Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
71
|
Yu PB, Deng DY, Beppu H, Hong CC, Lai C, Hoyng SA, Kawai N, Bloch KD. Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J Biol Chem 2007; 283:3877-88. [PMID: 18042551 DOI: 10.1074/jbc.m706797200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein (BMP) signals regulate the growth and differentiation of diverse lineages. The association of mutations in the BMP type II receptor (BMPRII) with idiopathic pulmonary arterial hypertension suggests an important role of this receptor in vascular remodeling. Pulmonary artery smooth muscle cells lacking BMPRII can transduce BMP signals using ActRIIa (Activin type II receptor). We investigated whether or not BMP signaling via the two receptors leads to differential effects on vascular smooth muscle cells. BMP4, but not BMP7, inhibited platelet-derived growth factor-activated proliferation in wild-type pulmonary artery smooth muscle cells, whereas neither ligand inhibited the growth of BMPRII-deficient cells. Adenoviral gene transfer of BMPRII enabled BMP4, as well as BMP7, to inhibit proliferation in BMPRII-deficient cells. BMP-mediated growth inhibition was also reconstituted by the BMPRII short isoform, lacking the C-terminal domain present in the long form. BMP4, but not BMP7, induced the expression of osteoblast markers in wild-type cells, whereas neither ligand induced these markers in BMPRII-deficient cells. Overexpression of short or long forms of BMPRII in BMPRII-deficient cells enabled BMP4 and BMP7 to induce osteogenic differentiation. Although signaling via BMPRII or ActRIIa transiently activated SMAD1/5/8, only BMPRII signaling led to persistent SMAD1/5/8 activation and sustained increases in Id1 mRNA and protein expression. Pharmacologic blockade of BMP type I receptor function within 24 h after BMP stimulation abrogated differentiation. These data suggest that sustained BMP pathway activation, such as that mediated by BMPRII, is necessary for growth and differentiation control in vascular smooth muscle.
Collapse
Affiliation(s)
- Paul B Yu
- Cardiovascular Research Center and Anesthesia Center for Critical Care Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Mikhaylova L, Malmquist J, Nurminskaya M. Regulation of in vitro vascular calcification by BMP4, VEGF and Wnt3a. Calcif Tissue Int 2007; 81:372-81. [PMID: 17982705 DOI: 10.1007/s00223-007-9073-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Vascular calcification is a common clinical complication of cardiovascular disease, diabetes and end-stage renal failure, associated with significant morbidity and mortality. In this study we demonstrate that factors secreted by the hypertrophic chondrocytes induce matrix mineralization and osteoblastic transformation in cultured mouse vascular smooth muscle cells (VSMCs). In addition, these factors render VSMCs responsive to BMP4 and Wnt3a ligands. Neither BMP-4 nor Wnt3a could induce mineralization in short-term (up to 8 days) cultures of primary mouse VSMCs. However, both ligands act synergistically with the chondrocyte-conditioned medium causing a further increase in VSMC calcification. Finally, we show that commitment of VSMCs towards the BMP-regulated mineralization can be induced by the chondrocyte-secreted bone anabolic factor VEGF. In addition, expression profiling suggests a novel role in vascular calcification for the matrix proteins previously known to regulate bone formation and mineralization (including MMP3, fibulin, 11betahydroxysteroid dehydrogenase 1 and retinoic acid receptor responder 2). The results of this study may contribute to further understanding of the cellular mechanisms responsible for vascular calcification and provide important information for the treatment of this pathology.
Collapse
MESH Headings
- Animals
- Arteries/metabolism
- Arteries/pathology
- Arteries/physiopathology
- Bone Matrix/metabolism
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Proteins/metabolism
- Calcification, Physiologic/physiology
- Calcinosis/metabolism
- Calcinosis/pathology
- Calcinosis/physiopathology
- Cell Communication/physiology
- Cells, Cultured
- Chondrocytes/metabolism
- Culture Media, Conditioned/pharmacology
- Extracellular Matrix Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Vascular Endothelial Growth Factor A/metabolism
- Wnt Proteins/metabolism
- Wnt3 Protein
- Wnt3A Protein
Collapse
Affiliation(s)
- Lyudmila Mikhaylova
- Department of Anatomy and Cell Biology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
73
|
Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem 2007; 282:37244-55. [PMID: 17947237 DOI: 10.1074/jbc.m708137200] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs), unlike other muscle cells, do not terminally differentiate. In response to injury, VSMCs change phenotype, proliferate, and migrate as part of the repair process. Dysregulation of this plasticity program contributes to the pathogenesis of several vascular disorders, such as atherosclerosis, restenosis, and hypertension. The discovery of mutations in the gene encoding BMPRII, the type II subunit of the receptor for bone morphogenetic proteins (BMPs), in patients with pulmonary arterial hypertension (PAH) provided an indication that BMP signaling may affect the homeostasis of VSMCs and their phenotype modulation. Here we report that BMP signaling potently induces SMC-specific genes in pluripotent cells and prevents dedifferentiation of arterial SMCs. The BMP-induced phenotype switch requires intact RhoA/ROCK signaling but is not blocked by inhibitors of the TGFbeta and PI3K/Akt pathways. Furthermore, nuclear localization and recruitment of the myocardin-related transcription factors (MRTF-A and MRTF-B) to a smooth muscle alpha-actin promoter is observed in response to BMP treatment. Thus, BMP signaling modulates VSMC phenotype via cross-talk with the RhoA/MRTFs pathway, and may contribute to the development of the pathological characteristics observed in patients with PAH and other obliterative vascular diseases.
Collapse
Affiliation(s)
- Giorgio Lagna
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Yan FF, Liu YF, Liu Y, Zhao YX. KLF4: a novel target for the treatment of atherosclerosis. Med Hypotheses 2007; 70:845-7. [PMID: 17869009 DOI: 10.1016/j.mehy.2007.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 11/27/2022]
Abstract
Atherosclerosis is an inflammatory disease characterized by a large amount of hyperproliferation and poorly differentiated or undifferentiated smooth muscle cells in atherosclerotic plaque. Cancer cells differ from normal cells in many aspects, including hyperproliferation and loss of differentiation. So the research on tumor may shed light on the treatment of atherosclerosis. Given that Kruppel-like factor 4 (KLF4) has an important function in tumor development and progression, it may be associated with the formation and development of atherosclerosis. Recently, KLF4 expression has been documented in vascular endothelial cells. KLF4, which is normally not expressed in differentiated SMC in vivo, was rapidly up-regulated in response to vascular injury. In addition, KLF4 is a critical regulator in macrophage activation. Endothelial dysfunction, macrophage activation and VSMC phenotype switching are critical component elements in development of atherosclerosis. Herein we hypothesize that KLF4 is an important regulator in different phase of atherosclerosis and may be a novel target of prevention and cure of atherosclerosis. Further investigation is needed to approach the concrete signaling pathways about KLF4.
Collapse
Affiliation(s)
- Fang-fang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, School of Medicine, Shandong University, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, PR China
| | | | | | | |
Collapse
|
75
|
Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 2007; 133:887-96. [PMID: 17678919 DOI: 10.1053/j.gastro.2007.06.066] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 05/17/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Bone morphogenetic proteins (Bmps) are morphogens known to play key roles in gastrointestinal development and pathology. Most Bmps are produced primarily by the mesenchymal compartment and activate their signaling pathways following a paracrine or autocrine route. The aim of this study was to investigate the role of epithelial Bmp signaling in intestinal morphogenesis and maintenance of adult epithelial cell functions. METHODS With the use of tissue-specific gene ablation, we generated mice lacking the Bmp receptor type IA (Bmpr1a) exclusively in the intestinal epithelium. Bmpr1a mutant and control mice were sacrificed for histology, immunofluorescence, Western blot analysis, electron microscopy, and quantitative polymerase chain reaction. RESULTS As well as showing increased proliferation and altered intestinal epithelial morphology, Bmpr1a mutant mice revealed that epithelial Bmp signaling is associated with impaired terminal differentiation of cells from the secretory lineage but not with the determination of cell fate. Loss of Bmp signaling exclusively in the epithelial compartment is not sufficient for the initiation of the de novo crypt phenomenon associated with juvenile polyposis syndrome. CONCLUSIONS Epithelial Bmp signaling plays an important role in the terminal differentiation of the intestinal secretory cell lineage but not in de novo crypt formation. These findings emphasize the importance of delineating the contribution of the stroma vs the epithelium in gastrointestinal physiology and pathology.
Collapse
Affiliation(s)
- Benoit A Auclair
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
76
|
Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 2007; 43:1-10. [PMID: 17531262 PMCID: PMC2743293 DOI: 10.1016/j.yjmcc.2007.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
The Kruppel-like Factor (KLF) family of zinc-finger transcription factors are critical regulators of cell differentiation, phenotypic modulation and physiologic function. An emerging body of evidence implicates an important role for these factors in cardiovascular biology, however, the role of KLFs in muscle biology is only beginning to be understood. This article reviews the published data describing the role of KLFs in the heart, smooth muscle, and skeletal muscle and highlights the importance of these factors in cardiovascular development, physiology and disease pathobiology.
Collapse
Affiliation(s)
| | | | - Mukesh K. Jain
- Address correspondence to: Mukesh K. Jain M.D., Case Cardiovascular Research Institute, Case Medical School and Cardiovascular Division, University Hospitals of Cleveland, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106. ; Tel: (216) 368-3609, Fax: (216) 368-0556
| |
Collapse
|
77
|
LeClair RJ, Durmus T, Wang Q, Pyagay P, Terzic A, Lindner V. Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ Res 2007; 100:826-33. [PMID: 17322174 DOI: 10.1161/01.res.0000260806.99307.72] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene expressed in the adventitia and neointima on arterial injury and found that it functionally increases cell migration while reducing collagen deposition. To address the in vivo role of Cthrc1, we generated transgenic mouse lines that constitutively overexpress Cthrc1. An intercross of 2 transgenic lines produced offspring with brittle bones caused by a reduction in collagenous bone matrix. Hemizygous Cthrc1 transgenic mice developed normally but neointimal lesion formation and adventitial collagen deposition in response to carotid artery ligation were significantly reduced compared with wild-type littermates. In 75% of Cthrc1 transgenic mice, cartilaginous metaplasia of medial smooth muscle cells was observed as assessed by Alcian blue staining and expression of the chondrocyte marker collagen type II. Transforming growth factor-beta signaling was reduced in smooth muscle cells of Cthrc1 transgenic arteries, as demonstrated by reduced phospho-Smad2/3 immunoreactivity, whereas Smad signaling related to bone morphogenetic proteins was unaffected. Similarly, primary smooth muscle cells and PAC1 smooth muscle cells overexpressing Cthrc1 had reduced levels of phospho-Smad2/3 as well as procollagen. Furthermore, Cthrc1 inhibited transforming growth factor-beta-sensitive reporter constructs in smooth muscle but not endothelial cells. These data indicate that Cthrc1 is a cell-type-specific inhibitor of transforming growth factor-beta, which in turn impacts collagen type I and III deposition, neointimal formation, and dedifferentiation of smooth muscle cells.
Collapse
Affiliation(s)
- Renée J LeClair
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | |
Collapse
|
78
|
Lagna G, Nguyen PH, Ni W, Hata A. BMP-dependent activation of caspase-9 and caspase-8 mediates apoptosis in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1059-67. [PMID: 17030903 DOI: 10.1152/ajplung.00180.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Germ line mutations in the bone morphogenetic protein (BMP) receptor type II (BMPRII) gene have been found in >50% of familial idiopathic pulmonary arterial hypertension (IPAH) patients and in 30% of sporadic cases of IPAH. Mutations of BMPRII occur in the extracellular ligand-binding domain, in the cytoplasmic serine/threonine kinase domain, or in the long carboxy terminus domain of unknown function. In this study, we demonstrate that BMPs promote apoptotic cell death in normal human pulmonary artery smooth muscle cells (PASMCs) by activation of caspases-3, -8, and -9, cytochrome c release, and downregulation of Bcl-2. Normal PASMCs expressing a kinase domain mutant or a carboxy-terminal domain deletion mutant of BMPRII identified in IPAH patients are resistant to BMP-mediated apoptosis. This dominant-negative effect may act in heterozygous patients and lead to the development of the pulmonary vascular medial hypertrophy found in IPAH patients. Our study also demonstrates an essential role of the carboxy terminus domain of BMPRII in the activation of the apoptotic signaling cascade.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Proteins/pharmacology
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase 9/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Curcuma
- Cytochromes c/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Deletion
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Giorgio Lagna
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, 750 Washington St., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
79
|
Hayashi K, Nakamura S, Nishida W, Sobue K. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 2006; 26:9456-70. [PMID: 17030628 PMCID: PMC1698541 DOI: 10.1128/mcb.00759-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Nakamura
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wataru Nishida
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Sobue
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding
author. Mailing address: Department of Neuroscience (D13), Osaka
University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka
565-0871, Japan. Phone: 81 6 6879 3680. Fax: 81 6 6879 3689. E-mail:
| |
Collapse
|
80
|
Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 2006; 260:192-210. [PMID: 16918817 DOI: 10.1111/j.1365-2796.2006.01692.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit an extraordinary capacity to undergo phenotypic change during development, in vitro and in association with disease. Unlike other muscle cells they do not terminally differentiate. Development and maintenance of the mature contractile phenotype is regulated by a number of interacting transcription factors. In response to injury contractile VSMCs can be induced to change phenotype, proliferate and migrate to effect repair. On completion of the repair process VSMCs return to a nonproliferating contractile phenotype. In this way, in the context of atherosclerosis, a protective fibrous cap is formed and maintained at sites of injury. However in disease, when modulatory signals are perturbed, this phenotypic transition is dysregulated and VSMCs are induced to undergo inappropriate differentiation into cells with features of other mesenchymal lineages such as osteoblasts, chondrocytes and adipocytes. Moreover, evidence is accumulating that these aberrant phenotypic transitions contribute to the pathogenesis of vascular diseases such as atherosclerosis and Monckeberg's Sclerosis. Indeed, the osteo/chondrocytic conversion of VSMCs and the association of this phenotype with vascular calcification is a paradigm for how inappropriate differentiation can influence disease processes. Understanding of the mechanisms and signalling pathways involved in this particular phenotype change is well advanced offering the possibility for the design of successful therapeutic interventions in the future.
Collapse
Affiliation(s)
- V P Iyemere
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
81
|
Abstract
AIM: To investigate the interaction between portal hypertension, splanchnic hyperdynamic circulation and splanchnic vasculopathy by observing splenic arterial and venous pathological changes and the ro1e of extra-cellular matrix in the pathogenesis of portal hypertensive vasculopathy by measuring the expression of type Ι and type III procollagen mRNA in splenic venous walls of portal hypertensive patients.
METHODS: Morphological changes of splenic arteries and veins taken from portal hypertensive patients (n = 20) and normal controls (n = 10) were observed under optical and electron microscope. Total RNA was extracted and the expression of type Ι and type III procollagen mRNA in splenic venous walls of portal hypertensive patients (n = 20) was semi-quantitatively detected using reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: Under optical microscope, splenic arterial intima was destroyed and internal elastic membrane and medial elastic fibers of the splenic arterial walls were degenerated and broken. Splenic venous intima became remarkably thick. Endothelia1 cells were not intact with formation of mural thrombus. The tunica media became thickened significantly due to hypertrophy of smooth muscles. Fibers and connective tissues were increased obviously. Under electron microscope, smooth muscle cells of the splenic arteries were degenerated and necrotized. Phenotypes of smooth muscle cells changed from constrictive into synthetic type. Red blood cells and platelets accumulated around the damaged endothelial cells. Synthetic smooth muscle cells were predominant in splenic veins and their cytoplasma had plentiful rough endoplasmic reticulum ribosomes and Golgi bodies. Along the vascular wall, a lot of collagen fibers were deposited, the intima was damaged and blood components accumulated. There was no significant difference in the expression of type I procollagen mRNA in splenic venous wall between the patients with portal hypertension and those without portal hypertension (P > 0.05), but the expression of type III procoagen mRNA was significantly stronger in the patients with portal hypertension than in those without portal hypertension (P < 0.01).
CONCLUSION: Type III procollagen and collagen might be important extra-cellular matrix resulting in neointimal formation and vascular remodeling in the pathogenesis of portal hypertensive vasculopathy. The pathological changes in splenic arteries and veins exist in portal hypertension patients. There might be an interaction between portal hypertension, splanchnic hyperdynamic circulation and splanchnic vasculopathy.
Collapse
MESH Headings
- Adult
- Blood Circulation/physiology
- Case-Control Studies
- Collagen Type I/genetics
- Collagen Type I/physiology
- Collagen Type III/genetics
- Collagen Type III/physiology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/pathology
- Extracellular Matrix/chemistry
- Extracellular Matrix/physiology
- Female
- Gene Expression Regulation
- Humans
- Hypertension, Portal/etiology
- Hypertension, Portal/pathology
- Hypertension, Portal/physiopathology
- Male
- Microscopy, Electron, Scanning
- Muscle, Smooth, Vascular/blood supply
- Muscle, Smooth, Vascular/pathology
- RNA, Messenger/genetics
- Regional Blood Flow/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/blood supply
- Splenic Artery/pathology
- Splenic Artery/physiopathology
- Splenic Vein/pathology
- Splenic Vein/physiopathology
- Tunica Intima/chemistry
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Tao Li
- Department of Hepatic Surgery, Tongji Hospita1, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei province, China.
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders.
Collapse
Affiliation(s)
- Alex Bobik
- Cell Biology Laboratory, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| |
Collapse
|
83
|
Itäranta P, Chi L, Seppänen T, Niku M, Tuukkanen J, Peltoketo H, Vainio S. Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Dev Biol 2006; 293:473-83. [PMID: 16546160 DOI: 10.1016/j.ydbio.2006.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Wnt-4, a member of the Wnt family of secreted signaling molecules, is essential for nephrogenesis, but its expression in the presumptive medulla suggests additional developmental roles in kidney organogenesis. We demonstrate here that Wnt-4 signaling plays also a role in the determination of the fate of smooth muscle cells in the medullary stroma of the developing kidney, as a differentiation marker, smooth muscle alpha-actin (alpha-SMA), is markedly reduced in the absence of its signaling. Wnt-4 probably performs this function by activating the Bmp-4 gene encoding a known differentiation factor for smooth muscle cells, since Bmp-4 gene expression was lost in the absence of Wnt-4 while Wnt-4 signaling led to a rescue of Bmp-4 expression and induction of alpha-SMA-positive cells in vitro. Recombinant Bmp-4 similarly rescued the differentiation of alpha-SMA-expressing cells in cultured Wnt-4-deficient embryonic kidney. The lack of smooth muscle cell differentiation leads to an associated deficiency in the pericytes around the developing vessels of the Wnt-4-deficient kidney and apparently leads to a secondary defect in the maturation of the kidney vessels. Thus, besides being critical for regulating mesenchymal to epithelial transformation in the cortical region in nephrogenesis, Wnt-4 signaling regulates the fate of smooth muscle cells in the developing medullary region.
Collapse
Affiliation(s)
- Petri Itäranta
- Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, Laboratory of Developmental Biology, University of Oulu, Aapistie 5A, P.O. Box 5000, University of Oulu, FIN-90220, Finland
| | | | | | | | | | | | | |
Collapse
|
84
|
Li J, Shiroyanagi Y, Lin G, Haqq C, Lin CS, Lue TF, Willingham E, Baskin LS. Serum response factor, its cofactors, and epithelial-mesenchymal signaling in urinary bladder smooth muscle formation. Differentiation 2006; 74:30-9. [PMID: 16466398 DOI: 10.1111/j.1432-0436.2006.00057.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Little is known about the mechanism of bladder smooth muscle differentiation. We hypothesize that epithelial-mesenchymal signaling induces the expression of smooth muscle proteins in bladder mesenchyme resulting in smooth muscle differentiation. We confirmed that smooth muscle differentiation in the mouse urinary bladder occurs first at gestational day 14 (E14) based upon immunohistochemical localization of smooth muscle alpha-actin (SMAA). To investigate murine bladder smooth muscle differentiation and epithlelial-mesenchymal signaling in the developing bladder, we analyzed gene expression profiles of intact embryonic murine bladders and separated epithelial and mesenchymal components at embryonic days E13, E14, E15, E16, and postnatal day 1 (P1). Using cDNA microarray, we identified regulators of vascular smooth muscle differentiation in bladder mesenchyme, including serum response factor (SRF) and its cofactors, ELK1 and SRF accessory protein (SAP)1, as well as two SRF-associated pathways, angiotension receptor II and transforming growth factor- beta2. Immunohistochemistry showed diffuse expression of SRF in the bladder at E12 with localization of expression to the peripheral mesenchyme at E13 and E14. Our results suggest that bladder smooth muscle differentiation may share a similar gene expression program as occurs during vascular smooth muscle differentiation. The unique structure of the urinary bladder makes it an ideal model for studies of smooth muscle differentiation and epithelial-mesenchymal signaling.
Collapse
Affiliation(s)
- Jiang Li
- Department of Urology University of California 400 Parnassus Avenue, ACC-610 California 94143-0738 San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Zeng Y, Zhuang S, Gloddek J, Tseng CC, Boss GR, Pilz RB. Regulation of cGMP-dependent protein kinase expression by Rho and Kruppel-like transcription factor-4. J Biol Chem 2006; 281:16951-16961. [PMID: 16632465 DOI: 10.1074/jbc.m602099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Jutta Gloddek
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Chi-Chuan Tseng
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gerry R Boss
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093.
| |
Collapse
|
86
|
Lux A, Salway F, Dressman HK, Kröner-Lux G, Hafner M, Day PJR, Marchuk DA, Garland J. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-beta and constitutively active receptor induced gene expression. BMC Cardiovasc Disord 2006; 6:13. [PMID: 16594992 PMCID: PMC1534055 DOI: 10.1186/1471-2261-6-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/04/2006] [Indexed: 11/24/2022] Open
Abstract
Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling.
Collapse
Affiliation(s)
- Andreas Lux
- University Hospital Mannheim, 68167 Mannheim, University of Applied Sciences Mannheim, Windeckstr. 110, 68163 Mannheim, Germany
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Windeckstr. 110, 68163 Mannheim, Germany
| | - Fiona Salway
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, M13 9PT, UK
| | - Holly K Dressman
- Department of Molecular Genetics and Microbiology, DUMC, Durham, NC 27710, USA
- Duke Institute for Genome Sciences and Policy, DUMC, Durham, NC 27710, USA
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Windeckstr. 110, 68163 Mannheim, Germany
| | - Philip JR Day
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, M13 9PT, UK
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, DUMC, Durham, NC 27710, USA
| | - John Garland
- Manchester Cardiovascular Research Group, University of Manchester, Department of Medicine, M13 9WL, UK
| |
Collapse
|
87
|
Hsieh PCH, Kenagy RD, Mulvihill ER, Jeanette JP, Wang X, Chang CMC, Yao Z, Ruzzo WL, Justice S, Hudkins KL, Alpers CE, Berceli S, Clowes AW. Bone morphogenetic protein 4: potential regulator of shear stress-induced graft neointimal atrophy. J Vasc Surg 2006; 43:150-8. [PMID: 16414402 PMCID: PMC1448168 DOI: 10.1016/j.jvs.2005.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 08/04/2005] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Placement in baboons of a distal femoral arteriovenous fistula increases shear stress through aortoiliac polytetrafluoroethylene (PTFE) grafts and induces regression of a preformed neointima. Atrophy of the neointima might be controlled by shear stress-induced genes, including the bone morphogenetic proteins (BMPs). We have investigated the expression and function of BMPs 2, 4, and 5 in the graft neointima and in cultured baboon smooth muscle cells (SMCs). METHODS Baboons received bilateral aortoiliac PTFE grafts and 8 weeks later, a unilateral femoral arteriovenous fistula. RESULTS Quantitative polymerase chain reaction showed that high shear stress increased BMP2, 4, and 5 messenger RNA (mRNA) in graft intima between 1 and 7 days, while noggin (a BMP inhibitor) mRNA was decreased. BMP4 most potently (60% inhibition) inhibited platelet-derived growth factor-stimulated SMC proliferation compared with BMP2 and BMP5 (31% and 26%, respectively). BMP4 also increased SMC death by 190% +/- 10%. Noggin reversed the antiproliferative and proapoptotic effects of BMP4. Finally, Western blotting confirmed BMP4 protein upregulation by high shear stress at 4 days. BMP4 expression demonstrated by in situ hybridization was confined to endothelial cells. CONCLUSIONS Increased BMPs (particularly BMP4) coupled with decreased noggin may promote high shear stress-mediated graft neointimal atrophy by inhibiting SMC proliferation and increasing SMC death.
Collapse
Affiliation(s)
- Patrick C H Hsieh
- Department of Bioengineering, University of Washington, Seattle, WA 98195-6410, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Roedersheimer M, West J, Huffer W, Harral J, Benedict J. A bone-derived mixture of TGFβ-superfamily members forms a more mature vascular network than bFGF or TGF-β2 in vivo. Angiogenesis 2006; 8:327-38. [PMID: 16400522 DOI: 10.1007/s10456-005-9022-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
Clinical trials of therapeutic angiogenesis for the treatment of cardiovascular ischemia have failed to meet the expectations with the use of single growth factors, namely VEGF and bFGF. We show here that a bovine bone-derived growth factor mixture (GFM) of TGFbetas, BMPs, and no more than 0.1% aFGF can initiate a dose-dependent angiogenic response in subcutaneously implanted Growth Factor Reduced Matrigel plugs that includes abundant smooth muscle actin positive (SMA+) tubes and functional CD31+, red blood cell filled, capillaries. Tube forming activity of the single factors, recombinant bFGF and bone-derived TGF-beta2, were comparable to GFM, but only the bone-derived factors were able to create a larger fraction of SMA+ tubes than Matrigel alone at an equal dose. Basic FGF formed a greater number of RBC-filled capillaries within the plugs than GFM or TGF-beta2 at the highest doses, although GFM created RBC-filled capillaries that penetrated deeper into the plugs than bFGF. However, bFGF showed the greatest number of non-cell-lined, RBC-filled pools, suggestive of vessel rupture, and the largest number of plugs showing signs of fluid accumulation in the form of large, cell-lined clefts in the implants. TGF-beta2 showed less RBC-filled pools, but a significant number of implants with signs of fluid accumulation. At high doses of GFM penetration by blood vessels and mesenchymal cells was obstructed by cartilage development within the plugs accompanied by a prominent band of SMA+ granulation tissue with abundant RBC-filled capillaries encapsulating the implants. Thus, GFM is also capable of dramatically remodeling the vascular system in the interstitial space surrounding the plug. These results show that GFM is capable of inducing the formation of a more mature vascular system than that formed by the single factors bFGF and TGFbeta-2. Natural mixtures of TGFbetas, BMPs, and FGFs may have superior clinical utility in therapeutic angiogenesis applications.
Collapse
Affiliation(s)
- Mark Roedersheimer
- CVP Research Lab, University of Colorado, Health Science Center, Denver, 80262, USA.
| | | | | | | | | |
Collapse
|
89
|
Abstract
Krüppel-like factors are transcriptional regulators that influence several cellular functions, including proliferation. Recent studies have shown that one family member, KLF4, can function both as a tumour suppressor and an oncogene. The ability of KLF4 to affect the levels of expression of the cell-cycle regulator p21 seems to be involved, in that this protein might function as a switch that determines the outcome of KLF4 signalling. Is this role of p21 restricted to KLF4, or does p21 represent a nodal point for signals from multiple other factors with opposing functions in cancer?
Collapse
Affiliation(s)
- Benjamin D Rowland
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
90
|
Abstract
Vascular calcification is a common problem among the elderly and those with chronic kidney disease (CKD) and diabetes. The process of tunica media vascular calcification in CKD appears to involve a phenotypic change in the vascular smooth muscle cell (VSMC) resulting in cell-mediated mineralization of the extracellular matrix. The bone morphogenetic proteins (BMPs) are important regulators in orthotopic bone formation, and their localization at sites of vascular calcification raises the question of their role. In this review, we will discuss the actions of the BMPs in vascular calcification. Although the role of BMP-2 in vascular calcification is not proven, it has been the most studied member of the BMP family in this disease process. The role of BMP-2 may be through inducing osteoblastic differentiation of VSMCs through induction of MSX-2, or by inducing apoptosis of VSMCs, a process thought critical in the initiation of vascular calcification. Additionally, BMP-2 may be related to loss of regulation of the matrix Gla protein. A second BMP, BMP-7, less studied than BMP-2 may have opposing actions in vascular calcification. In postnatal life, BMP-7 is expressed primarily in the kidney, and expression is diminished by renal injury. BMP-7 is an important regulator of skeletal remodeling and the VSMC phenotype. BMP-7 restores skeletal anabolic balance in animal models of CKD with disordered skeletal modeling, also reducing serum phosphate in the process. BMP-7 also reverses vascular calcification in CKD, and reduction in vascular calcification is due, in part, to reduced serum phosphate, an important inducer of VSMC-mediated vascular mineralization and in part to direct actions on the VSMC.
Collapse
Affiliation(s)
- Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | |
Collapse
|
91
|
Walker DL, Vacha SJ, Kirby ML, Lo CW. Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Dev Biol 2005; 284:479-98. [PMID: 16039638 DOI: 10.1016/j.ydbio.2005.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 11/29/2022]
Abstract
The connexin43 knockout (Cx43alpha1 KO) mouse dies at birth from outflow obstruction associated with infundibular pouches. To elucidate the origin of the infundibular pouches, we used microarray analysis to investigate gene expression changes in the pouch tissue. We found elevated expression of many genes encoding markers for vascular smooth muscle (VSM), endothelial cells, and fibroblasts, cell types that are epicardially derived and essential for coronary vasculogenesis. This was accompanied by increased expression of VEGF and genes in the TGFbeta and VEGF/Notch/Eph cell-signaling pathways known to regulate vasculogenesis/angiogenesis. Using immunohistochemistry and a VSM lacZ reporter gene, we confirmed an abundance of ectopic VSM and endothelial cells in the infundibular pouch and in some regions of the right ventricle forming secondary pouches. This was associated with distinct thinning of the compact myocardium. TUNEL labeling showed increased apoptosis in the pouch tissue, in agreement with the finding of altered expression of many apoptotic genes. Defects in vascular remodeling were indicated by a marked reduction in the branching complexity of the distal coronary arteries. In the near term KO mouse, we also observed a profusion of large coronary vascular plexuses subepicardially. This was associated with elevated epicardial expression of VEGF and abnormal epicardial cell morphology. Together, these observations indicate that dysregulated coronary vasculogenesis plays a pivotal role in formation of the infundibular pouches and suggests an essential role for Cx43alpha1 gap junctions in coronary vasculogenesis and vascular remodeling.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers
- Connexin 43/deficiency
- Connexin 43/genetics
- Coronary Vessels/embryology
- Crosses, Genetic
- Endothelial Cells/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Fibroblasts/physiology
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Heart/embryology
- Heterozygote
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic/physiology
- Receptors, Notch
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Diana L Walker
- Laboratory of Developmental Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50/Room 4537, Bethesda, MD 20892-8019, USA
| | | | | | | |
Collapse
|
92
|
Yu PB, Beppu H, Kawai N, Li E, Bloch KD. Bone Morphogenetic Protein (BMP) Type II Receptor Deletion Reveals BMP Ligand-specific Gain of Signaling in Pulmonary Artery Smooth Muscle Cells. J Biol Chem 2005; 280:24443-50. [PMID: 15883158 DOI: 10.1074/jbc.m502825200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) ligands signal by binding the BMP type II receptor (BMPR2) or the activin type II receptors (ActRIIa and ActRIIb) in conjunction with type I receptors to activate SMADs 1, 5, and 8, as well as members of the mitogen-activated protein kinase family. Loss-of-function mutations in Bmpr2 have been implicated in tumorigenesis and in the etiology of primary pulmonary hypertension. Because several different type II receptors are known to recognize BMP ligands, the specific contribution of BMPR2 to BMP signaling is not defined. Here we report that the ablation of Bmpr2 in pulmonary artery smooth muscle cells, using an ex vivo conditional knock-out (Cre-lox) approach, as well as small interfering RNA specific for Bmpr2, does not abolish BMP signaling. Disruption of Bmpr2 leads to diminished signaling by BMP2 and BMP4 and augmented signaling by BMP6 and BMP7. Using small interfering RNAs to inhibit the expression of other BMP receptors, we found that wild-type cells transduce BMP signals via BMPR2, whereas BMPR2-deficient cells transduce BMP signals via ActRIIa in conjunction with a set of type I receptors distinct from those utilized by BMPR2. These findings suggest that disruption of Bmpr2 leads to the net gain of signaling by some, but not all, BMP ligands via the activation of ActRIIa.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/physiology
- Alleles
- Animals
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Protein Receptors, Type II
- Bone Morphogenetic Proteins/metabolism
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Gene Deletion
- Heterozygote
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- RNA/metabolism
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Paul B Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
93
|
Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW. Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension. Circ Res 2005; 96:1053-63. [PMID: 15845886 DOI: 10.1161/01.res.0000166926.54293.68] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle cells (PASMCs) suggest site-specific responses to BMPs. Thus, BMP-4 inhibited proliferation of PASMCs isolated from proximal pulmonary arteries, but stimulated proliferation of PASMCs from peripheral arteries, and conferred protection from apoptosis. These differences were not caused by differential activation of BMP signaling pathways because exogenous BMP-4 led to phosphorylation of Smad1, p38(MAPK), and ERK1/2 in both cell types. However, the proproliferative effect of BMP-4 on peripheral PASMCs was found to be p38MAPK/ERK-dependent. Conversely, overexpression of dominant-negative Smad1 converted the response to BMP-4 in proximal PASMCs from inhibitory to proliferative. Furthermore, we confirmed that proximal PASMCs harboring kinase domain mutations in BMPR2 are deficient in Smad signaling and are unresponsive to the growth suppressive effect of BMP-4. Moreover, we show that the pulmonary vasculature of patients with familial and idiopathic PAH are deficient in the activated form of Smad1. We conclude that defective Smad signaling and unopposed p38(MAPK)/ERK signaling, as a consequence of mutation in BMPR2, underlie the abnormal vascular cell proliferation observed in familial PAH.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK, Frost AR, Louro ID, Townes TM, Paterson AJ, Kudlow JE, Lobo-Ruppert SM, Ruppert JM. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 2005; 24:1491-500. [PMID: 15674344 PMCID: PMC1361530 DOI: 10.1038/sj.onc.1208307] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KLF4/GKLF normally functions in differentiating epithelial cells, but also acts as a transforming oncogene in vitro. To examine the role of this zinc finger protein in skin, we expressed the wild-type human allele from inducible and constitutive promoters. When induced in basal keratinocytes, KLF4 rapidly abolished the distinctive properties of basal and parabasal epithelial cells. KLF4 caused a transitory apoptotic response and the skin progressed through phases of hyperplasia and dysplasia. By 6 weeks, lesions exhibited nuclear KLF4 and other morphologic and molecular similarities to squamous cell carcinoma in situ. p53 determined the patch size sufficient to establish lesions, as induction in a mosaic pattern produced skin lesions only when p53 was deficient. Compared with p53 wild-type animals, p53 hemizygous animals had early onset of lesions and a pronounced fibrovascular response that included outgrowth of subcutaneous sarcoma. A KLF4-estrogen receptor fusion protein showed tamoxifen-dependent nuclear localization and conditional transformation in vitro. The results suggest that KLF4 can function in the nucleus to induce squamous epithelial dysplasia, and indicate roles for p53 and epithelial-mesenchymal signaling in these early neoplastic lesions.
Collapse
Affiliation(s)
| | | | | | - Xingnan Li
- Department of Biochemistry and Molecular Genetics
| | | | | | - Andra R. Frost
- Department of Pathology University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | - J. Michael Ruppert
- Department of Biochemistry and Molecular Genetics
- Department of Cell Biology
- Department of Medicine
- Correspondence: Department of Medicine, Room 570 WTI, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-3300. Phone: (205) 975-0556; Fax: (205) 934-9511;
| |
Collapse
|
95
|
Feinberg MW, Lin Z, Fisch S, Jain MK. An emerging role for Krüppel-like factors in vascular biology. Trends Cardiovasc Med 2005; 14:241-6. [PMID: 15451516 DOI: 10.1016/j.tcm.2004.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Krüppel-like family of transcription factors play diverse roles regulating cellular differentiation and tissue development. Accumulating evidence supports an important role for these factors in vascular biology. This review examines the current knowledge of this gene family's role in key cell types that critically regulate vessel biology under physiologic and pathologic states.
Collapse
Affiliation(s)
- Mark W Feinberg
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
96
|
Extracellular matrix gene expression in the developing mouse aorta. EXTRACELLULAR MATRIX IN DEVELOPMENT AND DISEASE 2005. [DOI: 10.1016/s1574-3349(05)15003-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
97
|
Boström K, Zebboudj AF, Yao Y, Lin TS, Torres A. Matrix GLA protein stimulates VEGF expression through increased transforming growth factor-beta1 activity in endothelial cells. J Biol Chem 2004; 279:52904-13. [PMID: 15456771 DOI: 10.1074/jbc.m406868200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Matrix GLA protein (MGP) is expressed in endothelial cells (EC), and MGP deficiency results in developmental defects suggesting involvement in EC function. To determine the role of MGP in EC, we cultured bovine aortic EC with increasing concentrations of human MGP (hMGP) for 24 h. The results showed increased proliferation, migration, tube formation, and increased release of vascular endothelial growth factor-A (VEGF-A) and basic fibroblast growth factor (bFGF). HMGP, added endogenously or transiently expressed, increased VEGF gene expression dose-dependently as determined by real-time PCR. To determine the mechanism by which hMGP increased VEGF expression, we studied the effect of MGP on the activity of transforming growth factor (TGF)-beta1 compared with that of bone morphogenetic protein (BMP)-2 using transfection assays with TGF-beta- and BMP-response element reporter genes. Our results showed a strong enhancement of TGF-beta1 activity by hMGP, which was paralleled by increased VEGF expression. BMP-2 activity, on the other hand, was inhibited by hMGP. Neutralizing antibodies to TGF-beta blocked the effect of MGP on VEGF expression. The enhanced TGF-beta1 activity specifically activated the Smad1/5 pathway indicating that the TGF-beta receptor activin-like kinase 1 (ALK1) had been stimulated. It occurred without changes in expression of TGF-beta1 or ALK1 and was mimicked by transfection of constitutively active ALK1, which increased VEGF expression. Expression of VEGF and MGP was induced by TGF-beta1, but the induction of MGP preceded that of VEGF, consistent with a promoting effect on VEGF expression. Together, the results suggest that MGP plays a role in EC function, altering the response to TGF-beta superfamily growth factors.
Collapse
Affiliation(s)
- Kristina Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Box 951679, Rm. 47-123 CHS, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | |
Collapse
|
98
|
Pandya AY, Talley LI, Frost AR, Fitzgerald TJ, Trivedi V, Chakravarthy M, Chhieng DC, Grizzle WE, Engler JA, Krontiras H, Bland KI, LoBuglio AF, Lobo-Ruppert SM, Ruppert JM. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 2004; 10:2709-19. [PMID: 15102675 DOI: 10.1158/1078-0432.ccr-03-0484] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The Krüppel-like transcription factor KLF4/GKLF induces both malignant transformation and a slow-growth phenotype in vitro. Although KLF4 expression is increased in most cases of breast cancer, it was unknown whether these cases represent a distinct subtype with a different clinical outcome. EXPERIMENTAL DESIGN We examined expression of KLF4 by immunostaining 146 cases of human primary infiltrating ductal carcinoma of the breast. Staining patterns were correlated with clinical outcome and with established prognostic factors. RESULTS Subcellular localization exhibited case-to-case variation. Tumors with high nuclear staining and low cytoplasmic staining were termed type 1. For patients with early-stage disease (i.e., stage I or IIA), type 1 staining was associated with eventual death because of breast cancer (hazard ratio, 2.8; 95% confidence interval, 1.23-6.58; P = 0.011). The association was stronger in patients with early-stage cancer and small primary tumors (i.e., < or =2.0 cm in diameter; hazard ratio, 4.3; 95% confidence interval, 1.75-10.62; P < 0.001). For patients with early-stage disease, multivariate analysis indicated that type 1 staining was independently associated with outcome (adjusted hazard ratio 2.6; 95% confidence interval, 1.10-6.05; P = 0.029). Type 1 staining was also associated with high histological grade (P = 0.032), increased expression of Ki67 (P = 0.016), and reduced expression of BCL2 (P = 0.032). In vitro, KLF4 was localized within the nucleus of transformed RK3E epithelial cells, consistent with a nuclear function of this transcription factor during induction of malignant transformation. CONCLUSIONS The results suggest that localization of KLF4 in the nucleus of breast cancer cells is a prognostic factor and identify KLF4 as a marker of an aggressive phenotype in early-stage infiltrating ductal carcinoma.
Collapse
Affiliation(s)
- Ashka Y Pandya
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Li T, Li HY, Zhang T, Ni JY, Yang Z. Splenic angiopathy in portal hypertension. Shijie Huaren Xiaohua Zazhi 2004; 12:1616-1622. [DOI: 10.11569/wcjd.v12.i7.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship among portal hyper-tension, splanchnic hyperdynamic disturbances and splanchnic angiopathy by observing splenic arterial and venous pathological changes, to discuss the relationship between the abnormal local endothelium-derived vasoactive substances in portal veins and the activation of the pathway of mechanical force signal transduction in vascular endothelial cells by investigating the expression of eNOS ET-1 PKC NF-κB in vascular endothelial cells of portal hypertension, and to explore the role of extracellular matrix in the pathogenesis of portal hypertensive angiopathy by detecting the expression of type I and type II procollagen mRNA in splenic vein of portal hypertensive patients.
METHODS: Splenic arteries, veins from portal hypertensive patients (n = 20) and normal people (n = 10) were removed and observed under optical and electron microscopes. Immunohistochemistry and double labeling immunofluorescence combined with laser scanning confocal microscope were used to investigate the expression of eNOS ET-1 NF-κB and PKC protein in endothelial cells of splenic veins from portal hypertensive patients (n = 20) and portal veins from Wistar rats (n = 15). Total RNA was extracted and type I and type II procollagen mRNAs in splenic vein of portal hypertensive patients (n = 20) were examined by using the method of reverse transcriptional polymerase chain reaction with semiquantitative method.
RESULTS: The endothelium of splenic arteries was damaged and the internal elastic membrane and medial elastic fibers of the splenic artery wall were broken and degenerated. The endothelium of splenic veins was remarkably thickened and endothelial cells integrated with the formation of mural thrombus. The tunica media thickened significantly because of hypertrophy of smooth muscle. Fiber and connective tissues increased in amount. Under the electron microscope, atrophy, apoptosis and phenotypic changes were seen in smooth muscle cells of splenic arteries. There were some red blood cells and pathelets congregation around the damaged endothelium. Synthesis type of smooth muscle cells accounted for a large part of the total cells in splenic veins. There were plentiful rough endoplasmic reticulum and Golgi complex within the cytoplasm of smooth muscle cells. The endothelium of splenic veins was damaged, indicating that a lot of collagen fibers and some blood components accumulating around the damaged endotheliun.The positive signal of PKC was observed in cytoplasm and cell membrane.The PKC expression in endothelial cells in the splenic/portal vein of portal hypertensive patients/rats showed positive or strong positive signal, and positive signal were also observed in some smooth muscle cells in these specimens. But the PKC expression in endothelial cells in the control groups was negative or mild positive.The result of eNOS, ET-1 and NF-κB expression examined by double labeling immunofluorescence combined with laser scanning confocal microscope showed that the fluorescence were mostly localized in the endothelium of vessel. The intensity of fluorescence in the portal hypertensive patients/rats were significantly higher than that in control group. Human I procollagen mRNA expression of portal hypertensive patients in splenic vein showed a in-significant pattern with control group (P > 0.05), however, human III procollagen mRNA expression in portal hypertensive patients were much higher than that of control group (P < 0.01).
CONCLUSION: In this study, the mechanical signal pathway of endothelial cell is activated in portal hypertension and the upregulation of ET-1 and eNOS are related with the activation of this pathway. Type III procollagen and collagen may be one of the major extracellular matrix which deposits and results in neointimal formation and vascular remodeling in the pathogenesis of portal hypertensive vasopathy. Our research also shows that pathological changes of splenic arteries and veins are accompanied with portal hypertension. There may be an interactive relationship among portal hypertension, splanchnic hyperdynamic disturbances and splanchnic angiopathy.
Collapse
|
100
|
Wang H, Yang L, Jamaluddin MS, Boyd DD. The Kruppel-like KLF4 Transcription Factor, a Novel Regulator of Urokinase Receptor Expression, Drives Synthesis of This Binding Site in Colonic Crypt Luminal Surface Epithelial Cells. J Biol Chem 2004; 279:22674-83. [PMID: 15031282 DOI: 10.1074/jbc.m401257200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urokinase-type plasminogen activator receptor (u-PAR) plays a central role in cell migration, growth, and invasion and is regulated, in part, transcriptionally. In mice, u-PAR expression is restricted to a few tissues, one of which is the colon. We therefore screened a colon expression library for regulators of u-PAR promoter activity and identified a zinc finger protein bearing consensus sequences to the Kruppel-like family of transcription factors and showing partial homology with one of the members, KLF4. Like u-PAR, KLF4 expression is predominant in the luminal surface epithelial cells of the colonic crypt, and we hypothesized that u-PAR synthesis in these cells is directed by this transcription factor. Colon cells from KLF4 null mice showed a dramatic reduction in u-PAR protein compared with wild-type mice. Conversely, KLF4 expression in HCT116 colon cancer cells increased the amount of u-PAR protein/mRNA. Transient transfection of KLF4 with a reporter driven by 5'-deleted u-PAR promoter fragments indicated the requirement of the proximal 200 base pairs for optimal expression. Mobility-shifting experiments demonstrated binding of KLF4 to multiple regions of the u-PAR promoter (-154/-128, -105/-71, and -51/-24), and chromatin immunoprecipitation assays confirmed the binding of KLF4 to the endogenous promoter. Deletion of the -144/-123 promoter region diminished but did not eliminate the ability of KLF4 to transactivate the u-PAR promoter, suggesting cooperativity of these binding sites with respect to activation of gene expression. In conclusion, we have identified KLF4 as a novel regulator of u-PAR expression that drives the synthesis of u-PAR in the luminal surface epithelial cells of the colon.
Collapse
MESH Headings
- Alcian Blue/pharmacology
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Line, Tumor
- Cell Separation
- Chromatin/metabolism
- Cloning, Molecular
- Colon/cytology
- Colon/metabolism
- Colon/pathology
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Epithelial Cells/metabolism
- Epithelium/metabolism
- Flow Cytometry
- Gene Library
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Immunohistochemistry
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Receptors, Cell Surface/biosynthesis
- Receptors, Urokinase Plasminogen Activator
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
- Up-Regulation
- Zinc Fingers
Collapse
Affiliation(s)
- Heng Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|