51
|
Chowdhury S, Ammanamanchi S, Howell GM. Epigenetic Targeting of Transforming Growth Factor β Receptor II and Implications for Cancer Therapy. ACTA ACUST UNITED AC 2009; 1:57-70. [PMID: 20414468 DOI: 10.4255/mcpharmacol.09.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transforming growth factor (TGF) β signaling pathway is involved in many cellular processes including proliferation, differentiation, adhesion, motility and apoptosis. The loss of TGFβ signaling occurs early in carcinogenesis and its loss contributes to tumor progression. The loss of TGFβ responsiveness frequently occurs at the level of the TGFβ type II receptor (TGFβRII) which has been identified as a tumor suppressor gene (TSG). In keeping with its TSG role, the loss of TGFβRII expression is frequently associated with high tumor grade and poor patient prognosis. Reintroduction of TGFβRII into tumor cell lines results in growth suppression. Mutational loss of TGFβRII has been characterized, particularly in a subset of colon cancers with DNA repair enzyme defects. However, the most frequent cause of TGFβRII silencing is through epigenetic mechanisms. Therefore, re-expression of TGFβRII by use of epigenetic therapies represents a potential therapeutic approach to utilizing the growth suppressive effects of the TGFβ signaling pathway. However, the restoration of TGFβ signaling in cancer treatment is challenging because in late stage disease, TGFβ is a pro-metastatic factor. This effect is associated with increased expression of the TGFβ ligand. In this Review, we discuss the mechanisms associated with TGFβRII silencing in cancer and the potential usefulness of histone deacetylase (HDAC) inhibitors in reversing this effect. The use of HDAC inhibitors may provide a unique opportunity to restore TGFβRII expression in tumors as their pleiotropic effects antagonize many of the cellular processes, which mediate the pro-metastatic effects associated with increased TGFβ expression.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska
| | | | | |
Collapse
|
52
|
Ying S, Dong S, Kawada A, Kojima T, Chavanas S, Méchin MC, Adoue V, Serre G, Simon M, Takahara H. Transcriptional regulation of peptidylarginine deiminase expression in human keratinocytes. J Dermatol Sci 2009; 53:2-9. [DOI: 10.1016/j.jdermsci.2008.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/25/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
|
53
|
Abstract
Epigenetic modifications play a key role in the patho-physiology of prostate cancer. Histone deacetylases (HDACs) play major roles in prostate cancer progression. HDACs are part of a transcriptional co-repressor complex that influences various tumor suppressor genes. Because of the significant roles played by HDACs in various human cancers, HDAC inhibitors are emerging as a new class of chemotherapeutic agents. HDAC inhibitors have been shown to induce cell growth arrest, differentiation and/or apoptosis in prostate cancer. The combined use of HDAC inhibitors with other chemotherapeutic agents or radiotherapy in cancer treatment has shown promising results. Various HDAC inhibitors are in different stages of clinical trials. In this review, we discuss the molecular mechanism(s) through which HDACs influence prostate cancer progression and the potential roles of HDAC inhibitors in prostate cancer prevention and therapy.
Collapse
Affiliation(s)
- Ata Abbas
- Department of Urology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
54
|
Jin KL, Pak JH, Park JY, Choi WH, Lee JY, Kim JH, Nam JH. Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues. J Gynecol Oncol 2008; 19:185-90. [PMID: 19471575 DOI: 10.3802/jgo.2008.19.3.185] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 07/21/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the expression levels of histone deacetylase (HDAC) 1, 2, and 3 in ovarian cancer tissues and normal ovarian tissues. METHODS Randomly assigned each of six patients with serous, mucinous and endometrioid ovarian cancer were included. Another six patients with normal ovarian tissue were included for comparison. RT-PCR was performed to quantify the levels of HDACs1-3 mRNA in the cancer and normal tissues. Western blot analysis was performed to measure the expression levels of HDACs1-3 protein. The HDACs1-3 expression pattern was also topologically examined by immunohistochemistry. RESULTS Increased mRNA expressions of HDCA1, HDAC 2 and HDAC 3 were detected in 83%, 67% and 83% of 18 cancer tissue samples, compared to normal tissue samples. The relative densities of HDAC1 mRNA and HDAC3 mRNA in the serous, mucinous and endometrioid cancer tissues, and HDAC2 mRNA in serous cancer tissues were significantly higher than those of the normal tissues, respectively (p<0.05). Overexpression of HDAC1, HDAC2 and HDAC3 proteins were detected in 94%, 72% and 83% of 18 cancer samples, respectively. The relative densities of HDAC1 protein and HDAC3 protein in serous, mucinous and endometrioid cancer, and HDAC2 protein in serous and mucinous cancer tissues were significantly higher than those of normal tissues, respectively (p<0.05). Most cancer tissues expressed moderate to strong staining of HDACs1, 2 and 3 in immunohistochemistry. Staining of HDAC2 was weak in only one endometrioid cancer tissue. CONCLUSION HDACs1-3 are over expressed in ovarian cancer tissues and probably play a significant role in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Ke Long Jin
- Department of Obstetrics and Gynecology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Nian H, Delage B, Pinto JT, Dashwood RH. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 2008; 29:1816-24. [PMID: 18628250 DOI: 10.1093/carcin/bgn165] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have the potential to derepress epigenetically silenced genes in cancer cells, leading to cell cycle arrest and apoptosis. In the present study, we screened several garlic-derived small organosulfur compounds for their ability to inhibit HDAC activity in vitro. Among the organosulfur compounds examined, allyl mercaptan (AM) was the most potent HDAC inhibitor. Molecular modeling, structure activity and enzyme kinetics studies with purified human HDAC8 provided evidence for a competitive mechanism (K(i) = 24 microM AM). In AM-treated human colon cancer cells, HDAC inhibition was accompanied by a rapid and sustained accumulation of acetylated histones in total cellular chromatin. Chromatin immunoprecipitation assays confirmed the presence of hyperacetylated histone H3 on the P21WAF1 gene promoter within 4 h of AM exposure, and there was increased binding of the transcription factor Sp3. At a later time, 24 h after AM treatment, there was enhanced binding of p53 in the distal enhancer region of the P21WAF1 gene promoter. These findings suggest a primary role for Sp3 in driving P21 gene expression after HDAC inhibition by AM, followed by the subsequent recruitment of p53. Induction of p21Waf1 protein expression was detected at time points between 3 and 72 h after AM treatment and coincided with growth arrest in G(1) of the cell cycle. The results are discussed in the context of other anticarcinogenic mechanisms ascribed to garlic organosulfur compounds and the metabolic conversion of such compounds to potential HDAC inhibitors in situ.
Collapse
Affiliation(s)
- Hui Nian
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | | | | | | |
Collapse
|
56
|
Solomon SS, Majumdar G, Martinez-Hernandez A, Raghow R. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci 2008; 83:305-12. [PMID: 18664368 DOI: 10.1016/j.lfs.2008.06.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/16/2008] [Accepted: 06/19/2008] [Indexed: 02/02/2023]
Abstract
Specificity protein 1 (Sp1) belongs to a family of ubiquitously expressed, C(2)H(2)-type zinc finger-containing DNA binding proteins that activate or repress transcription of many genes in response to physiological and pathological stimuli. There is emerging evidence to indicate that in addition to functioning as 'housekeeping' transcription factors, members of Sp family may be key mediators of gene expression induced by insulin and other hormones. The founding member of the family, Sp1, by virtue of its multi-domain organization, potential for posttranslational modifications and interactions with numerous transcription factors, represents an ideal mediator of nuclear signaling in response to hormones. Insulin regulates the sub-cellular localization, stability and trans-activation potential of Sp1 by dynamically modulating its post-translational modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) or phosphate residues. We briefly review the recent literature demonstrating that an involvement of Sp-family of transcription factors in the regulation of differential gene expression in response to hormones is more common than previously appreciated and may represent a key regulatory mechanism.
Collapse
Affiliation(s)
- Solomon S Solomon
- Research Service, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | | | | | |
Collapse
|
57
|
Zhang Y, Liao M, Dufau ML. Unlocking repression of the human luteinizing hormone receptor gene by trichostatin A-induced cell-specific phosphatase release. J Biol Chem 2008; 283:24039-46. [PMID: 18596044 DOI: 10.1074/jbc.m801878200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies demonstrated that the histone deacetylase inhibitor, trichostatin A (TSA), induces derepression of the human luteinizing hormone receptor (LHR) gene by de-recruitment of the pRB homologue p107 repressor from the promoter in JAR and MCF-7 cancer cells. TSA initiates a mechanism whereby the phosphatidylinositol 3-kinase/protein kinase zeta (PKCzeta) cascade phosphorylates Sp1 at Ser-641, which is essential for the release of the repression of LHR transcription. The present studies have revealed that dissociation of serine/threonine protein phosphatases PP2A and PP1 from the LHR promoter mediates TSA-induced activation of LHR gene transcription in a cell-specific manner. Changes in chromatin structure induced by TSA cause the release of PP2A in JAR cells or of PP1 in MCF-7 cells, which is associated with Sp1 directly or through histone deacetylase 1/2, respectively, at the promoter. This favors the phosphorylation of Sp1 mediated by the phosphatidylinositol 3-kinase/PKCzeta pathway, which in turn causes the release of the p107 inhibitor from Sp1 and marked transcriptional activation of the LHR. These findings reveal the importance of phosphatases in the control of LHR transcription, where the balance between phosphatidylinositol 3-kinase/PKCzeta and phosphatases could be critical for up- and down-regulation of LHR gene expression in physiological and pathological settings.
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH, 49 Convent Drive, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
58
|
Tharakaraman K, Bodenreider O, Landsman D, Spouge JL, Mariño-Ramírez L. The biological function of some human transcription factor binding motifs varies with position relative to the transcription start site. Nucleic Acids Res 2008; 36:2777-86. [PMID: 18367472 PMCID: PMC2377430 DOI: 10.1093/nar/gkn137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of previous studies have predicted transcription factor binding sites (TFBSs) by exploiting the position of genomic landmarks like the transcriptional start site (TSS). The studies’ methods are generally too computationally intensive for genome-scale investigation, so the full potential of ‘positional regulomics’ to discover TFBSs and determine their function remains unknown. Because databases often annotate the genomic landmarks in DNA sequences, the methodical exploitation of positional regulomics has become increasingly urgent. Accordingly, we examined a set of 7914 human putative promoter regions (PPRs) with a known TSS. Our methods identified 1226 eight-letter DNA words with significant positional preferences with respect to the TSS, of which only 608 of the 1226 words matched known TFBSs. Many groups of genes whose PPRs contained a common word displayed similar expression profiles and related biological functions, however. Most interestingly, our results included 78 words, each of which clustered significantly in two or three different positions relative to the TSS. Often, the gene groups corresponding to different positional clusters of the same word corresponded to diverse functions, e.g. activation or repression in different tissues. Thus, different clusters of the same word likely reflect the phenomenon of ‘positional regulation’, i.e. a word's regulatory function can vary with its position relative to a genomic landmark, a conclusion inaccessible to methods based purely on sequence. Further integrative analysis of words co-occurring in PPRs also yielded 24 different groups of genes, likely identifying cis-regulatory modules de novo. Whereas comparative genomics requires precise sequence alignments, positional regulomics exploits genomic landmarks to provide a ‘poor man's alignment’. By exploiting the phenomenon of positional regulation, it uses position to differentiate the biological functions of subsets of TFBSs sharing a common sequence motif.
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Computational Biology Branch, National Center for Biotechnology Information and National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, MSC 6075 Bethesda, MD 20894-6075, USA
| | | | | | | | | |
Collapse
|
59
|
Davie JR, He S, Li L, Sekhavat A, Espino P, Drobic B, Dunn KL, Sun JM, Chen HY, Yu J, Pritchard S, Wang X. Nuclear organization and chromatin dynamics--Sp1, Sp3 and histone deacetylases. ACTA ACUST UNITED AC 2008; 48:189-208. [PMID: 18187045 DOI: 10.1016/j.advenzreg.2007.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0V9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Andresen L, Jensen H, Pedersen MT, Hansen KA, Skov S. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8235-42. [PMID: 18056367 DOI: 10.4049/jimmunol.179.12.8235] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we characterize the molecular signal pathways that lead to MHC class I chain-related protein A (MICA) expression after histone deacetylase (HDAC)-inhibitor (HDAC-i) treatment of Jurkat T cells. Chelating calcium with BAPTA-AM or EGTA potently inhibited HDAC- and CMV-mediated MICA/B expression. It was further observed that endoplasmic reticulum calcium stores were depleted after HDAC treatment. NF-kappaB activity can be induced by HDAC treatment. However, nuclear translocation of NF-kappaB p65 was not observed after HDAC treatment of Jurkat T cells and even though we could effectively inhibit p65 expression by siRNA, it did not modify MICA/B expression. To identify important elements in MICA regulation, we made a promoter construct consisting of approximately 3 kb of the proximal MICA promoter in front of GFP. Deletion analysis showed that a germinal center-box containing a putative Sp1 site from position -113 to -93 relative to the mRNA start site was important for HDAC and CMV-induced promoter activity. Sp1 was subsequently shown to be important, as targeted mutation of the Sp1 binding sequence or siRNA mediated down modulation of Sp1-inhibited MICA promoter activity and surface-expression.
Collapse
Affiliation(s)
- Lars Andresen
- Department of Immunology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
61
|
Dong S, Ying S, Kojima T, Shiraiwa M, Kawada A, Méchin MC, Adoue V, Chavanas S, Serre G, Simon M, Takahara H. Crucial Roles of MZF1 and Sp1 in the Transcriptional Regulation of the Peptidylarginine Deiminase Type I Gene (PADI1) in Human Keratinocytes. J Invest Dermatol 2008; 128:549-57. [PMID: 17851584 DOI: 10.1038/sj.jid.5701048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidylarginine deiminases (PADs) catalyze the conversion of protein-bound arginine residues into citrulline residues in a calcium-dependent manner. The PAD1 gene (PADI1) is expressed in a few tissues, including the epidermis, where the protein is detected with a higher level in the more differentiated keratinocytes. Using quantitative reverse transcription-PCR experiments, we show that PADI1 mRNAs are more abundant in keratinocytes cultured with 1.2 than 0.15 mM calcium. We cloned and characterized the promoter region using human keratinocytes transfected with variously deleted fragments of the 5'-upstream region of PADI1 coupled to the luciferase gene. We found that as few as 195 bp upstream from the transcription initiation site were sufficient to direct transcription of the reporter gene. Mutations of MZF1- or Sp1-binding sites markedly reduced PADI1 promoter activity. Chromatin immunoprecipitation assays revealed that MZF1 and Sp1/Sp3 bind to this region in vivo. Furthermore, MZF1 or Sp1 small interfering RNAs (siRNAs) effectively diminished PADI1 expression in keratinocytes cultured in both low- and high-calcium-containing medium. In addition, the expression of MZF1 and PAD1 increased in parallel when normal human epidermal keratinocytes underwent differentiation. These data indicate that MZF1 and Sp1/Sp3 binding to the promoter region drive the PADI1 expression.
Collapse
Affiliation(s)
- Sijun Dong
- Department of Applied Biological Resource Sciences, School of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Regulation of the E2F-associated phosphoprotein promoter by GC-box binding proteins. Int J Biochem Cell Biol 2008; 40:2845-53. [DOI: 10.1016/j.biocel.2008.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/01/2008] [Accepted: 06/02/2008] [Indexed: 11/17/2022]
|
63
|
Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 2007; 153:657-68. [PMID: 18059320 DOI: 10.1038/sj.bjp.0707608] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of histone deacetylase (HDAC) are emerging as a promising class of anti-cancer drugs, but a generic deregulation of transcription in neoplastic cells cannot fully explain their therapeutic effects. In this study we evaluated alternative molecular mechanisms by which HDAC inhibitors could affect neuroblastoma viability. EXPERIMENTAL APPROACH Effects of HDAC inhibitors on survival of the I-type SK-N-BE and the N-type NB SH-SY5Y neuroblastoma cell lines were assessed by the MTT assay. Molecular pathways leading to this were examined by western blot, confocal microscopy and cytofluorometry. The mRNA levels of apoptotic mediators were assessed semi-quantitatively by RT-PCR. Tumour-suppressor p53 trans activity was assessed in EMSA experiments. HDAC inhibitors were also studied in cells subjected to plasmid-based p53 interference (p53i). KEY RESULTS HDAC inhibitors induced cell death via the mitochondrial pathway of apoptosis with recruitment of Bcl-2 family members. Bcl-2 overexpression rendered neuroblastoma cells resistant to HDAC inhibitor treatment. Low concentrations of HDAC inhibitors (0.9 mM) caused a G(2) cell-cycle arrest and a marked upregulation of the p21/Waf1/Cip1 protein. HDAC inhibitors also activate the p53 protein via hyper-acetylation and nuclear re-localization, without affecting its protein expression. Accordingly, HDAC inhibitor-induced cell-killing and p21/Waf1/Cip1 upregulation is impaired in p53i-cells. CONCLUSIONS AND IMPLICATIONS In neuroblastoma cells, HDAC inhibitors may overcome the resistance to classical chemotherapeutic drugs by restoring the p53 tumour-repressor function via its hyper-acetylation and nuclear migration, events usually impaired in such tumours. In neuroblastoma cells, HDAC inhibitors are not able to induce p21/Waf1/Cip1 in the absence of a functional p53.
Collapse
|
64
|
Boutillier S, Lannes B, Buée L, Delacourte A, Rouaux C, Mohr M, Bellocq JP, Sellal F, Larmet Y, Boutillier AL, Loeffler JP. Sp3 and sp4 transcription factor levels are increased in brains of patients with Alzheimer's disease. NEURODEGENER DIS 2007; 4:413-23. [PMID: 17934324 DOI: 10.1159/000107701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/16/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Alzheimer's disease (AD) is characterized by extracellular Abeta peptide deposition originating from amyloid precursor protein cleavage and intracellular neurofibrillary tangles resulting from pathological tau protein aggregation. These processes are accompanied by dramatic neuronal losses, further leading to different cognitive impairments. Neuronal death signalings involve gene expression modifications that rely on transcription factor alterations. Herein, we investigated the fate of the Sp family of transcription factors in postmortem brains from patients with AD disease and in different contexts of neuronal death. METHODS/RESULTS By immunohistochemistry we found that the Sp3 and Sp4 levels were dramatically increased and associated with neurofibrillary tangles and pathological tau presence in neurons from the CA1 region of the hippocampus, as well as the entorhinal cortex of AD patient brains. The Sp transcription factor expression levels were further analyzed in cortical neurons in which death is induced by amyloid precursor protein signaling targeting. While the Sp1 levels remained constant, the Sp4 levels were slightly upregulated in response to the death signal. The Sp3 isoforms were rather degraded. Interestingly, when overexpressed by transfection experiments, the three Sp family members induced neuronal apoptosis, Sp3 and Sp4 being the most potent proapoptotic factors over Sp1. CONCLUSION Our data evidence Sp3 and Sp4 as new hallmarks of AD in postmortem human brains and further point out that Sp proteins are potential triggers of neuronal death signaling cascades.
Collapse
Affiliation(s)
- Stéphanie Boutillier
- Inserm, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kiela PR, Kuscuoglu N, Midura AJ, Midura-Kiela MT, Larmonier CB, Lipko M, Ghishan FK. Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate. Am J Physiol Cell Physiol 2007; 293:C64-74. [PMID: 17344314 DOI: 10.1152/ajpcell.00277.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sodium butyrate (NaB) stimulates sodium and water absorption by inducing colonic Na+/H+exchange. NaB induces Na+/H+exchanger (NHE)3 activity and protein and mRNA expression both in vivo and in vitro. Our previously published observations indicated that this induction is Ser/Thr kinase dependent and that NaB-responsive elements were localized within −320/−34 bp of the rat NHE3 promoter. Here we further delineate the mechanism of NaB-mediated NHE3 gene transcription. Transient and stable transfection of Caco-2 cells with NHE3 gene reporter constructs identified Sp binding site SpB at position −58/−55 nt as critical for NaB-mediated induction. Gel mobility shift (GMSA) and DNA affinity precipitation assays indicated NaB-induced binding of Sp3 and decreased binding of Sp1 to SpB element. While no changes in expression of Sp1 or Sp3 were noted, NaB induced phosphorylation of Sp1 and acetylation of Sp3. Sp3 was a more potent inducer of NHE3 gene transcription, which suggested that change in balance, favoring binding of Sp3 to the SpB site, would result in significant increase in NHE3 promoter activity. Small interfering RNA studies in Caco-2 cells and data from NaB-treated SL2 cells used as a reconstitution model confirmed this hypothesis. In addition to the SpB site, which played a permissive role, an upstream novel butyrate response element located at −196/−175 nt was necessary for maximal induction. GMSA identified a protein-DNA complex with a −196/−175 nt probe; this interaction was not affected by NaB treatment, thus suggesting that in response to NaB Sp3 binding to site SpB precedes and results in recruitment of the putative factor to this upstream site.
Collapse
Affiliation(s)
- Pawel R Kiela
- Dept. of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Kesarwani M, Yoo J, Dong X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:336-46. [PMID: 17369431 PMCID: PMC1913812 DOI: 10.1104/pp.106.095299] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
TGA transcription factors are implicated as regulators of pathogenesis-related (PR) genes because of their physical interaction with the known positive regulator, nonexpresser of PR gene1 (NPR1). A triple-knockout mutant tga2-1 tga5-1 tga6-1 was shown previously to be defective in the induction of PR genes and systemic acquired resistance, confirming their role in disease resistance. However, the contributions of individual TGA factors have been difficult to discern because of functional redundancy among these factors, as well as possible dual functions for some single factors. In this study, we characterized six TGA factors by reverse genetics. We show that TGA3 is required for both basal and 2,6-dichloroisonicotinic acid-induced transcription of PR genes. The tga3-1 mutants were found to be defective in basal pathogen resistance, whereas induced resistance was unaffected. TGA1 and TGA4 play partially redundant roles in regulation of basal resistance, having only moderate effects on PR gene expression. Additionally, an activation-tagged mutant of TGA6 was able to increase basal as well as induced expression of PR1, demonstrating a positive role for TGA6 on PR gene expression. In contrast, TGA2 has repressor activity on PR gene expression even though it can act as a positive regulator in the tga5-1 tga6-1 null mutant background. Finally, we examined the genetic interaction between tga2-2 and suppressor of npr1 inducible1 (sni1-1). TGA2's repressor activity overlaps with SNI1 because the tga2-2 sni1-1 double mutant shows a synergistic effect on PR gene expression.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
67
|
Li Y, Zhao Y, Li G, Wang J, Li T, Li W, Lu J. Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J Neurochem 2007; 101:1194-204. [PMID: 17250678 DOI: 10.1111/j.1471-4159.2006.04407.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuronal nitric oxide synthase (nNOS) is predominantly expressed in nervous tissues and subject to complex transcriptional controls. To determine the effect of acetylation on nNOS expression, human neuroblastoma SK-N-SH cells were treated with trichostatin A (TSA), a histone deacetylase inhibitor. As a consequence, total and exon 1f-specific nNOS mRNA, nNOS protein and nNOS-derived nitric oxide production were increased. Immunoprecipitation and western blot showed both nuclear factor-kappaB (NF-kappaB) subunits p65 and p50 were acetylated in the presence of TSA. The enhancement of the p65 and p50 acetylation was in accordance with their increased binding affinities to the NF-kappaB responsive element, which was identified at position -893 to -884 of the nNOS exon 1f promoter. Luciferase assays revealed that TSA up-regulated the transcriptional activity of the nNOS 1f promoter through NF-kappaB-mediated transactivation. Taken together, we demonstrate that acetylation plays a crucial role in nNOS expression and suggest that acetylation of NF-kappaB p65 and p50 subunits by TSA treatment may augment their DNA-binding affinities, thereby activating the nNOS exon 1f promoter. It may be one of the mechanisms by which acetylation modulates nNOS expression and nitric oxide output in SK-N-SH cells and may be the molecular basis for certain neurological disorders.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Medical Genetics, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
68
|
Oguariri RM, Brann TW, Imamichi T. Hydroxyurea and interleukin-6 synergistically reactivate HIV-1 replication in a latently infected promonocytic cell line via SP1/SP3 transcription factors. J Biol Chem 2006; 282:3594-604. [PMID: 17150965 DOI: 10.1074/jbc.m608150200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The existence of viral latency limits the success of highly active antiretroviral therapy. With the therapeutic intention of reactivating latent virus to induce a cure, in this study we assessed the impact of cell synchronizers on HIV gene activation in latently infected U1 cells and investigated the molecular mechanisms responsible for such effect. Latently infected U1 cells were treated with 10 drugs including hydroxyurea (HU) and HIV-1 replication monitored using a p24 antigen capture assay. We found that HU was able to induce HIV-1 replication by 5-fold. HU has been used in the clinical treatment of HIV-1-infected patients in combination with didanosine; therefore, we investigated the impact of HU on HIV-1 activation in the presence of the proinflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha). IL-6 or TNF-alpha alone induced HIV replication by 18- and approximately 500-fold, respectively. Of interest, in the presence of HU, IL-6-mediated HIV-1 activation was enhanced by >90-fold, whereas TNF-alpha-mediated activation was inhibited by >30%. A reporter gene assay showed that HU and IL-6 synergized to activate HIV promoter activity via the Sp1 binding site. Electrophoretic mobility shift and supershift assays revealed increased binding of the Sp1 and Sp3 transcription factors to this region. Western blot analysis showed that HU and IL-6 co-stimulation resulted in increased levels of Sp1 and Sp3 proteins. In contrast, treatment with HU plus TNF-alpha down-regulated the expression of NF-kappaB. These findings suggest that Sp1/Sp3 is involved in controlling the HU/IL-6-induced reactivation of HIV-1 in latently infected cells.
Collapse
Affiliation(s)
- Raphael M Oguariri
- Laboratory of Human Retrovirology, Clinical Services Program, Science Applications International Corporation-Frederick Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
69
|
López-Soto A, Quiñones-Lombraña A, López-Arbesú R, López-Larrea C, González S. Transcriptional Regulation of ULBP1, a Human Ligand of the NKG2D Receptor. J Biol Chem 2006; 281:30419-30. [PMID: 16901903 DOI: 10.1074/jbc.m604868200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cells expressing ligands of the NKG2D receptor stimulate anti-tumor immunity mediated by natural killer and T cells. In humans, NKG2D ligands (NKG2DL) are encoded by MIC and ULBP proteins. NKG2DL exhibit highly restricted expression in healthy tissues but are widely expressed in tumors. However, regulation of each NKG2DL differs substantially in different cancer cells. In this study, we characterized the mechanisms that regulate the expression of ULBP1. We show that the transcription of ULBP1 strictly depends on the binding of Sp1 and Sp3 to a CRE(1) site located in the ULBP1 minimal promoter. The mutation or deletion of this Sp1/Sp3 binding site abolished the transcription of ULBP1. It also diminished the transactivation of ULBP1 promoter by Sp3 overexpression, but not by Sp1, indicating that Sp3 is the main transcription factor that regulates ULBP1 through the CRE(1) site. Experiments in SL2 cells showed that the ULBP1 promoter was inactive in the absence of the Sp proteins and indicate that Sp3 is the essential activator of ULBP1 transcription, because the overexpression of Sp3 up-regulated its promoter activity > 500-fold. Additionally, we demonstrated that AP-2alpha repressed the expression of ULBP1 in HeLa cells by interfering with the binding of Sp3 and Sp1 to the ULBP1 promoter. These data indicate that Sp1, Sp3, and AP-2alpha may play an important role in the immunosurveillance against cancer. Finally, the definition of ULBP1 regulation may have implications for development of new therapeutic strategies against cancer cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
70
|
Ellis DJP, Dehm SM, Bonham K. The modification of Sp3 isoforms by SUMOylation has differential effects on the SRC1A promoter. Gene 2006; 379:68-78. [PMID: 16781829 DOI: 10.1016/j.gene.2006.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/26/2022]
Abstract
Previously, we had described a housekeeping like promoter that regulates expression of the SRC gene in many cell types. This promoter was found to be regulated by Sp1 and hnRNP-K. However, at that time we could find little evidence supporting a significant role for Sp3 in SRC activation. Interestingly, despite its first description some 12 years ago, a full length Sp3 clone has only recently been described. Previous mechanistic studies, including our own, employed a version of Sp3 that was significantly N-terminally truncated. In addition, several shorter Sp3 isoforms exist that result from internally initiated translation sites. To complicate matters further, all Sp3 isoforms can be modified by SUMO-1. Due to this newly emerging information few reports exist that systematically explore these various Sp3 isoforms (SUMOylated or not) and how they affect activity of specific mammalian promoters. We therefore undertook such a study to re-evaluate regulation of SRC by these various Sp3 isoforms. Using human and insect cells we found that the newly isolated full length version of Sp3 was only a weak to moderate activator of SRC. However, to our surprise, the more commonly used N-terminally truncated version of Sp3 was up to five times more active. We also found that mutations preventing SUMOylation of the shorter Sp3 isoforms were sufficient to convert them into potent transactivators of SRC. In contrast to other studies, however, we found that SUMOylation of full length Sp3 had little effect on its transcriptional properties. These results provide new insights into the complexity of Sp3 mediated transcription which appears to be highly dependent on the isoform bound, SUMOylation status and the promoter context.
Collapse
Affiliation(s)
- Danielle J P Ellis
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | | | | |
Collapse
|
71
|
Lu F, Day L, Gao SJ, Lieberman PM. Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J Virol 2006; 80:5273-82. [PMID: 16699007 PMCID: PMC1472144 DOI: 10.1128/jvi.02541-05] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/15/2006] [Indexed: 11/20/2022] Open
Abstract
Reactivation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle can be initiated by transcription activation of the ORF50 immediate early gene (Rta). We show that ORF50 transcription is actively repressed by the KSHV latency-associated nuclear antigen (LANA) during latency. Depletion of LANA by small interfering RNA derepressed ORF50 transcription in the latently infected BCBL1 pleural effusion lymphoma-derived cell line. In contrast, overexpression of LANA suppressed ORF50 mRNA levels in BCBL1 cells. ORF50 transcription was significantly elevated during primary infection with recombinant virus lacking LANA, further indicating that LANA plays a role in lytic gene silencing during the establishment of latency. Chromatin immunoprecipitation assays indicated that LANA interacts with the ORF50 promoter region in latently infected cells. Histone deacetylase inhibitors, including sodium butyrate (NaB) and trichostatin A, caused the rapid dissociation of LANA from the ORF50 promoter. NaB treatment of latently infected BCBL1 cells disrupted a stable interaction between LANA and the cellular proteins Sp1 and histone H2B. We also found immunological and radiochemical evidence that LANA is subject to lysine acetylation after NaB treatment. These findings support the role of LANA as a transcriptional repressor of lytic reactivation and provide evidence that lysine acetylation regulates LANA interactions with chromatin, Sp1, and ORF50 promoter DNA.
Collapse
Affiliation(s)
- Fang Lu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
72
|
Rivera-Gines A, Cook RJ, Loh HH, Ko JL. Interplay of Sps and poly(C) binding protein 1 on the mu-opioid receptor gene expression. Biochem Biophys Res Commun 2006; 345:530-7. [PMID: 16682008 DOI: 10.1016/j.bbrc.2006.04.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
The proximal promoter of mouse mu-opioid receptor (MOR) gene is the dominant promoter for directing MOR-1 gene expression in brain. Sp1/Sp3 (Sps) and poly(C) binding protein 1 (PCBP) bind to a cis-element of MOR proximal promoter. Functional interaction between Sps and PCBP and their individual roles on MOR proximal core promoter were investigated using SL2 cells, devoid of Sps and PCBP. Each factor contributed differentially to the promoter, with a rank order of activity Sp1>Sp3>PCBP. Functional analysis suggested the interplay of Sps and PCBP in an additive manner. The in vivo binding of individual Sps or PCBP to MOR proximal promoter was demonstrated using chromatin immunoprecipitation (ChIP). Re-ChIP assays further suggested simultaneous bindings of Sps and PCBP to the proximal promoter, indicating physiologically relevant communication between Sps and PCBP. Collectively, results documented that a functional coordination between Sps and PCBP contributed to cell-specific MOR gene expression.
Collapse
Affiliation(s)
- Aida Rivera-Gines
- Department of Biology, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | |
Collapse
|
73
|
Azakie A, Fineman JR, He Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2006; 291:H600-11. [PMID: 16617124 DOI: 10.1152/ajpheart.01305.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box that is necessary for basal and cAMP-mediated activity of cTnT promoter constructs transfected in embryonic cardiomyocytes. Cardiac nuclear proteins bind the cTnT GC box in a sequence-specific fashion and consist of Sp1, Sp2, and Sp3 protein factors. By chromatin immunoprecipitation, Sp1 binds the cTnT promoter "in vivo." Cotransfected Sp1 trans-activates the cTnT promoter in cardiomyocytes in culture. Sp3 represses Sp1-mediated transcriptional activation of the cTnT gene in embryonic cardiomyocytes. Sp3 repression of Sp1-mediated cTnT promoter activation is dose dependent, inferring a mechanism of competitive binding/inhibition. To evaluate the role of Sp factors in cardiac gene expression in vivo, we have established a clinically relevant animal model of pathological cardiac hypertrophy where the fetal cardiac program is activated. In this animal model, cardiac hypertrophy results from increased left-right shunting, volume loading of the left ventricle, and pressure loading of the right ventricle. Sp1 expression is increased in all four hypertrophied cardiac chambers, whereas Sp3 expression is diminished. This observation is consistent with the in vitro activating function of Sp1 and inhibitory effects of Sp3 on activity of cTnT promoter constructs. Sp factor levels are modulated during the hypertrophic cardiac program in vivo.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
74
|
Abstract
Cytokine-induced expression of SOCS (suppressor of cytokine signalling) molecules is important for the negative regulatory control of STAT (signal transduction and activators of transcription)-dependent cytokine signalling, e.g. for the signal transduction of IL-6 (interleukin-6)-type cytokines through the JAK (Janus kinase)/STAT cascade. STAT activation itself represents an important step in the transcriptional activation of SOCS3 gene expression. However, downstream of the STAT-responsive element, the SOCS3 gene contains a GC-rich element in its 5'-upstream region. The aim of the present study was to investigate the implications of this GC-rich element in the transcriptional control of SOCS3 gene expression. In the present study, we show that mutation of this GC-rich element abolishes IL-6-dependent transcriptional activation of the SOCS3 promoter and that Sp3 (specificity protein 3), a ubiquitously expressed transcription factor, but not Sp1 binds to this GC-rich motif, suggesting that Sp3 is involved in the regulation of SOCS3 expression. The results suggest that Sp3 is important for IL-6-induced transcriptional activation of the SOCS3 (gene) promoter and acts as an enhancer of basal as well as induced transcriptional activity, resulting in enhanced SOCS3 mRNA and protein expression. Mutation of Lys-483, a potential target for Sp3 acetylation, inhibited Sp3-mediated enhancement of SOCS3 mRNA expression and SOCS3 promoter activation, indicating that the acetylation of this lysine residue of Sp3 is important for the enhancing effect of Sp3 on SOCS3 expression.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
75
|
Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 2006; 281:13548-13558. [PMID: 16533812 DOI: 10.1074/jbc.m510023200] [Citation(s) in RCA: 412] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of histone deacetylases (HDACs) induce growth arrest, differentiation, and apoptosis of colon cancer cell lines in vitro and have demonstrated anti-cancer efficacy in clinical trials. Whereas a role for HDAC1 and -2 in mediating components of the HDAC inhibitor response has been reported, the role of HDAC3 is unknown. Here we demonstrate increased protein expression of HDAC3 in human colon tumors and in duodenal adenomas from Apc1638(N/+) mice. HDAC3 was also maximally expressed in proliferating crypt cells in normal intestine. Silencing of HDAC3 expression in colon cancer cell lines resulted in growth inhibition, a decrease in cell survival, and increased apoptosis. Similar effects were observed for HDAC2 and, to a lesser extent, for HDAC1. HDAC3 silencing also selectively induced expression of alkaline phosphatase, a marker of colon cell maturation. Concurrent with its effect on cell growth, overexpression of HDAC3 and other Class I HDACs inhibited basal and butyrate-induced p21 transcription in a Sp1/Sp3-dependent manner, whereas silencing of HDAC3 stimulated p21 promoter activity and expression. However, the magnitude of the effects elicited by silencing of individual Class I HDACs was significantly less than that induced by HDAC inhibitors. These findings identify HDAC3 as a gene deregulated in human colon cancer and as a novel regulator of colon cell maturation and p21 expression. These findings also demonstrate that multiple Class I HDACs are involved in repressing p21 and suggest that the growth-inhibitory and apoptotic effects induced by HDAC inhibitors are probably mediated through the inhibition of multiple HDACs.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Do-Sun Byun
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Natalia Popova
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Lucas B Murray
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Kaitlin L'Italien
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Yoshihiro Sowa
- Department of Molecular Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Diego Arango
- Program of Functional Genomics, Molecular Biology and Biochemistry Research Center (CIBBIM), Valle Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Anna Velcich
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Leonard H Augenlicht
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - John M Mariadason
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467.
| |
Collapse
|
76
|
White NR, Mulligan P, King PJ, Sanderson IR. Sodium butyrate-mediated Sp3 acetylation represses human insulin-like growth factor binding protein-3 expression in intestinal epithelial cells. J Pediatr Gastroenterol Nutr 2006; 42:134-41. [PMID: 16456404 DOI: 10.1097/01.mpg.0000189345.31010.89] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Butyrate concentrations in the gastrointestinal tract vary greatly with age. In intestinal epithelial cells, butyrate enhances gene transcription by increasing histone acetylation, rendering the nucleosome open to transcription factors. However, it inhibits human insulin-like growth factor binding protein (hIGFBP)-3 expression. We therefore hypothesized that butyrate also acts by regulating transcription factor acetylation. METHODS Gene regulation was examined in Caco-2 cells. RNA stability was measured after interruption of transcription. The activity of deletion mutations of the hIGFBP-3 promoter was examined in reporter assays. Transcription factor binding to promoter DNA was analyzed. RESULTS Butyrate did not increase the transcription of a repressor because it inhibited hIGFBP-3 mRNA in the absence of protein synthesis. Nor did butyrate decrease the stability of hIGFBP-3 mRNA. Analysis of the hIGFBP-3 promoter demonstrated a butyrate-response element that included the binding sites for p300 and Sp1/Sp3. Transfection of Caco-2 cells with E1A, an inhibitor of p300 acetyltransferase activity, reversed the butyrate-induced repression of hIGFBP-3. Because Sp3 represses the initiation of transcription, we studied whether butyrate induced Sp3 acetylation. Electrophoretic mobility shift assays of nuclei extracted from Caco-2 cells treated with 5 mmol/L butyrate demonstrated an extra, heavier band in addition to the Sp3-DNA binding in untreated cells. This corresponded to a protein, detected only in butyrate treated cells, that was identified both by an anti-Sp3 antibody and by an anti-acetyl lysine antibody. CONCLUSIONS This study demonstrates that butyrate increases the acetylation of a nonhistone protein, Sp3, catalyzed by p300 acetyltransferase activity.
Collapse
Affiliation(s)
- Nicholas R White
- Centre for Adult and Paediatric Gastroenterology, Institute of Cell and Molecular Science, Barts and The London, Queen Mary School of Medicine and Dentistry, University of London, London E1 2AD, United Kingdom
| | | | | | | |
Collapse
|
77
|
Natesampillai S, Fernandez-Zapico ME, Urrutia R, Veldhuis JD. A Novel Functional Interaction between the Sp1-like Protein KLF13 and SREBP-Sp1 Activation Complex Underlies Regulation of Low Density Lipoprotein Receptor Promoter Function. J Biol Chem 2006; 281:3040-7. [PMID: 16303770 DOI: 10.1074/jbc.m509417200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol homeostasis is regulated by a family of transcription factors designated sterol regulatory element-binding proteins (SREBPs). Precise control of SREBP-targeted genes requires additional interactions with co-regulatory transcription factors. In the case of the low density lipoprotein receptor (LDLR), SREBP cooperates with the specificity protein Sp1 to activate the promoter. In this report, we describe a novel pathway in LDLR transcriptional regulation distinct from the SREBP-Sp1 activation complex involving the Sp1-like protein Krueppel-like factor 13 (KLF13). Using a combination of RNA interference, electrophoretic mobility shift, chromatin immunoprecipitation, and reporter assays, deletion, and site-directed mutagenesis, we demonstrated that KLF13 mediates repression in a DNA context-selective manner. KLF13 repression of LDLR promoter activity appears to be needed to keep the receptor silent, a state that can be antagonized by Sp1, SREBP, and inhibitors of histone deacetylase activity. Chromatin immunoprecipitation assay confirmed that KLF13 binds proximal LDLR DNA sequences in vivo and that exogenous oxysterol up-regulates such binding. Together these studies identify a novel regulatory pathway in which gene repression by KLF13 must be overcome by the Sp1-SREBP complex to activate the LDLR promoter. Therefore, these data should replace a pre-existent and more simple paradigm that takes into consideration only the induction of the activator proteins Sp1-SREBP as necessary for LDLR promoter drive without including default repression, such as that by KLF13, of the LDLR gene.
Collapse
Affiliation(s)
- Sekar Natesampillai
- Endocrine Research Unit and Gastroenterology Research Unit, Department of Internal Medicine, Mayo School of Graduate Medical Education, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
78
|
Liu F, Pore N, Kim M, Voong KR, Dowling M, Maity A, Kao GD. Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Mol Biol Cell 2006; 17:585-97. [PMID: 16280357 PMCID: PMC1356571 DOI: 10.1091/mbc.e05-08-0775] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/25/2005] [Accepted: 11/02/2005] [Indexed: 11/11/2022] Open
Abstract
Histone deacetylases mediate critical cellular functions but relatively little is known about mechanisms controlling their expression, including expression of HDAC4, a class II HDAC implicated in the modulation of cellular differentiation and viability. Endogenous HDAC4 mRNA, protein levels and promoter activity were all readily repressed by mithramycin, suggesting regulation by GC-rich DNA sequences. We validated consensus binding sites for Sp1/Sp3 transcription factors in the HDAC4 promoter through truncation studies and targeted mutagenesis. Specific and functional binding by Sp1/Sp3 at these sites was confirmed with chromatin immunoprecipitation (ChIP) and electromobility shift assays (EMSA). Cotransfection of either Sp1 or Sp3 with a reporter driven by the HDAC4 promoter led to high activities in SL2 insect cells (which lack endogenous Sp1/Sp3). In human cells, restored expression of Sp1 and Sp3 up-regulated HDAC4 protein levels, whereas levels were decreased by RNA-interference-mediated knockdown of either protein. Finally, variable levels of Sp1 were in concordance with that of HDAC4 in a number of human tissues and cancer cell lines. These studies together characterize for the first time the activity of the HDAC4 promoter, through which Sp1 and Sp3 modulates expression of HDAC4 and which may contribute to tissue or cell-line-specific expression of HDAC4.
Collapse
Affiliation(s)
- Fang Liu
- Department of Radiation Oncology, Philadelphia Veterans Affairs Medical Center, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Wang YN, Chen YJ, Chang WC. Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in keratin 16 gene expression. Mol Pharmacol 2006; 69:85-98. [PMID: 16214953 DOI: 10.1124/mol.105.016220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In studies of gene regulation of keratin 16, we reported previously that simian virus 40 promoter factor 1 shows a functional cooperation with c-Jun and coactivators p300/CBP in driving the transcriptional regulation of epidermal growth factor (EGF)-induced keratin 16 gene expression. In the present study, we found that the stimulated expression of keratin 16 by EGF was mediated mainly through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway. Ser63 and Ser73 on the c-Jun NH(2)-terminal transactivation domain could be phosphorylated in cells treated with EGF; nevertheless, we found that the c-Jun COOH terminus played a pivotal role in EGF-induced expression of keratin 16. The activation of keratin 16 by EGF treatment could not be enhanced by the overexpression of myc-c-JunK3R, in which three putative acetylation lysine residues on the c-Jun COOH terminus were all mutated into arginines, suggesting that c-Jun acetylation on the COOH terminus might partially play a functional role in this system. In addition, by using a chromatin immunoprecipitation assay and a DNA affinity precipitation assay, EGF treatment up-regulated the p300 recruitment through ERK signaling to the promoter region in regulating keratin 16 transcriptional activity. Furthermore, the enhancement of acetyl-histone H3 to the keratin 16 chromatin promoter induced by EGF was also mediated via ERK activation. In conclusion, these results strongly suggest that both c-Jun induction and p300 recruitment to gene promoter, mediated through ERK activation, played an essential role in regulating keratin 16 gene expression by EGF. p300 mediated and regulated EGF-induced keratin 16 gene expression, at least in part, through multiple mechanisms, including a selective acetylation of c-Jun and histone H3.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
80
|
Ahn J, Ko M, Lee K, Oh J, Jeon SH, Seong RH. Expression of SRG3, a core component of mouse SWI/SNF chromatin-remodeling complex, is regulated by cooperative interactions between Sp1/Sp3 and Ets transcription factors. Biochem Biophys Res Commun 2005; 338:1435-46. [PMID: 16288722 DOI: 10.1016/j.bbrc.2005.10.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/19/2005] [Indexed: 11/16/2022]
Abstract
SRG3, a mouse homolog of yeast SWI3 and human BAF155, is known to be a core component of SWI/SNF chromatin-remodeling complex. We have previously shown that SRG3 plays essential roles in early mouse embryogenesis, brain development, and T-cell development. SRG3 gene expression was differentially regulated depending on the developmental stages and exhibited tissue-specific pattern. In this study, we showed that the functional interactions between Sp and Ets family transcription factors are crucial for the SRG3 expression. Sp1 and Sp3 specifically bound to the two canonical Sp-binding sites (GC boxes) at -152 and -114, and a non-canonical Sp-binding site (CCTCCT motif) at -108 in the SRG3 promoter. Using Drosophila SL2 cells, we found that various Sp or Ets family members activate the SRG3 promoter through these Sp- or Ets-binding sites, respectively, in a dose-dependent manner. Intriguingly, different combinatorial expression of Ets and Sp factors in SL2 cells resulted in either strong synergistic activation or repression of the SRG3 promoter activity. Moreover, the Sp-mediated activation of SRG3 promoter required the intact Ets-binding element. Taken together, these results suggest that diverse interactions between Sp1/Sp3 and Ets factors are crucial for the SRG3 gene expression.
Collapse
Affiliation(s)
- Jeongeun Ahn
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellomics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Specificity protein 1 (Sp1) and other Sp and Krüppel-like factor (KLF) proteins are members of a family of transcription factors which bind GC/GT-rich promoter elements through three C(2)H(2)-type zinc fingers that are present at their C-terminal domains. Sp1-Sp4 proteins regulate expression of multiple genes in normal tissues and tumours. There is growing evidence that some Sp proteins play a critical role in the growth and metastasis of many tumour types by regulating expression of cell cycle genes and vascular endothelial growth factor. Sp/KLF proteins are also potential targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Stephen Safe
- Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| | | |
Collapse
|
82
|
Tapias A, Monasterio P, Ciudad CJ, Noé V. Characterization of the 5'-flanking region of the human transcription factor Sp3 gene. ACTA ACUST UNITED AC 2005; 1730:126-36. [PMID: 16024108 DOI: 10.1016/j.bbaexp.2005.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 05/23/2005] [Accepted: 06/06/2005] [Indexed: 12/11/2022]
Abstract
A fragment of 1079 bp from the 5'-flanking region of the human Sp3 gene was isolated and characterized. The Sp3 promoter is a GC-rich region that contains putative binding sites for Elk-1, c-Myb, NF-1, Ap1, Sp1, NF-Y, Ap2 and USF. Several transcriptional start sites located between 70 and 132 bp upstream of the translational start site were identified. The proximal promoter was contained in the first 281 bp 5' of the translational start, whereas the region including up to -225 relative to the translational start was referred as the minimal promoter. Transient transfections and luciferase assays revealed activation of the Sp3 proximal promoter upon overexpression of either Sp1 or Sp3, alone or in combination. Gel-shift and supershift assays demonstrated specific binding of Sp1 and Sp3 proteins to the GC box located in the proximal promoter of Sp3. Overexpression of NF-YA had a synergistic effect on Sp1 overexpression and an additive effect on Sp3 overexpression. Additionally, overexpression of NF-YA, Sp1 and Sp3 altogether had a synergistic effect on Sp3 promoter activity. Furthermore, binding of the NF-Y complex to the CCAAT box located in the proximal promoter of Sp3 was observed in gel-shift assays.
Collapse
Affiliation(s)
- Alicia Tapias
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Avenue Diagonal 643, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
83
|
Jaiswal AS, Balusu R, Narayan S. 7,12-Dimethylbenzanthracene-dependent transcriptional regulation of adenomatous polyposis coli (APC) gene expression in normal breast epithelial cells is mediated by GC-box binding protein Sp3. Carcinogenesis 2005; 27:252-61. [PMID: 16150893 DOI: 10.1093/carcin/bgi225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present investigation, we have examined the transcriptional regulation of adenomatous polyposis coli (APC) gene expression in the spontaneously immortalized human normal breast epithelial cell line, MCF10A, in response to carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The APC mRNA levels and the APC gene's promoter (pAPCP) activity were increased in MCF10A cells after treatment with DMBA. A sequential deletion analysis and site-directed mutagenesis of the pAPCP promoter revealed that the DMBA response is mediated through a GC-box element. Also, the GC-box binding agent mithramycin A, which prevents binding of proteins to the GC-box region, abolished DMBA-mediated increase of the pAPCP promoter activity. The specificity of the proteins binding to the GC-box region was characterized by gel-shift analysis. An increased binding of the GC-box binding proteins was observed in the gel-shift analysis with nuclear extracts from DMBA-treated MCF10A cells, which corresponded to the increased levels of Sp1 and Sp3 proteins. However, a super-shift of the DNA-protein complexes was observed with only anti-Sp3 antibody. Based on the chromatin-immunoprecipitation assay results, the Sp3 appeared to be a genuine protein binding to the GC-box site of the pAPCP promoter. In RNA interference experiments, in which the Sp3 expression was knocked down, the DMBA response on the pAPCP promoter activity was reduced, suggesting that the binding of Sp3 to the GC-box site is critical for DMBA-induced pAPCP promoter activity. From these results we conclude that the increased pAPCP promoter activity in the MCF10A cell line in response to DMBA treatment is mediated by Sp3.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
84
|
Brouland JP, Gélébart P, Kovàcs T, Enouf J, Grossmann J, Papp B. The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:233-42. [PMID: 15972967 PMCID: PMC1603437 DOI: 10.1016/s0002-9440(10)62968-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium accumulation in the endoplasmic reticulum is accomplished by sarco/endoplasmic reticulum calcium transport ATPases (SERCA enzymes). To better characterize the role of SERCA3 in colon carcinogenesis, its expression has been investigated in colonic epithelium, benign lesions, adenomas, and adenocarcinomas. In addition, the regulation of SERCA3 expression was analyzed in the context of the adenomatous polyposis coli/beta-catenin/T-cell factor 4 (TCF4) pathway and of specificity protein 1 (Sp1)-like factor-dependent transcription. We report that SERCA3 expression increased along the crypts as cells differentiated in normal colonic mucosa and in hyperplastic polyps, was moderately and heterogeneously expressed in colonic adenomas with expression levels inversely correlated with the degree of dysplasia, was barely detectable in well and moderately differentiated adenocarcinomas, and was absent in poorly differentiated tumors. Inhibition of Sp1-like factor-dependent transcription blocked SERCA3 expression during cell differentiation, and SERCA3 expression was induced by the expression of dominant-negative TCF4 in colon cancer cells. These data link SERCA3 expression to the state of differentiation of colonic epithelial cells, and relate SERCA3 expression, already decreased in adenomas, to enhanced adenomatous polyposis coli/beta-catenin/TCF4-dependent signaling and deficient Sp1-like factor-dependent transcription. In conclusion, intracellular calcium homeostasis becomes progressively anomalous during colon carcinogenesis as reflected by deficient SERCA3 expression.
Collapse
|
85
|
Clem BF, Clark BJ. Association of the mSin3A-histone deacetylase 1/2 corepressor complex with the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol 2005; 20:100-13. [PMID: 16109738 DOI: 10.1210/me.2004-0495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several factors have been identified in the transcriptional repression of the steroidogenic acute regulatory protein (StAR) gene promoter; yet, no associating corepressor complexes have been characterized for the mouse promoter in MA-10 mouse Leydig tumor cells. We now report that Sp3, CAGA element binding proteins, and a corepressor complex consisting of mSin3A, histone deacetylase (HDAC)1, and HDAC2 associates with a transcriptional repressor region within the mouse StAR promoter. 5'-Promoter deletion analysis localized the negative regulatory region between -180 and -150 bp upstream of the transcription start site, and mutations in both the CAGA and Sp binding elements were required to relieve the repression of basal StAR promoter activity. Protein-DNA binding analysis revealed Sp3 and specific CAGA element-binding protein(s) associated with the repressor region. Coimmunoprecipitation analysis identified the presence of the mSin3A, HDAC1, and HDAC2 corepressor complex in MA-10 cells. Furthermore, chromatin immunoprecipitation assays revealed Sp3, mSin3A, and HDAC1/2 association with the proximal region of the StAR promoter in situ. In addition, HDAC inhibition resulted in a dose-dependent activation of a mouse StAR reporter construct, whereas mutations within the repressor region diminished this effect by 44%. In sum, these data support a novel regulatory mechanism for transcriptional repression of the mouse StAR promoter by DNA binding of Sp3 and CAGA element-binding proteins, and association of the Sin3 corepressor complex exhibiting HDAC activity.
Collapse
Affiliation(s)
- Brian F Clem
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
86
|
Wooten LG, Ogretmen B. Sp1/Sp3-dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J Biol Chem 2005; 280:28867-76. [PMID: 15951564 DOI: 10.1074/jbc.m413444200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the roles of Sp1/Sp3 transcription factors in the regulation of the activity of human telomerase reverse transcriptase (hTERT) promoter in response to ceramide were examined in the A549 human lung adenocarcinoma cells. The activity of the N-terminal truncated hTERT promoter, lacking the c-Myc recognition (E-box) region but containing multiple Sp1/Sp3 sites, was also significantly inhibited by C6-ceramide, indicating a role for ceramide in the regulation of Sp1/Sp3 function. Partial inhibition of Sp1 expression using small interfering RNA resulted in a significant inhibition of the hTERT promoter. Treatment with C6-ceramide inhibited the trans-activation function of overexpressed Sp1, whereas it induced the repressor effects of exogenous Sp3 on the hTERT promoter. The interaction between Sp1 and hTERT promoter DNA was significantly reduced in response to ceramide as assessed by chromatin immunoprecipitation analysis. In contrast, the promoter DNA-binding activity of Sp3 was slightly increased in response to C6-ceramide, resulting in the increased ratio of Sp3/Sp1 on the hTERT promoter, which was concomitant with the reduced recruitment of RNA polymerase II to the promoter. Furthermore, mutations of various Sp1/Sp3 recognition sequences significantly attenuated the activity of the promoter in the presence or absence of ceramide, demonstrating the importance of multiple Sp1/Sp3 recognition sites for the promoter activity. Mechanistically, the data demonstrated that C6-ceramide reduced the acetylation of Sp3 protein and partially blocked the activation of the hTERT promoter by the histone deacetylase inhibitor trichostatin A. The roles of endogenous long chain ceramide generated in response to gemcitabine in the inhibition of hTERT promoter activity and the regulation of Sp3 acetylation were also demonstrated.
Collapse
Affiliation(s)
- Leslie G Wooten
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
87
|
Vine AL, Leung YM, Bertram JS. Transcriptional regulation of connexin 43 expression by retinoids and carotenoids: similarities and differences. Mol Carcinog 2005; 43:75-85. [PMID: 15754312 DOI: 10.1002/mc.20080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gap junctions, connexons, are formed by assembly of trans-membrane connexin proteins and have multiple functions including the coordination of cell responses. Most human tumors are deficient in gap junctional communication (GJC) and restoration of GJC by forced expression of connexins reduces indices of neoplasia. Expression of connexin 43 (Cx43), the most widely-expressed connexin family member, is upregulated by cancer-preventive retinoids and carotenoids in normal and preneoplastic cells; an action considered of mechanistic significance. However, the molecular mechanism for upregulated expression is poorly understood. The retinoic acid receptor antagonist Ro 41-5253 was capable of suppressing retinoid-induction Cx43 luciferase reporter construct in F9 cells, but did not suppress reporter activity induced by the non-pro-vitamin A carotenoids astaxanthin or lycopene, indicating that retinoids have separate mechanisms of gene activation than non-pro-vitamin A carotenoids. Neither class of compound required protein synthesis for induction of Cx43 mRNA, nor was the 5.0 h half-life of Cx43 mRNA altered, indicating direct transcriptional activation. The responsive region was found within -158 bp and +209 bp of the transcription start site; this contains a Sp1/Sp3 GC-box to which Sp1 and Sp3 were bound, as revealed by electrophoretic mobility shift assays (EMSA), but no retinoic acid response element (RARE). Site directed mutagenesis of this GC-box resulted in increased basal levels of transcription and loss of responsiveness to a synthetic retinoid. In this construct astaxanthin and lycopene produced marginally, but not significantly higher, reporter activity than the control.
Collapse
Affiliation(s)
- Alex L Vine
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
88
|
Lou Z, Maher VM, McCormick JJ. Identification of the promoter of human transcription factor Sp3 and evidence of the role of factors Sp1 and Sp3 in the expression of Sp3 protein. Gene 2005; 351:51-9. [PMID: 15857802 DOI: 10.1016/j.gene.2005.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/18/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
In a study of the role of transcription factor Sp1 in the formation of tumors by human fibrosarcoma cell lines that overexpress it [Cancer Res., 65 (2005) 1007], we found that expression of an Sp1-specific ribozyme, not only reduced the level of Sp1 protein, but also that of Sp3 protein, and that when the protein levels of these two transcription factors in the fibrosarcoma cell lines were reduced to near that found in normal human fibroblasts, the cell lines could no longer form tumors. An Sp1-specific ribozyme could reduce the level of expression of both Sp1 protein and Sp3 protein if the promoter of the Sp1 gene and that of the Sp3 gene both have Sp1/Sp3 transcription factor binding sites and if such sites are critically responsible for the level of expression of both Sp1 and Sp3 protein in the cells. The Sp1 minimal promoter has been identified and it has two Sp1/Sp3 sites [J. Biol. Chem. 276 (2001) 22126]. To characterize the Sp3 promoter, we isolated 2.1 kb of the 5'-flanking region of the Sp3 gene, which contains Sp1/Sp3 binding sites, and using an expression reporter assay, showed that it has promoter activity. We then systematically reduced the size of the 5' flanking region, and determined that the nt-339 to nt-39 fragment, which contains an Sp1/Sp3 binding site at nt-181 and another at nt-168, retained the same promoter activity as the 2.1 kb region. Electrophoretic mobility shift assays indicated that both Sp3 protein and Sp1protein bind to these two sites. By mutating either or both of these binding sites, we showed using the reporter assay that each site is required for full promoter activity. We then designed an Sp3-specific ribozyme, expressed it in a human fibrosarcoma cell line in which Sp1 protein and Sp3 protein are expressed at high levels, and found that, indeed, the level of expression of both proteins was significantly reduced.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Cell Line, Tumor
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression/genetics
- Genetic Vectors/genetics
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Nude
- Molecular Sequence Data
- Oligonucleotides, Antisense/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/physiology
- Sp3 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription Initiation Site
- Transfection
Collapse
Affiliation(s)
- Zhenjun Lou
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics, Michigan State University, Food Safety and Toxicology Building, East Lansing, 48824-1302, USA
| | | | | |
Collapse
|
89
|
Magee C, Nurminskaya M, Faverman L, Galera P, Linsenmayer TF. SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem 2005; 280:25331-8. [PMID: 15849196 DOI: 10.1074/jbc.m412549200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have shown that two non-canonical specificity protein (SP)-binding sites within the proximal promoter (nucleotide (nt) -139 to +5) of the chicken Col10a1 gene are involved in conferring tissue-specific expression of type X collagen to hypertrophic chondrocytes. In the present study, we examined the role of SP3/SP1 transcription factors in the regulation of the Col10a1 promoter. The SP3/SP1 ratio is higher in hypertrophic versus non-hypertrophic chondrocytes, due to the significant decrease in SP1 in hypertrophic cells detected by real-time PCR and Western blot analyses. Functional analyses by transfection-mediated overexpression of SP1 and SP3 suggest that SP1 inhibits the Col10a1 promoter. This effect is negated by an interaction with SP3 in hypertrophic chondrocytes. Additionally, mutation analysis showed that the 40-bp intervening sequence (nt -115 to -75) is required for expression of the Col10a1 gene. In this sequence, a binding site for Dlx5/6 transcription factors (nt -99 to -87) retards a protein specific for hypertrophic chondrocytes in electrophoretic mobility shift assay. Endogenous levels of Dlx5 are 3-fold higher in hypertrophic versus non-hypertrophic cells by real-time PCR analysis, and overexpression of Dlx5 in non-hypertrophic chondrocytes activates the proximal Col10a1 promoter 3-fold. These results indicate that the SP3/SP1 ratio and Dlx5 are important regulators of the proximal Col10a1 promoter in hypertrophic cartilage and suggest that interactions between SP3 and SP1 regulate expression of different types of collagen during chondrocyte differentiation.
Collapse
Affiliation(s)
- Cordula Magee
- Department of Anatomy and Cellular Biology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
90
|
Young DA, Billingham O, Sampieri CL, Edwards DR, Clark IM. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-β1 induced murine tissue inhibitor of metalloproteinases-1 gene expression. FEBS J 2005; 272:1912-26. [PMID: 15819885 DOI: 10.1111/j.1742-4658.2005.04622.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.
Collapse
Affiliation(s)
- David A Young
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
91
|
Abstract
Post-translational modification is a major mechanism by which protein function is regulated in eukaryotes. Instead of single-site action, many proteins such as histones, p53, RNA polymerase II, tubulin, Cdc25C and tyrosine kinases are modified at multiple sites by modifications like phosphorylation, acetylation, methylation, ubiquitination, sumoylation and citrullination. Multisite modification on a protein constitutes a complex regulatory program that resembles a dynamic 'molecular barcode' and transduces molecular information to and from signaling pathways. This program imparts effects through 'loss-of-function' and 'gain-of-function' mechanisms. Among the latter, covalent modifications specifically recruit a diverse array of modules, including the SH2 domain, 14-3-3, WW domain, Polo box, BRCT repeat, bromodomain, chromodomain, Tudor domain and motifs binding to ubiquitin and other protein modifiers. Such recruitments are often modulated by modifications occurred at neighboring and distant sites. Multisite modification thus coordinates intermolecular and intramolecular signaling for the qualitative and quantitative control of protein function in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1.
| |
Collapse
|
92
|
Abstract
The dopamine transporter is a plasma membrane protein that controls extracellular concentrations of the neurotransmitter dopamine. The physiological importance of the DAT provides the impetus for studies aimed at understanding the molecular mechanisms underlying regulation of the DAT gene. In this study, we identified a DAT-expressing neuroblastoma cell line (SK-N-AS) and employed it to investigate the transcriptional regulation of the human DAT gene. Two GC boxes (located at -130 and -60, respectively, relative to the transcriptional start site) were identified as important cis-acting elements mediating DAT promoter activity in dopaminergic SK-N-AS cells. Utilizing Sp-deficient Drosophila Schneider line (SL-2) cells, we showed that both Sp1 and Sp3 are strong activators of DAT transcriptional activity. Differential binding of Sp1 and Sp3 to the two GC boxes was demonstrated by electrophoretic mobility shift assays and super-shift assays. Our results indicate that the Sp1 family of proteins plays an important role in controlling the expression of the dopamine transporter gene within dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
93
|
Heegaard AM, Xie Z, Young MF, Nielsen KL. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors. J Cell Biochem 2005; 93:463-75. [PMID: 15372625 DOI: 10.1002/jcb.20189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biglycan is a small leucine-rich proteoglycan which is localized in the extracellular matrix of bone and other specialized connective tissues. Both biglycan mRNA and protein are up-regulated by transforming growth factor-beta(1) (TGF-beta(1)) and biglycan appears to influence TGF-beta(1) activity. In this study, we have investigated the mechanism by which TGF-beta(1), TGF-beta(2) and TGF-beta(3) stimulate biglycan mRNA expression in the osteoblastic cell line MG-63. The cells were transfected with a series of deletional human biglycan promoter constructs and a region in the biglycan 5' DNA was found to respond to TGF-beta(1) with increased transcriptional activity in a dose-dependent manner. Also TGF-beta(2) and TGF-beta(3), two structurally highly related TGF-beta isoforms stimulated biglycan transcription. A TGF-beta responsive region was identified within the first 218 bp of the human biglycan promoter upstream from the transcriptional start site, which contained several binding sites for the transcription factor Sp1. Electrophoretic mobility shift assays with nuclear extracts from MG-63 cells showed binding of both Sp1 and Sp3 to a site at -216 to -208. When the biglycan promoter construct was co-transfected with Sp1 and Sp3 expression vectors in Sp1-deficient Drosophila Schneider-2 cells, Sp1 induced the transcriptional activity of biglycan. Addition of Sp3 augmented the effect of Sp1 on biglycan gene expression. Induction of biglycan mRNA expression in response to TGF-beta in MG-63 cells was abrogated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. A mutation in the Sp1 site at -216 to -208 within the -218 biglycan promoter construct substantially diminished the transcriptional up-regulation by TGF-beta(1). Taken together this data shows for the first time that TGF-beta(1) stimulation of human biglycan mRNA expression relies on increased transcription of the biglycan gene, and is mediated by members of the Sp1 family of transcription factors.
Collapse
|
94
|
Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-Regulation of Overexpressed Sp1 Protein in Human Fibrosarcoma Cell Lines Inhibits Tumor Formation. Cancer Res 2005. [DOI: 10.1158/0008-5472.1007.65.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Sp1 is a transcription factor for many genes, including genes involved in tumorigenesis. We found that human fibroblast cells malignantly transformed in culture by a carcinogen or by stable transfection of an oncogene express Sp1 at 8-fold to 18-fold higher levels than their parental cells. These cell lines form fibrosarcomas in athymic mice with a very short latency, and the cells from the tumors express the same high levels of Sp1. Similar high levels of Sp1 were found in the patient-derived fibrosarcoma cell lines tested, and in the tumors formed in athymic mice by these cell lines. To investigate the role of overexpression of Sp1 in malignant transformation of human fibroblasts, we transfected an Sp1 U1snRNA/Ribozyme into two human cell lines, malignantly transformed in culture by a carcinogen or overexpression of an oncogene, and into a patient-derived fibrosarcoma cell line. The level of expression of Sp1 in these transfected cell lines was reduced to near normal. The cells regained the spindle-shaped morphology and exhibited increased apoptosis and decreased expression of several genes linked to cancer, i.e., epithelial growth factor receptor, urokinase plasminogen activator, urokinase plasminogen activator receptor, and vascular endothelial growth factor. When injected into athymic mice, these cell lines with near normal levels of Sp1 failed to form tumors or did so only at a greatly reduced frequency and with a much longer latency. These data indicate that overexpression of Sp1 plays a causal role in malignant transformation of human fibroblasts and suggest that for cancers in which it is overexpressed, Sp1 constitutes a target for therapy.
Collapse
Affiliation(s)
- Zhenjun Lou
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sandra O'Reilly
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Hongyan Liang
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Veronica M. Maher
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Stuart D. Sleight
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - J. Justin McCormick
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
95
|
Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone EM, Ferrara F, Bresciani F, Weisz A, de Lera AR, Gronemeyer H, Altucci L. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11:77-84. [PMID: 15619633 DOI: 10.1038/nm1161] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 10/19/2004] [Indexed: 01/21/2023]
Abstract
Chromatin is a dynamic macromolecular structure epigenetically modified to regulate specific gene expression. Altered chromatin function can lead to aberrant expression of growth regulators and may, ultimately, cause cancer. That many human diseases have epigenetic etiology has stimulated the development of 'epigenetic' therapies. Inhibitors of histone deacetylases (HDACIs) induce proliferation arrest, maturation and apoptosis of cancer cells, but not normal cells, in vitro and in vivo, and are currently being tested in clinical trials. We investigated the mechanism(s) underlying this tumor selectivity. We report that HDACIs induce, in addition to p21, expression of TRAIL (Apo2L, TNFSF10) by directly activating the TNFSF10 promoter, thereby triggering tumor-selective death signaling in acute myeloid leukemia (AML) cells and the blasts of individuals with AML. RNA interference revealed that the induction of p21, TRAIL and differentiation are separable activities of HDACIs. HDACIs induced proliferation arrest, TRAIL-mediated apoptosis and suppression of AML blast clonogenicity irrespective of French-American-British (FAB) classification status, karyotype and immunophenotype. No apoptosis was seen in normal CD34(+) progenitor cells. Our results identify TRAIL as a mediator of the anticancer action of HDACIs.
Collapse
Affiliation(s)
- Angela Nebbioso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45:495-528. [PMID: 15822187 DOI: 10.1146/annurev.pharmtox.45.120403.095825] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetylation is a key posttranslational modification of many proteins responsible for regulating critical intracellular pathways. Although histones are the most thoroughly studied of acetylated protein substrates, histone acetyltransferases (HATs) and deacetylases (HDACs) are also responsible for modifying the activity of diverse types of nonhistone proteins, including transcription factors and signal transduction mediators. HDACs have emerged as uncredentialed molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with in vivo bioavailability and intracellular capability to inhibit many of the known mammalian members representing the two general types of NAD+-independent yeast HDACs, Rpd3 (HDACs 1, 2, 3, 8) and Hda1 (HDACs 4, 5, 6, 7, 9a, 9b, 10). Initial clinical trials indicate that HDAC inhibitors from several different structural classes are very well tolerated and exhibit clinical activity against a variety of human malignancies; however, the molecular basis for their anticancer selectivity remains largely unknown. HDAC inhibitors have also shown preclinical promise when combined with other therapeutic agents, and innovative drug delivery strategies, including liposome encapsulation, may further enhance their clinical development and anticancer potential. An improved understanding of the mechanistic role of specific HDACs in human tumorigenesis, as well as the identification of more specific HDAC inhibitors, will likely accelerate the clinical development and broaden the future scope and utility of HDAC inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Daryl C Drummond
- Hermes Biosciences, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal-dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through "loss-of-function" and "gain-of-function" mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP are able to recognize acetyllysine residues in histones, HIV Tat, p53, c-Myb or MyoD. In addition to the acetyllysine moiety, the flanking sequences also contribute to efficient recognition. The relationship between acetyllysine and bromodomains is reminiscent of the specific recognition of phosphorylated residues by phospho-specific binding modules such as SH2 domains and 14-3-3 proteins. Therefore, lysine acetylation forges a novel signaling partnership with bromodomains to govern the temporal and spatial regulation of protein functions in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, Department of Medicine, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
98
|
Moore PS, Barbi S, Donadelli M, Costanzo C, Bassi C, Palmieri M, Scarpa A. Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:167-76. [PMID: 15363630 DOI: 10.1016/j.bbamcr.2004.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/24/2004] [Accepted: 07/12/2004] [Indexed: 12/17/2022]
Abstract
The histone deacetylase inhibitor trichostatin A (TSA) has been previously shown to block cellular growth in G2 and induce apoptosis in human pancreatic cancer cell lines. In order to better understand this phenomenon, we have analyzed the gene expression profiles in PaCa44 cells after treatment with TSA using microarrays containing 22,283 probesets. TSA was found to cause both the induction and repression of a large number of genes, although the number whose expression was up-regulated was greater than the number of genes that were down-regulated. When a threshold value of 3 was used as a cutoff level, a total of 306 (3.4%) of the detectable genes had altered expression. When categorized according to cellular function, the differentially expressed genes were found to be involved in a wide variety of cellular processes, including cell proliferation, signaling, regulation of transcription, and apoptosis. Moreover, Sp1/Sp3 transcription factor binding sites were significantly more abundant among TSA-induced genes. One prominent feature was the increased ratio between the levels of expression of pro-apoptotic (BIM) and anti-apoptotic (Bcl-XL and Bcl-W) genes. This result was confirmed in eight additional pancreatic cancer cell lines after treatment with TSA, suggesting that this event may be a strong determinant for the induction of apoptosis by TSA.
Collapse
Affiliation(s)
- Patrick S Moore
- Dipartimento di Patologia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
99
|
Zelko IN, Folz RJ. Sp1 and Sp3 transcription factors mediate trichostatin A-induced and basal expression of extracellular superoxide dismutase. Free Radic Biol Med 2004; 37:1256-71. [PMID: 15451065 DOI: 10.1016/j.freeradbiomed.2004.06.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/16/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is the major extracellular antioxidant enzyme and may play a critical role in the pathogenesis of a variety of pulmonary, neurological, and cardiovascular diseases. We report here that exposure to the deacetylase inhibitor trichostatin A (TSA) induces EC-SOD mRNA levels in mIMCD3 and Hepa 1-6 cells, but reduces EC-SOD mRNA levels in MLg cells. To determine the molecular mechanism of TSA-mediated EC-SOD gene regulation, we analyzed EC-SOD's proximal promoter region, which revealed two previously unknown but putative Sp1 cis elements. Transfection of systematically truncated 5'-flanking sequences revealed that the second Sp1 binding site contributes up to 70% of the constitutive EC-SOD promoter activity. Binding of Sp1 and Sp3 transcription factors to this region was confirmed by DNase I footprinting, electrophoretic mobility shift assay, super-shift assay, and chromatin immunoprecipitation. A dominant-negative Sp1 construct considerably reduced EC-SOD promoter activity in mammalian cells, whereas coexpression of Sp1 and Sp3 greatly enhanced reporter activity in SL2 cells. An EC-SOD promoter-reporter construct showed from 5- to 14-fold induction after exposure to TSA, whereas deletion of the Sp1 binding site significantly reduced reporter activation. These results are consistent with Sp1/Sp3 transcription factors providing essential TSA-dependent and basal transcription of the EC-SOD gene and may represent a novel pharmacological pathway for regulating EC-SOD levels in tissue.
Collapse
Affiliation(s)
- Igor N Zelko
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
100
|
Marecki JC, Cota-Gomez A, Vaitaitis GM, Honda JR, Porntadavity S, St Clair DK, Flores SC. HIV-1 Tat regulates the SOD2 basal promoter by altering Sp1/Sp3 binding activity. Free Radic Biol Med 2004; 37:869-80. [PMID: 15706661 DOI: 10.1016/j.freeradbiomed.2004.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of the basal manganese superoxide dismutase (SOD2) promoter depends on the transcriptional activity of the Sp family of transcription factors. Here we report that reduced expression in the presence of Tat is independent of induction with Tumor necrosis factor alpha and that Tat affects the interaction of Sp1 and Sp3 with the basal promoter. Footprinting and electrophoretic mobility shift assay (EMSA) analyses with extracts from HeLa cells showed that Sp1/Sp3 complexes populate the proximal SOD2 promoter, and that Tat leads to an increase in the binding activity of Sp3. In Drosophila S2 cells, both Sp1 and Sp3 activated the basal SOD2 promoter (88.1 +/- 39.4 fold vs. 10.3 +/- 3.5 fold, respectively), demonstrating a positive, yet lower transcriptional regulatory function for Sp3. Additionally, the inability of Sp3 to synergistically affect promoter activity indicates an efficient competition of Sp3 with Sp1 for the multiple Sp binding sites in the SOD2 basal promoter. Tat potentiated both Sp1 and Sp3 activation of the promoter in S2 cells, though the activity of Sp3 was still lower than that of Sp1. Thus, the consequence of a shift by Tat to increased Sp3-containing complexes on the basal SOD2 promoter is decreased SOD2 expression. Together, our studies demonstrate the functional importance of the interaction of Sp1, Sp3, and Tat, revealing a possible mechanism for the attenuation of basal manganese superoxide dismutase expression.
Collapse
Affiliation(s)
- John C Marecki
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|