51
|
Zhao Z, Zhang X, Zhao C, Choi J, Shi J, Song K, Turk J, Ma ZA. Protection of pancreatic beta-cells by group VIA phospholipase A(2)-mediated repair of mitochondrial membrane peroxidation. Endocrinology 2010; 151:3038-48. [PMID: 20463052 PMCID: PMC2903934 DOI: 10.1210/en.2010-0016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitochondrial production of reactive oxygen species and oxidation of cardiolipin are key events in initiating apoptosis. We reported that group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) localizes in and protects beta-cell mitochondria from oxidative damage during staurosporine-induced apoptosis. Here, we used iPLA(2)beta-null (iPLA(2)beta(-/-)) mice to investigate the role of iPLA(2)beta in the repair of mitochondrial membranes. We show that islets isolated from iPLA(2)beta(-/-) mice are more sensitive to staurosporine-induced apoptosis than those from wild-type littermates and that 2 wk of daily ip administration of staurosporine to iPLA(2)beta(-/-) mice impairs both the animals' glucose tolerance and glucose-stimulated insulin secretion by their pancreatic islets. Moreover, the iPLA(2)beta inhibitor bromoenol lactone caused mitochondrial membrane peroxidation and cytochrome c release, and these effects were reversed by N-acetyl cysteine. The mitochondrial antioxidant N-t-butyl hydroxylamine blocked staurosporine-induced cytochrome c release and caspase-3 activation in iPLA(2)beta(-/-) islets. Furthermore, the collapse of mitochondrial membrane potential in INS-1 insulinoma cells caused by high glucose and fatty acid levels was attenuated by overexpressing iPLA(2)beta. Interestingly, iPLA(2)beta was expressed only at low levels in islet beta-cells from obesity- and diabetes-prone db/db mice. These findings support the hypothesis that iPLA(2)beta is important in repairing oxidized mitochondrial membrane components (e.g. cardiolipin) and that this prevents cytochrome c release in response to stimuli that otherwise induce apoptosis. The low iPLA(2)beta expression level in db/db mouse beta-cells may render them vulnerable to injury by reactive oxygen species.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Adult Development, One Gustave L. Levy Place, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Song H, Wohltmann M, Bao S, Ladenson JH, Semenkovich CF, Turk J. Mice deficient in group VIB phospholipase A2 (iPLA2gamma) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet. Am J Physiol Endocrinol Metab 2010; 298:E1097-114. [PMID: 20179248 PMCID: PMC2886524 DOI: 10.1152/ajpendo.00780.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phospholipases A(2) (PLA(2)) play important roles in metabolic processes, and the Group VI PLA(2) family is comprised of intracellular enzymes that do not require Ca(2+) for catalysis. Mice deficient in Group VIA PLA(2) (iPLA(2)beta) develop more severe glucose intolerance than wild-type (WT) mice in response to dietary stress. Group VIB PLA(2) (iPLA(2)gamma) is a related enzyme distributed in membranous organelles, including mitochondria, and iPLA(2)gamma knockout (KO) mice exhibit altered mitochondrial morphology and function. We have compared metabolic responses of iPLA(2)gamma-KO and WT mice fed a Western diet (WD) with a high fat content. We find that KO mice are resistant to WD-induced increases in body weight and adiposity and in blood levels of cholesterol, glucose, and insulin, even though WT and KO mice exhibit similar food consumption and dietary fat digestion and absorption. KO mice are also relatively resistant to WD-induced insulin resistance, glucose intolerance, and altered patterns of fat vs. carbohydrate fuel utilization. KO skeletal muscle exhibits impaired mitochondrial beta-oxidation of fatty acids, as reflected by accumulation of larger amounts of long-chain acylcarnitine (LCAC) species in KO muscle and liver compared with WT in response to WD feeding. This is associated with increased urinary excretion of LCAC and much reduced deposition of triacylglycerols in liver by WD-fed KO compared with WT mice. The iPLA(2)gamma-deficient genotype thus results in a phenotype characterized by impaired mitochondrial oxidation of fatty acids and relative resistance to the metabolic abnormalities induced by WD.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Facility, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
53
|
Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)beta. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:547-58. [PMID: 20132906 PMCID: PMC2848069 DOI: 10.1016/j.bbalip.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Over the past decade, important roles for the 84-88kDa Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) in various organs have been described. We demonstrated that iPLA(2)beta participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA(2)beta, and certain stimuli promote perinuclear localization of iPLA(2)beta. To gain a better understanding of its mobilization, iPLA(2)beta was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA(2)beta by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA(2)beta activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA(2)beta activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA(2)beta isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA(2)beta in beta-cells and we find here that these stimuli promote differential localization of iPLA(2)beta in subcellular organelles. Further, mass spectrometric analyses identified iPLA(2)beta variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA(2)beta and redistribution of iPLA(2)beta variants in subcellular compartments. It might be proposed that in vivo processing of iPLA(2)beta facilitates its participation in multiple biological processes.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Shunzhong Bao
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Xiaoyong Lei
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Chun Jin
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sheng Zhang
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - John Turk
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| |
Collapse
|
54
|
Dietrich HH, Abendschein DR, Moon SH, Nayeb-Hashemi N, Mancuso DJ, Jenkins CM, Kaltenbronn KM, Blumer KJ, Turk J, Gross RW. Genetic ablation of calcium-independent phospholipase A(2)beta causes hypercontractility and markedly attenuates endothelium-dependent relaxation to acetylcholine. Am J Physiol Heart Circ Physiol 2010; 298:H2208-20. [PMID: 20382858 DOI: 10.1152/ajpheart.00839.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of phospholipases leads to the release of arachidonic acid and lysophospholipids that play prominent roles in regulating vasomotor tone. To identify the role of calcium-independent phospholipase A(2)beta (iPLA(2)beta) in vasomotor function, we measured vascular responses to phenylephrine (PE) and ACh in mesenteric arterioles from wild-type (WT; iPLA(2)beta(+/+)) mice and those lacking the beta-isoform (iPLA(2)beta(-/-)) both ex vivo and in vivo. Vessels isolated from iPLA(2)beta(-/-) mice demonstrated increased constriction to PE, despite lower basal smooth muscle calcium levels, and decreased vasodilation to ACh compared with iPLA(2)beta(+/+) mice. PE constriction resulted in initial intracellular calcium release with subsequent steady-state constriction that depended on extracellular calcium influx. Endothelial denudation had no effect on vessel tone or PE-induced constriction although the dilation to ACh was significantly reduced in iPLA(2)beta(+/+) vessels. In contrast, vessels from iPLA(2)beta(-/-) constricted by 54% after denudation, indicating smooth muscle hypercontractility. In vivo, blood pressure, resting vessel diameter, and constriction of mesenteric vessels to PE were not different in iPLA(2)beta(-/-) vessels compared with WT mouse vessels. However, relaxation after ACh administration in situ was attenuated, indicating an endothelial inability to induce dilation in response to ACh. In cultured endothelial cells, inhibition of iPLA(2)beta with (S)-(E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (BEL) decreased endothelial nitric oxide synthase phosphorylation and reduced endothelial agonist-induced intracellular calcium release as well as extracellular calcium influx. We conclude that iPLA(2)beta is an important mediator of vascular relaxation and intracellular calcium homeostasis in both smooth muscle and endothelial cells and that ablation of iPLA(2)beta causes agonist-induced smooth muscle hypercontractility and reduced agonist-induced endothelial dilation.
Collapse
Affiliation(s)
- Hans H Dietrich
- Washington Univ. School of Medicine, Dept. of Neurosurgery, 660 South Euclid Ave., Campus Box 8057, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
56
|
McIntosh CHS, Widenmaier S, Kim SJ. Pleiotropic actions of the incretin hormones. VITAMINS AND HORMONES 2010; 84:21-79. [PMID: 21094896 DOI: 10.1016/b978-0-12-381517-0.00002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The insulin secretory response to a meal results largely from glucose stimulation of the pancreatic islets and both direct and indirect (autonomic) glucose-dependent stimulation by incretin hormones released from the gastrointestinal tract. Two incretins, Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have so far been identified. Localization of the cognate G protein-coupled receptors for GIP and GLP-1 revealed that they are present in numerous tissues in addition to the endocrine pancreas, including the gastrointestinal, cardiovascular, central nervous and autonomic nervous systems (ANSs), adipose tissue, and bone. At these sites, the incretin hormones exert a range of pleiotropic effects, many of which contribute to the integration of processes involved in the regulation of food intake, and nutrient and mineral processing and storage. From detailed studies at the cellular and molecular level, it is also evident that both incretin hormones act via multiple signal transduction pathways that regulate both acute and long-term cell function. Here, we provide an overview of current knowledge relating to the physiological roles of GIP and GLP-1, with specific emphasis on their modes of action on islet hormone secretion, β-cell proliferation and survival, central and autonomic neuronal function, gastrointestinal motility, and glucose and lipid metabolism. However, it is emphasized that despite intensive research on the various body systems, in many cases there is uncertainty as to the pathways by which the incretins mediate their pleiotropic effects and only a rudimentary understanding of the underlying cellular mechanisms involved, and these are challenges for the future.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- Department of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
57
|
Wada H, Yasuda T, Miura I, Watabe K, Sawa C, Kamijuku H, Kojo S, Taniguchi M, Nishino I, Wakana S, Yoshida H, Seino KI. Establishment of an improved mouse model for infantile neuroaxonal dystrophy that shows early disease onset and bears a point mutation in Pla2g6. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2257-63. [PMID: 19893029 DOI: 10.2353/ajpath.2009.090343] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium-independent group VIA phospholipase A(2) (iPLA(2)beta), encoded by PLA2G6, has been shown to be involved in various physiological and pathological processes, including immunity, cell death, and cell membrane homeostasis. Mutations in the PLA2G6 gene have been recently identified in patients with infantile neuroaxonal dystrophy (INAD). Subsequently, it was reported that similar neurological impairment occurs in gene-targeted mice with a null mutation of iPLA(2)beta, whose disease onset became apparent approximately 1 to 2 years after birth. Here, we report the establishment of an improved mouse model for INAD that bears a point mutation in the ankyrin repeat domain of Pla2g6 generated by N-ethyl-N-nitrosourea mutagenesis. These mutant mice developed severe motor dysfunction, including abnormal gait and poor performance in the hanging grip test, as early as 7 to 8 weeks of age, in a manner following Mendelian law. Neuropathological examination revealed widespread formation of spheroids containing tubulovesicular membranes similar to human INAD. Molecular and biochemical analysis revealed that the mutant mice expressed Pla2g6 mRNA and protein, but the mutated Pla2g6 protein had no glycerophospholipid-catalyzing enzyme activity. Because of the significantly early onset of the disease, this mouse mutant (Pla2g6-inad) could be highly useful for further studies of pathogenesis and experimental interventions in INAD and neurodegeneration.
Collapse
Affiliation(s)
- Haruka Wada
- Division of Bioregulation Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki-City, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 2009; 58:2607-15. [PMID: 19720802 PMCID: PMC2768167 DOI: 10.2337/db09-0362] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The G-protein-coupled receptor GPR40 mediates fatty acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. RESEARCH DESIGN AND METHODS Insulin secretion and sensitivity were assessed in GPR40 knockout mice and their wild-type littermates by hyperglycemic clamps and hyperinsulinemic euglycemic clamps, respectively. Transcriptomic analysis, metabolic studies, and lipid profiling were used to ascertain whether GPR40 modulates intracellular fuel metabolism in islets. RESULTS Both glucose- and arginine-stimulated insulin secretion in vivo were decreased by approximately 60% in GPR40 knockout fasted and fed mice, without changes in insulin sensitivity. Neither gene expression profiles nor intracellular metabolism of glucose and palmitate in isolated islets were affected by GPR40 deletion. Lipid profiling of isolated islets revealed that the increase in triglyceride and decrease in lyso-phosphatidylethanolamine species in response to palmitate in vitro was similar in wild-type and knockout islets. In contrast, the increase in intracellular inositol phosphate levels observed in wild-type islets in response to fatty acids in vitro was absent in knockout islets. CONCLUSIONS These results indicate that deletion of GPR40 impairs insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism in islets, via a mechanism that may involve the generation of inositol phosphates downstream of GPR40 activation.
Collapse
Affiliation(s)
- Thierry Alquier
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Marie-Line Peyot
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
| | - Martin G. Latour
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
| | - Melkam Kebede
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Christina M. Sorensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Stephane Gesta
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Thomas L. Jetton
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont College of Medicine, Burlington, Vermont
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Marc Prentki
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
- Department of Nutrition, University of Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montréal Diabetes Research Center, Research Centre of the Montréal University Hospital, University of Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
- Corresponding author: Vincent Poitout,
| |
Collapse
|
59
|
Hsu YH, Burke JE, Li S, Woods VL, Dennis EA. Localizing the membrane binding region of Group VIA Ca2+-independent phospholipase A2 using peptide amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem 2009; 284:23652-61. [PMID: 19556238 DOI: 10.1074/jbc.m109.021857] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Group VIA-2 Ca(2+)-independent phospholipase A(2) (GVIA-2 iPLA(2)) is composed of seven consecutive N-terminal ankyrin repeats, a linker region, and a C-terminal phospholipase catalytic domain. No structural information exists for this enzyme, and no information is known about the membrane binding surface. We carried out deuterium exchange experiments with the GVIA-2 iPLA(2) in the presence of both phospholipid substrate and the covalent inhibitor methyl arachidonoyl fluorophosphonate and located regions in the protein that change upon lipid binding. No changes were seen in the presence of only methyl arachidonoyl fluorophosphonate. The region with the greatest change upon lipid binding was region 708-730, which showed a >70% decrease in deuteration levels at numerous time points. No decreases in exchange due to phospholipid binding were seen in the ankyrin repeat domain of the protein. To locate regions with changes in exchange on the enzyme, we constructed a computational homology model based on homologous structures. This model was validated by comparing the deuterium exchange results with the predicted structure. Our model combined with the deuterium exchange results in the presence of lipid substrate have allowed us to propose the first structural model of GVIA-2 iPLA(2) as well as the interfacial lipid binding region.
Collapse
Affiliation(s)
- Yuan-Hao Hsu
- Department of Chemistry, University of California, San Diego, La Jolla, California 92093-0601, USA
| | | | | | | | | |
Collapse
|
60
|
Bougnères P, Valleron AJ. Causes of early-onset type 1 diabetes: toward data-driven environmental approaches. ACTA ACUST UNITED AC 2009; 205:2953-7. [PMID: 19075294 PMCID: PMC2605242 DOI: 10.1084/jem.20082622] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new study reveals distinctive metabolic changes that precede the development of type 1 diabetes (T1D), tossing a stone into the quiet waters of T1D immunology and genetics. The causes of these metabolic changes and their relationship to autoimmunity and beta cell destruction are not yet known, but the identification of a metabolic phenotype linked to susceptibility to type I diabetes may help pave the way to a new era of investigation of T1D causality.
Collapse
Affiliation(s)
- Pierre Bougnères
- Department of Pediatric Endocrinology and U561 INSERM, Saint Vincent de Paul Hospital, Paris V René Descartes University, Paris, France.
| | | |
Collapse
|
61
|
Chapter 15 Glucose‐Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). VITAMINS AND HORMONES 2009; 80:409-71. [DOI: 10.1016/s0083-6729(08)00615-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
62
|
Burke JE, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 2008; 50 Suppl:S237-42. [PMID: 19011112 DOI: 10.1194/jlr.r800033-jlr200] [Citation(s) in RCA: 632] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in understanding the structure and function of the superfamily of phospholipase A2 (PLA2) enzymes has occurred in the twenty-first century. The superfamily includes 15 groups comprising four main types including the secreted sPLA2, cytosolic cPLA2, calcium-independent iPLA2, and platelet activating factor (PAF) acetyl hydrolase/oxidized lipid lipoprotein associated (Lp)PLA2. We review herein our current understanding of the structure and interaction with substrate phospholipids, which resides in membranes for a representative of each of these main types of PLA2. We will also briefly review the development of inhibitors of these enzymes and their roles in lipid signaling.
Collapse
Affiliation(s)
- John E Burke
- Department of Chemistry, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
63
|
Carper MJ, Zhang S, Turk J, Ramanadham S. Skeletal muscle group VIA phospholipase A2 (iPLA2beta): expression and role in fatty acid oxidation. Biochemistry 2008; 47:12241-9. [PMID: 18937505 DOI: 10.1021/bi800923s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the phospholipases A 2 (PLA 2s) are the group VI Ca (2+)-independent PLA 2s (iPLA 2s), and expression of multiple transcripts of iPLA 2 in skeletal muscle has been reported. In the present study, phospholipase activity and sequential ATP and calmodulin affinity column chromatography analyses reveal that skeletal muscle iPLA 2 exhibits properties characteristic of the iPLA 2beta isoform. The phospholipase activity of iPLA 2beta has been demonstrated to participate in signal transduction, cell proliferation, and apoptosis. We report here that skeletal muscle from iPLA 2beta-null mice, relative to wild-type muscle, exhibits a reduced capacity to oxidize palmitate but not palmitoyl-CoA or acetyl-CoA in the absence of changes in fatty acid transporters CD36 and CPT1 or beta-hydroxyacyl-CoA dehydrogenase activity. Recently, purified iPLA 2beta was demonstrated to manifest a thioesterase activity which catalyzes hydrolysis of fatty acyl-CoAs. The liberated CoA-SH facilitates fatty acid transport into the mitochondria. In this regard, we find that fractions eluted from the ATP column and containing iPLA 2beta phospholipase activity also contained acyl-CoA thioesterase activity that was inhibited by the bromoenol lactone (BEL) suicide inhibitor of iPLA 2beta. We further find that acyl-CoA thioesterase activity in skeletal muscle preparations from iPLA 2beta-null mice is significantly reduced, relative to WT activity. These findings suggest that the absence of acyl-CoA thioesterase activity of iPLA 2beta can lead to reduced fatty acyl-CoA generation and impair fatty acid oxidation in iPLA 2beta-null mice. Our findings therefore reveal a novel function of iPLA 2beta, related not to its phospholipase activity but to its thioesterase activity, which contributes to optimal fatty acid oxidation in skeletal muscle.
Collapse
Affiliation(s)
- Michael J Carper
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
64
|
Moon SH, Jenkins CM, Mancuso DJ, Turk J, Gross RW. Smooth muscle cell arachidonic acid release, migration, and proliferation are markedly attenuated in mice null for calcium-independent phospholipase A2beta. J Biol Chem 2008; 283:33975-87. [PMID: 18927078 DOI: 10.1074/jbc.m805817200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pharmacologic evidence suggests that the lipid products generated by one or more calcium-independent phospholipases A(2) (iPLA(2)s) participate in the regulation of vascular tone through smooth muscle cell (SMC) Ca(2+) signaling and the release of arachidonic acid. However, the recent identification of new members of the iPLA(2) family, each inhibitable by (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one, has rendered definitive identification of the specific enzyme(s) mediating these processes difficult. Accordingly, we used iPLA(2)beta(-/-) mice to demonstrate that iPLA(2)beta is responsible for the majority of thapsigargin and ionophore (A23187)-induced arachidonic acid release from SMCs. Both thapsigargin and A23187 stimulated robust [(3)H]arachidonate (AA) release from wild-type aortic SMCs that was dramatically attenuated in iPLA(2)beta(-/-) mice (>80% reduction at 5 min; p < 0.01). Moreover, iPLA(2)beta(-/-) mice displayed defects in SMC Ca(2+) homeostasis and decreased SMC migration and proliferation in a model of vascular injury. Ca(2+)-store depletion resulted in the rapid entry of external Ca(2+) into wild-type aortic SMCs that was significantly slower in iPLA(2)beta-null cells (p < 0.01). Furthermore, SMCs from iPLA(2)beta-null mesenteric arterial explants demonstrated decreased proliferation and migration. The defects in migration and proliferation in iPLA(2)beta-null SMCs were restored by 2 mum AA. Remarkably, the cyclooxygenase-2-specific inhibitor, NS-398, prevented AA-induced rescue of SMC migration and proliferation in iPLA(2)beta(-/-) mice. Moreover, PGE(2) alone rescued proliferation and migration in iPLA(2)beta(-/-) mice. We conclude that iPLA(2)beta is an important mediator of AA release and prostaglandin E(2) production in SMCs, modulating vascular tone, cellular signaling, proliferation, and migration.
Collapse
Affiliation(s)
- Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Endocrinology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
65
|
Ramanadham S, Yarasheski KE, Silva MJ, Wohltmann M, Novack DV, Christiansen B, Tu X, Zhang S, Lei X, Turk J. Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2beta)-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:868-81. [PMID: 18349124 DOI: 10.2353/ajpath.2008.070756] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-gamma and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA(2)beta-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA(2)beta causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA(2)beta in bone formation.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Washington University School of Medicine, Department of Internal Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J. Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2beta in pancreatic beta-cells and in iPLA2beta-null mice. Am J Physiol Endocrinol Metab 2008; 294:E217-29. [PMID: 17895289 PMCID: PMC2268609 DOI: 10.1152/ajpendo.00474.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Blood Glucose/metabolism
- Blood Glucose/physiology
- Blotting, Western
- Calcium/physiology
- Cell Line, Tumor
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Fasting/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Genotype
- Glucose Tolerance Test
- Group IV Phospholipases A2/biosynthesis
- Group IV Phospholipases A2/genetics
- Homeodomain Proteins/genetics
- Homeostasis/physiology
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/metabolism
- Insulinoma/metabolism
- Islets of Langerhans/metabolism
- Kv1.2 Potassium Channel/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Pancreatic Neoplasms/metabolism
- Patch-Clamp Techniques
- Phospholipids/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Shunzhong Bao
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Poitout V. Phospholipid hydrolysis and insulin secretion: a step toward solving the Rubik's cube. Am J Physiol Endocrinol Metab 2008; 294:E214-6. [PMID: 17925452 PMCID: PMC3167821 DOI: 10.1152/ajpendo.00638.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CR-CHUM, Technopole Angus, 2901 Rachel Est, Montreal, Quebec, Canada.
| |
Collapse
|
68
|
Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, Schmidt RE, Gross RW, Kotzbauer PT. Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:406-16. [PMID: 18202189 DOI: 10.2353/ajpath.2008.070823] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the PLA2G6 gene, which encodes group VIA calcium-independent phospholipase A2 (iPLA(2)beta), were recently identified in patients with infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation. A pathological hallmark of these childhood neurodegenerative diseases is the presence of distinctive spheroids in distal axons that contain accumulated membranes. We used iPLA(2)beta-KO mice generated by homologous recombination to investigate neurodegenerative consequences of PLA2G6 mutations. iPLA(2)beta-KO mice developed age-dependent neurological impairment that was evident in rotarod, balance, and climbing tests by 13 months of age. The primary abnormality underlying this neurological impairment was the formation of spheroids containing tubulovesicular membranes remarkably similar to human INAD. Spheroids were strongly labeled with anti-ubiquitin antibodies. Accumulation of ubiquitinated protein in spheroids was evident in some brain regions as early as 4 months of age, and the onset of motor impairment correlated with a dramatic increase in ubiquitin-positive spheroids throughout the neuropil in nearly all brain regions. Furthermore accumulating ubiquitinated proteins were observed primarily in insoluble fractions of brain tissue, implicating protein aggregation in this pathogenic process. These results indicate that loss of iPLA(2)beta causes age-dependent impairment of axonal membrane homeostasis and protein degradation pathways, leading to age-dependent neurological impairment. iPLA(2)beta-KO mice will be useful for further studies of pathogenesis and experimental interventions in INAD and neurodegeneration with brain iron accumulation.
Collapse
Affiliation(s)
- Ibrahim Malik
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Nikolic DM, Gong MC, Turk J, Post SR. Class A scavenger receptor-mediated macrophage adhesion requires coupling of calcium-independent phospholipase A(2) and 12/15-lipoxygenase to Rac and Cdc42 activation. J Biol Chem 2007; 282:33405-33411. [PMID: 17873277 PMCID: PMC2080787 DOI: 10.1074/jbc.m704133200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including adhesion to modified extracellular matrix proteins present in various inflammatory disorders such as atherosclerosis and diabetes. By mediating macrophage adhesion to modified proteins and increasing macrophage retention, SR-A may contribute to the inflammatory process. Eicosanoids produced after phospholipase A(2) (PLA(2))-catalyzed release of arachidonic acid (AA) are important regulators of macrophage function and inflammatory responses. The potential roles of AA release and metabolism in SR-A-mediated macrophage adhesion were determined using macrophages adherent to modified protein. SR-A-dependent macrophage adhesion was abolished by selectively inhibiting calcium-independent PLA(2) (iPLA(2)) activity and absent in macrophages isolated from iPLA(2) beta(-/-) mice. Our results further demonstrate that 12/15-lipoxygenase (12/15-LOX)-derived, but not cyclooxygenase- or cytochrome P450-dependent epoxygenase-derived AA metabolites, are specifically required for SR-A-dependent adhesion. Because of their role in regulating actin polymerization and cell adhesion, Rac and Cdc42 activation were also examined and shown to be increased via an iPLA(2)- and LOX-dependent pathway. Together, our results identify a novel role for iPLA(2)-catalyzed AA release and its metabolism by 12/15-LOX in coupling SR-A-mediated macrophage adhesion to Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Dejan M Nikolic
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven R Post
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536.
| |
Collapse
|
70
|
Xie Z, Gong MC, Su W, Turk J, Guo Z. Group VIA phospholipase A2 (iPLA2beta) participates in angiotensin II-induced transcriptional up-regulation of regulator of g-protein signaling-2 in vascular smooth muscle cells. J Biol Chem 2007; 282:25278-89. [PMID: 17613534 PMCID: PMC2096773 DOI: 10.1074/jbc.m611206200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rgs2 (regulator of G-protein signaling-2)-deficient mice exhibit severe hypertension, and genetic variations of RGS2 occur in hypertensive patients. RGS2 mRNA up-regulation by angiotensin II (Ang II) in vascular smooth muscle cells (VSMC) is a potentially important negative feedback mechanism in blood pressure homeostasis, but how it occurs is unknown. Here we demonstrate that group VIA phospholipase A2 (iPLA2beta) plays a pivotal role in Ang II-induced RGS2 mRNA up-regulation in VSMC by three independent approaches, including pharmacologic inhibition with a bromoenol lactone suicide substrate, suppression of iPLA2beta expression with antisense oligonucleotides, and genetic deletion in iPLA2beta-null mice. Selective inhibition of iPLA2beta by each of these approaches abolishes Ang II-induced RGS2 mRNA up-regulation. Furthermore, using adenovirus-mediated gene transfer, we demonstrate that restoration of iPLA2beta-expression in iPLA2beta-null VSMC reconstitutes the ability of Ang II to up-regulate RGS2 mRNA expression. In contrast, Ang II-induced vasodilator-stimulated phosphoprotein phosphorylation and Ang II receptor expression are unaffected. Moreover, in wild-type but not iPLA2beta-null VSMC, Ang II stimulates iPLA2 enzymatic activity significantly. Both arachidonic acid and lysophosphatidylcholine, products of iPLA2beta action, induce RGS2 mRNA up-regulation. Inhibition of lipoxygenases, particularly 15-lipoxygenase, and cyclooxygenases, but not cytochrome P450-dependent epoxygenases inhibits Ang II- or AA-induced RGS2 mRNA expression. Moreover, RGS2 protein expression is also up-regulated by Ang II, and this is attenuated by bromoenol lactone. Disruption of the Ang II/iPLA2beta/RGS2 feedback pathway in iPLA2beta-null cells potentiates Ang II-induced vasodilator-stimulated phosphoprotein and Akt phosphorylation in a time-dependent manner. Collectively, our results demonstrate that iPLA2beta participates in Ang II-induced transcriptional up-regulation of RGS2 in VSMC.
Collapse
MESH Headings
- Adenoviridae
- Angiotensin II/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cell Adhesion Molecules/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Deletion
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Group VI Phospholipases A2
- Homeostasis/drug effects
- Homeostasis/physiology
- Lysophosphatidylcholines/pharmacology
- Mice
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/enzymology
- Naphthalenes/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oxidoreductases/antagonists & inhibitors
- Oxidoreductases/metabolism
- Phospholipases A/antagonists & inhibitors
- Phospholipases A/deficiency
- Phospholipases A/metabolism
- Phospholipases A2
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrones/pharmacology
- RGS Proteins/antagonists & inhibitors
- RGS Proteins/deficiency
- RGS Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transduction, Genetic
- Up-Regulation/drug effects
- Up-Regulation/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology and the Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
71
|
Bao S, Li Y, Lei X, Wohltmann M, Jin W, Bohrer A, Semenkovich CF, Ramanadham S, Tabas I, Turk J. Attenuated free cholesterol loading-induced apoptosis but preserved phospholipid composition of peritoneal macrophages from mice that do not express group VIA phospholipase A2. J Biol Chem 2007; 282:27100-27114. [PMID: 17627946 PMCID: PMC2044506 DOI: 10.1074/jbc.m701316200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse macrophages undergo ER stress and apoptosis upon free cholesterol loading (FCL). We recently generated iPLA(2)beta-null mice, and here we demonstrate that iPLA(2)beta-null macrophages have reduced sensitivity to FCL-induced apoptosis, although they and wild-type (WT) cells exhibit similar increases in the transcriptional regulator CHOP. iPLA(2)beta-null macrophages are also less sensitive to apoptosis induced by the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin and the scavenger receptor A ligand fucoidan, and restoring iPLA(2)betaexpression with recombinant adenovirus increases apoptosis toward WT levels. WT and iPLA(2)beta-null macrophages incorporate [(3)H]arachidonic acid ([(3)H]AA]) into glycerophosphocholine lipids equally rapidly and exhibit identical zymosan-induced, cPLA(2)alpha-catalyzed [(3)H]AA release. In contrast, although WT macrophages exhibit robust [(3)H]AA release upon FCL, this is attenuated in iPLA(2)beta-null macrophages and increases toward WT levels upon restoring iPLA(2)beta expression. Recent reports indicate that iPLA(2)beta modulates mitochondrial cytochrome c release, and we find that thapsigargin and fucoidan induce mitochondrial phospholipid loss and cytochrome c release into WT macrophage cytosol and that these events are blunted in iPLA(2)beta-null cells. Immunoblotting studies indicate that iPLA(2)beta associates with mitochondria in macrophages subjected to ER stress. AA incorporation into glycerophosphocholine lipids is unimpaired in iPLA(2)beta-null macrophages upon electrospray ionization-tandem mass spectrometry analyses, and their complex lipid composition is similar to WT cells. These findings suggest that iPLA(2)beta participates in ER stress-induced macrophage apoptosis caused by FCL or thapsigargin but that deletion of iPLA(2)beta does not impair macrophage arachidonate incorporation or phospholipid composition.
Collapse
Affiliation(s)
- Shunzhong Bao
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Yankun Li
- Departments of Medicine and of Anatomy and Cell Biology, Columbia University, New York, New York 10032
| | - Xiaoyong Lei
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Mary Wohltmann
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Wu Jin
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Alan Bohrer
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Sasanka Ramanadham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the
| | - Ira Tabas
- Departments of Medicine and of Anatomy and Cell Biology, Columbia University, New York, New York 10032
| | - John Turk
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110 and the.
| |
Collapse
|
72
|
Kuwata H, Fujimoto C, Yoda E, Shimbara S, Nakatani Y, Hara S, Murakami M, Kudo I. A novel role of group VIB calcium-independent phospholipase A2 (iPLA2gamma) in the inducible expression of group IIA secretory PLA2 in rat fibroblastic cells. J Biol Chem 2007; 282:20124-32. [PMID: 17475622 DOI: 10.1074/jbc.m611883200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.
Collapse
Affiliation(s)
- Hiroshi Kuwata
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH. Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 2007; 282:7442-9. [PMID: 17197450 PMCID: PMC2044499 DOI: 10.1074/jbc.m607858200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet beta-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet beta-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 mum) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary beta-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca(2+)] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A(2) (iPLA(2)beta) hydrolyzes beta-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA(2)beta prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in beta-cells from iPLA(2)beta(-/-) mice. Stably transfected INS-1 cells that overexpress iPLA(2)beta hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet beta-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca(2+) entry and insulin secretion.
Collapse
Affiliation(s)
- David A. Jacobson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | | | - Shunzhong Bao
- Medicine Department Mass Spectrometry Facility and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- Medicine Department Mass Spectrometry Facility and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
74
|
|
75
|
Wijewickrama GT, Albanese A, Kim YJ, Oh YS, Murray PS, Takayanagi R, Tobe T, Masuda S, Murakami M, Kudo I, Ucker DS, Murray D, Cho W. Unique Membrane Interaction Mode of Group IIF Phospholipase A2. J Biol Chem 2006; 281:32741-54. [PMID: 16931517 DOI: 10.1074/jbc.m606311200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which secretory phospholipases A(2) (PLA(2)s) exert cellular effects are not fully understood. Group IIF PLA(2) (gIIFPLA(2)) is a structurally unique secretory PLA(2) with a long C-terminal extension. Homology modeling suggests that the membrane-binding surface of this acidic PLA(2) contains hydrophobic residues clustered near the C-terminal extension. Vesicle leakage and monolayer penetration measurements showed that gIIFPLA(2) had a unique ability to penetrate and disrupt compactly packed monolayers and bilayers whose lipid composition recapitulates that of the outer plasma membrane of mammalian cells. Fluorescence imaging showed that gIIFPLA(2) could also readily enter and deform plasma membrane-mimicking giant unilamellar vesicles. Mutation analysis indicates that hydrophobic residues (Tyr(115), Phe(116), Val(118), and Tyr(119)) near the C-terminal extension are responsible for these activities. When gIIFPLA(2) was exogenously added to HEK293 cells, it initially bound to the plasma membrane and then rapidly entered the cells in an endocytosis-independent manner, but the cell entry did not lead to a significant degree of phospholipid hydrolysis. GIIFPLA(2) mRNA was detected endogenously in human CD4(+) helper T cells after in vitro stimulation and exogenously added gIIFPLA(2) inhibited the proliferation of a T cell line, which was not seen with group IIA PLA(2). Collectively, these data suggest that unique membrane-binding properties of gIIFPLA(2) may confer special functionality on this secretory PLA(2) under certain physiological conditions.
Collapse
Affiliation(s)
- Gihani T Wijewickrama
- Department of Chemistry (M/C 111), University of Illinois, 845 West Taylor Street, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Ohtsuki M, Taketomi Y, Arata S, Masuda S, Ishikawa Y, Ishii T, Takanezawa Y, Aoki J, Arai H, Yamamoto K, Kudo I, Murakami M. Transgenic expression of group V, but not group X, secreted phospholipase A2 in mice leads to neonatal lethality because of lung dysfunction. J Biol Chem 2006; 281:36420-33. [PMID: 17008322 DOI: 10.1074/jbc.m607975200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an effort to elucidate the functions of secreted phospholipase A2 (sPLA2) enzymes in vivo, we generated transgenic (Tg) mice for group V sPLA2 (sPLA2-V) and group X sPLA2 (sPLA2-X), which act potently on phosphatidylcholine in vitro. We found that sPLA2-V Tg mice died in the neonatal period because of respiratory failure. The lungs of sPLA2-V Tg mice exhibited atelectasis with thickened alveolar walls and narrow air spaces, accompanied by infiltration of macrophages and only modest changes in eicosanoid levels. This severe pulmonary defect in sPLA2-V Tg mice was attributable to marked reduction of the lung surfactant phospholipids, phosphatidylcholine and phosphatidylglycerol. Given that the expression of sPLA2-V is greatly elevated in human lungs with severe inflammation, our present results raise the intriguing possibility that this isozyme may contribute to ongoing surfactant hydrolysis often observed in the lungs of patients with respiratory distress syndrome. In contrast, sPLA2-X Tg neonates displayed minimal abnormality of the respiratory tract with normal alveolar architecture and surfactant composition. This unexpected result was likely because sPLA2-X protein existed as an inactive zymogen in most tissues. The active form of sPLA2-X was detected in tissues with inflammatory granulation in sPLA2-X Tg mice. These results suggest that sPLA2-X mostly remains inactive under physiological conditions and that its proteolytic activation occurs during inflammation or other as yet unidentified circumstances in vivo.
Collapse
Affiliation(s)
- Mitsuhiro Ohtsuki
- Department of Health Chemistry, School of Pharmaceutical Sciences and Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|